
SEI CERT
C++ Coding Standard
Rules for Developing Safe, Reliable, and
Secure Systems in C++

2016 Edition

Aaron Ballman

V01-20170309-0910

Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the

SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0004501

mailto:permission@sei.cmu.edu

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 i
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table of Contents

1 Introduction 1
1.1 Scope 1
1.2 Audience 3
1.3 Usage 3
1.4 How this Coding Standard Is Organized 4
1.5 Relation to the CERT C Coding Standard 9
1.6 Rules Versus Recommendations 10
1.7 Tool Selection and Validation 11
1.8 Conformance Testing 12
1.9 Development Process 13
1.10 System Qualities 14
1.11 Automatically Generated Code 14
1.12 Government Regulations 15
1.13 Acknowledgments 17

2 Declarations and Initialization (DCL) 18
2.1 DCL50-CPP. Do not define a C-style variadic function 18
2.2 DCL51-CPP. Do not declare or define a reserved identifier 22
2.3 DCL52-CPP. Never qualify a reference type with const or volatile 28
2.4 DCL53-CPP. Do not write syntactically ambiguous declarations 31
2.5 DCL54-CPP. Overload allocation and deallocation functions as a pair in the

same scope 37
2.6 DCL55-CPP. Avoid information leakage when passing a class object across a trust

boundary 41
2.7 DCL56-CPP. Avoid cycles during initialization of static objects 51
2.8 DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions 57
2.9 DCL58-CPP. Do not modify the standard namespaces 63
2.10 DCL59-CPP. Do not define an unnamed namespace in a header file 69
2.11 DCL60-CPP. Obey the one-definition rule 76

3 Expressions (EXP) 83
3.1 EXP50-CPP. Do not depend on the order of evaluation for side effects 83
3.2 EXP51-CPP. Do not delete an array through a pointer of the incorrect type 90
3.3 EXP52-CPP. Do not rely on side effects in unevaluated operands 92
3.4 EXP53-CPP. Do not read uninitialized memory 96
3.5 EXP54-CPP. Do not access an object outside of its lifetime 101
3.6 EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type 112
3.7 EXP56-CPP. Do not call a function with a mismatched language linkage 117
3.8 EXP57-CPP. Do not cast or delete pointers to incomplete classes 120

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 ii
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.9 EXP58-CPP. Pass an object of the correct type to va_start 126
3.10 EXP59-CPP. Use offsetof() on valid types and members 130
3.11 EXP60-CPP. Do not pass a nonstandard-layout type object across execution

boundaries 134
3.12 EXP61-CPP. A lambda object must not outlive any of its reference captured objects 139
3.13 EXP62-CPP. Do not access the bits of an object representation that are not part

of the object’s value representation 142
3.14 EXP63-CPP. Do not rely on the value of a moved-from object 147

4 Integers (INT) 153
4.1 INT50-CPP. Do not cast to an out-of-range enumeration value 153

5 Containers (CTR) 157
5.1 CTR50-CPP. Guarantee that container indices and iterators are within the valid range 157
5.2 CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a

container 163
5.3 CTR52-CPP. Guarantee that library functions do not overflow 170
5.4 CTR53-CPP. Use valid iterator ranges 174
5.5 CTR54-CPP. Do not subtract iterators that do not refer to the same container 177
5.6 CTR55-CPP. Do not use an additive operator on an iterator if the result would overflow 182
5.7 CTR56-CPP. Do not use pointer arithmetic on polymorphic objects 184
5.8 CTR57-CPP. Provide a valid ordering predicate 189
5.9 CTR58-CPP. Predicate function objects should not be mutable 193

6 Characters and Strings (STR) 198
6.1 STR50-CPP. Guarantee that storage for strings has sufficient space for character

data and the null terminator 198
6.2 STR51-CPP. Do not attempt to create a std::string from a null pointer 201
6.3 STR52-CPP. Use valid references, pointers, and iterators to reference elements of a

basic_string 205
6.4 STR53-CPP. Range check element access 209

7 Memory Management (MEM) 213
7.1 MEM50-CPP. Do not access freed memory 213
7.2 MEM51-CPP. Properly deallocate dynamically allocated resources 220
7.3 MEM52-CPP. Detect and handle memory allocation errors 233
7.4 MEM53-CPP. Explicitly construct and destruct objects when manually managing

object lifetime 238
7.5 MEM54-CPP. Provide placement new with properly aligned pointers to sufficient

storage capacity 243
7.6 MEM55-CPP. Honor replacement dynamic storage management requirements 249
7.7 MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart

pointer 253
7.8 MEM57-CPP. Avoid using default operator new for over-aligned types 258

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 iii
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8 Input Output (FIO) 261
8.1 FIO50-CPP. Do not alternately input and output from a file stream without an intervening

positioning call 261
8.2 FIO51-CPP. Close files when they are no longer needed 264

9 Exceptions and Error Handling (ERR) 267
9.1 ERR50-CPP. Do not abruptly terminate the program 267
9.2 ERR51-CPP. Handle all exceptions 273
9.3 ERR52-CPP. Do not use setjmp() or longjmp() 276
9.4 ERR53-CPP. Do not reference base classes or class data members in a constructor or

destructor function-try-block handler 280
9.5 ERR54-CPP. Catch handlers should order their parameter types from most derived to

least derived 282
9.6 ERR55-CPP. Honor exception specifications 284
9.7 ERR56-CPP. Guarantee exception safety 288
9.8 ERR57-CPP. Do not leak resources when handling exceptions 292
9.9 ERR58-CPP. Handle all exceptions thrown before main() begins executing 298
9.10 ERR59-CPP. Do not throw an exception across execution boundaries 303
9.11 ERR60-CPP. Exception objects must be nothrow copy constructible 307
9.12 ERR61-CPP. Catch exceptions by lvalue reference 312
9.13 ERR62-CPP. Detect errors when converting a string to a number 316

10 Object Oriented Programming (OOP) 320
10.1 OOP50-CPP. Do not invoke virtual functions from constructors or destructors 320
10.2 OOP51-CPP. Do not slice derived objects 325
10.3 OOP52-CPP. Do not delete a polymorphic object without a virtual destructor 333
10.4 OOP53-CPP. Write constructor member initializers in the canonical order 336
10.5 OOP54-CPP. Gracefully handle self-copy assignment 340
10.6 OOP55-CPP. Do not use pointer-to-member operators to access nonexistent

members 345
10.7 OOP56-CPP. Honor replacement handler requirements 350
10.8 OOP57-CPP. Prefer special member functions and overloaded operators to

C Standard Library functions 353
10.9 OOP58-CPP. Copy operations must not mutate the source object 360

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 iv
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11 Concurrency (CON) 365
11.1 CON50-CPP. Do not destroy a mutex while it is locked 365
11.2 CON51-CPP. Ensure actively held locks are released on exceptional conditions 368
11.3 CON52-CPP. Prevent data races when accessing bit-fields from multiple threads 371
11.4 CON53-CPP. Avoid deadlock by locking in a predefined order 375
11.5 CON54-CPP. Wrap functions that can spuriously wake up in a loop 380
11.6 CON55-CPP. Preserve thread safety and liveness when using condition variables 385
11.7 CON56-CPP. Do not speculatively lock a non-recursive mutex that is already owned by the

calling thread 391

12 Miscellaneous (MSC) 395
12.1 MSC50-CPP. Do not use std::rand() for generating pseudorandom numbers 395
12.2 MSC51-CPP. Ensure your random number generator is properly seeded 398
12.3 MSC52-CPP. Value-returning functions must return a value from all exit paths 402
12.4 MSC53-CPP. Do not return from a function declared [[noreturn]] 405
12.5 MSC54-CPP. A signal handler must be a plain old function 407

Appendix A: Bibliography 411

Appendix B: Definitions 419

Appendix C: Related Guidelines 425

Appendix D: Risk Assessments 427

Introduction - Scope

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 1
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

This standard provides rules for secure coding in the C++ programming language. The goal of
these rules is to develop safe, reliable, and secure systems, for example by eliminating undefined
behaviors that can lead to undefined program behaviors and exploitable vulnerabilities.
Conformance to the coding rules defined in this standard are necessary (but not sufficient) to
ensure the safety, reliability, and security of software systems developed in the C++ programming
language. It is also necessary, for example, to have a safe and secure design. Safety-critical
systems typically have stricter requirements than are imposed by this coding standard, for
example requiring that all memory be statically allocated. However, the application of this coding
standard will result in high-quality systems that are reliable, robust, and resistant to attack.

Each rule consists of a title, a description, noncompliant code examples, and compliant solutions,
as well as other information as described in How this Coding Standard Is Organized. The title is a
concise, but sometimes imprecise, description of the rule. The description specifies the normative
requirements of the rule. The noncompliant code examples are examples of code that would
constitute a violation of the rule. The accompanying compliant solutions demonstrate equivalent
code that does not violate the rule or any other rules in this coding standard.

A well-documented and enforceable coding standard is an essential element of coding in the C++
programming language. Coding standards encourage programmers to follow a uniform set of rules
determined by the requirements of the project and organization rather than by the programmers’
individual preferences. Once established, these standards can be used as a metric to evaluate
source code (using manual or automated processes).

The SEI CERT C++ Coding Standard wiki contains ongoing updates of the standard between
official published releases. If you are interested in contributing to these rules, create an account on
the wiki and then request contributor privileges by sending a request to info@sei.cmu.edu.

The Secure Coding eNewsletter contains news from the CERT Secure Coding Initiative as well as
summaries of recent updates to the standard rules. If you are interested in receiving updates
directly, subscribe to the eNewsletter through our website or send a request to info@sei.cmu.edu.

1.1 Scope

The CERT C++ Coding Standard was developed specifically for versions of the C++
programming language defined by the following:
• ISO/IEC 14882-2014, Programming Languages—C++, Fourth Edition, 2014 [ISO/IEC

14882-2014]

Although the guidelines for this standard were developed for C++14, they can also be applied to
earlier versions of the C++ programming language, including C++11. Variations between

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://www.cert.org/secure-coding/publications/secure-coding-enewsletter.cfm
mailto:info@sei.cmu.edu
mailto:info@sei.cmu.edu

Introduction - Scope

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 2
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

versions of the C++ Standard that would affect the proper application of these guidelines are
noted where applicable.

Most guidelines have a noncompliant code example that is a C++14-conforming program to
ensure that the problem identified by the guideline is within the scope of the standard. Most
guidelines also include a compliant solution that applies to multiple platforms. Language and
library extensions that have been published as ISO/IEC technical reports or technical
specifications are frequently given precedence. Occasionally, interesting or illustrative
implementation-specific behaviors are described.

1.1.1 Rationale

A coding standard for the C++ programming language can create the highest value for the longest
period of time by focusing on the C++ Standard (C++14) and any relevant post-C++14 technical
reports.

The C++ Standard documents existing practice where possible. That is, most features must be
tested in an implementation before being included in the standard. The CERT C++ Coding
Standard has a secondary purpose: to establish a set of best practices, which sometimes requires
introducing new practices that may not be widely known or used when existing practices are
inadequate. To put it a different way, the CERT C++ Coding Standard attempts to drive change
rather than just document it.

Some vendors have extensions to C++, and some have implemented only part of the C++
Standard before stopping development. Consequently, it is not possible to discuss only C++98,
C++03, or C++11. The vendor support equation is too complicated to draw a line and say that a
certain compiler supports exactly a certain standard. Whatever demarcation point is selected,
different vendors are on opposite sides of it for different parts of the language. Supporting all
possibilities would require testing the cross-product of each compiler with each language feature.
Consequently, we have selected a demarcation point that is the most recent in time so that the
rules and recommendations defined by the standard will be applicable for as long as possible. As a
result of the variations in support, source-code portability is enhanced when the programmer uses
only the features specified by C++14. This is one of many trade-offs between security and
portability inherent to C++ language programming.

The value of forward-looking information increases with time before it starts to decrease. The
value of backward-looking information starts to decrease immediately.

For all of these reasons, the priority of this standard is to support new code development using
C++14. A close-second priority is supporting remediation of old code using C++11.

This coding standard does make contributions to support older compilers when these
contributions can be significant and doing so does not compromise other priorities. The intent is
not to capture all deviations from the standard but to capture only a few important ones.

Introduction - Audience

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 3
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.1.2 Issues Not Addressed

A number of issues are not addressed by this secure coding standard.

1.1.2.1 Coding Style

Coding style issues are subjective, and it has proven impossible to develop a consensus on
appropriate style guidelines. Consequently, the CERT C++ Secure Coding Standard does not
require the enforcement of any particular coding style but only suggests that development
organizations define or adopt style guidelines and apply these guidelines consistently. The easiest
way to apply a coding style consistently is to use a code-formatting tool. Many interactive
development environments (IDEs) provide such capabilities.

1.1.2.2 Controversial Rules

In general, the CERT coding standards try to avoid the inclusion of controversial rules that lack a
broad consensus.

1.2 Audience

The CERT C++ Secure Coding Standard is primarily intended for developers of C++ language
programs but may also be used by software acquirers to define the requirements for software. The
standard is of particular interest to developers who are building high-quality systems that are
reliable, robust, and resistant to attack.

While not intended for C programmers, the standard may also be of some value to these
developers because the vast majority of issues identified for C language programs are also issues
in C++ programs, although in many cases the solutions are different.

1.3 Usage

The rules in this standard are intended to improve the security of software by improving the
knowledge, practices, and tools that software developers use.

This standard can be used to develop tailored coding standards for projects and organizations,
enabling a consistent approach to software development security. It may be extended with
organization-specific rules. However, the rules in this standard must be obeyed to claim
conformance with the standard.

This standard can also be used for conformance testing and tool selection and validation. Once a
coding standard has been established, tools and processes can be developed or modified to
determine conformance with the standard.

Introduction - How this Coding Standard Is Organized

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 4
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This standard can also be used to develop training and educate software professionals regarding
the appropriate application of coding standards. The Software Engineering Institute (SEI) offers
several Secure Coding courses and certificates, available as live training and online training. The
material from this standard and supplemental training and evaluation materials can be used to
1. identify job candidates with specific programming skills
2. demonstrate the presence of a well-trained software workforce
3. provide guidance to educational and training institutions

1.4 How this Coding Standard Is Organized

This coding standard is organized into 11 chapters that contain rules in specific topic areas
followed by four appendices. Appendix A contains the bibliography. Appendix B lists the
definitions of terms used throughout the standard. Appendix C lists the relationships between the
rules of this standard and two other related guidelines: MISRA C++ 2008: Guidelines for the Use
of the C++ Language in Critical Systems [MISRA 2008] and MITRE’s Common Weakness
Enumeration (CWE) [MITRE 2010]. Appendix D lists the risk assessments associated with all of
the rules in the coding standard.

Most rules have a consistent structure. Each rule in this standard has a unique identifier, which is
included in the title. The title and the introductory paragraphs define the rule and are typically
followed by one or more pairs of noncompliant code examples and compliant solutions. Each rule
also includes a risk assessment, related guidelines, and a bibliography (where applicable). Rules
may also include a table of related vulnerabilities.

1.4.1 Identifiers

Each rule and recommendation (see Rules Versus Recommendations) is given a unique identifier.
These identifiers consist of three parts:
• A three-letter mnemonic representing the section of the standard
• A two-digit numeric value in the range of 00 to 99
• A suffix that represents the associated language or platform.

− “-C” for the SEI CERT C Coding Standard
− “-CPP” for the SEI CERT C++ Coding Standard
− “-J” for the SEI CERT Oracle Coding Standard for Java
− “-PL” for the SEI CERT Perl Coding Standard

The three-letter mnemonic is used to group similar coding practices and to indicate which
category a coding practice belongs to.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the
range of 00 to 49 are reserved for recommendations, and values in the range of 50 to 99 are

http://www.cert.org/secure-coding/products-services/index.cfm
https://securecoding.cert.org/confluence/display/c
https://securecoding.cert.org/confluence/display/cplusplus
https://securecoding.cert.org/confluence/display/java
https://securecoding.cert.org/confluence/display/perl

Introduction - How this Coding Standard Is Organized

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 5
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

reserved for rules. (The values used for the SEI CERT C Coding Standard are different.) Rules
and recommendations are frequently referenced from the guidelines in this standard by their
identifier and title.

Here are some example identifiers with an explanation of each:
• INT50-CPP Do not cast to an out-of-range enumeration value

− This identifier indicates a rule
− “INT” stands for the Integer category
− “50” is the unique identifier
− “-CPP” stands for the C++ language

• EXP00-J Do not ignore values returned by methods
− This identifier indicates a rule
− “EXP” stands for the Expressions category
− “00” is the unique identifier
− “-J” stands for the Java language

• FLP00-C. Understand the limitations of floating-point numbers
− This identifier indicates a recommendation
− “FLP” stands for the Floating Point category
− “00” is the unique identifier
− “-C” stands for the C programming language

1.4.2 Noncompliant Code Examples and Compliant Solutions

Noncompliant code examples illustrate code that violates the guideline under discussion. It is
important to note that these are only examples, and eliminating all occurrences of the example
does not necessarily mean that the code being analyzed is now compliant with the guideline.

Noncompliant code examples are typically followed by compliant solutions, which show how the
noncompliant code example can be recoded in a secure, compliant manner. Except where noted,
noncompliant code examples should contain violations only of the guideline under discussion.
Compliant solutions should comply with all of the secure coding rules but may on occasion fail to
comply with a recommendation.

1.4.3 Exceptions

Any rule or recommendation may specify a small set of exceptions detailing the circumstances
under which the guideline is not necessary to ensure the safety, reliability, or security of software.
Exceptions are informative only and are not required to be followed.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285

Introduction - How this Coding Standard Is Organized

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 6
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.4.4 Risk Assessment

Each guideline in the CERT C++ Coding Standard contains a risk assessment section that
attempts to provide software developers with an indication of the potential consequences of not
addressing a particular rule or recommendation in their code (along with some indication of
expected remediation costs). This information may be used to prioritize the repair of rule
violations by a development team. The metric is designed primarily for remediation projects. It is
generally assumed that new code will be developed to be compliant with the entire coding
standard and applicable recommendations.

Each rule and recommendation has an assigned priority. Priorities are assigned using a metric
based on Failure Mode, Effects, and Criticality Analysis (FMECA) [IEC 60812 2006]. Three
values are assigned for each rule on a scale of 1 to 3 for severity, likelihood, and remediation cost.

Severity—How serious are the consequences of the rule being ignored?

Value Meaning Examples of Vulnerability

1

Low

Denial-of-service attack, abnormal termination

2

Medium

Data integrity violation, unintentional information disclosure

3

High

Run arbitrary code

Likelihood—How likely is it that a flaw introduced by ignoring the rule can lead to an
exploitable vulnerability?

Value Meaning

1 Unlikely

2 Probable

3 Likely

Remediation Cost—How expensive is it to comply with the rule?

Value Meaning Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

The three values are then multiplied together for each rule. This product provides a measure that
can be used in prioritizing the application of the rules. The products range from 1 to 27, although
only the following 10 distinct values are possible: 1, 2, 3, 4, 6, 8, 9, 12, 18, and 27. Rules and
recommendations with a priority in the range of 1 to 4 are Level 3 rules, 6 to 9 are Level 2, and
12 to 27 are Level 1. The following are possible interpretations of the priorities and levels.

Introduction - How this Coding Standard Is Organized

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 7
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Priorities and Levels

Level Priorities Possible Interpretation

L1 12, 18, 27 High severity, likely, inexpensive to repair
L2 6, 8, 9 Medium severity, probable, medium cost to repair
L3 1, 2, 3, 4 Low severity, unlikely, expensive to repair

Specific projects may begin remediation by implementing all rules at a particular level before
proceeding to the lower priority rules, as shown in the following illustration:

Recommendations are not compulsory and are provided for information purposes only.

1.4.5 Automated Detection

On the wiki, both rules and recommendations frequently have sections that describe automated
detection. These sections provide additional information on analyzers that can automatically
diagnose violations of coding guidelines. Most automated analyses for the C++ programming
language are neither sound nor complete, so the inclusion of a tool in this section typically means
that the tool can diagnose some violations of this particular rule. The Secure Coding Validation
Suite can be used to test the ability of analyzers to diagnose violations of rules from ISO/IEC TS
17961:2012, which is related to the rules in the SEI CERT C Coding Standard.

The information in the automated detection sections on the wiki may be
• provided by the vendors
• determined by CERT by informally evaluating the analyzer
• determined by CERT by reviewing the vendor documentation

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://github.com/SEI-CERT/scvs
https://github.com/SEI-CERT/scvs
https://securecoding.cert.org/confluence/display/c
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Introduction - How this Coding Standard Is Organized

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 8
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Where possible, we try to reference the exact version of the tool for which the results were
obtained. Because these tools evolve continuously, this information can rapidly become dated and
obsolete.

1.4.6 Related Vulnerabilities

The risk assessment sections on the wiki also contain a link to search for related vulnerabilities on
the CERT website. Whenever possible, CERT Vulnerability Notes are tagged with a keyword
corresponding to the unique ID of the coding guideline. This search provides you with an up-to-
date list of real-world vulnerabilities that have been determined to be at least partially caused by a
violation of this specific guideline. These vulnerabilities are labeled as such only when the
vulnerability analysis team at the CERT/CC is able to evaluate the source code and precisely
determine the cause of the vulnerability. Because many vulnerability notes refer to vulnerabilities
in closed-source software systems, it is not always possible to provide this additional analysis.
Consequently, the related vulnerabilities field tends to be somewhat sparsely populated.

Related vulnerability sections are included only for specific rules in this standard, when the
information is both relevant and interesting.

1.4.7 Related Guidelines

The related guidelines sections contain links to guidelines in related standards, technical
specifications, and guideline collections such as Information Technology—Programming
Languages, Their Environments and System Software Interfaces—C Secure Coding Rules
[ISO/IEC TS 17961:2012]; Information Technology—Programming Languages—Guidance to
Avoiding Vulnerabilities in Programming Languages through Language Selection and Use
[ISO/IEC TR 24772:2013]; MISRA C++ 2008: Guidelines for the Use of the C++ Language in
Critical Systems [MISRA 2008]; and CWE IDs in MITRE’s Common Weakness Enumeration
(CWE) [MITRE 2010].

You can create a unique URL to get more information on CWEs by appending the relevant ID to
the end of a fixed string. For example, to find more information about “CWE-192: Integer
Coercion Error,” you can append 192.html to http://cwe.mitre.org/data/definitions/ and enter the
resulting URL in your browser: http://cwe.mitre.org/data/definitions/192.html.

The other referenced technical specifications, technical reports, and guidelines are commercially
available.

1.4.8 Bibliography

Most guidelines have a small bibliography section that lists documents and sections in those
documents that provide information relevant to the guideline.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://www.cert.org/vuls/
http://cwe.mitre.org/data/definitions/
http://cwe.mitre.org/data/definitions/192.html

Introduction - Relation to the CERT C Coding Standard

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 9
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.5 Relation to the CERT C Coding Standard

The C++ Standard, [intro.scope], paragraph 2 [ISO/IEC 14882-2014] states the following:

C++ is a general purpose programming language based on the C programming
language as described in ISO/IEC 9899:1999 Programming languages—C (hereinafter
referred to as the C standard). In addition to the facilities provided by C, C++ provides
additional data types, classes, templates, exceptions, namespaces, operator
overloading, function name overloading, references, free store management operators,
and additional library facilities.

Because C++ is based on the C programming language, there is considerable overlap between the
guidelines specified by the SEI CERT C Coding Standard and those specified by this coding
standard. To reduce the amount of duplicated information, this coding standard focuses on the
parts of the C++ programming language that are not wholly covered by the CERT C Coding
Standard. Because of the increased focus on types in C++, some rules in C are extended by the
CERT C++ Secure Coding Standard. Except where noted, the contents of the CERT C Coding
Standard apply equally to code written in C++. Contents from the CERT C Coding Standard that
apply to the CERT C++ Coding Standard are described in each related chapter of the C++
standard.

The following guidelines from the CERT C Coding Standard do not apply to the CERT C++
Secure Coding Standard:
• ARR32-C. Ensure size arguments for variable length arrays are in a valid range
• ARR36-C. Do not subtract or compare two pointers that do not refer to the same array
• CON30-C. Clean up thread-specific storage
• CON31-C. Do not destroy a mutex while it is locked
• CON32-C. Prevent data races when accessing bit-fields from multiple threads
• CON34-C. Declare objects shared between threads with appropriate storage durations
• CON35-C. Avoid deadlock by locking in a predefined order
• CON36-C. Wrap functions that can spuriously wake up in a loop
• CON38-C. Preserve thread safety and liveness when using condition variables
• CON39-C. Do not join or detach a thread that was previously joined or detached
• DCL31-C. Declare identifiers before using them
• DCL36-C. Do not declare an identifier with conflicting linkage classifications
• DCL37-C. Do not declare or define a reserved identifier
• DCL38-C. Use the correct syntax when declaring a flexible array member
• DCL41-C. Do not declare variables inside a switch statement before the first case label
• EXP30-C. Do not depend on the order of evaluation for side effects
• EXP32-C. Do not access a volatile object through a nonvolatile reference

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://securecoding.cert.org/confluence/display/c/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range
https://securecoding.cert.org/confluence/display/c/ARR36-C.+Do+not+subtract+or+compare+two+pointers+that+do+not+refer+to+the+same+array
https://securecoding.cert.org/confluence/display/c/CON30-C.+Clean+up+thread-specific+storage
https://securecoding.cert.org/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked
https://securecoding.cert.org/confluence/display/c/CON32-C.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads
https://securecoding.cert.org/confluence/display/c/CON34-C.+Declare+objects+shared+between+threads+with+appropriate+storage+durations
https://securecoding.cert.org/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order
https://securecoding.cert.org/confluence/display/c/CON36-C.+Wrap+functions+that+can+spuriously+wake+up+in+a+loop
https://securecoding.cert.org/confluence/display/c/CON38-C.+Preserve+thread+safety+and+liveness+when+using+condition+variables
https://securecoding.cert.org/confluence/display/c/CON39-C.+Do+not+join+or+detach+a+thread+that+was+previously+joined+or+detached
https://securecoding.cert.org/confluence/display/c/DCL31-C.+Declare+identifiers+before+using+them
https://securecoding.cert.org/confluence/display/c/DCL36-C.+Do+not+declare+an+identifier+with+conflicting+linkage+classifications
https://securecoding.cert.org/confluence/display/c/DCL37-C.+Do+not+declare+or+define+a+reserved+identifier
https://securecoding.cert.org/confluence/display/c/DCL38-C.+Use+the+correct+syntax+when+declaring+a+flexible+array+member
https://securecoding.cert.org/confluence/display/c/DCL41-C.+Do+not+declare+variables+inside+a+switch+statement+before+the+first+case+label
https://securecoding.cert.org/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://securecoding.cert.org/confluence/display/c/EXP32-C.+Do+not+access+a+volatile+object+through+a+nonvolatile+reference

Introduction - Rules Versus Recommendations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 10
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• EXP33-C. Do not read uninitialized memory
• EXP40-C. Do not modify constant objects
• EXP43-C. Avoid undefined behavior when using restrict-qualified pointers
• EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic
• MEM33-C. Allocate and copy structures containing a flexible array member dynamically
• SIG30-C. Call only asynchronous-safe functions within signal handlers

1.6 Rules Versus Recommendations

CERT coding standards consist of rules and recommendations. Rules are meant to provide
normative requirements for code; recommendations are meant to provide guidance that, when
followed, should improve the safety, reliability, and security of software systems. However, a
violation of a recommendation does not necessarily indicate the presence of a defect in the code.
Rules and recommendations are collectively referred to as guidelines.

1.6.1 Rules

Rules must meet the following criteria:
1. Violation of the guideline is likely to result in a defect that may adversely affect the safety,

reliability, or security of a system, for example, by introducing a security flaw that may
result in an exploitable vulnerability.

2. The guideline does not rely on source code annotations or assumptions.
3. Conformance to the guideline can be determined through automated analysis (either static or

dynamic), formal methods, or manual inspection techniques.

1.6.2 Recommendations

Recommendations are suggestions for improving code quality. Guidelines are defined to be
recommendations when all of the following conditions are met:
1. Application of a guideline is likely to improve the safety, reliability, or security of software

systems.
2. One or more of the requirements necessary for a guideline to be considered a rule cannot be

met.

The set of recommendations that a particular development effort adopts depends on the
requirements of the final software product. Projects with stricter requirements may decide to
dedicate more resources to ensuring the safety, reliability, and security of a system and
consequently are likely to adopt a broader set of recommendations.

https://securecoding.cert.org/confluence/display/c/EXP33-C.+Do+not+read+uninitialized+memory
https://securecoding.cert.org/confluence/display/c/EXP40-C.+Do+not+modify+constant+objects
https://securecoding.cert.org/confluence/display/c/EXP43-C.+Avoid+undefined+behavior+when+using+restrict-qualified+pointers
https://securecoding.cert.org/confluence/display/c/EXP44-C.+Do+not+rely+on+side+effects+in+operands+to+sizeof%2C+_Alignof%2C+or+_Generic
https://securecoding.cert.org/confluence/display/c/MEM33-C.++Allocate+and+copy+structures+containing+a+flexible+array+member+dynamically
https://securecoding.cert.org/confluence/display/c/SIG30-C.+Call+only+asynchronous-safe+functions+within+signal+handlers

Introduction - Tool Selection and Validation

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 11
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The CERT C++ Coding Standard does not currently include any recommendations; the
publication of all C++ recommendations was removed from this document and the wiki pending
further review and development.

1.7 Tool Selection and Validation

Although rule checking can be performed manually, with increasing program size and
complexity, it rapidly becomes infeasible. For this reason, the use of static analysis tools is
recommended.

When choosing a compiler (which should be understood to include the linker), a C++-compliant
compiler should be used whenever possible. A conforming implementation will produce at least
one diagnostic message if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. It is also likely that any analyzers you may use assume a C++-compliant
compiler.

When choosing a source code analysis tool, it is clearly desirable that the tool be able to enforce
as many of the guidelines as possible. Not all recommendations are enforceable; some are strictly
meant to be informative.

Although CERT recommends the use of an ISO/IEC TS 17961–conforming analyzer, the
Software Engineering Institute, as a federally funded research and development center (FFRDC),
is not in a position to endorse any particular vendor or tool. Vendors are encouraged to develop
conforming analyzers, and users of this coding standard are free to evaluate and select whichever
analyzers best suit their purposes.

1.7.1 False Positives and False Negatives

In general, determining conformance to coding rules and recommendations is computationally
undecidable. The precision of static analysis has practical limitations. For example, the halting
theorem of computer science states that for every analysis tool that indicates whether a program
terminates, there exists a program that the tool will not analyze correctly. Consequently, any
property dependent on control flow—such as halting—may be indeterminate for some programs.
A consequence of undecidability is that it may be impossible for any tool to determine statically
whether a given guideline is satisfied in specific circumstances. The widespread presence of such
code may also lead to unexpected results from an analysis tool.

Regardless of how checking is performed, the analysis may generate the following:
• False positives: The tool reports a flaw when one does not exist. False positives may occur

because the code is too complex for the tool to perform a complete analysis. The use of
features such as function pointers and libraries may make false positives more likely.

https://www.securecoding.cert.org/

Introduction - Conformance Testing

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 12
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• False negatives: Failure to report a real flaw in the code is usually regarded as the most
serious analysis error, as it may leave the user with a false sense of security. Most tools err on
the side of caution and consequently generate false positives. However, in some cases, it may
be deemed better to report some high-risk flaws and miss others than to overwhelm the user
with false positives.

To the greatest extent feasible, an analyzer should minimize both false positives and false
negatives with respect to enforceable guidelines.

Compilers and source code analysis tools are trusted processes, meaning that a degree of reliance
is placed on the output of the tools. Accordingly, developers must ensure that this trust is not
misplaced. Ideally, trust should be achieved by the tool supplier running appropriate validation
tests such as the Secure Coding Validation Suite.

1.7.2 False Positives

Although many guidelines list common exceptions, it is difficult if not impossible to develop a
complete list of exceptions for each guideline. Consequently, it is important that source code
complies with the intent of each guideline and that tools, to the greatest extent possible, minimize
false positives that do not violate the intent of the guideline. The degree to which tools minimize
false-positive diagnostics is a quality-of-implementation issue.

1.8 Conformance Testing

To ensure that the source code conforms to this coding standard, it is necessary to have measures
in place that check for rule violations. The most effective means of achieving this goal is to use
one or more ISO/IEC TS 17961–conforming analyzers. Where a guideline cannot be checked by a
tool, a manual review is required.

The Source Code Analysis Laboratory (SCALe) provides a means for evaluating the conformance
of software systems against this and other coding standards. CERT coding standards provide a
normative set of rules against which software systems can be evaluated. Conforming software
systems should demonstrate improvements in the safety, reliability, and security over
nonconforming systems.

The SCALe team at CERT analyzes a developer’s source code and provides a detailed report of
findings to guide the code’s repair. After the developer has addressed these findings and the
SCALe team determines that the product version conforms to the standard, CERT issues the
developer a certificate and lists the system in a registry of conforming systems.

1.8.1 Conformance

Conformance to the CERT C Coding Standard requires that the code not contain any violations of
the rules specified in this standard. If an exceptional condition is claimed, the exception must

https://github.com/SEI-CERT/scvs
http://www.cert.org/secure-coding/products-services/scale.cfm

Introduction - Development Process

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 13
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

correspond to a predefined exceptional condition, and the application of this exception must be
documented in the source code. Conformance with the recommendations is not necessary to claim
conformance with the CERT C++ Coding Standard. However, conformance to the
recommendations will, in many cases, make it easier to conform to the rules, eliminating many
potential sources of defects.

1.8.2 Levels

Rules and recommendations in this standard are classified into three levels (see How this Coding
Standard Is Organized). Emphasis should be placed on conformance Level 1 (L1) rules. Software
systems that have been validated as complying with all Level 1 rules are considered to be L1
conforming. Software systems can be assessed as L1, L2, or fully conforming, depending on the
set of rules to which the system has been validated.

1.8.3 Deviation Procedure

Strict adherence to all rules is unlikely and, consequently, deviations associated with specific rule
violations are necessary. Deviations can be used in cases where a true-positive finding is
uncontested as a rule violation but the code is nonetheless determined to be correct. An
uncontested true-positive finding may be the result of a design or architecture feature of the
software or may occur for a valid reason that was unanticipated by the coding standard. In this
respect, the deviation procedure allows for the possibility that coding rules are overly strict
[Seacord 2013].

Deviations are not granted for reasons of performance or usability. A software system that
successfully passes conformance testing must not contain defects or exploitable vulnerabilities.
Deviation requests are evaluated by the lead assessor, and if the developer can provide sufficient
evidence that the deviation will not result in a vulnerability, the deviation request is accepted.
Deviations are used infrequently because it is almost always easier to fix a coding error than it is
to provide an argument that the coding error does not result in a vulnerability.

1.9 Development Process

The development of a coding standard for any programming language is a difficult undertaking
that requires significant community involvement. The following development process has been
used to create this standard:
1. Rules and recommendations for a coding standard are solicited from the communities

involved in the development and application of each programming language, including the
formal or de facto standards bodies responsible for the documented standard.

2. These rules and recommendations are edited by members of the CERT technical staff for
content and style and placed on the SEI CERT C++ Coding Standard wiki for comment and
review.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Introduction - System Qualities

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 14
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3. The user community may then comment on the publicly posted content using threaded
discussions and other communication tools. Once a consensus develops that the rule or
recommendation is appropriate and correct, the final rule is incorporated into an officially
released version of the secure coding standard.

1.10 System Qualities

The goal of this coding standard is to produce safe, reliable, and secure systems. Additional
requirements might exist for safety-critical systems, such as the absence of dynamic memory
allocation. Other software quality attributes of interest include portability, usability, availability,
maintainability, readability, and performance.

Many of these attributes are interrelated in interesting ways. For example, readability is an
attribute of maintainability; both are important for limiting the introduction of defects during
maintenance that can result in security flaws or reliability issues. In addition, readability aids code
inspection by safety officers. Reliability and availability require proper resource management,
which also contributes to the safety and security of the system. System attributes such as
performance and security are often in conflict, requiring trade-offs to be considered.

1.11 Automatically Generated Code

If a code-generating tool is to be used, it is necessary to select an appropriate tool and undertake
validation. Adherence to the requirements of this document may provide one criterion for
assessing a tool.

Coding guidance varies depending on how code is generated and maintained. Categories of code
include the following:
• Tool-generated, tool-maintained code that is specified and maintained in a higher level format

from which language-specific source code is generated. The source code is generated from
this higher level description and then provided as input to the language compiler. The
generated source code is never viewed or modified by the programmer.

• Tool-generated, hand-maintained code that is specified and maintained in a higher level
format from which language-specific source code is generated. It is expected or anticipated,
however, that at some point in the development cycle, the tool will cease to be used and the
generated source code will be visually inspected and/or manually modified and maintained.

• Hand-coded code is manually written by a programmer using a text editor or interactive
development environment; the programmer maintains source code directly in the source-code
format provided to the compiler.

Introduction - Government Regulations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 15
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Source code that is maintained by hand must have the following quality attributes:
• readability
• program comprehensibility

These requirements are not applicable for source code that is never directly handled by a
programmer, although requirements for correct behavior still apply. Reading and comprehension
requirements apply to code that is tool generated and hand maintained but do not apply to code
that is tool generated and tool maintained. Tool-generated, tool-maintained code can impose
consistent constraints that ensure the safety of some constructs that are risky in hand-generated
code.

1.12 Government Regulations

Developing software using secure coding rules is a good idea and is increasingly a requirement.
The National Defense Authorization Act for Fiscal Year 2013, Section 933, “Improvements in
Assurance of Computer Software Procured by the Department of Defense,” requires evidence that
government software development and maintenance organizations and contractors conform, in
computer software coding, to approved secure coding standards of the Department of Defense
(DoD) during software development, upgrade, and maintenance activities, including through the
use of inspections and appraisals.

DoD acquisition programs are now specifying the Application Security and Development Security
Technical Implementation Guide (STIG) in requests for proposal (RFPs). Below is information
about the last two versions of the Application Security and Development STIG, Version 4, Release
1 and Version 3, Release 10.

1.12.1.1 Application Security and Development STIG, Version 4, Release 1 [DISA 2016]

Section 2.1 of the Application Security and Development STIG Overview, “Security Assessment
Information,” requires that “...coding standards, application vulnerability scan reports, and
automated code review results are all part of the suite of system documentation that is expected to
be available for review when conducting a security assessment of an application.”

The proper application of this CERT secure coding standard enables a system to comply with the
following requirements from the Application Security and Development Security Technical
Implementation Guide, Version 4, Release 1:
• (APSC-DV-001995: CAT II) The application must not be vulnerable to race conditions.
• (APSC-DV-002000: CAT II) The application must terminate all network connections

associated with a communications session at the end of the session.
• (APSC-DV-002510: CAT I) The application must protect from command injection.
• (APSC-DV-002520: CAT II) The application must protect from canonical representation

vulnerabilities.

Introduction - Government Regulations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 16
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• (APSC-DV-002530: CAT II) The application must validate all input.
• (APSC-DV-002560: CAT I) The application must not be subject to input handling

vulnerabilities.
• (APSC-DV-002590: CAT I) The application must not be vulnerable to overflow attacks.
• (APSC-DV-003215: CAT III) The application development team must follow a set of

coding standards.
• (APSC-DV-003235: CAT II) The application must not be subject to error handling

vulnerabilities.

Adopting secure coding verification processes and training programmers and software testers on
the standard helps to satisfy the following requirements:
• (APSC-DV-003150: CAT II) At least one tester must be designated to test for security flaws

in addition to functional testing.
• (APSC-DV-003170: CAT II) An application code review must be performed on the

application.
• (APSC-DV-003210: CAT II) Security flaws must be fixed or addressed in the project plan.
• (APSC-DV-003400: CAT II) The Program Manager must verify all levels of program

management, designers, developers, and testers receive annual security training pertaining to
their job function.

1.12.1.2 Application Security and Development STIG, Version 3, Release 10 [DISA
2015]

Section 2.1.5, “Coding Standards,” requires that “the Program Manager will ensure the
development team follows a set of coding standards.”

The proper application of this standard enables a system to comply with the following
requirements from the Application Security and Development Security Technical Implementation
Guide, Version 3, Release 10:
• (APP2060.1: CAT II) The Program Manager will ensure the development team follows a set

of coding standards.
• (APP2060.2: CAT II) The Program Manager will ensure the development team creates a list

of unsafe functions to avoid and document this list in the coding standards.
• (APP3550: CAT I) The Designer will ensure the application is not vulnerable to integer

arithmetic issues.
• (APP3560: CAT I) The Designer will ensure the application does not contain format string

vulnerabilities.
• (APP3570: CAT I) The Designer will ensure the application does not allow command

injection.
• (APP3590.1: CAT I) The Designer will ensure the application does not have buffer

overflows.

Introduction - Acknowledgments

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 17
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• (APP3590.2: CAT I) The Designer will ensure the application does not use functions known
to be vulnerable to buffer overflows.

• (APP3590.3: CAT II) The Designer will ensure the application does not use signed values
for memory allocation where permitted by the programming language.

• (APP3600: CAT II) The Designer will ensure the application has no canonical representation
vulnerabilities.

• (APP3630.1: CAT II) The Designer will ensure the application is not vulnerable to race
conditions.

• (APP3630.2: CAT III) The Designer will ensure the application does not use global
variables when local variables could be used.

Training programmers and software testers on the standard helps to satisfy the following
requirements:
• (APP2120.3: CAT II) The Program Manager will ensure developers are provided with

training on secure design and coding practices on at least an annual basis.
• (APP2120.4: CAT II) The Program Manager will ensure testers are provided training on an

annual basis.
• (APP2060.3: CAT II) The Designer will follow the established coding standards established

for the project.
• (APP2060.4: CAT II) The Designer will not use unsafe functions documented in the project

coding standards.
• (APP5010: CAT III) The Test Manager will ensure at least one tester is designated to test for

security flaws in addition to functional testing.

1.13 Acknowledgments

This standard was made possible through a broad community effort. We thank all those who
contributed and provided reviews that helped to make the standard a success. If you are interested
in contributing to CERT secure coding rules, create an account on the wiki and then request
contributor privileges by sending email to info@sei.cmu.edu.

1.13.1.1 Contributors to the 2017 Edition of the Standard

Aaron Ballman, Peter Brockamp, G. Ann Campbell, Bill Claycomb, Ingo Elsen, Loic Etienne,
Leo Heinsaar, Luc Hermitte, David Keaton, Larry, Gerhard Muenz, Malcolm Parsons, Max Raff,
Robert Schiela, Robert Seacord, Martin Sebor, Sandy Shrum, Will Snavely, David Svoboda,
Mark J. Tilford, Andrew Wesie, and Barbara White

1.13.1.2 The SEI CERT Secure Coding Team

Aaron Ballman, Lori Flynn, Will Klieber, Robert Schiela, Will Snavely, and David Svoboda

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
mailto:info@sei.cmu.edu

Declarations and Initialization (DCL) - DCL50-CPP. Do not define a C-style variadic function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 18
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 Declarations and Initialization (DCL)

2.1 DCL50-CPP. Do not define a C-style variadic function

Functions can be defined to accept more formal arguments at the call site than are specified by the
parameter declaration clause. Such functions are called variadic functions because they can accept
a variable number of arguments from a caller. C++ provides two mechanisms by which a variadic
function can be defined: function parameter packs and use of a C-style ellipsis as the final
parameter declaration.

Variadic functions are flexible because they accept a varying number of arguments of differing
types. However, they can also be hazardous. A variadic function using a C-style ellipsis (hereafter
called a C-style variadic function) has no mechanisms to check the type safety of arguments being
passed to the function or to check that the number of arguments being passed matches the
semantics of the function definition. Consequently, a runtime call to a C-style variadic function
that passes inappropriate arguments yields undefined behavior. Such undefined behavior could be
exploited to run arbitrary code.

Do not define C-style variadic functions. (The declaration of a C-style variadic function that is
never defined is permitted, as it is not harmful and can be useful in unevaluated contexts.)

Issues with C-style variadic functions can be avoided by using variadic functions defined with
function parameter packs for situations in which a variable number of arguments should be passed
to a function. Additionally, function currying can be used as a replacement to variadic functions.
For example, in contrast to C’s printf() family of functions, C++ output is implemented with
the overloaded single-argument std::cout::operator<<() operators.

2.1.1 Noncompliant Code Example

This noncompliant code example uses a C-style variadic function to add a series of integers
together. The function reads arguments until the value 0 is found. Calling this function without
passing the value 0 as an argument (after the first two arguments) results in undefined behavior.
Furthermore, passing any type other than an int also results in undefined behavior.

Declarations and Initialization (DCL) - DCL50-CPP. Do not define a C-style variadic function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 19
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <cstdarg>

int add(int first, int second, ...) {
 int r = first + second;
 va_list va;
 va_start(va, second);
 while (int v = va_arg(va, int)) {
 r += v;
 }
 va_end(va);
 return r;
}

2.1.2 Compliant Solution (Recursive Pack Expansion)

In this compliant solution, a variadic function using a function parameter pack is used to
implement the add() function, allowing identical behavior for call sites. Unlike the C-style
variadic function used in the noncompliant code example, this compliant solution does not result
in undefined behavior if the list of parameters is not terminated with 0. Additionally, if any of the
values passed to the function are not integers, the code is ill-formed rather than producing
undefined behavior.

#include <type_traits>

template <typename Arg, typename
std::enable_if<std::is_integral<Arg>::value>::type * = nullptr>
int add(Arg f, Arg s) { return f + s; }

template <typename Arg, typename... Ts, typename
std::enable_if<std::is_integral<Arg>::value>::type * = nullptr>
int add(Arg f, Ts... rest) {
 return f + add(rest...);
}

This compliant solution makes use of std::enable_if to ensure that any nonintegral
argument value results in an ill-formed program.

Declarations and Initialization (DCL) - DCL50-CPP. Do not define a C-style variadic function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 20
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.1.3 Compliant Solution (Braced Initializer List Expansion)

An alternative compliant solution that does not require recursive expansion of the function
parameter pack instead expands the function parameter pack into a list of values as part of a
braced initializer list. Since narrowing conversions are not allowed in a braced initializer list, the
type safety is preserved despite the std::enable_if not involving any of the variadic
arguments.

#include <type_traits>

template <typename Arg, typename... Ts, typename
std::enable_if<std::is_integral<Arg>::value>::type * = nullptr>
int add(Arg i, Arg j, Ts... all) {
 int values[] = { j, all... };
 int r = i;
 for (auto v : values) {
 r += v;
 }
 return r;
}

2.1.4 Exceptions

DCL50-CPP-EX1: It is permissible to define a C-style variadic function if that function also has
external C language linkage. For instance, the function may be a definition used in a C library API
that is implemented in C++.

DCL50-CPP-EX2: As stated in the normative text, C-style variadic functions that are declared
but never defined are permitted. For example, when a function call expression appears in an
unevaluated context, such as the argument in a sizeof expression, overload resolution is
performed to determine the result type of the call but does not require a function definition. Some
template metaprogramming techniques that employ SFINAE use variadic function declarations to
implement compile-time type queries, as in the following example.

Declarations and Initialization (DCL) - DCL50-CPP. Do not define a C-style variadic function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 21
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

template <typename Ty>
class has_foo_function {
 typedef char yes[1];
 typedef char no[2];

 template <typename Inner>
 static yes& test(Inner *I, decltype(I->foo()) * = nullptr);
 // Function is never defined.

 template <typename>
 static no& test(...);
 // Function is never defined.

public:
 static const bool value =
 sizeof(test<Ty>(nullptr)) == sizeof(yes);
};

In this example, the value of value is determined on the basis of which overload of test() is
selected. The declaration of Inner *I allows use of the variable I within the decltype
specifier, which results in a pointer of some (possibly void) type, with a default value of
nullptr. However, if there is no declaration of Inner::foo(), the decltype specifier will
be ill-formed, and that variant of test() will not be a candidate function for overload resolution
due to SFINAE. The result is that the C-style variadic function variant of test() will be the
only function in the candidate set. Both test() functions are declared but never defined because
their definitions are not required for use within an unevaluated expression context.

2.1.5 Risk Assessment

Incorrectly using a variadic function can result in abnormal program termination, unintended
information disclosure, or execution of arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

DCL50-CPP High Probable Medium P12 L1

2.1.6 Bibliography

[ISO/IEC 14882-2014] Subclause 5.2.2, “Function Call”
Subclause 14.5.3, “Variadic Templates”

Declarations and Initialization (DCL) - DCL51-CPP. Do not declare or define a reserved identifier

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 22
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2 DCL51-CPP. Do not declare or define a reserved identifier

The C++ Standard, [reserved.names] [ISO/IEC 14882-2014], specifies the following rules
regarding reserved names:

• A translation unit that includes a standard library header shall not #define or
#undef names declared in any standard library header.

• A translation unit shall not #define or #undef names lexically identical to
keywords, to the identifiers listed in Table 3, or to the attribute-tokens described
in 7.6.

• Each name that contains a double underscore __ or begins with an underscore
followed by an uppercase letter is reserved to the implementation for any use.

• Each name that begins with an underscore is reserved to the implementation for
use as a name in the global namespace.

• Each name declared as an object with external linkage in a header is reserved
to the implementation to designate that library object with external linkage, both
in namespace std and in the global namespace.

• Each global function signature declared with external linkage in a header is
reserved to the implementation to designate that function signature with external
linkage.

• Each name from the Standard C library declared with external linkage is
reserved to the implementation for use as a name with extern “C” linkage,
both in namespace std and in the global namespace.

• Each function signature from the Standard C library declared with external
linkage is reserved to the implementation for use as a function signature with
both extern “C” and extern “C++” linkage, or as a name of namespace
scope in the global namespace.

• For each type T from the Standard C library, the types ::T and std::T are
reserved to the implementation and, when defined, ::T shall be identical to
std::T.

• Literal suffix identifiers that do not start with an underscore are reserved for
future standardization.

The identifiers and attribute names referred to in the preceding excerpt are override, final,
alignas, carries_dependency, deprecated, and noreturn.

No other identifiers are reserved. Declaring or defining an identifier in a context in which it is
reserved results in undefined behavior. Do not declare or define a reserved identifier.

Declarations and Initialization (DCL) - DCL51-CPP. Do not declare or define a reserved identifier

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 23
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2.1 Noncompliant Code Example (Header Guard)

A common practice is to use a macro in a preprocessor conditional that guards against multiple
inclusions of a header file. While this is a recommended practice, many programs use reserved
names as the header guards. Such a name may clash with reserved names defined by the
implementation of the C++ standard template library in its headers or with reserved names
implicitly predefined by the compiler even when no C++ standard library header is included.

#ifndef _MY_HEADER_H_
#define _MY_HEADER_H_

// Contents of <my_header.h>

#endif // _MY_HEADER_H_

2.2.2 Compliant Solution (Header Guard)

This compliant solution avoids using leading or trailing underscores in the name of the header
guard.

#ifndef MY_HEADER_H
#define MY_HEADER_H

// Contents of <my_header.h>

#endif // MY_HEADER_H

2.2.3 Noncompliant Code Example (User-Defined Literal)

In this noncompliant code example, a user-defined literal operator"" x is declared. However,
literal suffix identifiers are required to start with an underscore; literal suffixes without the
underscore prefix are reserved for future library implementations.

#include <cstddef>

unsigned int operator"" x(const char *, std::size_t);

Declarations and Initialization (DCL) - DCL51-CPP. Do not declare or define a reserved identifier

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 24
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2.4 Compliant Solution (User-Defined Literal)

In this compliant solution, the user-defined literal is named operator"" _x, which is not a
reserved identifier.

#include <cstddef>

unsigned int operator"" _x(const char *, std::size_t);

The name of the user-defined literal is operator"" _x and not _x, which would have
otherwise been reserved for the global namespace.

2.2.5 Noncompliant Code Example (File Scope Objects)

In this noncompliant code example, the names of the file scope objects _max_limit and
_limit both begin with an underscore. Because it is static, the declaration of _max_limit
might seem to be impervious to clashes with names defined by the implementation. However,
because the header <cstddef> is included to define std::size_t, a potential for a name
clash exists. (Note, however, that a conforming compiler may implicitly declare reserved names
regardless of whether any C++ standard template library header has been explicitly included.) In
addition, because _limit has external linkage, it may clash with a symbol with the same name
defined in the language runtime library even if such a symbol is not declared in any header.
Consequently, it is unsafe to start the name of any file scope identifier with an underscore even if
its linkage limits its visibility to a single translation unit.

#include <cstddef> // std::for size_t

static const std::size_t _max_limit = 1024;
std::size_t _limit = 100;

unsigned int get_value(unsigned int count) {
 return count < _limit ? count : _limit;
}

Declarations and Initialization (DCL) - DCL51-CPP. Do not declare or define a reserved identifier

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 25
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2.6 Compliant Solution (File Scope Objects)

In this compliant solution, file scope identifiers do not begin with an underscore.

#include <cstddef> // for size_t

static const std::size_t max_limit = 1024;
std::size_t limit = 100;

unsigned int get_value(unsigned int count) {
 return count < limit ? count : limit;
}

2.2.7 Noncompliant Code Example (Reserved Macros)

In this noncompliant code example, because the C++ standard template library header
<cinttypes> is specified to include <cstdint>, as per [c.files] paragraph 4 [ISO/IEC
14882-2014], the name MAX_SIZE conflicts with the name of the <cstdint> header macro
used to denote the upper limit of std:size_t.

#include <cinttypes> // for int_fast16_t

void f(std::int_fast16_t val) {
 enum { MAX_SIZE = 80 };
 // ...
}

2.2.8 Compliant Solution (Reserved Macros)

This compliant solution avoids redefining reserved names.

#include <cinttypes> // for std::int_fast16_t

void f(std::int_fast16_t val) {
 enum { BufferSize = 80 };
 // ...
}

Declarations and Initialization (DCL) - DCL51-CPP. Do not declare or define a reserved identifier

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 26
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2.9 Exceptions

DCL51-CPP-EX1: For compatibility with other compiler vendors or language standard modes, it
is acceptable to create a macro identifier that is the same as a reserved identifier so long as the
behavior is semantically identical, as in this example.

// Sometimes generated by configuration tools such as autoconf
#define const const

// Allowed compilers with semantically equivalent
// extension behavior
#define inline __inline

DCL51-CPP-EX2: As a compiler vendor or standard library developer, it is acceptable to use
identifiers reserved for your implementation. Reserved identifiers may be defined by the
compiler, in standard library headers, or in headers included by a standard library header, as in
this example declaration from the libc++ STL implementation.

// The following declaration of a reserved identifier exists
// in the libc++ implementation of std::basic_string as a
// public member. The original source code may be found at:
// http://llvm.org/svn/llvm-project/libcxx/trunk/include/string
template<class charT, class traits = char_traits<charT>,
 class Allocator = allocator<charT>>
class basic_string {
 // ...

 bool __invariants() const;
};

2.2.10 Risk Assessment

Using reserved identifiers can lead to incorrect program operation.

Rule Severity Likelihood Remediation Cost Priority Level

DCL51-CPP Low Unlikely Low P3 L3

2.2.11 Related Guidelines

SEI CERT C++ Coding Standard DCL58-CPP. Do not modify the standard namespaces

SEI CERT C Coding Standard DCL37-C. Do not declare or define a reserved identifier
PRE06-C. Enclose header files in an inclusion guard

MISRA C++:2008 Rule 17-0-1

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=36929791
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422618
http://llvm.org/svn/llvm-project/libcxx/trunk/include/string

Declarations and Initialization (DCL) - DCL51-CPP. Do not declare or define a reserved identifier

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 27
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2.12 Bibliography

[ISO/IEC 14882-2014] Subclause 17.6.4.3, “Reserved Names”

[ISO/IEC 9899:2011] Subclause 7.1.3, “Reserved Identifiers”

Declarations and Initialization (DCL) - DCL52-CPP. Never qualify a reference type with const or volatile

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 28
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3 DCL52-CPP. Never qualify a reference type with const or volatile

C++ does not allow you to change the value of a reference type, effectively treating all references
as being const qualified. The C++ Standard, [dcl.ref], paragraph 1 [ISO/IEC 14882-2014],
states the following:

Cv-qualified references are ill-formed except when the cv-qualifiers are introduced
through the use of a typedef-name (7.1.3, 14.1) or decltype-specifier (7.1.6.2), in which
case the cv-qualifiers are ignored.

Thus, C++ prohibits or ignores the cv-qualification of a reference type. Only a value of non-
reference type may be cv-qualified.

When attempting to const-qualify a type as part of a declaration that uses reference type, a
programmer may accidentally write

char &const p;

instead of

char const &p; // Or: const char &p;

Do not attempt to cv-qualify a reference type because it results in undefined behavior. A
conforming compiler is required to issue a diagnostic message. However, if the compiler does not
emit a fatal diagnostic, the program may produce surprising results, such as allowing the character
referenced by p to be mutated.

2.3.1 Noncompliant Code Example

In this noncompliant code example, a const-qualified reference to a char is formed instead of a
reference to a const-qualified char. This results in undefined behavior.

#include <iostream>

void f(char c) {
 char &const p = c;
 p = 'p';
 std::cout << c << std::endl;
}

Declarations and Initialization (DCL) - DCL52-CPP. Never qualify a reference type with const or volatile

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 29
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3.1.1 Implementation Details (MSVC)

With Microsoft Visual Studio 2015, this code compiles successfully with a warning diagnostic.

warning C4227: anachronism used : qualifiers on reference are ig-
nored

When run, the code outputs the following.

p

2.3.1.2 Implementation Details (Clang)

With Clang 3.9, this code produces a fatal diagnostic.

error: 'const' qualifier may not be applied to a reference

2.3.2 Noncompliant Code Example

This noncompliant code example correctly declares p to be a reference to a const-qualified char.
The subsequent modification of p makes the program ill-formed.

#include <iostream>

void f(char c) {
 const char &p = c;
 p = 'p'; // Error: read-only variable is not assignable
 std::cout << c << std::endl;
}

2.3.3 Compliant Solution

This compliant solution removes the const qualifier.

#include <iostream>

void f(char c) {
 char &p = c;
 p = 'p';
 std::cout << c << std::endl;
}

Declarations and Initialization (DCL) - DCL52-CPP. Never qualify a reference type with const or volatile

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 30
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3.4 Risk Assessment

A const or volatile reference type may result in undefined behavior instead of a fatal
diagnostic, causing unexpected values to be stored and leading to possible data integrity
violations.

Rule Severity Likelihood Remediation Cost Priority Level

DCL52-CPP Low Unlikely Low P3 L3

2.3.5 Bibliography

[Dewhurst 2002] Gotcha #5, “Misunderstanding References”

[ISO/IEC 14882-2014] Subclause 8.3.2, “References”

Declarations and Initialization (DCL) - DCL53-CPP. Do not write syntactically ambiguous declarations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 31
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4 DCL53-CPP. Do not write syntactically ambiguous declarations

It is possible to devise syntax that can ambiguously be interpreted as either an expression
statement or a declaration. Syntax of this sort is called a vexing parse because the compiler must
use disambiguation rules to determine the semantic results. The C++ Standard, [stmt.ambig],
paragraph 1 [ISO/IEC 14882-2014], in part, states the following:

There is an ambiguity in the grammar involving expression-statements and declarations:
An expression-statement with a function-style explicit type conversion as its leftmost
subexpression can be indistinguishable from a declaration where the first declarator
starts with a (. In those cases the statement is a declaration. [Note: To disambiguate,
the whole statement might have to be examined to determine if it is an expression-
statement or a declaration. ...

A similarly vexing parse exists within the context of a declaration where syntax can be
ambiguously interpreted as either a function declaration or a declaration with a function-style cast
as the initializer. The C++ Standard, [dcl.ambig.res], paragraph 1, in part, states the following:

The ambiguity arising from the similarity between a function-style cast and a declaration
mentioned in 6.8 can also occur in the context of a declaration. In that context, the
choice is between a function declaration with a redundant set of parentheses around a
parameter name and an object declaration with a function-style cast as the initializer.
Just as for the ambiguities mentioned in 6.8, the resolution is to consider any construct
that could possibly be a declaration a declaration.

Do not write a syntactically ambiguous declaration. With the advent of uniform initialization
syntax using a braced-init-list, there is now syntax that unambiguously specifies a declaration
instead of an expression statement. Declarations can also be disambiguated by using nonfunction-
style casts, by initializing using =, or by removing extraneous parenthesis around the parameter
name.

Declarations and Initialization (DCL) - DCL53-CPP. Do not write syntactically ambiguous declarations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 32
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.1 Noncompliant Code Example

In this noncompliant code example, an anonymous local variable of type std::unique_lock
is expected to lock and unlock the mutex m by virtue of RAII. However, the declaration is
syntactically ambiguous as it can be interpreted as declaring an anonymous object and calling its
single-argument converting constructor or interpreted as declaring an object named m and default
constructing it. The syntax used in this example defines the latter instead of the former, and so the
mutex object is never locked.

#include <mutex>

static std::mutex m;
static int shared_resource;

void increment_by_42() {
 std::unique_lock<std::mutex>(m);
 shared_resource += 42;
}

2.4.2 Compliant Solution

In this compliant solution, the lock object is given an identifier (other than m) and the proper
converting constructor is called.

#include <mutex>

static std::mutex m;
static int shared_resource;

void increment_by_42() {
 std::unique_lock<std::mutex> lock(m);
 shared_resource += 42;
}

Declarations and Initialization (DCL) - DCL53-CPP. Do not write syntactically ambiguous declarations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 33
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.3 Noncompliant Code Example

In this noncompliant code example, an attempt is made to declare a local variable, w, of type
Widget while executing the default constructor. However, this declaration is syntactically
ambiguous where the code could be either a declaration of a function pointer accepting no
arguments and returning a Widget or a declaration of a local variable of type Widget. The
syntax used in this example defines the former instead of the latter.

#include <iostream>

struct Widget {
 Widget() { std::cout << "Constructed" << std::endl; }
};

void f() {
 Widget w();
}

As a result, this program compiles and prints no output because the default constructor is never
actually invoked.

2.4.4 Compliant Solution

This compliant solution shows two equally compliant ways to write the declaration. The first way
is to elide the parentheses after the variable declaration, which ensures the syntax is that of a
variable declaration instead of a function declaration. The second way is to use a braced-init-list
to direct-initialize the local variable.

#include <iostream>

struct Widget {
 Widget() { std::cout << "Constructed" << std::endl; }
};

void f() {
 Widget w1; // Elide the parentheses
 Widget w2{}; // Use direct initialization
}

Running this program produces the output Constructed twice, once for w1 and once for w2.

Declarations and Initialization (DCL) - DCL53-CPP. Do not write syntactically ambiguous declarations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 34
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.5 Noncompliant Code Example

This noncompliant code example demonstrates a vexing parse. The declaration Gadget
g(Widget(i)); is not parsed as declaring a Gadget object with a single argument. It is
instead parsed as a function declaration with a redundant set of parentheses around a parameter.

#include <iostream>

struct Widget {
 explicit Widget(int i) { std::cout << "Widget constructed" <<
std::endl; }
};

struct Gadget {
 explicit Gadget(Widget wid) { std::cout << "Gadget constructed"
<< std::endl; }
};

void f() {
 int i = 3;
 Gadget g(Widget(i));
 std::cout << i << std::endl;
}

Parentheses around parameter names are optional, so the following is a semantically identical
spelling of the declaration.

Gadget g(Widget i);

As a result, this program is well-formed and prints only 3 as output because no Gadget or
Widget objects are constructed.

Declarations and Initialization (DCL) - DCL53-CPP. Do not write syntactically ambiguous declarations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 35
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.6 Compliant Solution

This compliant solution demonstrates two equally compliant ways to write the declaration of g.
The first declaration, g1, uses an extra set of parentheses around the argument to the constructor
call, forcing the compiler to parse it as a local variable declaration of type Gadget instead of as a
function declaration. The second declaration, g2, uses direct initialization to similar effect.

#include <iostream>

struct Widget {
 explicit Widget(int i) {

 std::cout << "Widget constructed" << std::endl;
 }
};

struct Gadget {
 explicit Gadget(Widget wid) {
 std::cout << "Gadget constructed" << std::endl;
 }
};

void f() {
 int i = 3;
 Gadget g1((Widget(i))); // Use extra parentheses
 Gadget g2{Widget(i)}; // Use direct initialization
 std::cout << i << std::endl;
}

Running this program produces the expected output.

Widget constructed
Gadget constructed
Widget constructed
Gadget constructed
3

2.4.7 Risk Assessment

Syntactically ambiguous declarations can lead to unexpected program execution. However, it is
likely that rudimentary testing would uncover violations of this rule.

Rule Severity Likelihood Remediation Cost Priority Level

DCL53-CPP Low Unlikely Medium P2 L3

Declarations and Initialization (DCL) - DCL53-CPP. Do not write syntactically ambiguous declarations

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 36
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.4.8 Bibliography

[ISO/IEC 14882-2014] Subclause 6.8, “Ambiguity Resolution”
Subclause 8.2, “Ambiguity Resolution”

[Meyers 2001] Item 6, “Be Alert for C++’s Most Vexing Parse”

Declarations and Initialization (DCL) - DCL54-CPP. Overload allocation and deallocation functions as a pair in the same
scope

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 37
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.5 DCL54-CPP. Overload allocation and deallocation functions as a
pair in the same scope

Allocation and deallocation functions can be overloaded at both global and class scopes.

If an allocation function is overloaded in a given scope, the corresponding deallocation function
must also be overloaded in the same scope (and vice versa).

Failure to overload the corresponding dynamic storage function is likely to violate rules such as
MEM51-CPP. Properly deallocate dynamically allocated resources. For instance, if an overloaded
allocation function uses a private heap to perform its allocations, passing a pointer returned by it
to the default deallocation function will likely cause undefined behavior. Even in situations in
which the allocation function ultimately uses the default allocator to obtain a pointer to memory,
failing to overload a corresponding deallocation function may leave the program in an unexpected
state by not updating internal data for the custom allocator.

It is acceptable to define a deleted allocation or deallocation function without its corresponding
free store function. For instance, it is a common practice to define a deleted non-placement
allocation or deallocation function as a class member function when the class also defines a
placement new function. This prevents accidental allocation via calls to new for that class type or
deallocation via calls to delete on pointers to an object of that class type. It is acceptable to
declare, but not define, a private allocation or deallocation function without its corresponding free
store function for similar reasons. However, a definition must not be provided as that still allows
access to the free store function within a class member function.

2.5.1 Noncompliant Code Example

In this noncompliant code example, an allocation function is overloaded at global scope.
However, the corresponding deallocation function is not declared. Were an object to be allocated
with the overloaded allocation function, any attempt to delete the object would result in undefined
behavior in violation of MEM51-CPP. Properly deallocate dynamically allocated resources.

#include <Windows.h>
#include <new>

void *operator new(std::size_t size) noexcept(false) {
 // Private, expandable heap.
 static HANDLE h = ::HeapCreate(0, 0, 0);
 if (h) {
 return ::HeapAlloc(h, 0, size);
 }
 throw std::bad_alloc();
}

// No corresponding global delete operator defined.

Declarations and Initialization (DCL) - DCL54-CPP. Overload allocation and deallocation functions as a pair in the same
scope

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 38
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.5.2 Compliant Solution

In this compliant solution, the corresponding deallocation function is also defined at global scope.

#include <Windows.h>
#include <new>

class HeapAllocator {
 static HANDLE h;
 static bool init;

public:
 static void *alloc(std::size_t size) noexcept(false) {
 if (!init) {
 h = ::HeapCreate(0, 0, 0); // Private, expandable heap.
 init = true;
 }

 if (h) {
 return ::HeapAlloc(h, 0, size);
 }
 throw std::bad_alloc();
 }

 static void dealloc(void *ptr) noexcept {
 if (h) {
 (void)::HeapFree(h, 0, ptr);
 }
 }
};

HANDLE HeapAllocator::h = nullptr;
bool HeapAllocator::init = false;

void *operator new(std::size_t size) noexcept(false) {
 return HeapAllocator::alloc(size);
}

void operator delete(void *ptr) noexcept {
 return HeapAllocator::dealloc(ptr);
}

Declarations and Initialization (DCL) - DCL54-CPP. Overload allocation and deallocation functions as a pair in the same
scope

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 39
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.5.3 Noncompliant Code Example

In this noncompliant code example, operator new() is overloaded at class scope, but
operator delete() is not similarly overloaded at class scope. Despite that the overloaded
allocation function calls through to the default global allocation function, were an object of type S
to be allocated, any attempt to delete the object would result in leaving the program in an
indeterminate state due to failing to update allocation bookkeeping accordingly.

#include <new>

extern "C++" void update_bookkeeping(void *allocated_ptr,
std::size_t size, bool alloc);

struct S {
 void *operator new(std::size_t size) noexcept(false) {
 void *ptr = ::operator new(size);
 update_bookkeeping(ptr, size, true);
 return ptr;
 }
};

2.5.4 Compliant Solution

In this compliant solution, the corresponding operator delete() is overloaded at the same
class scope.

#include <new>

extern "C++" void update_bookkeeping(void *allocated_ptr,
std::size_t size, bool alloc);

struct S {
 void *operator new(std::size_t size) noexcept(false) {
 void *ptr = ::operator new(size);
 update_bookkeeping(ptr, size, true);
 return ptr;
 }

 void operator delete(void *ptr, std::size_t size) noexcept {
 ::operator delete(ptr);
 update_bookkeeping(ptr, size, false);
 }
};

Declarations and Initialization (DCL) - DCL54-CPP. Overload allocation and deallocation functions as a pair in the same
scope

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 40
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.5.5 Exceptions

DCL54-CPP-EX1: A placement deallocation function may be elided for a corresponding
placement allocation function, but only if the object placement allocation and object construction
are guaranteed to be noexcept(true). Because placement deallocation functions are
automatically invoked when the object initialization terminates by throwing an exception, it is
safe to elide the placement deallocation function when exceptions cannot be thrown. For instance,
some vendors implement compiler flags disabling exception support (such as -fno-cxx-exceptions
in Clang and /EHs-c- in Microsoft Visual Studio), which has implementation-defined behavior
when an exception is thrown but generally results in program termination similar to calling
abort().

2.5.6 Risk Assessment

Mismatched usage of new and delete could lead to a denial-of-service attack.

Rule Severity Likelihood Remediation Cost Priority Level

DCL54-CPP Low Probable Low P6 L2

2.5.7 Related Guidelines

SEI CERT C++ Coding Standard MEM51-CPP. Properly deallocate dynamically
allocated resources

2.5.8 Bibliography

[ISO/IEC 14882-2014] Subclause 3.7.4, “Dynamic Storage Duration”
Subclause 5.3.4, “New”
Subclause 5.3.5, “Delete”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 41
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6 DCL55-CPP. Avoid information leakage when passing a class
object across a trust boundary

The C++ Standard, [class.mem], paragraph 13 [ISO/IEC 14882-2014], describes the layout of
non-static data members of a non-union class, specifying the following:

Nonstatic data members of a (non-union) class with the same access control are
allocated so that later members have higher addresses within a class object. The order
of allocation of non-static data members with different access control is unspecified.
Implementation alignment requirements might cause two adjacent members not to be
allocated immediately after each other; so might requirements for space for managing
virtual functions and virtual base classes.

Further, [class.bit], paragraph 1, in part, states the following:

Allocation of bit-fields within a class object is implementation-defined. Alignment of bit-
fields is implementation-defined. Bit-fields are packed into some addressable allocation
unit.

Thus, padding bits may be present at any location within a class object instance (including at the
beginning of the object, in the case of an unnamed bit-field as the first member declared in a
class). Unless initialized by zero-initialization, padding bits contain indeterminate values that may
contain sensitive information.

When passing a pointer to a class object instance across a trust boundary to a different trusted
domain, the programmer must ensure that the padding bits of such an object do not contain
sensitive information.

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 42
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6.1 Noncompliant Code Example

This noncompliant code example runs in kernel space and copies data from arg to user space.
However, padding bits may be used within the object, for example, to ensure the proper alignment
of class data members. These padding bits may contain sensitive information that may then be
leaked when the data is copied to user space, regardless of how the data is copied.

#include <cstddef>

struct test {
 int a;
 char b;
 int c;
};

// Safely copy bytes to user space
extern int copy_to_user(void *dest, void *src, std::size_t size);

void do_stuff(void *usr_buf) {
 test arg{1, 2, 3};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 43
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6.2 Noncompliant Code Example

In this noncompliant code example, arg is value-initialized through direct initialization. Because
test does not have a user-provided default constructor, the value-initialization is preceded by a
zero-initialization that guarantees the padding bits are initialized to 0 before any further
initialization occurs. It is akin to using std::memset() to initialize all of the bits in the object
to 0.

#include <cstddef>

struct test {
 int a;
 char b;
 int c;
};

// Safely copy bytes to user space
extern int copy_to_user(void *dest, void *src, std::size_t size);

void do_stuff(void *usr_buf) {
 test arg{};

 arg.a = 1;
 arg.b = 2;
 arg.c = 3;

 copy_to_user(usr_buf, &arg, sizeof(arg));
}

However, compilers are free to implement arg.b = 2 by setting the low byte of a 32-bit
register to 2, leaving the high bytes unchanged, and storing all 32 bits of the register into memory.
This could leak the high-order bytes resident in the register to a user.

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 44
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6.3 Compliant Solution

This compliant solution serializes the structure data before copying it to an untrusted context.

#include <cstddef>
#include <cstring>

struct test {
 int a;
 char b;
 int c;
};

// Safely copy bytes to user space.
extern int copy_to_user(void *dest, void *src, std::size_t size);

void do_stuff(void *usr_buf) {
 test arg{1, 2, 3};
 // May be larger than strictly needed.
 unsigned char buf[sizeof(arg)];
 std::size_t offset = 0;

 std::memcpy(buf + offset, &arg.a, sizeof(arg.a));
 offset += sizeof(arg.a);
 std::memcpy(buf + offset, &arg.b, sizeof(arg.b));
 offset += sizeof(arg.b);
 std::memcpy(buf + offset, &arg.c, sizeof(arg.c));
 offset += sizeof(arg.c);

 copy_to_user(usr_buf, buf, offset /* size of info copied */);
}

This code ensures that no uninitialized padding bits are copied to unprivileged users. The structure
copied to user space is now a packed structure and the copy_to_user() function would need
to unpack it to recreate the original, padded structure.

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 45
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6.4 Compliant Solution (Padding Bytes)

Padding bits can be explicitly declared as fields within the structure. This solution is not portable,
however, because it depends on the implementation and target memory architecture. The
following solution is specific to the x86-32 architecture.

#include <cstddef>

struct test {
 int a;
 char b;
 char padding_1, padding_2, padding_3;
 int c;

 test(int a, char b, int c) : a(a), b(b),
 padding_1(0), padding_2(0), padding_3(0),
 c(c) {}
};
// Ensure c is the next byte after the last padding byte.
static_assert(offsetof(test, c) == offsetof(test, padding_3) + 1,
 "Object contains intermediate padding");
// Ensure there is no trailing padding.
static_assert(sizeof(test) == offsetof(test, c) + sizeof(int),
 "Object contains trailing padding");

// Safely copy bytes to user space.
extern int copy_to_user(void *dest, void *src, std::size_t size);

void do_stuff(void *usr_buf) {
 test arg{1, 2, 3};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

The static_assert() declaration accepts a constant expression and an error message. The
expression is evaluated at compile time and, if false, the compilation is terminated and the error
message is used as the diagnostic. The explicit insertion of the padding bytes into the struct
should ensure that no additional padding bytes are added by the compiler, and consequently both
static assertions should be true. However, it is necessary to validate these assumptions to ensure
that the solution is correct for a particular implementation.

2.6.5 Noncompliant Code Example

In this noncompliant code example, padding bits may abound, including
• alignment padding bits after a virtual method table or virtual base class data to align a

subsequent data member,

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 46
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• alignment padding bits to position a subsequent data member on a properly aligned boundary,
• alignment padding bits to position data members of varying access control levels.
• bit-field padding bits when the sequential set of bit-fields does not fill an entire allocation

unit,
• bit-field padding bits when two adjacent bit-fields are declared with different underlying

types,
• padding bits when a bit-field is declared with a length greater than the number of bits in the

underlying allocation unit, or
• padding bits to ensure a class instance will be appropriately aligned for use within an array.

This code example runs in kernel space and copies data from arg to user space. However, the
padding bits within the object instance may contain sensitive information that will then be leaked
when the data is copied to user space.

#include <cstddef>

class base {
public:
 virtual ~base() = default;
};

class test : public virtual base {
 alignas(32) double h;
 char i;
 unsigned j : 80;
protected:
 unsigned k;
 unsigned l : 4;
 unsigned short m : 3;
public:
 char n;
 double o;

 test(double h, char i, unsigned j, unsigned k, unsigned l,
 unsigned short m, char n, double o) :
 h(h), i(i), j(j), k(k), l(l), m(m), n(n), o(o) {}

 virtual void foo();
};

// Safely copy bytes to user space.
extern int copy_to_user(void *dest, void *src, std::size_t size);

void do_stuff(void *usr_buf) {
 test arg{0.0, 1, 2, 3, 4, 5, 6, 7.0};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 47
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Padding bits are implementation-defined, so the layout of the class object may differ between
compilers or architectures. When compiled with GCC 5.3.0 for x86-32, the test object requires
96 bytes of storage to accommodate 29 bytes of data (33 bytes including the vtable) and has the
following layout.

Offset (bytes
(bits))

Storage Size
(bytes (bits))

Reason Offset Storage Size Reason

0 1 (32) vtable pointer 56 (448) 4 (32) unsigned k

4 (32) 28 (224) data member
alignment padding

60 (480) 0 (4) unsigned l : 4

32 (256) 8 (64) double h 60 (484) 0 (3) unsigned short m : 3

40 (320) 1 (8) char i 60 (487) 0 (1) unused bit-field bits

41 (328) 3 (24) data member
alignment padding

61 (488) 1 (8) char n

44 (352) 4 (32) unsigned j :

80
62 (496) 2 (16) data member alignment

padding

48 (384) 6 (48) extended bit-field
size padding

64 (512) 8 (64) double o

54 (432) 2 (16) alignment padding 72 (576) 24 (192) class alignment padding

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 48
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6.6 Compliant Solution

Due to the complexity of the data structure, this compliant solution serializes the object data
before copying it to an untrusted context instead of attempting to account for all of the padding
bytes manually.

#include <cstddef>
#include <cstring>

class base {
public:
 virtual ~base() = default;
};
class test : public virtual base {
 alignas(32) double h;
 char i;
 unsigned j : 80;
protected:
 unsigned k;
 unsigned l : 4;
 unsigned short m : 3;
public:
 char n;
 double o;

 test(double h, char i, unsigned j, unsigned k, unsigned l,
 unsigned short m, char n, double o) :
 h(h), i(i), j(j), k(k), l(l), m(m), n(n), o(o) {}

 virtual void foo();
 bool serialize(unsigned char *buffer, std::size_t &size) {
 if (size < sizeof(test)) {
 return false;
 }

 std::size_t offset = 0;
 std::memcpy(buffer + offset, &h, sizeof(h));
 offset += sizeof(h);
 std::memcpy(buffer + offset, &i, sizeof(i));
 offset += sizeof(i);

 // Only sizeof(unsigned) bits are valid, so the following is
 // not narrowing.
 unsigned loc_j = j;

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 49
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 std::memcpy(buffer + offset, &loc_j, sizeof(loc_j));
 offset += sizeof(loc_j);
 std::memcpy(buffer + offset, &k, sizeof(k));
 offset += sizeof(k);
 unsigned char loc_l = l & 0b1111;
 std::memcpy(buffer + offset, &loc_l, sizeof(loc_l));
 offset += sizeof(loc_l);
 unsigned short loc_m = m & 0b111;
 std::memcpy(buffer + offset, &loc_m, sizeof(loc_m));
 offset += sizeof(loc_m);
 std::memcpy(buffer + offset, &n, sizeof(n));
 offset += sizeof(n);
 std::memcpy(buffer + offset, &o, sizeof(o));
 offset += sizeof(o);

 size -= offset;
 return true;
 }
};

// Safely copy bytes to user space.
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 test arg{0.0, 1, 2, 3, 4, 5, 6, 7.0};

 // May be larger than strictly needed, will be updated by
 // calling serialize() to the size of the buffer remaining.
 std::size_t size = sizeof(arg);
 unsigned char buf[sizeof(arg)];
 if (arg.serialize(buf, size)) {
 copy_to_user(usr_buf, buf, sizeof(test) - size);
 } else {
 // Handle error
 }
}

This code ensures that no uninitialized padding bits are copied to unprivileged users. The structure
copied to user space is now a packed structure and the copy_to_user() function would need
to unpack it to re-create the original, padded structure.

Declarations and Initialization (DCL) - DCL55-CPP. Avoid information leakage when passing a class object across a trust
boundary

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 50
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.6.7 Risk Assessment

Padding bits might inadvertently contain sensitive data such as pointers to kernel data structures
or passwords. A pointer to such a structure could be passed to other functions, causing
information leakage.

Rule Severity Likelihood Remediation Cost Priority Level

DCL55-CPP Low Unlikely High P1 L3

2.6.7.1 Related Vulnerabilities

Numerous vulnerabilities in the Linux Kernel have resulted from violations of this rule.

CVE-2010-4083 describes a vulnerability in which the semctl() system call allows
unprivileged users to read uninitialized kernel stack memory because various fields of a
semid_ds struct declared on the stack are not altered or zeroed before being copied back to
the user.

CVE-2010-3881 describes a vulnerability in which structure padding and reserved fields in
certain data structures in QEMU-KVM were not initialized properly before being copied to user
space. A privileged host user with access to /dev/kvm could use this flaw to leak kernel stack
memory to user space.

CVE-2010-3477 describes a kernel information leak in act_police where incorrectly
initialized structures in the traffic-control dump code may allow the disclosure of kernel memory
to user space applications.

2.6.8 Related Guidelines

SEI CERT C Coding Standard DCL39-C. Avoid information leakage when
passing a structure across a trust boundary

2.6.9 Bibliography

[ISO/IEC 14882-2014] Subclause 8.5, “Initializers”
Subclause 9.2, “Class Members”
Subclause 9.6, “Bit-fields”

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3881
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3477
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=56950816
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=56950816

Declarations and Initialization (DCL) - DCL56-CPP. Avoid cycles during initialization of static objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 51
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.7 DCL56-CPP. Avoid cycles during initialization of static objects

The C++ Standard, [stmt.dcl], paragraph 4 [ISO/IEC 14882-2014], states the following:

The zero-initialization (8.5) of all block-scope variables with static storage duration
(3.7.1) or thread storage duration (3.7.2) is performed before any other initialization
takes place. Constant initialization (3.6.2) of a block-scope entity with static storage
duration, if applicable, is performed before its block is first entered. An implementation is
permitted to perform early initialization of other block-scope variables with static or
thread storage duration under the same conditions that an implementation is permitted
to statically initialize a variable with static or thread storage duration in namespace
scope (3.6.2). Otherwise such a variable is initialized the first time control passes
through its declaration; such a variable is considered initialized upon the completion of
its initialization. If the initialization exits by throwing an exception, the initialization is not
complete, so it will be tried again the next time control enters the declaration. If control
enters the declaration concurrently while the variable is being initialized, the concurrent
execution shall wait for completion of the initialization. If control re-enters the declaration
recursively while the variable is being initialized, the behavior is undefined.

Do not reenter a function during the initialization of a static variable declaration. If a function is
reentered during the constant initialization of a static object inside that function, the behavior of
the program is undefined. Infinite recursion is not required to trigger undefined behavior, the
function need only recur once as part of the initialization. Due to thread-safe initialization of
variables, a single, recursive call will often result in a deadlock due to locking a non-recursive
synchronization primitive.

Additionally, the C++ Standard, [basic.start.init], paragraph 2, in part, states the following:

Dynamic initialization of a non-local variable with static storage duration is either ordered
or unordered. Definitions of explicitly specialized class template static data members
have ordered initialization. Other class template static data members (i.e., implicitly or
explicitly instantiated specializations) have unordered initialization. Other non-local
variables with static storage duration have ordered initialization. Variables with ordered
initialization defined within a single translation unit shall be initialized in the order of their
definitions in the translation unit. If a program starts a thread, the subsequent
initialization of a variable is unsequenced with respect to the initialization of a variable
defined in a different translation unit. Otherwise, the initialization of a variable is
indeterminately sequenced with respect to the initialization of a variable defined in a
different translation unit. If a program starts a thread, the subsequent unordered
initialization of a variable is unsequenced with respect to every other dynamic
initialization. Otherwise, the unordered initialization of a variable is indeterminately
sequenced with respect to every other dynamic initialization.

Declarations and Initialization (DCL) - DCL56-CPP. Avoid cycles during initialization of static objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 52
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Do not create an initialization interdependency between static objects with dynamic initialization
unless they are ordered with respect to one another. Unordered initialization, especially prevalent
across translation unit boundaries, results in unspecified behavior.

2.7.1 Noncompliant Code Example

This noncompliant example attempts to implement an efficient factorial function using caching.
Because the initialization of the static local array cache involves recursion, the behavior of the
function is undefined, even though the recursion is not infinite.

#include <stdexcept>

int fact(int i) noexcept(false) {
 if (i < 0) {
 // Negative factorials are undefined.
 throw std::domain_error("i must be >= 0");
 }

 static const int cache[] = {
 fact(0), fact(1), fact(2), fact(3), fact(4), fact(5),
 fact(6), fact(7), fact(8), fact(9), fact(10), fact(11),
 fact(12), fact(13), fact(14), fact(15), fact(16)
 };

 if (i < (sizeof(cache) / sizeof(int))) {
 return cache[i];
 }

 return i > 0 ? i * fact(i - 1) : 1;
}

2.7.1.1 Implementation Details

In Microsoft Visual Studio 2015 and GCC 6.1.0, the recursive initialization of cache deadlocks
while initializing the static variable in a thread-safe manner.

Declarations and Initialization (DCL) - DCL56-CPP. Avoid cycles during initialization of static objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 53
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.7.2 Compliant Solution

This compliant solution avoids initializing the static local array cache and instead relies on zero-
initialization to determine whether each member of the array has been assigned a value yet and, if
not, recursively computes its value. It then returns the cached value when possible or computes
the value as needed.

#include <stdexcept>

int fact(int i) noexcept(false) {
 if (i < 0) {
 // Negative factorials are undefined.
 throw std::domain_error("i must be >= 0");
 }

 // Use the lazy-initialized cache.
 static int cache[17];
 if (i < (sizeof(cache) / sizeof(int))) {
 if (0 == cache[i]) {
 cache[i] = i > 0 ? i * fact(i - 1) : 1;
 }
 return cache[i];
 }

 return i > 0 ? i * fact(i - 1) : 1;
}

Declarations and Initialization (DCL) - DCL56-CPP. Avoid cycles during initialization of static objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 54
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.7.3 Noncompliant Code Example

In this noncompliant code example, the value of numWheels in file1.cpp relies on c being
initialized. However, because c is defined in a different translation unit (file2.cpp) than
numWheels, there is no guarantee that c will be initialized by calling get_default_car()
before numWheels is initialized by calling c.get_num_wheels(). This is often referred to
as the “static initialization order fiasco,” and the resulting behavior is unspecified.

// file.h
#ifndef FILE_H
#define FILE_H

class Car {
 int numWheels;

public:
 Car() : numWheels(4) {}
 explicit Car(int numWheels) : numWheels(numWheels) {}

 int get_num_wheels() const { return numWheels; }
};
#endif // FILE_H

// file1.cpp
#include "file.h"
#include <iostream>

extern Car c;
int numWheels = c.get_num_wheels();

int main() {
 std::cout << numWheels << std::endl;
}

// file2.cpp
#include "file.h"

Car get_default_car() { return Car(6); }
Car c = get_default_car();

2.7.3.1 Implementation Details

The value printed to the standard output stream will often rely on the order in which the
translation units are linked. For instance, with Clang 3.8.0 on x86 Linux, the command clang++
file1.cpp file2.cpp && ./a.out will write 0 while clang++ file2.cpp
file1.cpp && ./a.out will write 6.

https://isocpp.org/wiki/faq/ctors#static-init-order

Declarations and Initialization (DCL) - DCL56-CPP. Avoid cycles during initialization of static objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 55
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.7.4 Compliant Solution

This compliant solution uses the “construct on first use” idiom to resolve the static initialization
order issue. The code for file.h and file2.cpp are unchanged; only the static numWheels
in file1.cpp is moved into the body of a function. Consequently, the initialization of
numWheels is guaranteed to happen when control flows over the point of declaration, ensuring
control over the order. The global object c is initialized before execution of main() begins, so
by the time get_num_wheels() is called, c is guaranteed to have already been dynamically
initialized.

// file.h
#ifndef FILE_H
#define FILE_H

class Car {
 int numWheels;

public:
 Car() : numWheels(4) {}
 explicit Car(int numWheels) : numWheels(numWheels) {}

 int get_num_wheels() const { return numWheels; }
};
#endif // FILE_H

// file1.cpp
#include "file.h"
#include <iostream>

int &get_num_wheels() {
 extern Car c;
 static int numWheels = c.get_num_wheels();
 return numWheels;
}

int main() {
 std::cout << get_num_wheels() << std::endl;
}

// file2.cpp
#include "file.h"

Car get_default_car() { return Car(6); }
Car c = get_default_car();

Declarations and Initialization (DCL) - DCL56-CPP. Avoid cycles during initialization of static objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 56
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.7.5 Risk Assessment

Recursively reentering a function during the initialization of one of its static objects can result in
an attacker being able to cause a crash or denial of service. Indeterminately ordered dynamic
initialization can lead to undefined behavior due to accessing an uninitialized object.

Rule Severity Likelihood Remediation Cost Priority Level

DCL56-CPP Low Unlikely Medium P2 L3

2.7.6 Related Guideline

CERT Oracle Coding Standard for Java DCL00-J. Prevent class initialization cycles

2.7.7 Bibliography

[ISO/IEC 14882-2014] Subclause 3.6.2, “Initialization of Non-local Variables”
Subclause 6.7, “Declaration Statement”

https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19234917

Declarations and Initialization (DCL) - DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 57
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.8 DCL57-CPP. Do not let exceptions escape from destructors or
deallocation functions

Under certain circumstances, terminating a destructor, operator delete, or operator
delete[] by throwing an exception can trigger undefined behavior.

For instance, the C++ Standard, [basic.stc.dynamic.deallocation], paragraph 3 [ISO/IEC 14882-
2014], in part, states the following:

If a deallocation function terminates by throwing an exception, the behavior is undefined.

In these situations, the function must logically be declared noexcept because throwing an
exception from the function can never have well-defined behavior. The C++ Standard,
[except.spec], paragraph 15, states the following:

A deallocation function with no explicit exception-specification is treated as if it were
specified with noexcept(true).

As such, deallocation functions (object, array, and placement forms at either global or class scope)
must not terminate by throwing an exception. Do not declare such functions to be
noexcept(false). However, it is acceptable to rely on the implicit noexcept(true)
specification or declare noexcept explicitly on the function signature.

Object destructors are likely to be called during stack unwinding as a result of an exception being
thrown. If the destructor itself throws an exception, having been called as the result of an
exception being thrown, then the function std::terminate() is called with the default effect
of calling std::abort() [ISO/IEC 14882-2014]. When std::abort() is called, no further
objects are destroyed, resulting in an indeterminate program state and undefined behavior. Do not
terminate a destructor by throwing an exception.

The C++ Standard, [class.dtor], paragraph 3, states [ISO/IEC 14882-2014] the following:

A declaration of a destructor that does not have an exception-specification is implicitly
considered to have the same exception-specification as an implicit declaration.

An implicit declaration of a destructor is considered to be noexcept(true) according to
[except.spec], paragraph 14. As such, destructors must not be declared noexcept(false) but
may instead rely on the implicit noexcept(true) or declare noexcept explicitly.

Any noexcept function that terminates by throwing an exception violates ERR55-CPP. Honor
exception specifications.

Declarations and Initialization (DCL) - DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 58
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.8.1 Noncompliant Code Example

In this noncompliant code example, the class destructor does not meet the implicit noexcept
guarantee because it may throw an exception even if it was called as the result of an exception
being thrown. Consequently, it is declared as noexcept(false) but still can trigger undefined
behavior.

#include <stdexcept>

class S {
 bool has_error() const;

public:
 ~S() noexcept(false) {
 // Normal processing
 if (has_error()) {
 throw std::logic_error("Something bad");
 }
 }
};

2.8.2 Noncompliant Code Example (std::uncaught_exception())

Use of std::uncaught_exception() in the destructor solves the termination problem by
avoiding the propagation of the exception if an existing exception is being processed, as
demonstrated in this noncompliant code example. However, by circumventing normal destructor
processing, this approach may keep the destructor from releasing important resources.

#include <exception>
#include <stdexcept>

class S {
 bool has_error() const;

public:
 ~S() noexcept(false) {
 // Normal processing
 if (has_error() && !std::uncaught_exception()) {
 throw std::logic_error("Something bad");
 }
 }
};

Declarations and Initialization (DCL) - DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 59
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.8.3 Noncompliant Code Example (function-try-block)

This noncompliant code example, as well as the following compliant solution, presumes the
existence of a Bad class with a destructor that can throw. Although the class violates this rule, it
is presumed that the class cannot be modified to comply with this rule.

// Assume that this class is provided by a 3rd party and it is not
something
// that can be modified by the user.
class Bad {
 ~Bad() noexcept(false);
};

To safely use the Bad class, the SomeClass destructor attempts to handle exceptions thrown
from the Bad destructor by absorbing them.

class SomeClass {
 Bad bad_member;
public:
 ~SomeClass()
 try {
 // ...
 } catch(...) {
 // Handle the exception thrown from the Bad destructor.
 }
};

However, the C++ Standard, [except.handle], paragraph 15 [ISO/IEC 14882-2014], in part, states
the following:

The currently handled exception is rethrown if control reaches the end of a handler of
the function-try-block of a constructor or destructor.

Consequently, the caught exception will inevitably escape from the SomeClass destructor
because it is implicitly rethrown when control reaches the end of the function-try-block handler.

2.8.4 Compliant Solution

A destructor should perform the same way whether or not there is an active exception. Typically,
this means that it should invoke only operations that do not throw exceptions, or it should handle
all exceptions and not rethrow them (even implicitly). This compliant solution differs from the
previous noncompliant code example by having an explicit return statement in the
SomeClass destructor. This statement prevents control from reaching the end of the exception
handler. Consequently, this handler will catch the exception thrown by Bad::~Bad() when

Declarations and Initialization (DCL) - DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 60
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

bad_member is destroyed. It will also catch any exceptions thrown within the compound
statement of the function-try-block, but the SomeClass destructor will not terminate by
throwing an exception.

class SomeClass {
 Bad bad_member;
public:
 ~SomeClass()
 try {
 // ...
 } catch(...) {
 // Catch exceptions thrown from noncompliant destructors of
 // member objects or base class subobjects.

 // NOTE: Flowing off the end of a destructor function-try-block
 // causes the caught exception to be implicitly rethrown, but
 // an explicit return statement will prevent that from
 // happening.
 return;
 }
};

2.8.5 Noncompliant Code Example

In this noncompliant code example, a global deallocation is declared noexcept(false) and
throws an exception if some conditions are not properly met. However, throwing from a
deallocation function results in undefined behavior.

#include <stdexcept>

bool perform_dealloc(void *);

void operator delete(void *ptr) noexcept(false) {
 if (perform_dealloc(ptr)) {
 throw std::logic_error("Something bad");
 }
}

Declarations and Initialization (DCL) - DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 61
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.8.6 Compliant Solution

The compliant solution does not throw exceptions in the event the deallocation fails but instead
fails as gracefully as possible.

#include <cstdlib>
#include <stdexcept>

bool perform_dealloc(void *);
void log_failure(const char *);

void operator delete(void *ptr) noexcept(true) {
 if (perform_dealloc(ptr)) {
 log_failure("Deallocation of pointer failed");
 std::exit(1); // Fail, but still call destructors
 }
}

2.8.7 Risk Assessment

Attempting to throw exceptions from destructors or deallocation functions can result in undefined
behavior, leading to resource leaks or denial-of-service attacks.

Rule Severity Likelihood Remediation Cost Priority Level

DCL57-CPP Low Likely Medium P6 L3

2.8.8 Related Guidelines

SEI CERT C++ Coding Standard ERR55-CPP. Honor exception specifications
ERR50-CPP. Do not abruptly terminate the program

MISRA C++:2008 Rule 15-5-1 (Required)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Declarations and Initialization (DCL) - DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 62
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.8.9 Bibliography

[Henricson 1997] Recommendation 12.5, Do not let destructors called
during stack unwinding throw exceptions

[ISO/IEC 14882-2014] Subclause 3.4.7.2, “Deallocation Functions”
Subclause 15.2, “Constructors and Destructors”
Subclause 15.3, “Handling an Exception”
Subclause 15.4, “Exception Specifications”

[Meyers 2005] Item 8, “Prevent Exceptions from Leaving Destructors”

[Sutter 2000] “Never allow exceptions from escaping destructors or
from an overloaded operator delete()” (p. 29)

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 63
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9 DCL58-CPP. Do not modify the standard namespaces

Namespaces introduce new declarative regions for declarations, reducing the likelihood of
conflicting identifiers with other declarative regions. One feature of namespaces is that they can
be further extended, even within separate translation units. For instance, the following
declarations are well-formed.

namespace MyNamespace {
int i;
}

namespace MyNamespace {
int i;
}

void f() {
 MyNamespace::i = MyNamespace::i = 12;
}

The standard library introduces the namespace std for standards-provided declarations such as
std::string, std::vector, and std::for_each. However, it is undefined behavior to
introduce new declarations in namespace std except under special circumstances. The C++
Standard, [namespace.std], paragraphs 1 and 2 [ISO/IEC 14882-2014], states the following:

1 The behavior of a C++ program is undefined if it adds declarations or definitions to
namespace std or to a namespace within namespace std unless otherwise
specified. A program may add a template specialization for any standard library
template to namespace std only if the declaration depends on a user-defined type
and the specialization meets the standard library requirements for the original
template and is not explicitly prohibited.

2 The behavior of a C++ program is undefined if it declares

• an explicit specialization of any member function of a standard library class
template, or

• an explicit specialization of any member function template of a standard library class
or class template, or

• an explicit or partial specialization of any member class template of a standard
library class or class template.

In addition to restricting extensions to the namespace std, the C++ Standard, [namespace.posix],
paragraph 1, further states the following:

The behavior of a C++ program is undefined if it adds declarations or definitions to
namespace posix or to a namespace within namespace posix unless otherwise
specified. The namespace posix is reserved for use by ISO/IEC 9945 and other POSIX
standards.

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 64
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Do not add declarations or definitions to the standard namespaces std or posix, or to a
namespace contained therein, except for a template specialization that depends on a user-defined
type that meets the standard library requirements for the original template.

The Library Working Group, responsible for the wording of the Standard Library section of the
C++ Standard, has an unresolved issue on the definition of user-defined type. Although the
Library Working Group has no official stance on the definition [INCITS 2014], we define it to be
any class, struct, union, or enum that is not defined within namespace std or a
namespace contained within namespace std. Effectively, it is a user-provided type instead of a
standard library–provided type.

2.9.1 Noncompliant Code Example

In this noncompliant code example, the declaration of x is added to the namespace std, resulting
in undefined behavior.

namespace std {
int x;
}

2.9.2 Compliant Solution

This compliant solution assumes the intention of the programmer was to place the declaration of x
into a namespace to prevent collisions with other global identifiers. Instead of placing the
declaration into the namespace std, the declaration is placed into a namespace without a reserved
name.

namespace nonstd {
int x;
}

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2139

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 65
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.3 Noncompliant Code Example

In this noncompliant code example, a template specialization of std::plus is added to the
namespace std in an attempt to allow std::plus to concatenate a std::string and
MyString object. However, because the template specialization is of a standard library–
provided type (std::string), this code results in undefined behavior.

#include <functional>
#include <iostream>
#include <string>

class MyString {
 std::string data;

public:
 MyString(const std::string &data) : data(data) {}

 const std::string &get_data() const { return data; }
};

namespace std {
template <>
struct plus<string> : binary_function<string, MyString, string> {
 string operator()(const string &lhs, const MyString &rhs) const {
 return lhs + rhs.get_data();
 }
};
}

void f() {
 std::string s1("My String");
 MyString s2(" + Your String");
 std::plus<std::string> p;

 std::cout << p(s1, s2) << std::endl;
}

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 66
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.4 Compliant Solution

The interface for std::plus requires that both arguments to the function call operator and the
return type are of the same type. Because the attempted specialization in the noncompliant code
example results in undefined behavior, this compliant solution defines a new
std::binary_function derivative that can add a std::string to a MyString object
without requiring modification of the namespace std.

#include <functional>
#include <iostream>
#include <string>

class MyString {
 std::string data;

public:
 MyString(const std::string &data) : data(data) {}

 const std::string &get_data() const { return data; }
};

struct my_plus
 : std::binary_function<std::string, MyString, std::string> {
 std::string operator()(
 const std::string &lhs, const MyString &rhs) const {
 return lhs + rhs.get_data();
 }
};

void f() {
 std::string s1("My String");
 MyString s2(" + Your String");
 my_plus p;

 std::cout << p(s1, s2) << std::endl;
}

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 67
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.5 Compliant Solution

In this compliant solution, a specialization of std::plus is added to the std namespace, but
the specialization depends on a user-defined type and meets the Standard Template Library
requirements for the original template, so it complies with this rule. However, because
MyString can be constructed from std::string, this compliant solution involves invoking a
converting constructor whereas the previous compliant solution does not.

#include <functional>
#include <iostream>
#include <string>

class MyString {
 std::string data;

public:
 MyString(const std::string &data) : data(data) {}

 const std::string &get_data() const { return data; }
};

namespace std {
template <>
struct plus<MyString> {
 MyString operator()(const MyString &lhs, const MyString &rhs)
const {
 return lhs.get_data() + rhs.get_data();
 }
};
}

void f() {
 std::string s1("My String");
 MyString s2(" + Your String");
 std::plus<MyString> p;

 std::cout << p(s1, s2).get_data() << std::endl;
}

2.9.6 Risk Assessment

Altering the standard namespace can cause undefined behavior in the C++ standard library.

Rule Severity Likelihood Remediation Cost Priority Level

DCL58-CPP High Unlikely Medium P6 L2

Declarations and Initialization (DCL) - DCL58-CPP. Do not modify the standard namespaces

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 68
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.9.7 Related Guidelines

SEI CERT C++ Coding Standard DCL51-CPP. Do not declare or define a reserved
identifier

2.9.8 Bibliography

[INCITS 2014] Issue 2139, “What Is a User-Defined Type?”

[ISO/IEC 14882-2014] Subclause 17.6.4.2.1, “Namespace std”
Subclause 17.6.4.2.2, “Namespace posix”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 69
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.10 DCL59-CPP. Do not define an unnamed namespace in a header file

Unnamed namespaces are used to define a namespace that is unique to the translation unit, where
the names contained within have internal linkage by default. The C++ Standard,
[namespace.unnamed], paragraph 1 [ISO/IEC 14882-2014], states the following:

An unnamed-namespace-definition behaves as if it were replaced by:

 inline namespace unique { /* empty body */ }
 using namespace unique ;
 namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition,
all occurrences of unique in a translation unit are replaced by the same identifier, and
this identifier differs from all other identifiers in the entire program.

Production-quality C++ code frequently uses header files as a means to share code between
translation units. A header file is any file that is inserted into a translation unit through an
#include directive. Do not define an unnamed namespace in a header file. When an unnamed
namespace is defined in a header file, it can lead to surprising results. Due to default internal
linkage, each translation unit will define its own unique instance of members of the unnamed
namespace that are ODR-used within that translation unit. This can cause unexpected results,
bloat the resulting executable, or inadvertently trigger undefined behavior due to one-definition
rule (ODR) violations.

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 70
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.10.1 Noncompliant Code Example

In this noncompliant code example, the variable v is defined in an unnamed namespace within a
header file and is accessed from two separate translation units. Each translation unit prints the
current value of v and then assigns a new value into it. However, because v is defined within an
unnamed namespace, each translation unit operates on its own instance of v, resulting in
unexpected output.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

namespace {
int v;
}

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"
#include <iostream>

void f() {
 std::cout << "f(): " << v << std::endl;
 v = 42;
 // ...
}

// b.cpp
#include "a.h"
#include <iostream>

void g() {
 std::cout << "g(): " << v << std::endl;
 v = 100;
}

int main() {
 extern void f();
 f(); // Prints v, sets it to 42
 g(); // Prints v, sets it to 100
 f();
 g();
}

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 71
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

When executed, this program prints the following.

f(): 0
g(): 0
f(): 42
g(): 100

2.10.2 Compliant Solution

In this compliant solution, v is defined in only one translation unit but is externally visible to all
translation units, resulting in the expected behavior.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

extern int v;

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"
#include <iostream>

int v; // Definition of global variable v

void f() {
 std::cout << "f(): " << v << std::endl;
 v = 42;
 // ...
}

// b.cpp
#include "a.h"
#include <iostream>

void g() {
 std::cout << "g(): " << v << std::endl;
 v = 100;
}

int main() {
 extern void f();
 f(); // Prints v, sets it to 42
 g(); // Prints v, sets it to 100
 f(); // Prints v, sets it back to 42
 g(); // Prints v, sets it back to 100
}

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 72
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

When executed, this program prints the following.

f(): 0
g(): 42
f(): 100
g(): 42

2.10.3 Noncompliant Code Example

In this noncompliant code example, the variable v is defined in an unnamed namespace within a
header file, and an inline function, get_v(), is defined, which accesses that variable. ODR-
using the inline function from multiple translation units (as shown in the implementation of f()
and g()) violates the one-definition rule because the definition of get_v() is not identical in all
translation units due to referencing a unique v in each translation unit.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

namespace {
int v;
}

inline int get_v() { return v; }

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"

void f() {
 int i = get_v();
 // ...
}

// b.cpp
#include "a.h"

void g() {
 int i = get_v();
 // ...
}

See DCL60-CPP. Obey the one-definition rule for more information on violations of the one-
definition rule.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2358

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 73
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.10.4 Compliant Solution

In this compliant solution, v is defined in only one translation unit but is externally visible to all
translation units and can be accessed from the inline get_v() function.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

extern int v;

inline int get_v() {
 return v;
}

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"

// Externally used by get_v();
int v;

void f() {
 int i = get_v();
 // ...
}

// b.cpp
#include "a.h"

void g() {
 int i = get_v();
 // ...
}

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 74
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.10.5 Noncompliant Code Example

In this noncompliant code example, the function f() is defined within a header file. However,
including the header file in multiple translation units causes a violation of the one-definition rule
that usually results in an error diagnostic generated at link time due to multiple definitions of a
function with the same name.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

void f() { /* ... */ }

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"
// ...

// b.cpp
#include "a.h"
// ...

2.10.6 Noncompliant Code Example

This noncompliant code example attempts to resolve the link-time errors by defining f() within
an unnamed namespace. However, it produces multiple, unique definitions of f() in the resulting
executable. If a.h is included from many translation units, it can lead to increased link times, a
larger executable file, and reduced performance.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

namespace {
void f() { /* ... */ }
}

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"
// ...

// b.cpp
#include "a.h"
// ...

Declarations and Initialization (DCL) - DCL59-CPP. Do not define an unnamed namespace in a header file

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 75
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.10.7 Compliant Solution

In this compliant solution, f() is not defined with an unnamed namespace and is instead defined
as an inline function. Inline functions are required to be defined identically in all the translation
units in which they are used, which allows an implementation to generate only a single instance of
the function at runtime in the event the body of the function does not get generated for each call
site.

// a.h
#ifndef A_HEADER_FILE
#define A_HEADER_FILE

inline void f() { /* ... */ }

#endif // A_HEADER_FILE

// a.cpp
#include "a.h"
// ...

// b.cpp
#include "a.h"
// ...

2.10.8 Risk Assessment

Defining an unnamed namespace within a header file can cause data integrity violations and
performance problems but is unlikely to go unnoticed with sufficient testing. One-definition rule
violations result in undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

DCL59-CPP Medium Unlikely Medium P4 L3

2.10.9 Related Guidelines

SEI CERT C++ Coding Standard DCL60-CPP. Obey the one-definition rule

2.10.10 Bibliography

[ISO/IEC 14882-2014] Subclause 3.2, “One Definition Rule”
Subclause 7.1.2, “Function Specifiers”
Subclause 7.3.1, “Namespace Definition”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2358

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 76
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.11 DCL60-CPP. Obey the one-definition rule

Nontrivial C++ programs are generally divided into multiple translation units that are later linked
together to form an executable. To support such a model, C++ restricts named object definitions
to ensure that linking will behave deterministically by requiring a single definition for an object
across all translation units. This model is called the one-definition rule (ODR), which is defined
by the C++ Standard, [basic.def.odr] in paragraph 4 [ISO/IEC 14882-2014]:

Every program shall contain exactly one definition of every non-inline function or variable
that is odr-used in that program; no diagnostic required. The definition can appear
explicitly in the program, it can be found in the standard or a user-defined library, or
(when appropriate) it is implicitly defined. An inline function shall be defined in every
translation unit in which it is odr-used.

The most common approach to multitranslation unit compilation involves declarations residing in
a header file that is subsequently made available to a source file via #include. These
declarations are often also definitions, such as class and function template definitions. This
approach is allowed by an exception defined in paragraph 6, which, in part, states the following:

There can be more than one definition of a class type, enumeration type, inline function
with external linkage, class template, non-static function template, static data member of
a class template, member function of a class template, or template specialization for
which some template parameters are not specified in a program provided that each
definition appears in a different translation unit, and provided the definitions satisfy the
following requirements. Given such an entity named D defined in more than one
translation unit....

If the definitions of D satisfy all these requirements, then the program shall behave as if
there were a single definition of D. If the definitions of D do not satisfy these
requirements, then the behavior is undefined.

The requirements specified by paragraph 6 essentially state that that two definitions must be
identical (not simply equivalent). Consequently, a definition introduced in two separate translation
units by an #include directive generally will not violate the ODR because the definitions are
identical in both translation units.

However, it is possible to violate the ODR of a definition introduced via #include using block
language linkage specifications, vendor-specific language extensions, and so on. A more likely
scenario for ODR violations is that accidental definitions of differing objects will exist in different
translation units.

Do not violate the one-definition rule; violations result in undefined behavior.

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 77
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.11.1 Noncompliant Code Example

In this noncompliant code example, two different translation units define a class of the same name
with differing definitions. Although the two definitions are functionally equivalent (they both
define a class named S with a single, public, nonstatic data member int a), they are not defined
using the same sequence of tokens. This code example violates the ODR and results in undefined
behavior.

// a.cpp
struct S {
 int a;
};

// b.cpp
class S {
public:
 int a;
};

2.11.2 Compliant Solution

The correct mitigation depends on programmer intent. If the programmer intends for the same
class definition to be visible in both translation units because of common usage, the solution is to
use a header file to introduce the object into both translation units, as shown in this compliant
solution.

// S.h
struct S {
 int a;
};

// a.cpp
#include "S.h"

// b.cpp
#include "S.h"

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 78
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.11.3 Compliant Solution

If the ODR violation was a result of accidental name collision, the best mitigation solution is to
ensure that both class definitions are unique, as in this compliant solution.

// a.cpp
namespace {
struct S {
 int a;
};
}

// b.cpp
namespace {
class S {
public:
 int a;
};
}

Alternatively, the classes could be given distinct names in each translation unit to avoid violating
the ODR.

2.11.4 Noncompliant Code Example (Microsoft Visual Studio)

In this noncompliant code example, a class definition is introduced into two translation units using
#include. However, one of the translation units uses an implementation-defined #pragma that
is supported by Microsoft Visual Studio to specify structure field alignment requirements.
Consequently, the two class definitions may have differing layouts in each translation unit, which
is a violation of the ODR.

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 79
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

// s.h
struct S {
 char c;
 int a;
};

void init_s(S &s);

// s.cpp
#include "s.h"

void init_s(S &s); {
 s.c = 'a';
 s.a = 12;
}

// a.cpp
#pragma pack(push, 1)
#include "s.h"
#pragma pack(pop)

void f() {
 S s;
 init_s(s);
}

2.11.4.1 Implementation Details

It is possible for the preceding noncompliant code example to result in a.cpp allocating space
for an object with a different size than expected by init_s() in s.cpp. When translating
s.cpp, the layout of the structure may include padding bytes between the c and a data members.
When translating a.cpp, the layout of the structure may remove those padding bytes as a result
of the #pragma pack directive, so the object passed to init_s() may be smaller than
expected. Consequently, when init_s() initializes the data members of s, it may result in a
buffer overrun.

For more information on the behavior of #pragma pack, see the vendor documentation for
your implementation, such as Microsoft Visual Studio or GCC.

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 80
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.11.5 Compliant Solution

In this compliant solution, the implementation-defined structure member-alignment directive is
removed, ensuring that all definitions of S comply with the ODR.

// s.h
struct S {
 char c;
 int a;
};

void init_s(S &s);

// s.cpp
#include "s.h"

void init_s(S &s); {
 s.c = 'a';
 s.a = 12;
}

// a.cpp
#include "s.h"

void f() {
 S s;
 init_s(s);
}

2.11.6 Noncompliant Code Example

In this noncompliant code example, the constant object n has internal linkage but is odr-used
within f(), which has external linkage. Because f() is declared as an inline function, the
definition of f() must be identical in all translation units. However, each translation unit has a
unique instance of n, resulting in a violation of the ODR.

const int n = 42;

int g(const int &lhs, const int &rhs);

inline int f(int k) {
 return g(k, n);
}

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 81
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.11.7 Compliant Solution

A compliant solution must change one of three factors: (1) it must not odr-use n within f(), (2) it
must declare n such that it has external linkage, or (3) it must not use an inline definition of f().

If circumstances allow modification of the signature of g() to accept parameters by value instead
of by reference, then n will not be odr-used within f() because n would then qualify as a
constant expression. This solution is compliant but it is not ideal. It may not be possible (or
desirable) to modify the signature of g(), such as if g() represented std::max() from
<algorithm>. Also, because of the differing linkage used by n and f(), accidental violations
of the ODR are still likely if the definition of f() is modified to odr-use n.

const int n = 42;

int g(int lhs, int rhs);

inline int f(int k) {
 return g(k, n);
}

2.11.8 Compliant Solution

In this compliant solution, the constant object n is replaced with an enumerator of the same name.
Named enumerations defined at namespace scope have the same linkage as the namespace they
are contained in. The global namespace has external linkage, so the definition of the named
enumeration and its contained enumerators also have external linkage. Although less aesthetically
pleasing, this compliant solution does not suffer from the same maintenance burdens of the
previous code because n and f() have the same linkage.

enum Constants {
 N = 42
};

int g(const int &lhs, const int &rhs);

inline int f(int k) {
 return g(k, N);
}

Declarations and Initialization (DCL) - DCL60-CPP. Obey the one-definition rule

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 82
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.11.9 Risk Assessment

Violating the ODR causes undefined behavior, which can result in exploits as well as denial-of-
service attacks. As shown in “Support for Whole-Program Analysis and the Verification of the
One-Definition Rule in C++” [Quinlan 2006], failing to enforce the ODR enables a virtual
function pointer attack known as the VPTR exploit. In this exploit, an object’s virtual function
table is corrupted so that calling a virtual function on the object results in malicious code being
executed. See the paper by Quinlan and colleagues for more details. However, note that to
introduce the malicious class, the attacker must have access to the system building the code.

Rule Severity Likelihood Remediation Cost Priority Level

DCL60-CPP High Unlikely High P3 L3

2.11.10 Bibliography

[ISO/IEC 14882-2014] Subclause 3.2, “One Definition Rule”

[Quinlan 2006]

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 83
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 Expressions (EXP)

3.1 EXP50-CPP. Do not depend on the order of evaluation for side
effects

In C++, modifying an object, calling a library I/O function, accessing a volatile-qualified
value, or calling a function that performs one of these actions are ways to modify the state of the
execution environment. These actions are called side effects. All relationships between value
computations and side effects can be described in terms of sequencing of their evaluations. The
C++ Standard, [intro.execution], paragraph 13 [ISO/IEC 14882-2014], establishes three
sequencing terms:

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations
executed by a single thread, which induces a partial order among those evaluations.
Given any two evaluations A and B, if A is sequenced before B, then the execution of A
shall precede the execution of B. If A is not sequenced before B and B is not sequenced
before A, then A and B are unsequenced. [Note: The execution of unsequenced
evaluations can overlap. — end note] Evaluations A and B are indeterminately
sequenced when either A is sequenced before B or B is sequenced before A, but it is
unspecified which. [Note: Indeterminately sequenced evaluations cannot overlap, but
either could be executed first. — end note]

Paragraph 15 further states (nonnormative text removed for brevity) the following:

Except where noted, evaluations of operands of individual operators and of
subexpressions of individual expressions are unsequenced. ... The value computations
of the operands of an operator are sequenced before the value computation of the result
of the operator. If a side effect on a scalar object is unsequenced relative to either
another side effect on the same scalar object or a value computation using the value of
the same scalar object, and they are not potentially concurrent, the behavior is
undefined. ... When calling a function (whether or not the function is inline), every value
computation and side effect associated with any argument expression, or with the postfix
expression designating the called function, is sequenced before execution of every
expression or statement in the body of the called function. ... Every evaluation in the
calling function (including other function calls) that is not otherwise specifically
sequenced before or after the execution of the body of the called function is
indeterminately sequenced with respect to the execution of the called function. Several
contexts in C++ cause evaluation of a function call, even though no corresponding
function call syntax appears in the translation unit. ... The sequencing constraints on the
execution of the called function (as described above) are features of the function calls as
evaluated, whatever the syntax of the expression that calls the function might be.

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 84
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Do not allow the same scalar object to appear in side effects or value computations in both halves
of an unsequenced or indeterminately sequenced operation.

The following expressions have sequencing restrictions that deviate from the usual unsequenced
ordering [ISO/IEC 14882-2014]:
• In postfix ++ and -- expressions, the value computation is sequenced before the

modification of the operand. ([expr.post.incr], paragraph 1)
• In logical && expressions, if the second expression is evaluated, every value computation and

side effect associated with the first expression is sequenced before every value computation
and side effect associated with the second expression. ([expr.log.and], paragraph 2)

• In logical || expressions, if the second expression is evaluated, every value computation and
side effect associated with the first expression is sequenced before every value computation
and side effect associated with the second expression. ([expr.log.or], paragraph 2)

• In conditional ?: expressions, every value computation and side effect associated with the
first expression is sequenced before every value computation and side effect associated with
the second or third expression (whichever is evaluated). ([expr.cond], paragraph 1)

• In assignment expressions (including compound assignments), the assignment is sequenced
after the value computations of left and right operands and before the value computation of
the assignment expression. ([expr.ass], paragraph 1)

• In comma , expressions, every value computation and side effect associated with the left
expression is sequenced before every value computation and side effect associated with the
right expression. ([expr.comma], paragraph 1)

• When evaluating initializer lists, the value computation and side effect associated with each
initializer-clause is sequenced before every value computation and side effect associated with
a subsequent initializer-clause. ([dcl.init.list], paragraph 4)

• When a signal handler is executed as a result of a call to std::raise(), the execution of
the handler is sequenced after the invocation of std::raise() and before its return.
([intro.execution], paragraph 6)

• The completions of the destructors for all initialized objects with thread storage duration
within a thread are sequenced before the initiation of the destructors of any object with static
storage duration. ([basic.start.term], paragraph 1)

• In a new-expression, initialization of an allocated object is sequenced before the value
computation of the new-expression. ([expr.new], paragraph 18)

• When a default constructor is called to initialize an element of an array and the constructor
has at least one default argument, the destruction of every temporary created in a default
argument is sequenced before the construction of the next array element, if any.
([class.temporary], paragraph 4)

• The destruction of a temporary whose lifetime is not extended by being bound to a reference
is sequenced before the destruction of every temporary that is constructed earlier in the same
full-expression. ([class.temporary], paragraph 5)

• Atomic memory ordering functions can explicitly determine the sequencing order for
expressions. ([atomics.order] and [atomics.fences])

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 85
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This rule means that statements such as

i = i + 1;
a[i] = i;

have defined behavior, and statements such as the following do not.

// i is modified twice in the same full expression
i = ++i + 1;

// i is read other than to determine the value to be stored
a[i++] = i;

Not all instances of a comma in C++ code denote use of the comma operator. For example, the
comma between arguments in a function call is not the comma operator. Additionally, overloaded
operators behave the same as a function call, with the operands to the operator acting as
arguments to a function call.

3.1.1 Noncompliant Code Example

In this noncompliant code example, i is evaluated more than once in an unsequenced manner, so
the behavior of the expression is undefined.

void f(int i, const int *b) {
 int a = i + b[++i];
 // ...
}

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 86
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.2 Compliant Solution

These examples are independent of the order of evaluation of the operands and can each be
interpreted in only one way.

void f(int i, const int *b) {
 ++i;
 int a = i + b[i];
 // ...
}

void f(int i, const int *b) {
 int a = i + b[i + 1];
 ++i;
 // ...
}

3.1.3 Noncompliant Code Example

The call to func() in this noncompliant code example has undefined behavior because the
argument expressions are unsequenced.

extern void func(int i, int j);

void f(int i) {
 func(i++, i);
}

The first (left) argument expression reads the value of i (to determine the value to be stored) and
then modifies i. The second (right) argument expression reads the value of i, but not to
determine the value to be stored in i. This additional attempt to read the value of i has undefined
behavior.

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 87
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.4 Compliant Solution

This compliant solution is appropriate when the programmer intends for both arguments to
func() to be equivalent.

extern void func(int i, int j);

void f(int i) {
 i++;
 func(i, i);
}

This compliant solution is appropriate when the programmer intends for the second argument to
be 1 greater than the first.

extern void func(int i, int j);

void f(int i) {
 int j = i++;
 func(j, i);
}

3.1.5 Noncompliant Code Example

This noncompliant code example is similar to the previous noncompliant code example. However,
instead of calling a function directly, this code calls an overloaded operator<<(). Overloaded
operators are equivalent to a function call and have the same restrictions regarding the sequencing
of the function call arguments. This means that the operands are not evaluated left-to-right, but are
unsequenced with respect to one another. Consequently, this noncompliant code example has
undefined behavior.

#include <iostream>

void f(int i) {
 std::cout << i++ << i << std::endl;
}

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 88
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.6 Compliant Solution

In this compliant solution, two calls are made to operator<<(), ensuring that the arguments
are printed in a well-defined order.

#include <iostream>

void f(int i) {
 std::cout << i++;
 std::cout << i << std::endl;
}

3.1.7 Noncompliant Code Example

The order of evaluation for function arguments is unspecified. This noncompliant code example
exhibits unspecified behavior but not undefined behavior.

extern void c(int i, int j);
int glob;

int a() {
 return glob + 10;
}

int b() {
 glob = 42;
 return glob;
}

void f() {
 c(a(), b());
}

The order in which a() and b() are called is unspecified; the only guarantee is that both a()
and b() will be called before c() is called. If a() or b() rely on shared state when calculating
their return value, as they do in this example, the resulting arguments passed to c() may differ
between compilers or architectures.

Expressions (EXP) - EXP50-CPP. Do not depend on the order of evaluation for side effects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 89
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.8 Compliant Solution

In this compliant solution, the order of evaluation for a() and b() is fixed, and so no
unspecified behavior occurs.

extern void c(int i, int j);
int glob;

int a() {
 return glob + 10;
}

int b() {
 glob = 42;
 return glob;
}

void f() {
 int a_val, b_val;

 a_val = a();
 b_val = b();

 c(a_val, b_val);
}

3.1.9 Risk Assessment

Attempting to modify an object in an unsequenced or indeterminately sequenced evaluation may
cause that object to take on an unexpected value, which can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP50-CPP Medium Probable Medium P8 L2

3.1.10 Related Guidelines

SEI CERT C Coding Standard EXP30-C. Do not depend on the order of
evaluation for side effects

3.1.11 Bibliography

[ISO/IEC 14882-2014] Subclause 1.9, “Program Execution”

[MISRA 2008] Rule 5-0-1 (Required)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=359
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=359

Expressions (EXP) - EXP51-CPP. Do not delete an array through a pointer of the incorrect type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 90
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2 EXP51-CPP. Do not delete an array through a pointer of the
incorrect type

The C++ Standard, [expr.delete], paragraph 3 [ISO/IEC 14882-2014], states the following:

In the first alternative (delete object), if the static type of the object to be deleted is
different from its dynamic type, the static type shall be a base class of the dynamic type
of the object to be deleted and the static type shall have a virtual destructor or the
behavior is undefined. In the second alternative (delete array) if the dynamic type of the
object to be deleted differs from its static type, the behavior is undefined.

Do not delete an array object through a static pointer type that differs from the dynamic pointer
type of the object. Deleting an array through a pointer to the incorrect type results in undefined
behavior.

3.2.1 Noncompliant Code Example

In this noncompliant code example, an array of Derived objects is created and the pointer is
stored in a Base *. Despite Base::~Base() being declared virtual, it still results in undefined
behavior. Further, attempting to perform pointer arithmetic on the static type Base * violates
CTR56-CPP. Do not use pointer arithmetic on polymorphic objects.

struct Base {
 virtual ~Base() = default;
};

struct Derived final : Base {};

void f() {
 Base *b = new Derived[10];
 // ...
 delete [] b;
}

Expressions (EXP) - EXP51-CPP. Do not delete an array through a pointer of the incorrect type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 91
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2.2 Compliant Solution

In this compliant solution, the static type of b is Derived *, which removes the undefined
behavior when indexing into the array as well as when deleting the pointer.

struct Base {
 virtual ~Base() = default;
};

struct Derived final : Base {};

void f() {
 Derived *b = new Derived[10];
 // ...
 delete [] b;
}

3.2.3 Risk Assessment

Attempting to destroy an array of polymorphic objects through the incorrect static type is
undefined behavior. In practice, potential consequences include abnormal program execution and
memory leaks.

Rule Severity Likelihood Remediation Cost Priority Level

EXP51-CPP Low Unlikely Medium P2 L3

3.2.4 Related Guidelines

SEI CERT C++ Coding Standard CTR56-CPP. Do not use pointer arithmetic on
polymorphic objects
OOP52-CPP. Do not delete a polymorphic
object without a virtual destructor

3.2.5 Bibliography

[ISO/IEC 14882-2014] Subclause 5.3.5, “Delete”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Expressions (EXP) - EXP52-CPP. Do not rely on side effects in unevaluated operands

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 92
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3 EXP52-CPP. Do not rely on side effects in unevaluated operands

Some expressions involve operands that are unevaluated. The C++ Standard, [expr], paragraph 8
[ISO/IEC 14882-2014] states the following:

In some contexts, unevaluated operands appear. An unevaluated operand is not
evaluated. An unevaluated operand is considered a full-expression. [Note: In an
unevaluated operand, a non-static class member may be named (5.1) and naming of
objects or functions does not, by itself, require that a definition be provided. — end note]

The following expressions do not evaluate their operands: sizeof(), typeid(),
noexcept(), decltype(), and declval().

Because an unevaluated operand in an expression is not evaluated, no side effects from that
operand are triggered. Reliance on those side effects will result in unexpected behavior. Do not
rely on side effects in unevaluated operands.

Unevaluated expression operands are used when the declaration of an object is required but the
definition of the object is not. For instance, in the following example, the function f() is
overloaded, relying on the unevaluated expression operand to select the desired overload, which is
then used to determine the result of the sizeof() expression.

int f(int);
double f(double);
size_t size = sizeof(f(0));

Such a use does not rely on the side effects of f() and consequently conforms to this guideline.

3.3.1 Noncompliant Code Example (sizeof)

In this noncompliant code example, the expression a++ is not evaluated.

#include <iostream>
void f() {
 int a = 14;
 int b = sizeof(a++);
 std::cout << a << ", " << b << std::endl;
}

Consequently, the value of a after b has been initialized is 14.

Expressions (EXP) - EXP52-CPP. Do not rely on side effects in unevaluated operands

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 93
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3.2 Compliant Solution (sizeof)

In this compliant solution, the variable a is incremented outside of the sizeof operator.

#include <iostream>
void f() {
 int a = 14;
 int b = sizeof(a);
 ++a;
 std::cout << a << ", " << b << std::endl;
}

3.3.3 Noncompliant Code Example (decltype)

In this noncompliant code example, the expression i++ is not evaluated within the decltype
specifier.

#include <iostream>

void f() {
 int i = 0;
 decltype(i++) h = 12;
 std::cout << i;
}

Consequently, the value of i remains 0.

3.3.4 Compliant Solution (decltype)

In this compliant solution, i is incremented outside of the decltype specifier so that it is
evaluated as desired.

#include <iostream>

void f() {
 int i = 0;
 decltype(i) h = 12;
 ++i;
 std::cout << i;
}

Expressions (EXP) - EXP52-CPP. Do not rely on side effects in unevaluated operands

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 94
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3.5 Exceptions

EXP52-CPP-EX1: It is permissible for an expression with side effects to be used as an
unevaluated operand in a macro definition or SFINAE context. Although these situations rely on
the side effects to produce valid code, they typically do not rely on values produced as a result of
the side effects.

The following code is an example of compliant code using an unevaluated operand in a macro
definition.

void small(int x);
void large(long long x);

#define m(x) \
 do { \
 if (sizeof(x) == sizeof(int)) { \
 small(x); \
 } else if (sizeof(x) == sizeof(long long)) { \
 large(x); \
 } \
 } while (0)

void f() {
 int i = 0;
 m(++i);
}

The expansion of the macro m will result in the expression ++i being used as an unevaluated
operand to sizeof(). However, the expectation of the programmer at the expansion loci is that
i is preincremented only once. Consequently, this is a safe macro and complies with PRE31-C.
Avoid side effects in arguments to unsafe macros. Compliance with that rule is especially
important for code that follows this exception.

The following code is an example of compliant code using an unevaluated operand in a SFINAE
context to determine whether a type can be postfix incremented.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422634
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422634

Expressions (EXP) - EXP52-CPP. Do not rely on side effects in unevaluated operands

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 95
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <iostream>
#include <type_traits>
#include <utility>

template <typename T>
class is_incrementable {
 typedef char one[1];
 typedef char two[2];
 static one
&is_incrementable_helper(decltype(std::declval<typename
std::remove_cv<T>::type&>()++) *p);
 static two &is_incrementable_helper(...);

public:
 static const bool value =
sizeof(is_incrementable_helper(nullptr)) == sizeof(one);
};

void f() {
 std::cout << std::boolalpha << is_incrementable<int>::value;
}

In an instantiation of is_incrementable, the use of the postfix increment operator generates
side effects that are used to determine whether the type is postfix incrementable. However, the
value result of these side effects is discarded, so the side effects are used only for SFINAE.

3.3.6 Risk Assessment

If expressions that appear to produce side effects are an unevaluated operand, the results may be
different than expected. Depending on how this result is used, it can lead to unintended program
behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP52-CPP Low Unlikely Low P3 L3

3.3.7 Related Guidelines

SEI CERT C Coding Standard EXP44-C. Do not rely on side effects in operands to
sizeof, _Alignof, or _Generic

3.3.8 Bibliography

[ISO/IEC 14882-2014] Clause 5, “Expressions”
Subclause 20.2.5, “Function Template declval”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2605
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2605

Expressions (EXP) - EXP53-CPP. Do not read uninitialized memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 96
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4 EXP53-CPP. Do not read uninitialized memory

Local, automatic variables assume unexpected values if they are read before they are initialized.
The C++ Standard, [dcl.init], paragraph 12 [ISO/IEC 14882-2014], states the following:

If no initializer is specified for an object, the object is default-initialized. When storage for
an object with automatic or dynamic storage duration is obtained, the object has an
indeterminate value, and if no initialization is performed for the object, that object retains
an indeterminate value until that value is replaced. If an indeterminate value is produced
by an evaluation, the behavior is undefined except in the following cases:

• If an indeterminate value of unsigned narrow character type is produced by the
evaluation of:
 — the second or third operand of a conditional expression,
 — the right operand of a comma expression,
 — the operand of a cast or conversion to an unsigned narrow character type, or
 — a discarded-value expression,
then the result of the operation is an indeterminate value.

• If an indeterminate value of unsigned narrow character type is produced by the
evaluation of the right operand of a simple assignment operator whose first operand
is an lvalue of unsigned narrow character type, an indeterminate value replaces the
value of the object referred to by the left operand.

• If an indeterminate value of unsigned narrow character type is produced by the
evaluation of the initialization expression when initializing an object of unsigned
narrow character type, that object is initialized to an indeterminate value.

The default initialization of an object is described by paragraph 7 of the same subclause:

To default-initialize an object of type T means:

• if T is a (possibly cv-qualified) class type, the default constructor for T is called (and
the initialization is ill-formed if T has no default constructor or overload resolution
results in an ambiguity or in a function that is deleted or inaccessible from the
context of the initialization);

• if T is an array type, each element is default-initialized;

• otherwise, no initialization is performed.

If a program calls for the default initialization of an object of a const-qualified type T, T
shall be a class type with a user-provided default constructor.

Expressions (EXP) - EXP53-CPP. Do not read uninitialized memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 97
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

As a result, objects of type T with automatic or dynamic storage duration must be explicitly
initialized before having their value read as part of an expression unless T is a class type or an
array thereof or is an unsigned narrow character type. If T is an unsigned narrow character type, it
may be used to initialize an object of unsigned narrow character type, which results in both
objects having an indeterminate value. This technique can be used to implement copy operations
such as std::memcpy() without triggering undefined behavior.

Additionally, memory dynamically allocated with a new expression is default-initialized when the
new-initialized is omitted. Memory allocated by the standard library function std::calloc()
is zero-initialized. Memory allocated by the standard library function std::realloc()
assumes the values of the original pointer but may not initialize the full range of memory.
Memory allocated by any other means (std::malloc(), allocator objects, operator
new(), and so on) is assumed to be default-initialized.

Objects of static or thread storage duration are zero-initialized before any other initialization takes
place [ISO/IEC 14882-2014] and need not be explicitly initialized before having their value read.

Reading uninitialized variables for creating entropy is problematic because these memory
accesses can be removed by compiler optimization. VU#925211 is an example of a vulnerability
caused by this coding error [VU#925211].

3.4.1 Noncompliant Code Example

In this noncompliant code example, an uninitialized local variable is evaluated as part of an
expression to print its value, resulting in undefined behavior.

#include <iostream>

void f() {
 int i;
 std::cout << i;
}

3.4.2 Compliant Solution

In this compliant solution, the object is initialized prior to printing its value.

#include <iostream>

void f() {
 int i = 0;
 std::cout << i;
}

Expressions (EXP) - EXP53-CPP. Do not read uninitialized memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 98
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.3 Noncompliant Code Example

In this noncompliant code example, an int * object is allocated by a new-expression, but the
memory it points to is not initialized. The object’s pointer value and the value it points to are
printed to the standard output stream. Printing the pointer value is well-defined, but attempting to
print the value pointed to yields an indeterminate value, resulting in undefined behavior.

#include <iostream>

void f() {
 int *i = new int;
 std::cout << i << ", " << *i;
}

3.4.4 Compliant Solution

In this compliant solution, the memory is direct-initialized to the value 12 prior to printing its
value.

#include <iostream>

void f() {
 int *i = new int(12);
 std::cout << i << ", " << *i;
}

Initialization of an object produced by a new-expression is performed by placing (possibly empty)
parenthesis or curly braces after the type being allocated. This causes direct initialization of the
pointed-to object to occur, which will zero-initialize the object if the initialization omits a value,
as illustrated by the following code.

int *i = new int(); // zero-initializes *i
int *j = new int{}; // zero-initializes *j
int *k = new int(12); // initializes *k to 12
int *l = new int{12}; // initializes *l to 12

Expressions (EXP) - EXP53-CPP. Do not read uninitialized memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 99
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.5 Noncompliant Code Example

In this noncompliant code example, the class member variable c is not explicitly initialized by a
ctor-initializer in the default constructor. Despite the local variable s being default-initialized, the
use of c within the call to S::f() results in the evaluation of an object with indeterminate value,
resulting in undefined behavior.

class S {
 int c;

public:
 int f(int i) const { return i + c; }
};

void f() {
 S s;
 int i = s.f(10);
}

3.4.6 Compliant Solution

In this compliant solution, S is given a default constructor that initializes the class member
variable c.

class S {
 int c;

public:
 S() : c(0) {}
 int f(int i) const { return i + c; }
};

void f() {
 S s;
 int i = s.f(10);
}

3.4.7 Risk Assessment

Reading uninitialized variables is undefined behavior and can result in unexpected program
behavior. In some cases, these security flaws may allow the execution of arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

EXP53-CPP High Probable Medium P12 L1

Expressions (EXP) - EXP53-CPP. Do not read uninitialized memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 100
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.8 Related Guidelines

SEI CERT C Coding Standard EXP33-C. Do not read uninitialized memory

3.4.9 Bibliography

[ISO/IEC 14882-2014] Clause 5, “Expressions”
Subclause 5.3.4, “New”
Subclause 8.5, “Initializers”
Subclause 12.6.2, “Initializing Bases and Members”

[Lockheed Martin 2005] Rule 142, All variables shall be initialized before use

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=482

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 101
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5 EXP54-CPP. Do not access an object outside of its lifetime

Every object has a lifetime in which it can be used in a well-defined manner. The lifetime of an
object begins when sufficient, properly aligned storage has been obtained for it and its
initialization is complete. The lifetime of an object ends when a nontrivial destructor, if any, is
called for the object and the storage for the object has been reused or released. Use of an object, or
a pointer to an object, outside of its lifetime frequently results in undefined behavior.

The C++ Standard, [basic.life], paragraph 5 [ISO/IEC 14882-2014], describes the lifetime rules
for pointers:

Before the lifetime of an object has started but after the storage which the object will
occupy has been allocated or, after the lifetime of an object has ended and before the
storage which the object occupied is reused or released, any pointer that refers to the
storage location where the object will be or was located may be used but only in limited
ways. For an object under construction or destruction, see 12.7. Otherwise, such a
pointer refers to allocated storage, and using the pointer as if the pointer were of type
void*, is well-defined. Indirection through such a pointer is permitted but the resulting
lvalue may only be used in limited ways, as described below. The program has
undefined behavior if:

• the object will be or was of a class type with a non-trivial destructor and the pointer
is used as the operand of a delete-expression,

• the pointer is used to access a non-static data member or call a non-static member
function of the object, or

• the pointer is implicitly converted to a pointer to a virtual base class, or
• the pointer is used as the operand of a static_cast, except when the conversion

is to pointer to cv void, or to pointer to cv void and subsequently to pointer to
either cv char or cv unsigned char, or

• the pointer is used as the operand of a dynamic_cast.

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 102
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Paragraph 6 describes the lifetime rules for non-pointers:

Similarly, before the lifetime of an object has started but after the storage which the
object will occupy has been allocated or, after the lifetime of an object has ended and
before the storage which the object occupied is reused or released, any glvalue that
refers to the original object may be used but only in limited ways. For an object under
construction or destruction, see 12.7. Otherwise, such a glvalue refers to allocated
storage, and using the properties of the glvalue that do not depend on its value is well-
defined.

The program has undefined behavior if:

• an lvalue-to-rvalue conversion is applied to such a glvalue,

• the glvalue is used to access a non-static data member or call a non-static member
function of the object, or

• the glvalue is bound to a reference to a virtual base class, or
• the glvalue is used as the operand of a dynamic_cast or as the operand of

typeid.

Do not use an object outside of its lifetime, except in the ways described above as being well-
defined.

3.5.1 Noncompliant Code Example

In this noncompliant code example, a pointer to an object is used to call a non-static member
function of the object prior to the beginning of the pointer’s lifetime, resulting in undefined
behavior.

struct S {
 void mem_fn();
};

void f() {
 S *s;
 s->mem_fn();
}

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 103
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.2 Compliant Solution

In this compliant solution, storage is obtained for the pointer prior to calling S::mem_fn().

struct S {
 void mem_fn();
};

void f() {
 S *s = new S;
 s->mem_fn();
 delete s;
}

An improved compliant solution would not dynamically allocate memory directly but would
instead use an automatic local variable to obtain the storage and perform initialization. If a pointer
were required, use of a smart pointer, such as std::unique_ptr, would be a marked
improvement. However, these suggested compliant solutions would distract from the lifetime
demonstration of this compliant solution and consequently are not shown.

3.5.3 Noncompliant Code Example

In this noncompliant code example, a pointer to an object is implicitly converted to a virtual base
class after the object’s lifetime has ended, resulting in undefined behavior.

struct B {};

struct D1 : virtual B {};
struct D2 : virtual B {};

struct S : D1, D2 {};

void f(const B *b) {}

void g() {
 S *s = new S;
 // Use s
 delete s;

 f(s);
}

Despite the fact that f() never makes use of the object, its being passed as an argument to f() is
sufficient to trigger undefined behavior.

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 104
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.4 Compliant Solution

In this compliant solution, the lifetime of s is extended to cover the call to f().

struct B {};

struct D1 : virtual B {};
struct D2 : virtual B {};

struct S : D1, D2 {};

void f(const B *b) {}

void g() {
 S *s = new S;
 // Use s
 f(s);

 delete s;
}

3.5.5 Noncompliant Code Example

In this noncompliant code example, the address of a local variable is returned from f(). When
the resulting pointer is passed to h(), the lvalue-to-rvalue conversion applied to i results in
undefined behavior.

int *g() {
 int i = 12;
 return &i;
}

void h(int *i);

void f() {
 int *i = g();
 h(i);
}

Some compilers generate a diagnostic message when a pointer to an object with automatic storage
duration is returned from a function, as in this example.

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 105
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.6 Compliant Solution

In this compliant solution, the local variable returned from g() has static storage duration instead
of automatic storage duration, extending its lifetime sufficiently for use within f().

int *g() {
 static int i = 12;
 return &i;
}

void h(int *i);

void f() {
 int *i = g();
 h(i);
}

3.5.7 Noncompliant Code Example

A std::initializer_list<> object is constructed from an initializer list as though the
implementation allocated a temporary array and passed it to the
std::initializer_list<> constructor. This temporary array has the same lifetime as
other temporary objects except that initializing a std::initializer_list<> object from
the array extends the lifetime of the array exactly like binding a reference to a temporary
[ISO/IEC 14882-2014].

In this noncompliant code example, a member variable of type std::initializer_list<int>
is list-initialized within the constructor’s ctor-initializer. Under these circumstances, the conceptual
temporary array’s lifetime ends once the constructor exits, so accessing any elements of the
std::initializer_list<int> member variable results in undefined behavior.

#include <initializer_list>
#include <iostream>

class C {
 std::initializer_list<int> l;

public:
 C() : l{1, 2, 3} {}

 int first() const { return *l.begin(); }
};

void f() {
 C c;
 std::cout << c.first();
}

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 106
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.8 Compliant Solution

In this compliant solution, the std::initializer_list<int> member variable is replaced
with a std::vector<int>, which copies the elements of the initializer list to the container
instead of relying on a dangling reference to the temporary array.

#include <iostream>
#include <vector>

class C {
 std::vector<int> l;

public:
 C() : l{1, 2, 3} {}

 int first() const { return *l.begin(); }
};

void f() {
 C c;
 std::cout << c.first();
}

3.5.9 Noncompliant Code Example

In this noncompliant code example, a lambda object is stored in a function object, which is later
called (executing the lambda) to obtain a constant reference to a value. The lambda object returns
an int value, which is then stored in a temporary int object that becomes bound to the const
int & return type specified by the function object. However, the temporary object’s lifetime is
not extended past the return from the function object’s invocation, which causes undefined
behavior when the resulting value is accessed.

#include <functional>

void f() {
 auto l = [](const int &j) { return j; };
 std::function<const int&(const int &)> fn(l);

 int i = 42;
 int j = fn(i);
}

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 107
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.10 Compliant Solution

In this compliant solution, the std::function object returns an int instead of a const
int &, ensuring that the value is copied instead of bound to a temporary reference. An
alternative solution would be to call the lambda directly instead of through the
std::function<> object.

#include <functional>

void f() {
 auto l = [](const int &j) { return j; };
 std::function<int(const int &)> fn(l);

 int i = 42;
 int j = fn(i);
}

3.5.11 Noncompliant Code Example

In this noncompliant code example, the constructor for the automatic variable s is not called
because execution does not flow through the declaration of the local variable due to the goto
statement. Because the constructor is not called, the lifetime for s has not begun. Therefore,
calling S::f() uses the object outside of its lifetime and results in undefined behavior.

class S {
 int v;
public:
 S() : v(12) {} // Non-trivial constructor
 void f();
};

void f() {
 // ...

 goto bad_idea;

 // ...
 S s; // Control passes over the declaration, so initialization
does not take place.

bad_idea:
 s.f();
}

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 108
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.12 Compliant Solution

This compliant solution ensures that s is properly initialized prior to performing the local jump.

class S {
 int v;
public:
 S() : v(12) {} // Non-trivial constructor
 void f();
};

void f() {
 S s;

 // ...

 goto bad_idea;

 // ...

bad_idea:
 s.f();
}

3.5.13 Noncompliant Code Example

In this noncompliant code example, f() is called with an iterable range of objects of type S.
These objects are copied into a temporary buffer using std::copy(), and when processing of
those objects is complete, the temporary buffer is deallocated. However, the buffer returned by
std::get_temporary_buffer() does not contain initialized objects of type S, so when
std::copy() dereferences the destination iterator, it results in undefined behavior because the
object referenced by the destination iterator has yet to start its lifetime. This is because while
space for the object has been allocated, no constructors or initializers have been invoked.

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 109
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <algorithm>
#include <cstddef>
#include <memory>
#include <type_traits>

class S {
 int i;

public:
 S() : i(0) {}
 S(int i) : i(i) {}
 S(const S&) = default;
 S& operator=(const S&) = default;
};

template <typename Iter>
void f(Iter i, Iter e) {
 static_assert(
 std::is_same<
 typename std::iterator_traits<Iter>::value_type, S>::value,
 "Expecting iterators over type S");
 ptrdiff_t count = std::distance(i, e);
 if (!count) {
 return;
 }

 // Get some temporary memory.
 auto p = std::get_temporary_buffer<S>(count);
 if (p.second < count) {
 // Handle error; memory wasn't allocated, or
 // insufficient memory was allocated.
 return;
 }
 S *vals = p.first;

 // Copy the values into the memory.
 std::copy(i, e, vals);

 // ...

 // Return the temporary memory.
 std::return_temporary_buffer(vals);
}

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 110
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.13.1 Implementation Details

A reasonable implementation of std::get_temporary_buffer() and std::copy()
can result in code that behaves like the following example (with error-checking elided).

unsigned char *buffer =
 new (std::nothrow) unsigned char[sizeof(S) * object_count];

S *result = reinterpret_cast<S *>(buffer);
while (i != e) {
 *result = *i; // Undefined behavior
 ++result;
 ++i;
}

The act of dereferencing result is undefined behavior because the memory pointed to is not an
object of type S within its lifetime.

3.5.14 Compliant Solution (std::uninitialized_copy())

In this compliant solution, std::uninitialized_copy() is used to perform the copy,
instead of std::copy(), ensuring that the objects are initialized using placement new instead
of dereferencing uninitialized memory. Identical code from the noncompliant code example has
been elided for brevity.

//...
 // Copy the values into the memory.
 std::uninitialized_copy(i, e, vals);
// ...

3.5.15 Compliant Solution (std::raw_storage_iterator)

This compliant solution uses std::copy() with a std::raw_storage_iterator as the
destination iterator with the same well-defined results as using
std::uninitialized_copy(). As with the previous compliant solution, identical code
from the noncompliant code example has been elided for brevity.

//...
 // Copy the values into the memory.
 std::copy(i, e, std::raw_storage_iterator<S*, S>(vals));
// ...

Expressions (EXP) - EXP54-CPP. Do not access an object outside of its lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 111
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5.16 Risk Assessment

Referencing an object outside of its lifetime can result in an attacker being able to run arbitrary
code.

Rule Severity Likelihood Remediation Cost Priority Level

EXP54-CPP High Probable High P6 L2

3.5.17 Related Guidelines

SEI CERT C Coding Standard DCL30-C. Declare objects with appropriate
storage durations

3.5.18 Bibliography

[Coverity 2007]

[ISO/IEC 14882-2014] Subclause 3.8, “Object Lifetime”
Subclause 8.5.4, “List-Initialization”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3693
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3693

Expressions (EXP) - EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 112
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6 EXP55-CPP. Do not access a cv-qualified object through a cv-
unqualified type

The C++ Standard, [dcl.type.cv], paragraph 4 [ISO/IEC 14882-2014], states the following:

Except that any class member declared mutable can be modified, any attempt to
modify a const object during its lifetime results in undefined behavior.

Similarly, paragraph 6 states the following:

What constitutes an access to an object that has volatile-qualified type is
implementation-defined. If an attempt is made to refer to an object defined with a
volatile-qualified type through the use of a glvalue with a non-volatile-qualified type, the
program behavior is undefined.

Do not cast away a const qualification to attempt to modify the resulting object. The const
qualifier implies that the API designer does not intend for that object to be modified despite the
possibility it may be modifiable. Do not cast away a volatile qualification; the volatile
qualifier implies that the API designer intends the object to be accessed in ways unknown to the
compiler, and any access of the volatile object results in undefined behavior.

3.6.1 Noncompliant Code Example

In this noncompliant code example, the function g() is passed a const int &, which is then
cast to an int & and modified. Because the referenced value was previously declared as const,
the assignment operation results in undefined behavior.

void g(const int &ci) {
 int &ir = const_cast<int &>(ci);
 ir = 42;
}

void f() {
 const int i = 4;
 g(i);
}

Expressions (EXP) - EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 113
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.2 Compliant Solution

In this compliant solution, the function g() is passed an int &, and the caller is required to pass
an int that can be modified.

void g(int &i) {
 i = 42;
}

void f() {
 int i = 4;
 g(i);
}

3.6.3 Noncompliant Code Example

In this noncompliant code example, a const-qualified method is called that attempts to cache
results by casting away the const-qualifier of this. Because s was declared const, the
mutation of cachedValue results in undefined behavior.

#include <iostream>

class S {
 int cachedValue;

 int compute_value() const; // expensive
public:
 S() : cachedValue(0) {}

 // ...
 int get_value() const {
 if (!cachedValue) {
 const_cast<S *>(this)->cachedValue = compute_value();
 }
 return cachedValue;
 }
};

void f() {
 const S s;
 std::cout << s.get_value() << std::endl;
}

Expressions (EXP) - EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 114
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.4 Compliant Solution

This compliant solution uses the mutable keyword when declaring cachedValue, which
allows cachedValue to be mutated within a const context without triggering undefined
behavior.

#include <iostream>

class S {
 mutable int cachedValue;

 int compute_value() const; // expensive
public:
 S() : cachedValue(0) {}

 // ...
 int get_value() const {
 if (!cachedValue) {
 cachedValue = compute_value();
 }
 return cachedValue;
 }
};

void f() {
 const S s;
 std::cout << s.get_value() << std::endl;
}

Expressions (EXP) - EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 115
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.5 Noncompliant Code Example

In this noncompliant code example, the volatile value s has the volatile qualifier cast away,
and an attempt is made to read the value within g(), resulting in undefined behavior.

#include <iostream>

struct S {
 int i;

 S(int i) : i(i) {}
};

void g(S &s) {
 std::cout << s.i << std::endl;
}

void f() {
 volatile S s(12);
 g(const_cast<S &>(s));
}

3.6.6 Compliant Solution

This compliant solution assumes that the volatility of s is required, so g() is modified to accept a
volatile S &.

#include <iostream>

struct S {
 int i;

 S(int i) : i(i) {}
};

void g(volatile S &s) {
 std::cout << s.i << std::endl;
}

void f() {
 volatile S s(12);
 g(s);
}

Expressions (EXP) - EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 116
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.7 Exceptions

EXP55-CPP-EX1: An exception to this rule is allowed when it is necessary to cast away const
when invoking a legacy API that does not accept a const argument, provided the function does
not attempt to modify the referenced variable. However, it is always preferable to modify the API
to be const-correct when possible. For example, the following code casts away the const
qualification of INVFNAME in the call to the audit_log() function.

// Legacy function defined elsewhere - cannot be modified; does not
attempt to
// modify the contents of the passed parameter.
void audit_log(char *errstr);

void f() {
 const char INVFNAME[] = "Invalid file name.";
 audit_log(const_cast<char *>(INVFNAME));
}

3.6.8 Risk Assessment

If the object is declared as being constant, it may reside in write-protected memory at runtime.
Attempting to modify such an object may lead to abnormal program termination or a denial-of-
service attack. If an object is declared as being volatile, the compiler can make no assumptions
regarding access of that object. Casting away the volatility of an object can result in reads or
writes to the object being reordered or elided entirely, resulting in abnormal program execution.

Rule Severity Likelihood Remediation Cost Priority Level

EXP55-CPP Medium Probable Medium P8 L2

3.6.9 Related Guidelines

SEI CERT C Coding Standard EXP32-C. Do not access a volatile object through a
nonvolatile reference
EXP40-C. Do not modify constant objects

3.6.10 Bibliography

[ISO/IEC 14882-2014] Subclause 7.1.6.1, “The cv-qualifiers”

[Sutter 2004] Item 94, “Avoid Casting Away const”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1668
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1668
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1408

Expressions (EXP) - EXP56-CPP. Do not call a function with a mismatched language linkage

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 117
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.7 EXP56-CPP. Do not call a function with a mismatched language
linkage

C++ allows a degree of interoperability with other languages through the use of language linkage
specifications. These specifications affect the way in which functions are called or data is
accessed. By default, all function types, as well as function and variable names, with external
linkage have C++ language linkage, though a different language linkage may be specified.
Implementations are required to support "C" and "C++" as a language linkage, but other
language linkages exist with implementation-defined semantics, such as "java", "Ada", and
"FORTRAN".

Language linkage is specified to be part of the function type, according to the C++ Standard,
[dcl.link], paragraph 1 [ISO/IEC 14882-2014], which, in part, states the following:

Two function types with different language linkages are distinct types even if they are
otherwise identical.

When calling a function, it is undefined behavior if the language linkage of the function type used
in the call does not match the language linkage of the function definition. For instance, a
mismatch in language linkage specification may corrupt the call stack due to calling conventions
or other ABI mismatches.

Do not call a function through a type whose language linkage does not match the language
linkage of the called function’s definition. This restriction applies both to functions called within a
C++ program as well as function pointers used to make a function call from outside of the C++
program.

However, many compilers fail to integrate language linkage into the function’s type, despite the
normative requirement to do so in the C++ Standard. For instance, GCC 6.1.0, Clang 3.9, and
Microsoft Visual Studio 2015 all consider the following code snippet to be ill-formed due to a
redefinition of f() rather than a well-formed overload of f().

typedef void (*cpp_func)(void);
extern "C" typedef void (*c_func)(void);

void f(cpp_func fp) {}
void f(c_func fp) {}

Some compilers conform to the C++ Standard, but only in their strictest conformance mode, such
as EDG 4.11. This implementation divergence from the C++ Standard is a matter of practical
design trade-offs. Compilers are required to support only the "C" and "C++" language linkages,
and interoperability between these two languages often does not require significant code
generation differences beyond the mangling of function types for most common architectures
such as x86, x86-64, and ARM. There are extant Standard Template Library implementations for
which language linkage specifications being correctly implemented as part of the function type

Expressions (EXP) - EXP56-CPP. Do not call a function with a mismatched language linkage

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 118
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

would break existing code on common platforms where the language linkage has no effect on the
runtime implementation of a function call.

It is acceptable to call a function with a mismatched language linkage when the combination of
language linkage specifications, runtime platform, and compiler implementation result in no effect
on runtime behavior of the function call. For instance, the following code is permissible when
compiled with Microsoft Visual Studio 2015 for x86, despite the lambda function call operator
implicitly converting to a function pointer type with C++ language linkage, while qsort()
expects a function pointer with C language linkage.

#include <cstdlib>

void f(int *int_list, size_t count) {
 std::qsort(int_list, count, sizeof(int),
 [](const void *lhs, const void *rhs) -> int {
 return reinterpret_cast<const int *>(lhs) <
 reinterpret_cast<const int *>(rhs);
 });
}

3.7.1 Noncompliant Code Example

In this noncompliant code example, the call_java_fn_ptr() function expects to receive a
function pointer with "java" language linkage because that function pointer will be used by a
Java interpreter to call back into the C++ code. However, the function is given a pointer with
"C++" language linkage instead, resulting in undefined behavior when the interpreter attempts to
call the function pointer. This code should be ill-formed because the type of
callback_func() is different than the type java_callback. However, due to common
implementation divergence from the C++ Standard, some compilers may incorrectly accept this
code without issuing a diagnostic.

extern "java" typedef void (*java_callback)(int);

extern void call_java_fn_ptr(java_callback callback);
void callback_func(int);

void f() {
 call_java_fn_ptr(callback_func);
}

Expressions (EXP) - EXP56-CPP. Do not call a function with a mismatched language linkage

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 119
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.7.2 Compliant Solution

In this compliant solution, the callback_func() function is given "java" language linkage
to match the language linkage for java_callback.

extern "java" typedef void (*java_callback)(int);

extern void call_java_fn_ptr(java_callback callback);
extern "java" void callback_func(int);

void f() {
 call_java_fn_ptr(callback_func);
}

3.7.3 Risk Assessment

Mismatched language linkage specifications generally do not create exploitable security
vulnerabilities between the C and C++ language linkages. However, other language linkages exist
where the undefined behavior is more likely to result in abnormal program execution, including
exploitable vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

EXP56-CPP Low Unlikely Medium P2 L3

3.7.4 Bibliography

[ISO/IEC 14882-2014] Subclause 5.2.2, “Function Call”
Subclause 7.5, “Linkage Specifications”

Expressions (EXP) - EXP57-CPP. Do not cast or delete pointers to incomplete classes

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 120
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8 EXP57-CPP. Do not cast or delete pointers to incomplete classes

Referring to objects of incomplete class type, also known as forward declarations, is a common
practice. One such common usage is with the “pimpl idiom” [Sutter 2000] whereby an opaque
pointer is used to hide implementation details from a public-facing API. However, attempting to
delete a pointer to an object of incomplete class type can lead to undefined behavior. The C++
Standard, [expr.delete], paragraph 5 [ISO/IEC 14882-2014], states the following:

If the object being deleted has incomplete class type at the point of deletion and the
complete class has a non-trivial destructor or a deallocation function, the behavior is
undefined.

Do not attempt to delete a pointer to an object of incomplete type. Although it is well-formed if
the class has no nontrivial destructor and no associated deallocation function, it would become
undefined behavior were a nontrivial destructor or deallocation function added later. It would be
possible to check for a nontrivial destructor at compile time using a static_assert and the
std::is_trivially_destructible type trait, but no such type trait exists to test for the
presence of a deallocation function.

Pointer downcasting to a pointer of incomplete class type has similar caveats. Pointer upcasting
(casting from a more derived type to a less derived type) is a standard implicit conversion
operation. C++ allows static_cast to perform the inverse operation, pointer downcasting, via
[expr.static.cast], paragraph 7. However, when the pointed-to type is incomplete, the compiler is
unable to make any class offset adjustments that may be required in the presence of multiple
inheritance, resulting in a pointer that cannot be validly dereferenced.

reinterpret_cast of a pointer type is defined by [expr.reinterpret.cast], paragraph 7, as
being static_cast<cv T *>(static_cast<cv void *>(PtrValue)), meaning
that reinterpret_cast is simply a sequence of static_cast operations. C-style casts of
a pointer to an incomplete object type are defined as using either static_cast or
reinterpret_cast (it is unspecified which is picked) in [expr.cast], paragraph 5.

Do not attempt to cast through a pointer to an object of incomplete type. The cast operation itself
is well-formed, but dereferencing the resulting pointer may result in undefined behavior if the
downcast is unable to adjust for multiple inheritance.

Expressions (EXP) - EXP57-CPP. Do not cast or delete pointers to incomplete classes

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 121
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8.1 Noncompliant Code Example

In this noncompliant code example, a class attempts to implement the pimpl idiom but deletes a
pointer to an incomplete class type, resulting in undefined behavior if Body has a nontrivial
destructor.

class Handle {
 class Body *impl; // Declaration of a pointer to an incomplete
class
public:
 ~Handle() { delete impl; } // Deletion of pointer to an
incomplete class
 // ...
};

3.8.2 Compliant Solution (delete)

In this compliant solution, the deletion of impl is moved to a part of the code where Body is
defined.

class Handle {
 class Body *impl;
 // Declaration of a pointer to an incomplete class
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {
 delete impl;
}

Expressions (EXP) - EXP57-CPP. Do not cast or delete pointers to incomplete classes

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 122
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8.3 Compliant Solution (std::shared_ptr)

In this compliant solution, a std::shared_ptr is used to own the memory to impl. A
std::shared_ptr is capable of referring to an incomplete type, but a std::unique_ptr
is not.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

3.8.4 Noncompliant Code Example

Pointer downcasting (casting a pointer to a base class into a pointer to a derived class) may
require adjusting the address of the pointer by a fixed amount that can be determined only when
the layout of the class inheritance structure is known. In this noncompliant code example, f()
retrieves a polymorphic pointer of complete type B from get_d(). That pointer is then cast to a
pointer of incomplete type D before being passed to g(). Casting to a pointer to the derived class
may fail to properly adjust the resulting pointer, causing undefined behavior when the pointer is
dereferenced by calling d->do_something().

// File1.h
class B {
protected:
 double d;
public:
 B() : d(1.0) {}
};

// File2.h
void g(class D *);
class B *get_d(); // Returns a pointer to a D object

// File1.cpp
#include "File1.h"
#include "File2.h"

void f() {
 B *v = get_d();
 g(reinterpret_cast<class D *>(v));
}

Expressions (EXP) - EXP57-CPP. Do not cast or delete pointers to incomplete classes

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 123
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

// File2.cpp
#include "File2.h"
#include "File1.h"
#include <iostream>

class Hah {
protected:
 short s;
public:
 Hah() : s(12) {}
};

class D : public Hah, public B {
 float f;
public:
 D() : Hah(), B(), f(1.2f) {}
 void do_something() {

 std::cout << "f: " << f << ", d: " << d
 << ", s: " << s << std::endl;
 }
};

void g(D *d) {
 d->do_something();
}

B *get_d() {
 return new D;
}

3.8.4.1 Implementation Details

When compiled with Clang 3.8 and the function f() is executed, the noncompliant code
example prints the following.

f: 1.89367e-40, d: 5.27183e-315, s: 0

Similarly, unexpected values are printed when the example is run in Microsoft Visual Studio 2015
and GCC 6.1.0.

Expressions (EXP) - EXP57-CPP. Do not cast or delete pointers to incomplete classes

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 124
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8.5 Compliant Solution

This compliant solution assumes that the intent is to hide implementation details by using
incomplete class types. Instead of requiring a D * to be passed to g(), it expects a B * type.

// File1.h -- contents identical.
// File2.h
void g(class B *); // Accepts a B object, expects a D object
class B *get_d(); // Returns a pointer to a D object

// File1.cpp
#include "File1.h"
#include "File2.h"

void f() {
 B *v = get_d();
 g(v);
}

// File2.cpp
// ... all contents are identical until ...
void g(B *d) {
 D *t = dynamic_cast<D *>(d);
 if (t) {
 t->do_something();
 } else {
 // Handle error
 }
}

B *get_d() {
 return new D;
}

3.8.6 Risk Assessment

Casting pointers or references to incomplete classes can result in bad addresses. Deleting a pointer
to an incomplete class results in undefined behavior if the class has a nontrivial destructor. Doing
so can cause program termination, a runtime signal, or resource leaks.

Rule Severity Likelihood Remediation Cost Priority Level

EXP57-CPP Medium Unlikely Medium P4 L3

Expressions (EXP) - EXP57-CPP. Do not cast or delete pointers to incomplete classes

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 125
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8.7 Bibliography

[Dewhurst 2002] Gotcha #39, “Casting Incomplete Types”

[ISO/IEC 14882-2014] Subclause 4.10, “Pointer Conversions”
Subclause 5.2.9, “Static Cast”
Subclause 5.2.10, “Reinterpret Cast”
Subclause 5.3.5, “Delete”
Subclause 5.4, “Explicit Type Conversion (Cast Notation)”

[Sutter 2000] “Compiler Firewalls and the Pimpl Idiom”

Expressions (EXP) - EXP58-CPP. Pass an object of the correct type to va_start

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 126
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.9 EXP58-CPP. Pass an object of the correct type to va_start

While rule DCL50-CPP. Do not define a C-style variadic function forbids creation of such
functions, they may still be defined when that function has external, C-language linkage. Under
these circumstances, care must be taken when invoking the va_start() macro. The C standard
library macro va_start() imposes several semantic restrictions on the type of the value of its
second parameter. The C Standard, subclause 7.16.1.4, paragraph 4 [ISO/IEC 9899:2011], states
the following:

The parameter parmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the ...). If the parameter
parmN is declared with the register storage class, with a function or array type, or
with a type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

These restrictions are superseded by the C++ Standard, [support.runtime], paragraph 3 [ISO/IEC
14882-2014], which states the following:

The restrictions that ISO C places on the second parameter to the va_start() macro
in header <stdarg.h> are different in this International Standard. The parameter
parmN is the identifier of the rightmost parameter in the variable parameter list of the
function definition (the one just before the ...). If the parameter parmN is of a
reference type, or of a type that is not compatible with the type that results when passing
an argument for which there is no parameter, the behavior is undefined.

The primary differences between the semantic requirements are as follows:
• You must not pass a reference as the second argument to va_start().

• Passing an object of a class type that has a nontrivial copy constructor, nontrivial move
constructor, or nontrivial destructor as the second argument to va_start is conditionally
supported with implementation-defined semantics ([expr.call] paragraph 7).

• You may pass a parameter declared with the register keyword ([dcl.stc] paragraph 3) or a
parameter with a function type.

Passing an object of array type still produces undefined behavior in C++ because an array type as
a function parameter requires the use of a reference, which is prohibited. Additionally, passing an
object of a type that undergoes default argument promotions still produces undefined behavior in
C++.

Expressions (EXP) - EXP58-CPP. Pass an object of the correct type to va_start

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 127
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.9.1 Noncompliant Code Example

In this noncompliant code example, the object passed to va_start() will undergo a default
argument promotion, which results in undefined behavior.

#include <cstdarg>

extern "C" void f(float a, ...) {
 va_list list;
 va_start(list, a);
 // ...
 va_end(list);
}

3.9.2 Compliant Solution

In this compliant solution, f() accepts a double instead of a float.

#include <cstdarg>

extern "C" void f(double a, ...) {
 va_list list;
 va_start(list, a);
 // ...
 va_end(list);
}

3.9.3 Noncompliant Code Example

In this noncompliant code example, a reference type is passed as the second argument to
va_start().

#include <cstdarg>
#include <iostream>

extern "C" void f(int &a, ...) {
 va_list list;
 va_start(list, a);
 if (a) {
 std::cout << a << ", " << va_arg(list, int);
 a = 100; // Assign something to a for the caller
 }
 va_end(list);
}

Expressions (EXP) - EXP58-CPP. Pass an object of the correct type to va_start

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 128
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.9.4 Compliant Solution

Instead of passing a reference type to f(), this compliant solution passes a pointer type.

#include <cstdarg>
#include <iostream>

extern "C" void f(int *a, ...) {
 va_list list;
 va_start(list, a);
 if (a && *a) {
 std::cout << a << ", " << va_arg(list, int);
 *a = 100; // Assign something to *a for the caller
 }
 va_end(list);
}

3.9.5 Noncompliant Code Example

In this noncompliant code example, a class with a nontrivial copy constructor (std::string) is
passed as the second argument to va_start(), which is conditionally supported depending on
the implementation.

#include <cstdarg>
#include <iostream>
#include <string>

extern "C" void f(std::string s, ...) {
 va_list list;
 va_start(list, s);
 std::cout << s << ", " << va_arg(list, int);
 va_end(list);
}

Expressions (EXP) - EXP58-CPP. Pass an object of the correct type to va_start

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 129
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.9.6 Compliant Solution

This compliant solution passes a const char * instead of a std::string, which has well-
defined behavior on all implementations.

#include <cstdarg>
#include <iostream>

extern "C" void f(const char *s, ...) {
 va_list list;
 va_start(list, s);
 std::cout << (s ? s : "") << ", " << va_arg(list, int);
 va_end(list);
}

3.9.7 Risk Assessment

Passing an object of an unsupported type as the second argument to va_start() can result in
undefined behavior that might be exploited to cause data integrity violations.

Rule Severity Likelihood Remediation Cost Priority Level

EXP58-CPP Medium Unlikely Medium P4 L3e

3.9.8 Related Guidelines

SEI CERT C++ Coding Standard DCL50-CPP. Do not define a C-style variadic
function

3.9.9 Bibliography

[ISO/IEC 9899:2011] Subclause 7.16.1.4, “The va_start Macro”

[ISO/IEC 14882-2014] Subclause 18.10, “Other Runtime Support”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Expressions (EXP) - EXP59-CPP. Use offsetof() on valid types and members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 130
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.10 EXP59-CPP. Use offsetof() on valid types and members

The offsetof() macro is defined by the C Standard as a portable way to determine the offset,
expressed in bytes, from the start of the object to a given member of that object. The C Standard,
subclause 7.17, paragraph 3 [ISO/IEC 9899:1999], in part, specifies the following:

offsetof(type, member-designator) which expands to an integer constant
expression that has type size_t, the value of which is the offset in bytes, to the
structure member (designated by member-designator), from the beginning of its
structure (designated by type). The type and member designator shall be such that
given static type t; then the expression &(t.member-designator) evaluates
to an address constant. (If the specified member is a bit-field, the behavior is undefined.)

The C++ Standard, [support.types], paragraph 4 [ISO/IEC 14882-2014], places additional
restrictions beyond those set by the C Standard:

The macro offsetof(type, member-designator) accepts a restricted set of
type arguments in this International Standard. If type is not a standard-layout class, the
results are undefined. The expression offsetof(type, member-designator) is
never type-dependent and it is value-dependent if and only if type is dependent. The
result of applying the offsetof macro to a field that is a static data member or a
function member is undefined. No operation invoked by the offsetof macro shall
throw an exception and noexcept(offsetof(type, member-designator))
shall be true.

When specifying the type argument for the offsetof() macro, pass only a standard-layout
class. The full description of a standard-layout class can be found in paragraph 7 of the [class]
clause of the C++ Standard, or the type can be checked with the
std::is_standard_layout<> type trait. When specifying the member designator
argument for the offsetof() macro, do not pass a bit-field, static data member, or function
member. Passing an invalid type or member to the offsetof() macro is undefined behavior.

Expressions (EXP) - EXP59-CPP. Use offsetof() on valid types and members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 131
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.10.1 Noncompliant Code Example

In this noncompliant code example, a type that is not a standard-layout class is passed to the
offsetof() macro, resulting in undefined behavior.

#include <cstddef>

struct D {
 virtual void f() {}
 int i;
};

void f() {
 size_t off = offsetof(D, i);
 // ...
}

3.10.1.1 Implementation Details

The noncompliant code example does not emit a diagnostic when compiled with the /Wall
switch in Microsoft Visual Studio 2015 on x86, resulting in off being 4, due to the presence of a
vtable for type D.

3.10.2 Compliant Solution

It is not possible to determine the offset to i within D because D is not a standard-layout class.
However, it is possible to make a standard-layout class within D if this functionality is critical to
the application, as demonstrated by this compliant solution.

#include <cstddef>

struct D {
 virtual void f() {}
 struct InnerStandardLayout {
 int i;
 } inner;
};

void f() {
 size_t off = offsetof(D::InnerStandardLayout, i);
 // ...
}

Expressions (EXP) - EXP59-CPP. Use offsetof() on valid types and members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 132
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.10.3 Noncompliant Code Example

In this noncompliant code example, the offset to i is calculated so that a value can be stored at
that offset within buffer. However, because i is a static data member of the class, this example
results in undefined behavior. According to the C++ Standard, [class.static.data], paragraph 1
[ISO/IEC 14882-2014], static data members are not part of the subobjects of a class.

#include <cstddef>

struct S {
 static int i;
 // ...
};
int S::i = 0;

extern void store_in_some_buffer(
 void *buffer, size_t offset, int val);
extern void *buffer;

void f() {
 size_t off = offsetof(S, i);
 store_in_some_buffer(buffer, off, 42);
}

3.10.3.1 Implementation Details

The noncompliant code example does not emit a diagnostic when compiled with the /Wall
switch in Microsoft Visual Studio 2015 on x86, resulting in off being a large value representing
the offset between the null pointer address 0 and the address of the static variable S::i.

Expressions (EXP) - EXP59-CPP. Use offsetof() on valid types and members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 133
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.10.4 Compliant Solution

Because static data members are not a part of the class layout, but are instead an entity of their
own, this compliant solution passes the address of the static member variable as the buffer to store
the data in and passes 0 as the offset.

#include <cstddef>

struct S {
 static int i;
 // ...
};
int S::i = 0;

extern void store_in_some_buffer(
 void *buffer, size_t offset, int val);

void f() {
 store_in_some_buffer(&S::i, 0, 42);
}

3.10.5 Risk Assessment

Passing an invalid type or member to offsetof() can result in undefined behavior that might
be exploited to cause data integrity violations or result in incorrect values from the macro
expansion.

Rule Severity Likelihood Remediation Cost Priority Level

EXP59-CPP Medium Unlikely Medium P4 L3

3.10.6 Bibliography

[ISO/IEC 9899:1999] Subclause 7.17, “Common Definitions <stddef.h>”

[ISO/IEC 14882-2014] Subclause 9.4.2, “Static Data Members”
Subclause 18.2, “Types”

Expressions (EXP) - EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 134
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.11 EXP60-CPP. Do not pass a nonstandard-layout type object across
execution boundaries

Standard-layout types can be used to communicate with code written in other programming
languages, as the layout of the type is strictly specified. The C++ Standard, [class], paragraph 7
[ISO/IEC 14882-2014], defines a standard-layout class as a class that
• does not have virtual functions,
• has the same access control for all nonstatic data members,
• has no base classes of the same type as the first nonstatic data member,
• has nonstatic data members declared in only one class within the class hierarchy, and
• recursively, does not have nonstatic data members of nonstandard-layout type.

An execution boundary is the delimitation between code compiled by differing compilers,
including different versions of a compiler produced by the same vendor. For instance, a function
may be declared in a header file but defined in a library that is loaded at runtime. The execution
boundary exists between the call site in the executable and the function implementation in the
library. Such boundaries are also called ABI (application binary interface) boundaries because
they relate to the interoperability of application binaries.

Do not make any assumptions about the specific layout of objects with nonstandard-layout types.
For objects compiled by one compiler that are referenced by code compiled by a different
compiler, such assumptions cause correctness and portability concerns. The layout of the object
generated by the first compiler is not guaranteed to be identical to the layout generated by the
second compiler, even if both compilers are conforming C++ implementations. However, some
implementations may document binary compatibility guarantees that can be relied on for passing
nonstandard-layout objects between execution boundaries.

A special instance of this guidance involves non-C++ code compiled by a different compiler, such
as C standard library implementations that are exposed via the C++ standard library. C standard
library functions are exposed with C++ signatures, and the type system frequently assists in
ensuring that types match appropriately. This process disallows passing a pointer to a C++ object
to a function expecting a char * without additional work to suppress the type mismatch.
However, some C standard library functions accept a void * for which any C++ pointer type
will suffice. Passing a pointer to a nonstandard-layout type in this situation results in
indeterminate behavior because it depends on the behavior of the other language as well as on the
layout of the given object. For more information, see rule EXP56-CPP. Do not call a function
with a mismatched language linkage.

Pass a nonstandard-layout type object across execution boundaries only when both sides of the
execution boundary adhere to the same ABI. This is permissible if the same version of a compiler
is used to compile both sides of the execution boundary, if the compiler used to compile both
sides of the execution boundary is ABI-compatible across multiple versions, or if the differing
compilers document that they adhere to the same ABI.

Expressions (EXP) - EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 135
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.11.1 Noncompliant Code Example

This noncompliant code example assumes that there is a library whose header is library.h, an
application (represented by application.cpp), and that the library and application are not
ABI-compatible. Therefore, the contents of library.h constitute an execution boundary. A
nonstandard-layout type object S is passed across this execution boundary. The application
creates an instance of an object of this type, then passes a reference to the object to a function
defined by the library, crossing the execution boundary. Because the layout is not guaranteed to
be compatible across the boundary, this results in unexpected behavior.

// library.h
struct S {
 virtual void f() { /* ... */ }
};

void func(S &s); // Implemented by the library, calls S::f()

// application.cpp
#include "library.h"

void g() {
 S s;
 func(s);
}

This example would be compliant if the library and the application conformed to the same ABI,
either explicitly through vendor documentation or implicitly by virtue of using the same compiler
version to compile both.

3.11.2 Compliant Solution

Because the library and application do not conform to the same ABI, this compliant solution
modifies the library and application to work with a standard-layout type. Furthermore, it also adds
a static_assert() to help guard against future code changes that accidentally modify S to
no longer be a standard-layout type.

Expressions (EXP) - EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 136
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

// library.h
#include <type_traits>

struct S {
 void f() { /* ... */ } // No longer virtual
};
static_assert(std::is_standard_layout<S>::value, "S is required to
be a standard layout type");

void func(S &s); // Implemented by the library, calls S::f()

// application.cpp
#include "library.h"

void g() {
 S s;
 func(s);
}

3.11.3 Noncompliant Code Example

In this noncompliant code example, a pointer to an object of nonstandard-layout type is passed to
a function that has a "Fortran" language linkage. Language linkages other than "C" and
"C++" are conditionally supported with implementation-defined semantics [ISO/IEC 14882-
2014]. If the implementation does not support this language linkage, the code is ill-formed.
Assuming that the language linkage is supported, any operations performed on the object passed
may result in indeterminate behavior, which could have security implications.

struct B {
 int i, j;
};

struct D : B {
 float f;
};

extern "Fortran" void func(void *);

void foo(D *d) {
 func(d);
}

Expressions (EXP) - EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 137
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.11.4 Compliant Solution

In this compliant solution, the nonstandard-layout type object is serialized into a local standard-
layout type object, which is then passed to the Fortran function.

struct B {
 int i, j;
};

struct D : B {
 float f;
};

extern "Fortran" void func(void *);

void foo(D *d) {
 struct {
 int i, j;
 float f;
 } temp;

 temp.i = d->i;
 temp.j = d->j;
 temp.f = d->f;

 func(&temp);
}

3.11.5 Risk Assessment

The effects of passing objects of nonstandard-layout type across execution boundaries depends on
what operations are performed on the object within the callee as well as what subsequent
operations are performed on the object from the caller. The effects can range from correct or
benign behavior to undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP60-CPP High Probable Medium P12 L1

3.11.6 Related Guidelines

CERT C++ Coding Standard EXP58-CPP. Pass an object of the correct
type to va_start

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Expressions (EXP) - EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 138
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.11.7 Bibliography

[ISO/IEC 14882-2014] Clause 9, “Classes”
Subclause 7.5, “Linkage Specifications”

Expressions (EXP) - EXP61-CPP. A lambda object must not outlive any of its reference captured objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 139
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.12 EXP61-CPP. A lambda object must not outlive any of its reference
captured objects

Lambda expressions may capture objects with automatic storage duration from the set of
enclosing scopes (called the reaching scope) for use in the lambda’s function body. These
captures may be either explicit, by specifying the object to capture in the lambda’s capture-list, or
implicit, by using a capture-default and referring to the object within the lambda’s function body.
When capturing an object explicitly or implicitly, the capture-default indicates that the object is
either captured by copy (using =) or captured by reference (using &). When an object is captured
by copy, the lambda object will contain an unnamed nonstatic data member that is initialized to
the value of the object being captured. This nonstatic data member’s lifetime is that of the lambda
object’s lifetime. However, when an object is captured by reference, the lifetime of the referent is
not tied to the lifetime of the lambda object.

Because entities captured are objects with automatic storage duration (or this), a general
guideline is that functions returning a lambda object (including returning via a reference
parameter), or storing a lambda object in a member variable or global, should not capture an
entity by reference because the lambda object often outlives the captured reference object.

When a lambda object outlives one of its reference-captured objects, execution of the lambda
object’s function call operator results in undefined behavior once that reference-captured object is
accessed. Therefore, a lambda object must not outlive any of its reference-captured objects. This
is a specific instance of EXP54-CPP. Do not access an object outside of its lifetime.

3.12.1 Noncompliant Code Example

In this noncompliant code example, the function g() returns a lambda, which implicitly captures
the automatic local variable i by reference. When that lambda is returned from the call, the
reference it captured will refer to a variable whose lifetime has ended. As a result, when the
lambda is executed in f(), the use of the dangling reference in the lambda results in undefined
behavior.

auto g() {
 int i = 12;
 return [&] {
 i = 100;
 return i;
 };
}

void f() {
 int j = g()();
}

Expressions (EXP) - EXP61-CPP. A lambda object must not outlive any of its reference captured objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 140
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.12.2 Compliant Solution

In this compliant solution, the lambda does not capture i by reference but instead captures it by
copy. Consequently, the lambda contains an implicit nonstatic data member whose lifetime is that
of the lambda.

auto g() {
 int i = 12;
 return [=] () mutable {
 i = 100;
 return i;
 };
}

void f() {
 int j = g()();
}

3.12.3 Noncompliant Code Example

In this noncompliant code example, a lambda reference captures a local variable from an outer
lambda. However, this inner lambda outlives the lifetime of the outer lambda and any automatic
local variables it defines, resulting in undefined behavior when an inner lambda object is executed
within f().

auto g(int val) {
 auto outer = [val] {
 int i = val;
 auto inner = [&] {
 i += 30;
 return i;
 };
 return inner;
 };
 return outer();
}

void f() {
 auto fn = g(12);
 int j = fn();
}

Expressions (EXP) - EXP61-CPP. A lambda object must not outlive any of its reference captured objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 141
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.12.4 Compliant Solution

In this compliant solution, the inner lambda captures i by copy instead of by reference.

auto g(int val) {
 auto outer = [val] {
 int i = val;
 auto inner = [i] {
 return i + 30;
 };
 return inner;
 };
 return outer();
}

void f() {
 auto fn = g(12);
 int j = fn();
}

3.12.5 Risk Assessment

Referencing an object outside of its lifetime can result in an attacker being able to run arbitrary
code.

Rule Severity Likelihood Remediation Cost Priority Level

EXP61-CPP High Probable High P6 L2

3.12.6 Related Guidelines

SEI CERT C++ Coding Standard EXP54-CPP. Do not access an object outside
of its lifetime

3.12.7 Bibliography

[ISO/IEC 14882-2014] Subclause 3.8, “Object Lifetime”
Subclause 5.1.2, “Lambda Expressions”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Expressions (EXP) - EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value
representation

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 142
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.13 EXP62-CPP. Do not access the bits of an object representation that
are not part of the object’s value representation

The C++ Standard, [basic.types], paragraph 9 [ISO/IEC 14882-2014], states the following:

The object representation of an object of type T is the sequence of N unsigned char
objects taken up by the object of type T, where N equals sizeof(T). The value
representation of an object is the set of bits that hold the value of type T.

The narrow character types (char, signed char, and unsigned char)—as well as some
other integral types on specific platforms—have an object representation that consists solely of
the bits from the object’s value representation. For such types, accessing any of the bits of the
value representation is well-defined behavior. This form of object representation allows a
programmer to access and modify an object solely based on its bit representation, such as by
calling std::memcmp() on its object representation.

Other types, such as classes, may not have an object representation composed solely of the bits
from the object’s value representation. For instance, classes may have bit-field data members,
padding inserted between data members, a vtable to support virtual method dispatch, or data
members declared with different access privileges. For such types, accessing bits of the object
representation that are not part of the object’s value representation may result in undefined
behavior depending on how those bits are accessed.

Do not access the bits of an object representation that are not part of the object’s value
representation. Even if the bits are accessed in a well-defined manner, such as through an array of
unsigned char objects, the values represented by those bits are unspecified or
implementation-defined, and reliance on any particular value can lead to abnormal program
execution.

Expressions (EXP) - EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value
representation

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 143
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.13.1 Noncompliant Code Example

In this noncompliant code example, the complete object representation is accessed when
comparing two objects of type S. Per the C++ Standard, [class], paragraph 13 [ISO/IEC 14882-
2014], classes may be padded with data to ensure that they are properly aligned in memory. The
contents of the padding and the amount of padding added is implementation-defined. This can
lead to incorrect results when comparing the object representation of classes instead of the value
representation, as the padding may assume different unspecified values for each object instance.

#include <cstring>

struct S {
 unsigned char buffType;
 int size;
};

void f(const S &s1, const S &s2) {
 if (!std::memcmp(&s1, &s2, sizeof(S))) {
 // ...
 }
}

3.13.2 Compliant Solution

In this compliant solution, S overloads operator==() to perform a comparison of the value
representation of the object.

struct S {
 unsigned char buffType;
 int size;

 friend bool operator==(const S &lhs, const S &rhs) {
 return lhs.buffType == rhs.buffType &&
 lhs.size == rhs.size;
 }
};

void f(const S &s1, const S &s2) {
 if (s1 == s2) {
 // ...
 }
}

Expressions (EXP) - EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value
representation

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 144
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.13.3 Noncompliant Code Example

In this noncompliant code example, std::memset() is used to clear the internal state of an
object. An implementation may store a vtable within the object instance due to the presence of a
virtual function, and that vtable is subsequently overwritten by the call to std::memset(),
leading to undefined behavior when virtual method dispatch is required.

#include <cstring>

struct S {
 int i, j, k;

 // ...

 virtual void f();
};

void f() {
 S *s = new S;
 // ...
 std::memset(s, 0, sizeof(S));
 // ...
 s->f(); // undefined behavior
}

3.13.4 Compliant Solution

In this compliant solution, the data members of S are cleared explicitly instead of calling
std::memset().

struct S {
 int i, j, k;

 // ...

 virtual void f();
 void clear() { i = j = k = 0; }
};

void f() {
 S *s = new S;
 // ...
 s->clear();
 // ...
 s->f(); // ok
}

Expressions (EXP) - EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value
representation

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 145
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.13.5 Exceptions

EXP62-CPP-EX1: It is permissible to access the bits of an object representation when that access
is otherwise unobservable in well-defined code. Specifically, reading bits that are not part of the
value representation is permissible when there is no reliance or assumptions placed on their
values, and writing bits that are not part of the value representation is only permissible when those
bits are padding bits. This exception does not permit writing to bits that are part of the object
representation aside from padding bits, such as overwriting a vtable pointer.

For instance, it is acceptable to call std::memcpy() on an object containing a bit-field, as in
the following example, because the read and write of the padding bits cannot be observed.

#include <cstring>

struct S {
 int i : 10;
 int j;
};

void f(const S &s1) {
 S s2;
 std::memcpy(&s2, &s1, sizeof(S));
}

Code that complies with this exception must still comply with OOP57-CPP. Prefer special
member functions and overloaded operators to C Standard Library functions.

3.13.6 Risk Assessment

The effects of accessing bits of an object representation that are not part of the object’s value
representation can range from implementation-defined behavior (such as assuming the layout of
fields with differing access controls) to code execution vulnerabilities (such as overwriting the
vtable pointer).

Rule Severity Likelihood Remediation Cost Priority Level

EXP62-CPP High Probable High P6 L2

3.13.7 Related Guidelines

SEI CERT C++ Coding Standard OOP57-CPP. Prefer special member functions and
overloaded operators to C Standard Library functions

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Expressions (EXP) - EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value
representation

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 146
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.13.8 Bibliography

[ISO/IEC 14882-2014] Subclause 3.9, “Types”
Subclause 3.10, “Lvalues and Rvalues”
Clause 9, “Classes”

Expressions (EXP) - EXP63-CPP. Do not rely on the value of a moved-from object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 147
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.14 EXP63-CPP. Do not rely on the value of a moved-from object

Many types, including user-defined types and types provided by the Standard Template Library,
support move semantics. Except in rare circumstances, an object of a type that supports move
operations (move initialization or move assignment) will be left in a valid, but unspecified state
after the object’s value has been moved.

Passing an object as a function argument that binds to an rvalue reference parameter, including
via implicit function call syntax such as move assignment or move construction, moves the
object’s state into another object. Upon return from such a function call, the object that was bound
as an rvalue reference parameter is considered to be in the moved-from state. Once an object is in
the moved-from state, the only operations that may be safely performed on that object instance are
ones for which the operation has no preconditions, because it is unknown whether the unspecified
state of the object will satisfy those preconditions. While some types have explicitly-defined
preconditions, such as types defined by the Standard Template Library, it should be assumed that
the only operations that may be safely performed on a moved-from object instance are
reinitialization through assignment into the object or terminating the lifetime of the object by
invoking its destructor.

Do not rely on the value of a moved-from object unless the type of the object is documented to be
in a well-specified state. While the object is guaranteed to be in a valid state, relying on
unspecified values leads to unspecified behavior. Since the behavior need not be documented, this
can in turn result in abnormal program behavior and portability concerns.

The following Standard Template Library functions are guaranteed to leave the moved-from
object in a well-specified state.

Type Functionality Moved-from State

std::unique_ptr Move construction, Move assignment,
"Converting" move construction, "Con-
verting" move assignment
(likewise for std::unique_ptr for
array objects with a runtime length)

The moved-from object is guaranteed to
refer to a null pointer value, per
[unique.ptr], paragraph 4 [ISO/IEC 14882-
2014].

std::shared_ptr Move construction, Move assignment,
"Converting" move construction, "Con-
verting" move assignment

The moved-from object shall be "empty,”
per [util.smartptr.shared.const], paragraph
22 and [util.smartptr.shared.assign], para-
graph 4.

std::shared_ptr Move construction, Move assignment
from a std::unique_ptr

The moved-from object is guaranteed to
refer to a null pointer value, per
[util.smartptr.shared.const], paragraph 29
and [util.smartptr.shared.assign], para-
graph 6.

Expressions (EXP) - EXP63-CPP. Do not rely on the value of a moved-from object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 148
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Type Functionality Moved-from State

std::weak_ptr Move construction, Move assignment,
"Converting" move construction, "Con-
verting" move assignment

The moved-from object shall be "empty,"
per [util.smartptr.weak.const], paragraph
8, and [util.smartptr.weak.assign] , para-
graph 4.

std::basic_ios move() The moved-from object is still left in an un-
specified state, except that rdbuf() shall
return the same value as it returned be-
fore the move, and tie() shall return 0,
per [basic.ios.members], paragraph 20.

std::basic_filebuf Move constructor, Move assignment The moved-from object is guaranteed to
reference no file; other internal state is
also affected, per [filebuf.cons], para-
graphs 3 and 4, and [filebuf.assign], para-
graph 1.

std::thread Move constructor, Move assignment The result from calling get_id() on the
moved-from object is guaranteed to re-
main unchanged; otherwise the object is
in an unspecified state, per
[thread.thread.constr], paragraph 11 and
[thread.thread.assign], paragraph 2.

std::unique_lock Move constructor, Move assignment The moved-from object is guaranteed to
be in its default state, per
[thread.lock.unique.cons], paragraphs 21
and 23.

std::shared_lock Move constructor, Move assignment The moved-from object is guaranteed to
be in its default state, per
[thread.lock.shared.cons], paragraphs 21
and 23.

std::promise Move constructor, Move assignment The moved-from object is guaranteed not
to have any shared state, per [fu-
tures.promise], paragraphs 6 and 8.

std::future Move constructor, Move assignment Calling valid() on the moved-from ob-
ject is guaranteed to return false, per
[futures.unique_future], paragraphs 8 and
11.

std::shared_future Move constructor, Move assignment,
"Converting" move constructor, "Con-
verting" move assignment

Calling valid() on the moved-from ob-
ject is guaranteed to return false, per
[futures.shared_future], paragraphs 8 and
11.

std::packaged_task Move constructor, Move assignment The moved-from object is guaranteed not
to have any shared state, per [fu-
ture.task.members], paragraphs 7 and 8.

Expressions (EXP) - EXP63-CPP. Do not rely on the value of a moved-from object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 149
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Several generic standard template library (STL) algorithms, such as std::remove() and
std::unique(), remove instances of elements from a container without shrinking the size of
the container. Instead, these algorithms return a ForwardIterator to indicate the partition
within the container after which elements are no longer valid. The elements in the container that
precede the returned iterator are valid elements with specified values; whereas the elements that
succeed the returned iterator are valid but have unspecified values. Accessing unspecified values
of elements iterated over results in unspecified behavior. Frequently, the erase-remove idiom is
used to shrink the size of the container when using these algorithms.

3.14.1 Noncompliant Code Example

In this noncompliant code example, the integer values 0 through 9 are expected to be printed to
the standard output stream from a std::string rvalue reference. However, because the object
is moved and then reused under the assumption its internal state has been cleared, unexpected
output may occur despite not triggering undefined behavior.

#include <iostream>
#include <string>

void g(std::string &&v) {
 std::cout << v << std::endl;
}

void f() {
 std::string s;
 for (unsigned i = 0; i < 10; ++i) {
 s.append(1, static_cast<char>('0' + i));
 g(std::move(s));
 }
}

http://en.wikipedia.org/wiki/Erase-remove_idiom

Expressions (EXP) - EXP63-CPP. Do not rely on the value of a moved-from object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 150
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.14.1.1 Implementation Details

Some standard library implementations may implement the short string optimization (SSO) when
implementing std::string. In such implementations, strings under a certain length are stored
in a character buffer internal to the std::string object (avoiding an expensive heap allocation
operation). However, such an implementation might not alter the original buffer value when
performing a move operation. When the noncompliant code example is compiled with Clang 3.7
using libc++, the following output is produced.

0
01
012
0123
01234
012345
0123456
01234567
012345678
0123456789

3.14.2 Compliant Solution

In this compliant solution, the std::string object is initialized to the expected value on each
iteration of the loop. This practice ensures that the object is in a valid, specified state prior to
attempting to access it in g(), resulting in the expected output.

#include <iostream>
#include <string>

void g(std::string &&v) {
 std::cout << v << std::endl;
}

void f() {
 for (unsigned i = 0; i < 10; ++i) {
 std::string s(1, static_cast<char>('0' + i));
 g(std::move(s));
 }
}

Expressions (EXP) - EXP63-CPP. Do not rely on the value of a moved-from object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 151
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.14.3 Noncompliant Code Example

In this noncompliant code example, elements matching 42 are removed from the given container.
The contents of the container are then printed to the standard output stream. However, if any
elements were removed from the container, the range-based for loop iterates over an invalid
iterator range, resulting in unspecified behavior.

#include <algorithm>
#include <iostream>
#include <vector>

void f(std::vector<int> &c) {
 std::remove(c.begin(), c.end(), 42);
 for (auto v : c) {
 std::cout << "Container element: " << v << std::endl;
 }
}

3.14.4 Compliant Solution

In this compliant solution, elements removed by the standard algorithm are skipped during
iteration.

#include <algorithm>
#include <iostream>
#include <vector>

void f(std::vector<int> &c) {
 auto e = std::remove(c.begin(), c.end(), 42);
 for (auto i = c.begin(); i != c.end(); i++) {
 if (i < e) {
 std::cout << *i << std::endl;
 }
 }
}

Expressions (EXP) - EXP63-CPP. Do not rely on the value of a moved-from object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 152
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.14.5 Compliant Solution

In this compliant solution, elements removed by the standard algorithm are subsequently erased
from the given container. This technique ensures that a valid iterator range is used by the range-
based for loop.

#include <algorithm>
#include <iostream>
#include <vector>

void f(std::vector<int> &c) {
 c.erase(std::remove(c.begin(), c.end(), 42), c.end());
 for (auto v : c) {
 std::cout << "Container element: " << v << std::endl;
 }
}

3.14.6 Risk Assessment

The state of a moved-from object is generally valid, but unspecified. Relying on unspecified
values can lead to abnormal program termination as well as data integrity violations.

Rule Severity Likelihood Remediation Cost Priority Level

EXP63-CPP Medium Probable Medium P8 L2

3.14.7 Bibliography

[ISO/IEC 14882-2014] Subclause 17.6.5.15, “Moved-from State of Library Types”
Subclause 20.8.1, “Class Template unique_ptr”
Subclause 20.8.2, “Shared-Ownership Pointers”
Subclause 27.5.5, “Class Template basic_ios”
Subclause 27.9.1, “File Streams”
Subclause 30.3.1, “Class thread”
Subclause 30.4.2, “Locks”
Subclause 30.6, “Futures”

Integers (INT) - INT50-CPP. Do not cast to an out-of-range enumeration value

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 153
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 Integers (INT)

4.1 INT50-CPP. Do not cast to an out-of-range enumeration value

Enumerations in C++ come in two forms: scoped enumerations in which the underlying type is
fixed and unscoped enumerations in which the underlying type may or may not be fixed. The
range of values that can be represented by either form of enumeration may include enumerator
values not specified by the enumeration itself. The range of valid enumeration values for an
enumeration type is defined by the C++ Standard, [dcl.enum], in paragraph 8 [ISO/IEC 14882-
2014]:

For an enumeration whose underlying type is fixed, the values of the enumeration are
the values of the underlying type. Otherwise, for an enumeration where emin is the
smallest enumerator and emax is the largest, the values of the enumeration are the
values in the range bmin to bmax, defined as follows: Let K be 1 for a two’s complement
representation and 0 for a one’s complement or sign-magnitude representation. bmax is
the smallest value greater than or equal to max(|emin| − K, |emax|) and equal to 2M − 1,
where M is a non-negative integer. bmin is zero if emin is non-negative and −(bmax + K)
otherwise. The size of the smallest bit-field large enough to hold all the values of the
enumeration type is max(M, 1) if bmin is zero and M + 1 otherwise. It is possible to define
an enumeration that has values not defined by any of its enumerators. If the enumerator-
list is empty, the values of the enumeration are as if the enumeration had a single
enumerator with value 0.

The C++ Standard, [expr.static.cast], paragraph 10, states the following:

A value of integral or enumeration type can be explicitly converted to an enumeration
type. The value is unchanged if the original value is within the range of the enumeration
values (7.2). Otherwise, the resulting value is unspecified (and might not be in that
range). A value of floating-point type can also be explicitly converted to an enumeration
type. The resulting value is the same as converting the original value to the underlying
type of the enumeration (4.9), and subsequently to the enumeration type.

To avoid operating on unspecified values, the arithmetic value being cast must be within the range
of values the enumeration can represent. When dynamically checking for out-of-range values,
checking must be performed before the cast expression.

Integers (INT) - INT50-CPP. Do not cast to an out-of-range enumeration value

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 154
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.1 Noncompliant Code Example (Bounds Checking)

This noncompliant code example attempts to check whether a given value is within the range of
acceptable enumeration values. However, it is doing so after casting to the enumeration type,
which may not be able to represent the given integer value. On a two’s complement system, the
valid range of values that can be represented by EnumType are [0..3], so if a value outside of that
range were passed to f(), the cast to EnumType would result in an unspecified value, and using
that value within the if statement results in unspecified behavior.

enum EnumType {
 First,
 Second,
 Third
};

void f(int intVar) {
 EnumType enumVar = static_cast<EnumType>(intVar);

 if (enumVar < First || enumVar > Third) {
 // Handle error
 }
}

4.1.2 Compliant Solution (Bounds Checking)

This compliant solution checks that the value can be represented by the enumeration type before
performing the conversion to guarantee the conversion does not result in an unspecified value. It
does this by restricting the converted value to one for which there is a specific enumerator value.

enum EnumType {
 First,
 Second,
 Third
};

void f(int intVar) {
 if (intVar < First || intVar > Third) {
 // Handle error
 }
 EnumType enumVar = static_cast<EnumType>(intVar);
}

Integers (INT) - INT50-CPP. Do not cast to an out-of-range enumeration value

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 155
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.3 Compliant Solution (Scoped Enumeration)

This compliant solution uses a scoped enumeration, which has a fixed underlying int type by
default, allowing any value from the parameter to be converted into a valid enumeration value. It
does not restrict the converted value to one for which there is a specific enumerator value, but it
could do so as shown in the previous compliant solution.

enum class EnumType {
 First,
 Second,
 Third
};

void f(int intVar) {
 EnumType enumVar = static_cast<EnumType>(intVar);
}

4.1.4 Compliant Solution (Fixed Unscoped Enumeration)

Similar to the previous compliant solution, this compliant solution uses an unscoped enumeration
but provides a fixed underlying int type allowing any value from the parameter to be converted
to a valid enumeration value.

enum EnumType : int {
 First,
 Second,
 Third
};

void f(int intVar) {
 EnumType enumVar = static_cast<EnumType>(intVar);
}

Although similar to the previous compliant solution, this compliant solution differs from the
noncompliant code example in the way the enumerator values are expressed in code and which
implicit conversions are allowed. The previous compliant solution requires a nested name
specifier to identify the enumerator (for example, EnumType::First) and will not implicitly
convert the enumerator value to int. As with the noncompliant code example, this compliant
solution does not allow a nested name specifier and will implicitly convert the enumerator value
to int.

Integers (INT) - INT50-CPP. Do not cast to an out-of-range enumeration value

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 156
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.5 Risk Assessment

It is possible for unspecified values to result in a buffer overflow, leading to the execution of
arbitrary code by an attacker. However, because enumerators are rarely used for indexing into
arrays or other forms of pointer arithmetic, it is more likely that this scenario will result in data
integrity violations rather than arbitrary code execution.

Rule Severity Likelihood Remediation Cost Priority Level

INT50-CPP Medium Unlikely Medium P4 L3

4.1.6 Bibliography

[Becker 2009] Section 7.2, “Enumeration Declarations”

[ISO/IEC 14882-2014] Subclause 5.2.9, “Static Cast”
Subclause 7.2, “Enumeration Declarations”

Containers (CTR) - CTR50-CPP. Guarantee that container indices and iterators are within the valid range

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 157
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Containers (CTR)

5.1 CTR50-CPP. Guarantee that container indices and iterators are
within the valid range

Ensuring that array references are within the bounds of the array is almost entirely the
responsibility of the programmer. Likewise, when using standard template library vectors, the
programmer is responsible for ensuring integer indexes are within the bounds of the vector.

5.1.1 Noncompliant Code Example (Pointers)

This noncompliant code example shows a function, insert_in_table(), that has two int
parameters, pos and value, both of which can be influenced by data originating from untrusted
sources. The function performs a range check to ensure that pos does not exceed the upper bound
of the array, specified by tableSize, but fails to check the lower bound. Because pos is
declared as a (signed) int, this parameter can assume a negative value, resulting in a write
outside the bounds of the memory referenced by table.

#include <cstddef>

void insert_in_table(int *table, std::size_t tableSize, int pos,
int value) {
 if (pos >= tableSize) {
 // Handle error
 return;
 }
 table[pos] = value;
}

5.1.2 Compliant Solution (size_t)

In this compliant solution, the parameter pos is declared as size_t, which prevents the passing
of negative arguments.

#include <cstddef>

void insert_in_table(int *table, std::size_t tableSize, std::size_t
pos, int value) {
 if (pos >= tableSize) {
 // Handle error
 return;
 }
 table[pos] = value;
}

Containers (CTR) - CTR50-CPP. Guarantee that container indices and iterators are within the valid range

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 158
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.3 Compliant Solution (Non-Type Templates)

Non-type templates can be used to define functions accepting an array type where the array
bounds are deduced at compile time. This compliant solution is functionally equivalent to the
previous bounds-checking one except that it additionally supports calling
insert_in_table() with an array of known bounds.

#include <cstddef>
#include <new>

void insert_in_table(int *table, std::size_t tableSize, std::size_t
pos, int value) {
 // #1
 if (pos >= tableSize) {
 // Handle error
 return;
 }
 table[pos] = value;
}

template <std::size_t N>
void insert_in_table(int (&table)[N], std::size_t pos, int value) {
 // #2
 insert_in_table(table, N, pos, value);
}

void f() {
 // Exposition only
 int table1[100];
 int *table2 = new int[100];
 insert_in_table(table1, 0, 0); // Calls #2
 insert_in_table(table2, 0, 0); // Error, no matching func. call
 insert_in_table(table1, 100, 0, 0); // Calls #1
 insert_in_table(table2, 100, 0, 0); // Calls #1
 delete [] table2;
}

Containers (CTR) - CTR50-CPP. Guarantee that container indices and iterators are within the valid range

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 159
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.4 Noncompliant Code Example (std::vector)

In this noncompliant code example, a std::vector is used in place of a pointer and size pair.
The function performs a range check to ensure that pos does not exceed the upper bound of the
container. Because pos is declared as a (signed) long long, this parameter can assume a
negative value. On systems where std::vector::size_type is ultimately implemented as
an unsigned int (such as with Microsoft Visual Studio 2013), the usual arithmetic
conversions applied for the comparison expression will convert the unsigned value to a signed
value. If pos has a negative value, this comparison will not fail, resulting in a write outside the
bounds of the std::vector object when the negative value is interpreted as a large unsigned
value in the indexing operator.

#include <vector>

void insert_in_table(std::vector<int> &table, long long pos, int
value) {
 if (pos >= table.size()) {
 // Handle error
 return;
 }
 table[pos] = value;
}

5.1.5 Compliant Solution (std::vector, size_t)

In this compliant solution, the parameter pos is declared as size_t, which ensures that the
comparison expression will fail when a large, positive value (converted from a negative
argument) is given.

#include <vector>

void insert_in_table(std::vector<int> &table, std::size_t pos, int
value) {
 if (pos >= table.size()) {
 // Handle error
 return;
 }
 table[pos] = value;
}

Containers (CTR) - CTR50-CPP. Guarantee that container indices and iterators are within the valid range

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 160
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.6 Compliant Solution (std::vector::at())

In this compliant solution, access to the vector is accomplished with the at() method. This
method provides bounds checking, throwing a std::out_of_range exception if pos is not a
valid index value. The insert_in_table() function is declared with noexcept(false)
in compliance with ERR55-CPP. Honor exception specifications.

#include <vector>

void insert_in_table(std::vector<int> &table, std::size_t pos, int
value) noexcept(false) {
 table.at(pos) = value;
}

5.1.7 Noncompliant Code Example (Iterators)

In this noncompliant code example, the f_imp() function is given the (correct) ending iterator e
for a container, and b is an iterator from the same container. However, it is possible that b is not
within the valid range of its container. For instance, if the container were empty, b would equal e
and be improperly dereferenced.

#include <iterator>

template <typename ForwardIterator>
void f_imp(ForwardIterator b, ForwardIterator e, int val,
std::forward_iterator_tag) {
 do {
 *b++ = val;
 } while (b != e);
}

template <typename ForwardIterator>
void f(ForwardIterator b, ForwardIterator e, int val) {
 typename std::iterator_traits<ForwardIterator>::iterator_category
cat;
 f_imp(b, e, val, cat);
}

Containers (CTR) - CTR50-CPP. Guarantee that container indices and iterators are within the valid range

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 161
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.8 Compliant Solution

This compliant solution tests for iterator validity before attempting to dereference b.

#include <iterator>

template <typename ForwardIterator>
void f_imp(ForwardIterator b, ForwardIterator e, int val,
std::forward_iterator_tag) {
 while (b != e) {
 *b++ = val;
 }
}

template <typename ForwardIterator>
void f(ForwardIterator b, ForwardIterator e, int val) {
 typename std::iterator_traits<ForwardIterator>::iterator_category
cat;
 f_imp(b, e, val, cat);
}

5.1.9 Risk Assessment

Using an invalid array or container index can result in an arbitrary memory overwrite or abnormal
program termination.

Rule Severity Likelihood Remediation Cost Priority Level

CTR50-CPP High Likely High P9 L2

5.1.10 Related Guidelines

SEI CERT C Coding Standard ARR30-C. Do not form or use out-of-bounds pointers
or array subscripts

MITRE CWE CWE 119, Failure to Constrain Operations within the
Bounds of a Memory Buffer
CWE 129, Improper Validation of Array Index

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=47677453
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=47677453
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/129.html

Containers (CTR) - CTR50-CPP. Guarantee that container indices and iterators are within the valid range

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 162
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.11 Bibliography

[ISO/IEC 14882-2014] Clause 23, “Containers Library”
Subclause 24.2.1, “In General”

[ISO/IEC TR 24772-2013] Boundary Beginning Violation [XYX]
Wrap-Around Error [XYY]
Unchecked Array Indexing [XYZ]

[Viega 2005] Section 5.2.13, “Unchecked Array Indexing”

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 163
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2 CTR51-CPP. Use valid references, pointers, and iterators to
reference elements of a container

Iterators are a generalization of pointers that allow a C++ program to work with different data
structures (containers) in a uniform manner [ISO/IEC 14882-2014]. Pointers, references, and
iterators share a close relationship in which it is required that referencing values be done through
a valid iterator, pointer, or reference. Storing an iterator, reference, or pointer to an element within
a container for any length of time comes with a risk that the underlying container may be
modified such that the stored iterator, pointer, or reference becomes invalid. For instance, when a
sequence container such as std::vector requires an underlying reallocation, outstanding
iterators, pointers, and references will be invalidated [Kalev 1999]. Use only a valid pointer,
reference, or iterator to refer to an element of a container.

The C++ Standard, [container.requirements.general], paragraph 12 [ISO/IEC 14882-2014] states
the following:

Unless otherwise specified (either explicitly or by defining a function in terms of other
functions), invoking a container member function or passing a container as an argument
to a library function shall not invalidate iterators to, or change the values of, objects
within that container.

The C++ Standard allows references and pointers to be invalidated independently for the same
operation, which may result in an invalidated reference but not an invalidated pointer. However,
relying on this distinction is insecure because the object pointed to by the pointer may be different
than expected even if the pointer is valid. For instance, it is possible to retrieve a pointer to an
element from a container, erase that element (invalidating references when destroying the
underlying object), then insert a new element at the same location within the container causing the
extant pointer to now point to a valid, but distinct object. Thus, any operation that invalidates a
pointer or a reference should be treated as though it invalidates both pointers and references.

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 164
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The following container functions can invalidate iterators, references, and pointers under certain
circumstances.

Class Function Iterators References/
Pointers

Notes

std::deque

 insert(),

emplace_front(),

emplace_back(),

emplace(),

push_front(),

push_back(),

X X

An insertion in the middle of
the deque invalidates all the
iterators and references to
elements of the deque. An
insertion at either end of the
deque invalidates all the
iterators to the deque but has
no effect on the validity of
references to elements of the
deque. ([deque.modifiers],
paragraph 1)

 erase(),

pop_back(),

resize()

X X An erase operation that erases
the last element of a deque
invalidates only the past-the-
end iterator and all iterators
and references to the erased
elements. An erase operation
that erases the first element of
a deque but not the last
element invalidates only the
erased elements. An erase
operation that erases neither
the first element nor the last
element of a deque invalidates
the past-the-end iterator and all
iterators and references to all
the elements of the deque.
([deque.modifiers], paragraph
4)

 clear() X X Destroys all elements in the
container. Invalidates all
references, pointers, and
iterators referring to the
elements of the container and
may invalidate the past-the-end
iterator. ([sequence.reqmts],
Table 100)

std::forward_list

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 165
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Class Function Iterators References/
Pointers

Notes

 erase_after(),

pop_front(),

resize()

X X erase_after shall invalidate
only iterators and references to
the erased elements.
([forwardlist.modifiers],
paragraph 1)

 remove(), unique() X X Invalidates only the iterators
and references to the erased
elements. ([forwardlist.ops],
paragraph 12 & paragraph 16)

 clear() X X Destroys all elements in the
container. Invalidates all
references, pointers, and
iterators referring to the
elements of the container and
may invalidate the past-the-end
iterator. ([sequence.reqmts],
Table 100)

std::list

 erase(),

pop_front(),

pop_back(),

clear(), remove(),

remove_if(),

unique()

X X Invalidates only the iterators
and references to the erased
elements. ([list.modifiers],
paragraph 3 and [list.ops],
paragraph 15 & paragraph 19)

 clear() X X Destroys all elements in the
container. Invalidates all
references, pointers, and
iterators referring to the
elements of the container and
may invalidate the past-the-end
iterator. ([sequence.reqmts],
Table 100)

std::vector

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 166
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Class Function Iterators References/
Pointers

Notes

 reserve() X X After reserve(), capac-
ity() is greater or equal to
the argument of reserve if re-
allocation happens and is
equal to the previous value of
capacity() otherwise. Real-
location invalidates all the ref-
erences, pointers, and iterators
referring to the elements in the
sequence. ([vector.capacity],
paragraph 3 & paragraph 6)

 insert(),

emplace_back(),

emplace(),

push_back()

X X Causes reallocation if the new
size is greater than the old
capacity. If no reallocation
happens, all the iterators and
references before the insertion
point remain valid.
([vector.modifiers], paragraph
1). All iterators and references
after the insertion point are
invalidated.

 erase(),

pop_back(),

resize()

X X Invalidates iterators and
references at or after the point
of the erase.
([vector.modifiers], paragraph
3)

 clear() X X Destroys all elements in the
container. Invalidates all
references, pointers, and
iterators referring to the
elements of the container and
may invalidate the past-the-end
iterator. ([sequence.reqmts],
Table 100)

std::set, std::multiset,

std::map, std::multimap

 erase(), clear() X X Invalidates only iterators and
references to the erased
elements.
([associative.reqmts],
paragraph 9)

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 167
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Class Function Iterators References/
Pointers

Notes

std::unordered_set,

std::unordered_multiset,

std::unordered_map,

std::unordered_multimap

 erase(), clear() X X Invalidates only iterators and
references to the erased
elements. ([unord.req],
paragraph 14)

 insert(), emplace() X The insert and emplace

members shall not affect the
validity of iterators if (N+n) < z *

B, where N is the number of
elements in the container prior
to the insert operation, n is the
number of elements inserted, B

is the container’s bucket count,
and z is the container’s
maximum load factor.
([unord.req], paragraph 15)

 rehash(), reserve() X Rehashing invalidates iterators,
changes ordering between
elements, and changes which
buckets the elements appear in
but does not invalidate pointers
or references to elements.
([unord.req], paragraph 9)

std::valarray resize() X Resizing invalidates all pointers
and references to elements in
the array. ([valarray.members],
paragraph 12)

A std::basic_string object is also a container to which this rule applies. For more specific
information pertaining to std::basic_string containers, see STR52-CPP. Use valid
references, pointers, and iterators to reference elements of a basic_string.

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 168
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.1 Noncompliant Code Example

In this noncompliant code example, pos is invalidated after the first call to insert(), and
subsequent loop iterations have undefined behavior.

#include <deque>

void f(const double *items, std::size_t count) {
 std::deque<double> d;
 auto pos = d.begin();
 for (std::size_t i = 0; i < count; ++i, ++pos) {
 d.insert(pos, items[i] + 41.0);
 }
}

5.2.2 Compliant Solution (Updated Iterator)

In this compliant solution, pos is assigned a valid iterator on each insertion, preventing undefined
behavior.

#include <deque>

void f(const double *items, std::size_t count) {
 std::deque<double> d;
 auto pos = d.begin();
 for (std::size_t i = 0; i < count; ++i, ++pos) {
 pos = d.insert(pos, items[i] + 41.0);
 }
}

Containers (CTR) - CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 169
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.3 Compliant Solution (Generic Algorithm)

This compliant solution replaces the handwritten loop with the generic standard template library
algorithm std::transform(). The call to std::transform() accepts the range of
elements to transform, the location to store the transformed values (which, in this case, is a
std::inserter object to insert them at the beginning of d), and the transformation function to
apply (which, in this case, is a simple lambda).

#include <algorithm>
#include <deque>
#include <iterator>

void f(const double *items, std::size_t count) {
 std::deque<double> d;
 std::transform(items, items + count, std::inserter(d, d.begin()),
 [](double d) { return d + 41.0; });
}

5.2.4 Risk Assessment

Using invalid references, pointers, or iterators to reference elements of a container results in
undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

CTR51-CPP High Probable High P6 L2

5.2.5 Related Guidelines

SEI CERT C++ Coding Standard STR52-CPP. Use valid references, pointers, and iterators
to reference elements of a basic_string

5.2.6 Bibliography

[ISO/IEC 14882-2014] Clause 23, “Containers Library”
Subclause 24.2.1, “In General”

[Kalev 1999] ANSI/ISO C++ Professional Programmer’s Handbook

[Meyers 2001] Item 43, “Prefer Algorithm Calls to Handwritten Loops”

[Sutter 2004] Item 84, “Prefer Algorithm Calls to Handwritten Loops”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Containers (CTR) - CTR52-CPP. Guarantee that library functions do not overflow

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 170
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3 CTR52-CPP. Guarantee that library functions do not overflow

Copying data into a container that is not large enough to hold that data results in a buffer
overflow. To prevent such errors, data copied to the destination container must be restricted on the
basis of the destination container’s size, or preferably, the destination container must be
guaranteed to be large enough to hold the data to be copied.

Vulnerabilities that result from copying data to an undersized buffer can also involve null-
terminated strings. Consult STR50-CPP. Guarantee that storage for strings has sufficient space for
character data and the null terminator for specific examples of this rule that involve strings.

Copies can be made with the std::memcpy() function. However, the std::memmove() and
std::memset() functions can also have the same vulnerabilities because they overwrite a
block of memory without checking that the block is valid. Such issues are not limited to C
standard library functions; standard template library (STL) generic algorithms, such as
std::copy(), std::fill(), and std::transform(), also assume valid output buffer
sizes [ISO/IEC 14882-2014].

5.3.1 Noncompliant Code Example

STL containers can be subject to the same vulnerabilities as array data types. The std::copy()
algorithm provides no inherent bounds checking and can lead to a buffer overflow. In this
noncompliant code example, a vector of integers is copied from src to dest using
std::copy(). Because std::copy() does nothing to expand the dest vector, the program
will overflow the buffer on copying the first element.

#include <algorithm>
#include <vector>

void f(const std::vector<int> &src) {
 std::vector<int> dest;
 std::copy(src.begin(), src.end(), dest.begin());
 // ...
}

This hazard applies to any algorithm that takes a destination iterator, expecting to fill it with
values. Most of the STL algorithms expect the destination container to have sufficient space to
hold the values provided.

Containers (CTR) - CTR52-CPP. Guarantee that library functions do not overflow

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 171
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.2 Compliant Solution (Sufficient Initial Capacity)

The proper way to use std::copy() is to ensure the destination container can hold all the
elements being copied to it. This compliant solution enlarges the capacity of the vector prior to the
copy operation.

#include <algorithm>
#include <vector>
void f(const std::vector<int> &src) {
 // Initialize dest with src.size() default-inserted elements
 std::vector<int> dest(src.size());
 std::copy(src.begin(), src.end(), dest.begin());
 // ...
}

5.3.3 Compliant Solution (Per-Element Growth)

An alternative approach is to supply a std::back_insert_iterator as the destination
argument. This iterator expands the destination container by one element for each element
supplied by the algorithm, which guarantees the destination container will become sufficiently
large to hold the elements provided.

#include <algorithm>
#include <iterator>
#include <vector>

void f(const std::vector<int> &src) {
 std::vector<int> dest;
 std::copy(src.begin(), src.end(), std::back_inserter(dest));
 // ...
}

5.3.4 Compliant Solution (Assignment)

The simplest solution is to construct dest from src directly, as in this compliant solution.

#include <vector>

void f(const std::vector<int> &src) {
 std::vector<int> dest(src);
 // ...
}

Containers (CTR) - CTR52-CPP. Guarantee that library functions do not overflow

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 172
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.5 Noncompliant Code Example

In this noncompliant code example, std::fill_n() is used to fill a buffer with 10 instances
of the value 0x42. However, the buffer has not allocated any space for the elements, so this
operation results in a buffer overflow.

#include <algorithm>
#include <vector>

void f() {
 std::vector<int> v;
 std::fill_n(v.begin(), 10, 0x42);
}

5.3.6 Compliant Solution (Sufficient Initial Capacity)

This compliant solution ensures the capacity of the vector is sufficient before attempting to fill the
container.

#include <algorithm>
#include <vector>

void f() {
 std::vector<int> v(10);
 std::fill_n(v.begin(), 10, 0x42);
}

However, this compliant solution is inefficient. The constructor will default-construct 10 elements
of type int, which are subsequently replaced by the call to std::fill_n(), meaning that
each element in the container is initialized twice.

5.3.7 Compliant Solution (Fill Initialization)

This compliant solution initializes v to 10 elements whose values are all 0x42.

#include <algorithm>
#include <vector>

void f() {
 std::vector<int> v(10, 0x42);
}

Containers (CTR) - CTR52-CPP. Guarantee that library functions do not overflow

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 173
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.8 Risk Assessment

Copying data to a buffer that is too small to hold the data results in a buffer overflow. Attackers
can exploit this condition to execute arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

CTR52-CPP High Likely Medium P18 L1

5.3.9 Related Guidelines

SEI CERT C++ Coding Standard STR50-CPP. Guarantee that storage for strings has suffi-
cient space for character data and the null terminator

SEI CERT C Coding Standard ARR38-C. Guarantee that library functions do not form
invalid pointers

MITRE CWE CWE 119, Failure to Constrain Operations within the
Bounds of an Allocated Memory Buffer
CWE 805, Buffer Access with Incorrect Length Value

5.3.10 Bibliography

[ISO/IEC 14882-2014] Subclause 25.3, “Mutating Sequence Operations”

[ISO/IEC TR 24772-2013] Buffer Overflow in Heap [XYB]
Buffer Overflow in Stack [XYW]
Unchecked Array Indexing [XYZ]

[Meyers 2001] Item 30, “Make Sure Destination Ranges Are Big Enough”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=75923473
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=75923473
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/805.html

Containers (CTR) - CTR53-CPP. Use valid iterator ranges

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 174
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.4 CTR53-CPP. Use valid iterator ranges

When iterating over elements of a container, the iterators used must iterate over a valid range. An
iterator range is a pair of iterators that refer to the first and past-the-end elements of the range
respectively.

A valid iterator range has all of the following characteristics:
• Both iterators refer into the same container.
• The iterator representing the start of the range precedes the iterator representing the end of the

range.
• The iterators are not invalidated, in conformance with CTR51-CPP. Use valid references,

pointers, and iterators to reference elements of a container.

An empty iterator range (where the two iterators are valid and equivalent) is considered to be
valid.

Using a range of two iterators that are invalidated or do not refer into the same container results in
undefined behavior.

5.4.1 Noncompliant Code Example

In this noncompliant example, the two iterators that delimit the range point into the same
container, but the first iterator does not precede the second. On each iteration of its internal loop,
std::for_each() compares the first iterator (after incrementing it) with the second for
equality; as long as they are not equal, it will continue to increment the first iterator. Incrementing
the iterator representing the past-the-end element of the range results in undefined behavior.

#include <algorithm>
#include <iostream>
#include <vector>

void f(const std::vector<int> &c) {
 std::for_each(c.end(), c.begin(), [](int i) { std::cout << i; });
}

Invalid iterator ranges can also result from comparison functions that return true for equal values.
See CTR57-CPP. Provide a valid ordering predicate for more information about comparators.

Containers (CTR) - CTR53-CPP. Use valid iterator ranges

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 175
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.4.2 Compliant Solution

In this compliant solution, the iterator values passed to std::for_each() are passed in the
proper order.

#include <algorithm>
#include <iostream>
#include <vector>

void f(const std::vector<int> &c) {
 std::for_each(c.begin(), c.end(), [](int i) { std::cout << i; });
}

5.4.3 Noncompliant Code Example

In this noncompliant code example, iterators from different containers are passed for the same
iterator range. Although many STL implementations will compile this code and the program may
behave as the developer expects, there is no requirement that an STL implementation treat a
default-initialized iterator as a synonym for the iterator returned by end().

#include <algorithm>
#include <iostream>
#include <vector>

void f(const std::vector<int> &c) {
 std::vector<int>::const_iterator e;
 std::for_each(c.begin(), e, [](int i) { std::cout << i; });
}

5.4.4 Compliant Solution

In this compliant solution, the proper iterator generated by a call to end() is passed.

#include <algorithm>
#include <iostream>
#include <vector>

void f(const std::vector<int> &c) {
 std::for_each(c.begin(), c.end(), [](int i) { std::cout << i; });
}

Containers (CTR) - CTR53-CPP. Use valid iterator ranges

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 176
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.4.5 Risk Assessment

Using an invalid iterator range is similar to allowing a buffer overflow, which can lead to an
attacker running arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

CTR53-CPP High Probable High P6 L2

5.4.5.1 Related Vulnerabilities

In Fun with erase(), Chris Rohlf discusses the exploit potential of a program that calls
vector::erase() with invalid iterator ranges [Rohlf 2009].

5.4.6 Related Guidelines

SEI CERT C++ Coding Standard CTR51-CPP. Use valid references, pointers, and iterators
to reference elements of a container
CTR57-CPP. Provide a valid ordering predicate

5.4.7 Bibliography

[ISO/IEC 14882-2014] Clause 24, “Iterators Library”
Subclause 25.3, “Mutating Sequence Operations”

[Meyers 2001] Item 32, “Follow Remove-Like Algorithms with erase
If You Really Want to Remove Something”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Containers (CTR) - CTR54-CPP. Do not subtract iterators that do not refer to the same container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 177
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.5 CTR54-CPP. Do not subtract iterators that do not refer to the same
container

When two pointers are subtracted, both must point to elements of the same array object or to one
past the last element of the array object; the result is the difference of the subscripts of the two
array elements. Similarly, when two iterators are subtracted (including via
std::distance()), both iterators must refer to the same container object or must be obtained
via a call to end() (or cend()) on the same container object.

If two unrelated iterators (including pointers) are subtracted, the operation results in undefined
behavior [ISO/IEC 14882-2014]. Do not subtract two iterators (including pointers) unless both
point into the same container or one past the end of the same container.

5.5.1 Noncompliant Code Example

This noncompliant code example attempts to determine whether the pointer test is within the
range [r, r + n]. However, when test does not point within the given range, as in this
example, the subtraction produces undefined behavior.

#include <cstddef>
#include <iostream>

template <typename Ty>
bool in_range(const Ty *test, const Ty *r, size_t n) {
 return 0 < (test - r) && (test - r) < (std::ptrdiff_t)n;
}

void f() {
 double foo[10];
 double *x = &foo[0];
 double bar;
 std::cout << std::boolalpha << in_range(&bar, x, 10);
}

5.5.2 Noncompliant Code Example

In this noncompliant code example, the in_range() function is implemented using a
comparison expression instead of subtraction. The C++ Standard, [expr.rel], paragraph 4
[ISO/IEC 14882-2014], states the following:

If two operands p and q compare equal, p<=q and p>=q both yield true and p<q and
p>q both yield false. Otherwise, if a pointer p compares greater than a pointer q,
p>=q, p>q, q<=p, and q<p all yield true and p<=q, p<q, q>=p, and q>p all yield
false. Otherwise, the result of each of the operators is unspecified.

Containers (CTR) - CTR54-CPP. Do not subtract iterators that do not refer to the same container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 178
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Thus, comparing two pointers that do not point into the same container or one past the end of the
container results in unspecified behavior. Although the following example is an improvement
over the previous noncompliant code example, it does not result in portable code and may fail
when executed on a segmented memory architecture (such as some antiquated x86 variants).
Consequently, it is noncompliant.

#include <iostream>

template <typename Ty>
bool in_range(const Ty *test, const Ty *r, size_t n) {
 return test >= r && test < (r + n);
}

void f() {
 double foo[10];
 double *x = &foo[0];
 double bar;
 std::cout << std::boolalpha << in_range(&bar, x, 10);
}

5.5.3 Noncompliant Code Example

This noncompliant code example is roughly equivalent to the previous example, except that it
uses iterators in place of raw pointers. As with the previous example, the in_range_impl()
function exhibits unspecified behavior when the iterators do not refer into the same container
because the operational semantics of a < b on a random access iterator are b - a > 0, and
>= is implemented in terms of <.

Containers (CTR) - CTR54-CPP. Do not subtract iterators that do not refer to the same container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 179
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <iostream>
#include <iterator>
#include <vector>

template <typename RandIter>
bool in_range_impl(RandIter test, RandIter r_begin, RandIter r_end,
std::random_access_iterator_tag) {
 return test >= r_begin && test < r_end;
}

template <typename Iter>
bool in_range(Iter test, Iter r_begin, Iter r_end) {
 typename std::iterator_traits<Iter>::iterator_category cat;
 return in_range_impl(test, r_begin, r_end, cat);
}

void f() {
 std::vector<double> foo(10);
 std::vector<double> bar(1);
 std::cout << std::boolalpha
 << in_range(bar.begin(), foo.begin(), foo.end());
}

5.5.4 Noncompliant Code Example

In this noncompliant code example, std::less<> is used in place of the < operator. The C++
Standard, [comparisons], paragraph 14 [ISO/IEC 14882-2014], states the following:

For templates greater, less, greater_equal, and less_equal, the
specializations for any pointer type yield a total order, even if the built-in operators <, >,
<=, >= do not.

Although this approach yields a total ordering, the definition of that total ordering is still
unspecified by the implementation. For instance, the following statement could result in the
assertion triggering for a given, unrelated pair of pointers, a and b: assert(std::less<T
*>()(a, b) == std::greater<T *>()(a, b));. Consequently, this noncompliant
code example is still nonportable and, on common implementations of std::less<>, may even
result in undefined behavior when the < operator is invoked.

Containers (CTR) - CTR54-CPP. Do not subtract iterators that do not refer to the same container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 180
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <functional>
#include <iostream>

template <typename Ty>
bool in_range(const Ty *test, const Ty *r, size_t n) {
 std::less<const Ty *> less;
 return !less(test, r) && less(test, r + n);
}

void f() {
 double foo[10];
 double *x = &foo[0];
 double bar;
 std::cout << std::boolalpha << in_range(&bar, x, 10);
}

5.5.5 Compliant Solution

This compliant solution demonstrates a fully portable, but likely inefficient, implementation of
in_range() that compares test against each possible address in the range [r, n]. A
compliant solution that is both efficient and fully portable is currently unknown.

#include <iostream>

template <typename Ty>
bool in_range(const Ty *test, const Ty *r, size_t n) {
 auto *cur = reinterpret_cast<const unsigned char *>(r);
 auto *end = reinterpret_cast<const unsigned char *>(r + n);
 auto *testPtr = reinterpret_cast<const unsigned char *>(test);

 for (; cur != end; ++cur) {
 if (cur == testPtr) {
 return true;
 }
 }
 return false;
}

void f() {
 double foo[10];
 double *x = &foo[0];
 double bar;
 std::cout << std::boolalpha << in_range(&bar, x, 10);
}

Containers (CTR) - CTR54-CPP. Do not subtract iterators that do not refer to the same container

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 181
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.5.6 Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

CTR54-CPP Medium Probable Medium P8 L2

5.5.7 Related Guidelines

SEI CERT C Coding Standard ARR36-C. Do not subtract or compare two pointers that
do not refer to the same array

MITRE CWE CWE-469, Use of Pointer Subtraction to Determine Size

5.5.8 Bibliography

[Banahan 2003] Section 5.3, “Pointers”
Section 5.7, “Expressions Involving Pointers”

[ISO/IEC 14882-2014] Subclause 5.7, “Additive Operators”
Subclause 5.9, “Relational Operators”
Subclause 20.9.5, “Comparisons”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15302700
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15302700
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/469.html

Containers (CTR) - CTR55-CPP. Do not use an additive operator on an iterator if the result would overflow

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 182
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.6 CTR55-CPP. Do not use an additive operator on an iterator if the
result would overflow

Expressions that have an integral type can be added to or subtracted from a pointer, resulting in a
value of the pointer type. If the resulting pointer is not a valid member of the container, or one
past the last element of the container, the behavior of the additive operator is undefined. The C++
Standard, [expr.add], paragraph 5 [ISO/IEC 14882-2014], in part, states the following:

If both the pointer operand and the result point to elements of the same array object, or
one past the last element of the array object, the evaluation shall not produce an
overflow; otherwise, the behavior is undefined.

Because iterators are a generalization of pointers, the same constraints apply to additive operators
with random access iterators. Specifically, the C++ Standard, [iterator.requirements.general],
paragraph 5, states the following:

Just as a regular pointer to an array guarantees that there is a pointer value pointing
past the last element of the array, so for any iterator type there is an iterator value that
points past the last element of a corresponding sequence. These values are called past-
the-end values. Values of an iterator i for which the expression *i is defined are called
dereferenceable. The library never assumes that past-the-end values are
dereferenceable.

Do not allow an expression of integral type to add to or subtract from a pointer or random access
iterator when the resulting value would overflow the bounds of the container.

5.6.1 Noncompliant Code Example (std::vector)

In this noncompliant code example, a random access iterator from a std::vector is used in an
additive expression, but the resulting value could be outside the bounds of the container rather
than a past-the-end value.

#include <iostream>
#include <vector>

void f(const std::vector<int> &c) {
 for (auto i = c.begin(), e = i + 20; i != e; ++i) {
 std::cout << *i << std::endl;
 }
}

Containers (CTR) - CTR55-CPP. Do not use an additive operator on an iterator if the result would overflow

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 183
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.6.2 Compliant Solution (std::vector)

This compliant solution assumes that the programmer’s intention was to process up to 20 items in
the container. Instead of assuming all containers will have 20 or more elements, the size of the
container is used to determine the upper bound on the addition.

#include <algorithm>
#include <vector>

void f(const std::vector<int> &c) {
 const std::vector<int>::size_type maxSize = 20;
 for (auto i = c.begin(), e = i + std::min(maxSize, c.size());
 i != e; ++i) {
 // ...
 }
}

5.6.3 Risk Assessment

If adding or subtracting an integer to a pointer results in a reference to an element outside the
array or one past the last element of the array object, the behavior is undefined but frequently
leads to a buffer overflow or buffer underrun, which can often be exploited to run arbitrary code.
Iterators and standard template library containers exhibit the same behavior and caveats as
pointers and arrays.

Rule Severity Likelihood Remediation Cost Priority Level

CTR55-CPP High Likely Medium P18 L1

5.6.4 Related Guidelines

SEI CERT C Coding Standard ARR30-C. Do not form or use out-of-bounds
pointers or array subscripts

MITRE CWE CWE 129, Unchecked Array Indexing

5.6.5 Bibliography

[Banahan 2003] Section 5.3, “Pointers”
Section 5.7, “Expressions Involving Pointers”

[ISO/IEC 14882-2014] Subclause 5.7, “Additive Operators”
Subclause 24.2.1, “In General”

[VU#162289]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=47677453
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=47677453
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/129.html

Containers (CTR) - CTR56-CPP. Do not use pointer arithmetic on polymorphic objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 184
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.7 CTR56-CPP. Do not use pointer arithmetic on polymorphic objects

The definition of pointer arithmetic from the C++ Standard, [expr.add], paragraph 7 [ISO/IEC
14882-2014], states the following:

For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T
is different from the cv-unqualified array element type, the behavior is undefined. [Note:
In particular, a pointer to a base class cannot be used for pointer arithmetic when the
array contains objects of a derived class type. —end note]

Pointer arithmetic does not account for polymorphic object sizes, and attempting to perform
pointer arithmetic on a polymorphic object value results in undefined behavior.

The C++ Standard, [expr.sub], paragraph 1 [ISO/IEC 14882-2014], defines array subscripting as
being identical to pointer arithmetic. Specifically, it states the following:

The expression E1[E2] is identical (by definition) to *((E1)+(E2)).

Do not use pointer arithmetic, including array subscripting, on polymorphic objects.

The following code examples assume the following static variables and class definitions.

int globI;
double globD;

struct S {
 int i;

 S() : i(globI++) {}
};

struct T : S {
 double d;

 T() : S(), d(globD++) {}
};

Containers (CTR) - CTR56-CPP. Do not use pointer arithmetic on polymorphic objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 185
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.7.1 Noncompliant Code Example (Pointer Arithmetic)

In this noncompliant code example, f() accepts an array of S objects as its first parameter.
However, main() passes an array of T objects as the first argument to f(), which results in
undefined behavior due to the pointer arithmetic used within the for loop.

#include <iostream>

// ... definitions for S, T, globI, globD ...

void f(const S *someSes, std::size_t count) {
 for (const S *end = someSes + count; someSes != end; ++someSes) {
 std::cout << someSes->i << std::endl;
 }
}

int main() {
 T test[5];
 f(test, 5);
}

5.7.2 Noncompliant Code Example (Array Subscripting)

In this noncompliant code example, the for loop uses array subscripting. Since array subscripts
are computed using pointer arithmetic, this code also results in undefined behavior.

#include <iostream>

// ... definitions for S, T, globI, globD ...

void f(const S *someSes, std::size_t count) {
 for (std::size_t i = 0; i < count; ++i) {
 std::cout << someSes[i].i << std::endl;
 }
}

int main() {
 T test[5];
 f(test, 5);
}

Containers (CTR) - CTR56-CPP. Do not use pointer arithmetic on polymorphic objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 186
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.7.3 Compliant Solution (Array)

Instead of having an array of objects, an array of pointers solves the problem of the objects being
of different sizes, as in this compliant solution.

#include <iostream>

// ... definitions for S, T, globI, globD ...

void f(const S * const *someSes, std::size_t count) {
 for (const S * const *end = someSes + count;
 someSes != end; ++someSes) {
 std::cout << (*someSes)->i << std::endl;
 }
}

int main() {
 S *test[] = {new T, new T, new T, new T, new T};
 f(test, 5);
 for (auto v : test) {
 delete v;
 }
}

The elements in the arrays are no longer polymorphic objects (instead, they are pointers to
polymorphic objects), and so there is no undefined behavior with the pointer arithmetic.

Containers (CTR) - CTR56-CPP. Do not use pointer arithmetic on polymorphic objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 187
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.7.4 Compliant Solution (std::vector)

Another approach is to use a standard template library (STL) container instead of an array and
have f() accept iterators as parameters, as in this compliant solution. However, because STL
containers require homogeneous elements, pointers are still required within the container.

#include <iostream>
#include <vector>

// ... definitions for S, T, globI, globD ...
template <typename Iter>
void f(Iter i, Iter e) {
 for (; i != e; ++i) {
 std::cout << (*i)->i << std::endl;
 }
}

int main() {
 std::vector<S *> test{new T, new T, new T, new T, new T};
 f(test.cbegin(), test.cend());
 for (auto v : test) {
 delete v;
 }
}

5.7.5 Risk Assessment

Using arrays polymorphically can result in memory corruption, which could lead to an attacker
being able to execute arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

CTR56-CPP High Likely High P9 L2

5.7.6 Related Guidelines

SEI CERT C Coding Standard ARR39-C. Do not add or subtract a scaled integer to a
pointer

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=30867484
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=30867484

Containers (CTR) - CTR56-CPP. Do not use pointer arithmetic on polymorphic objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 188
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.7.7 Bibliography

[ISO/IEC 14882-2014] Subclause 5.7, “Additive Operators”
Subclause 5.2.1, “Subscripting”

[Lockheed Martin 05] AV Rule 96, “Arrays shall not be treated polymorphi-
cally”

[Meyers 96] Item 3, “Never Treat Arrays Polymorphically”

[Stroustrup 2006] “What’s Wrong with Arrays?”

[Sutter 2004] Item 100, “Don’t Treat Arrays Polymorphically”

Containers (CTR) - CTR57-CPP. Provide a valid ordering predicate

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 189
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.8 CTR57-CPP. Provide a valid ordering predicate

Associative containers place a strict weak ordering requirement on their key comparison
predicates [ISO/IEC 14882-2014]. A strict weak ordering has the following properties:
• for all x: x < x == false (irreflexivity)
• for all x, y: if x < y then !(y < x) (asymmetry)
• for all x, y, z: if x < y && y < z then x < z (transitivity)

Providing an invalid ordering predicate for an associative container (e.g., sets, maps, multisets,
and multimaps), or as a comparison criterion with the sorting algorithms, can result in erratic
behavior or infinite loops [Meyers 2001]. When an ordering predicate is required for an
associative container or a generic standard template library algorithm, the predicate must meet the
requirements for inducing a strict weak ordering.

5.8.1 Noncompliant Code Example

In this noncompliant code example, the std::set object is created with a comparator that does
not adhere to the strict weak ordering requirement. Specifically, it fails to return false for
equivalent values. As a result, the behavior of iterating over the results from
std::set::equal_range results in unspecified behavior.

#include <functional>
#include <iostream>
#include <set>

void f() {
 std::set<int, std::less_equal<int>> s{5, 10, 20};
 for (auto r = s.equal_range(10); r.first != r.second; ++r.first)
{
 std::cout << *r.first << std::endl;
 }
}

5.8.2 Compliant Solution

This compliant solution uses the default comparator with std::set instead of providing an
invalid one.

Containers (CTR) - CTR57-CPP. Provide a valid ordering predicate

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 190
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <iostream>
#include <set>

void f() {
 std::set<int> s{5, 10, 20};
 for (auto r = s.equal_range(10); r.first != r.second; ++r.first)
 {
 std::cout << *r.first << std::endl;
 }
}

5.8.3 Noncompliant Code Example

In this noncompliant code example, the objects stored in the std::set have an overloaded
operator< implementation, allowing the objects to be compared with std::less. However,
the comparison operation does not provide a strict weak ordering. Specifically, two sets, x and y,
whose i values are both 1, but have differing j values can result in a situation where comp(x,
y) and comp(y, x) are both false, failing the asymmetry requirements.

#include <iostream>
#include <set>

class S {
 int i, j;

public:
 S(int i, int j) : i(i), j(j) {}

 friend bool operator<(const S &lhs, const S &rhs) {
 return lhs.i < rhs.i && lhs.j < rhs.j;
 }

 friend std::ostream &operator<<(std::ostream &os, const S& o) {
 os << "i: " << o.i << ", j: " << o.j;
 return os;
 }
};

void f() {
 std::set<S> t{S(1, 1), S(1, 2), S(2, 1)};
 for (auto v : t) {
 std::cout << v << std::endl;
 }
}

Containers (CTR) - CTR57-CPP. Provide a valid ordering predicate

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 191
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.8.4 Compliant Solution

This compliant solution uses std::tie() to properly implement the strict weak ordering
operator< predicate.

#include <iostream>
#include <set>
#include <tuple>

class S {
 int i, j;

public:
 S(int i, int j) : i(i), j(j) {}

 friend bool operator<(const S &lhs, const S &rhs) {
 return std::tie(lhs.i, lhs.j) < std::tie(rhs.i, rhs.j);
 }

 friend std::ostream &operator<<(std::ostream &os, const S& o) {
 os << "i: " << o.i << ", j: " << o.j;
 return os;
 }
};

void f() {
 std::set<S> t{S(1, 1), S(1, 2), S(2, 1)};
 for (auto v : t) {
 std::cout << v << std::endl;
 }
}

5.8.5 Risk Assessment

Using an invalid ordering rule can lead to erratic behavior or infinite loops.

Rule Severity Likelihood Remediation Cost Priority Level

CTR57-CPP Low Probable High P2 L3

5.8.6 Related Guidelines

SEI CERT Oracle Coding Standard for Java MET10-J. Follow the general contract when
implementing the compareTo() method

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032735
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032735

Containers (CTR) - CTR57-CPP. Provide a valid ordering predicate

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 192
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.8.7 Bibliography

[ISO/IEC 14882-2014] Subclause 23.2.4, “Associative Containers”

[Meyers 2001] Item 21, “Always Have Comparison Functions Return
False for Equal Values”

[Sutter 2004] Item 83, “Use a Checked STL Implementation”

Containers (CTR) - CTR58-CPP. Predicate function objects should not be mutable

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 193
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.9 CTR58-CPP. Predicate function objects should not be mutable

The C++ standard library implements numerous common algorithms that accept a predicate
function object. The C++ Standard, [algorithms.general], paragraph 10 [ISO/IEC 14882-2014],
states the following:

[Note: Unless otherwise specified, algorithms that take function objects as arguments
are permitted to copy those function objects freely. Programmers for whom object
identity is important should consider using a wrapper class that points to a noncopied
implementation object such as reference_wrapper<T>, or some equivalent
solution. — end note]

Because it is implementation-defined whether an algorithm copies a predicate function object, any
such object must either
• implement a function call operator that does not mutate state related to the function object’s

identity, such as nonstatic data members or captured values, or
• wrap the predicate function object in a std::reference_wrapper<T> (or an equivalent

solution).

Marking the function call operator as const is beneficial, but insufficient, because data members
with the mutable storage class specifier may still be modified within a const member
function.

Containers (CTR) - CTR58-CPP. Predicate function objects should not be mutable

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 194
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.9.1 Noncompliant Code Example (Functor)

This noncompliant code example attempts to remove the third item in a container using a
predicate that returns true only on its third invocation.

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <vector>

class MutablePredicate : public std::unary_function<int, bool> {
 size_t timesCalled;
public:
 MutablePredicate() : timesCalled(0) {}

 bool operator()(const int &) {
 return ++timesCalled == 3;
 }
};

template <typename Iter>
void print_container(Iter b, Iter e) {
 std::cout << "Contains: ";
 std::copy(b, e, std::ostream_iterator<decltype(*b)>
 (std::cout, " "));
 std::cout << std::endl;
}

void f() {
 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 print_container(v.begin(), v.end());

 v.erase(
 std::remove_if(v.begin(), v.end(), MutablePredicate()),
 v.end());
 print_container(v.begin(), v.end());
}

However, std::remove_if() is permitted to construct and use extra copies of its predicate
function. Any such extra copies may result in unexpected output.

5.9.1.1 Implementation Details

This program produces the following results using GCC 4.8.1 with libstdc++.

Contains: 0 1 2 3 4 5 6 7 8 9
Contains: 0 1 3 4 6 7 8 9

Containers (CTR) - CTR58-CPP. Predicate function objects should not be mutable

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 195
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This result arises because std::remove_if makes two copies of the predicate before invoking
it. The first copy is used to determine the location of the first element in the sequence for which
the predicate returns true. The subsequent copy is used for removing other elements in the
sequence. This results in the third element (2) and sixth element (5) being removed; two distinct
predicate functions are used.

5.9.2 Noncompliant Code Example (Lambda)

Similar to the functor noncompliant code example, this noncompliant code example attempts to
remove the third item in a container using a predicate lambda function that returns true only on
its third invocation. As with the functor, this lambda carries local state information, which it
attempts to mutate within its function call operator.

#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>

template <typename Iter>
void print_container(Iter b, Iter e) {
 std::cout << "Contains: ";
 std::copy(b, e,
 std::ostream_iterator<decltype(*b)>(std::cout, " "));
 std::cout << std::endl;
}

void f() {
 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 print_container(v.begin(), v.end());

 int timesCalled = 0;
 v.erase(std::remove_if(
 v.begin(),
 v.end(),
 [timesCalled](const int &) mutable {
 return ++timesCalled == 3;
 }),
 v.end());
 print_container(v.begin(), v.end());
}

Containers (CTR) - CTR58-CPP. Predicate function objects should not be mutable

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 196
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.9.3 Compliant Solution (std::reference_wrapper)

This compliant solution wraps the predicate in a std::reference_wrapper<T> object,
ensuring that copies of the wrapper object all refer to the same underlying predicate object.

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <vector>

class MutablePredicate : public std::unary_function<int, bool> {
 size_t timesCalled;
public:
 MutablePredicate() : timesCalled(0) {}

 bool operator()(const int &) {
 return ++timesCalled == 3;
 }
};

template <typename Iter>
void print_container(Iter b, Iter e) {
 std::cout << "Contains: ";
 std::copy(b, e,
 std::ostream_iterator<decltype(*b)>(std::cout, " "));
 std::cout << std::endl;
}

void f() {
 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 print_container(v.begin(), v.end());

 MutablePredicate mp;
 v.erase(
 std::remove_if(v.begin(), v.end(), std::ref(mp)),
 v.end());
 print_container(v.begin(), v.end());
}

The above compliant solution demonstrates using a reference wrapper over a functor object but
can similarly be used with a stateful lambda. The code produces the expected results, where only
the third element is removed.

Contains: 0 1 2 3 4 5 6 7 8 9
Contains: 0 1 3 4 5 6 7 8 9

Containers (CTR) - CTR58-CPP. Predicate function objects should not be mutable

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 197
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.9.4 Compliant Solution (Iterator Arithmetic)

Removing a specific element of a container does not require a predicate function but can instead
simply use std::vector::erase(), as in this compliant solution.

#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>

template <typename Iter>
void print_container(Iter B, Iter E) {
 std::cout << "Contains: ";
 std::copy(B, E, std::ostream_iterator<decltype(*B)>
 (std::cout, " "));
 std::cout << std::endl;
}

void f() {
 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 print_container(v.begin(), v.end());
 v.erase(v.begin() + 3);
 print_container(v.begin(), v.end());
}

5.9.5 Risk Assessment

Using a predicate function object that contains state can produce unexpected values.

Rule Severity Likelihood Remediation Cost Priority Level

CTR58-CPP Low Likely High P3 L3

5.9.6 Bibliography

[ISO/IEC 14882-2014] Subclause 25.1, “General”

[Meyers 2001] Item 39, “Make Predicates Pure Functions”

Characters and Strings (STR) - STR50-CPP. Guarantee that storage for strings has sufficient space for character data and
the null terminator

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 198
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Characters and Strings (STR)

6.1 STR50-CPP. Guarantee that storage for strings has sufficient space
for character data and the null terminator

Copying data to a buffer that is not large enough to hold that data results in a buffer overflow.
Buffer overflows occur frequently when manipulating strings [Seacord 2013]. To prevent such
errors, either limit copies through truncation or, preferably, ensure that the destination is of
sufficient size to hold the data to be copied. C-style strings require a null character to indicate the
end of the string, while the C++ std::basic_string template requires no such character.

6.1.1 Noncompliant Code Example

Because the input is unbounded, the following code could lead to a buffer overflow.

#include <iostream>

void f() {
 char buf[12];
 std::cin >> buf;
}

6.1.2 Noncompliant Code Example

To solve this problem, it may be tempting to use the std::ios_base::width() method, but
there still is a trap, as shown in this noncompliant code example.

#include <iostream>

void f() {
 char bufOne[12];
 char bufTwo[12];
 std::cin.width(12);
 std::cin >> bufOne;
 std::cin >> bufTwo;
}

In this example, the first read will not overflow, but could fill bufOne with a truncated string.
Furthermore, the second read still could overflow bufTwo. The C++ Standard,
[istream.extractors], paragraphs 7–9 [ISO/IEC 14882-2014], describes the behavior of
operator>>(basic_istream &, charT *) and, in part, states the following:

operator>> then stores a null byte (charT()) in the next position, which may be the
first position if no characters were extracted. operator>> then calls width(0).

Characters and Strings (STR) - STR50-CPP. Guarantee that storage for strings has sufficient space for character data and
the null terminator

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 199
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Consequently, it is necessary to call width() prior to each operator>> call passing a
bounded array. However, this does not account for the input being truncated, which may lead to
information loss or a possible vulnerability.

6.1.3 Compliant Solution

The best solution for ensuring that data is not truncated and for guarding against buffer overflows
is to use std::string instead of a bounded array, as in this compliant solution.

#include <iostream>
#include <string>

void f() {
 std::string input;
 std::string stringOne, stringTwo;
 std::cin >> stringOne >> stringTwo;
}

6.1.4 Noncompliant Code Example

In this noncompliant example, the unformatted input function
std::basic_istream<T>::read() is used to read an unformatted character array of 32
characters from the given file. However, the read() function does not guarantee that the string
will be null terminated, so the subsequent call of the std::string constructor results in
undefined behavior if the character array does not contain a null terminator.

#include <fstream>
#include <string>

void f(std::istream &in) {
 char buffer[32];
 try {
 in.read(buffer, sizeof(buffer));
 } catch (std::ios_base::failure &e) {
 // Handle error
 }

 std::string str(buffer);
 // ...
}

Characters and Strings (STR) - STR50-CPP. Guarantee that storage for strings has sufficient space for character data and
the null terminator

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 200
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.1.5 Compliant Solution

This compliant solution assumes that the input from the file is at most 32 characters. Instead of
inserting a null terminator, it constructs the std::string object based on the number of
characters read from the input stream. If the size of the input is uncertain, it is better to use
std::basic_istream<T>::readsome() or a formatted input function, depending on
need.

#include <fstream>
#include <string>

void f(std::istream &in) {
 char buffer[32];
 try {
 in.read(buffer, sizeof(buffer));
 } catch (std::ios_base::failure &e) {
 // Handle error
 }
 std::string str(buffer, in.gcount());
 // ...
}

6.1.6 Risk Assessment

Copying string data to a buffer that is too small to hold that data results in a buffer overflow.
Attackers can exploit this condition to execute arbitrary code with the permissions of the
vulnerable process.

Rule Severity Likelihood Remediation Cost Priority Level

STR50-CPP High Likely Medium P18 L1

6.1.7 Related Guidelines

SEI CERT C Coding Standard STR31-C. Guarantee that storage for strings has sufficient
space for character data and the null terminator

6.1.8 Bibliography

[ISO/IEC 14882-2014] Subclause 27.7.2.2.3, “basic_istream::operator>>”
Subclause 27.7.2.3, “Unformatted Input Functions”

[Seacord 2013] Chapter 2, “Strings”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=296
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=296

Characters and Strings (STR) - STR51-CPP. Do not attempt to create a std::string from a null pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 201
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2 STR51-CPP. Do not attempt to create a std::string from a null
pointer

The std::basic_string type uses the traits design pattern to handle implementation details
of the various string types, resulting in a series of string-like classes with a common, underlying
implementation. Specifically, the std::basic_string class is paired with std::
char_traits to create the std::string, std::wstring, std::u16string, and
std::u32string classes. The std::char_traits class is explicitly specialized to
provide policy-based implementation details to the std::basic_string type. One such
implementation detail is the std::char_traits::length() function, which is frequently
used to determine the number of characters in a null-terminated string. According to the C++
Standard, [char.traits.require], Table 62 [ISO/IEC 14882-2014], passing a null pointer to this
function is undefined behavior because it would result in dereferencing a null pointer.

The following std::basic_string member functions result in a call to
std::char_traits::length():
• basic_string::basic_string(const charT *, const Allocator &)
• basic_string &basic_string::append(const charT *)
• basic_string &basic_string::assign(const charT *)
• basic_string &basic_string::insert(size_type, const charT *)
• basic_string &basic_string::replace(size_type, size_type,

const charT *)
• basic_string &basic_string::replace(const_iterator,

const_iterator, const charT *)
• size_type basic_string::find(const charT *, size_type)
• size_type basic_string::rfind(const charT *, size_type)
• size_type basic_string::find_first_of(const charT *,

size_type)
• size_type basic_string::find_last_of(const charT *, size_type)
• size_type basic_string::find_first_not_of(const charT *,

size_type)
• size_type basic_string::find_last_not_of(const charT *,

size_type)
• int basic_string::compare(const charT *)
• int basic_string::compare(size_type, size_type, const charT *)
• basic_string &basic_string::operator=(const charT *)
• basic_string &basic_string::operator+=(const charT *)

Characters and Strings (STR) - STR51-CPP. Do not attempt to create a std::string from a null pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 202
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The following std::basic_string nonmember functions result in a call to
std::char_traits::length():
• basic_string operator+(const charT *, const basic_string&)
• basic_string operator+(const charT *, basic_string &&)
• basic_string operator+(const basic_string &, const charT *)
• basic_string operator+(basic_string &&, const charT *)
• bool operator==(const charT *, const basic_string &)
• bool operator==(const basic_string &, const charT *)
• bool operator!=(const charT *, const basic_string &)
• bool operator!=(const basic_string &, const charT *)
• bool operator<(const charT *, const basic_string &)
• bool operator<(const basic_string &, const charT *)
• bool operator>(const charT *, const basic_string &)
• bool operator>(const basic_string &, const charT *)
• bool operator<=(const charT *, const basic_string &)
• bool operator<=(const basic_string &, const charT *)
• bool operator>=(const charT *, const basic_string &)
• bool operator>=(const basic_string &, const charT *)

Do not call any of the preceding functions with a null pointer as the const charT * argument.

This rule is a specific instance of EXP34-C. Do not dereference null pointers.

6.2.1.1 Implementation Details

Some standard library vendors, such as libstdc++, throw a std::logic_error when a null
pointer is used in the above function calls, though not when calling std::char_traits::
length(). However, std::logic_error is not a requirement of the C++ Standard, and
some vendors (e.g., libc++ and the Microsoft Visual Studio STL) do not implement this behavior.
For portability, you should not rely on this behavior.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Characters and Strings (STR) - STR51-CPP. Do not attempt to create a std::string from a null pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 203
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2.2 Noncompliant Code Example

In this noncompliant code example, a std::string object is created from the results of a call
to std::getenv(). However, because std::getenv() returns a null pointer on failure, this
code can lead to undefined behavior when the environment variable does not exist (or some other
error occurs).

#include <cstdlib>
#include <string>

void f() {
 std::string tmp(std::getenv("TMP"));
 if (!tmp.empty()) {
 // ...
 }
}

6.2.3 Compliant Solution

In this compliant solution, the results from the call to std::getenv() are checked for null
before the std::string object is constructed.

#include <cstdlib>
#include <string>

void f() {
 const char *tmpPtrVal = std::getenv("TMP");
 std::string tmp(tmpPtrVal ? tmpPtrVal : "");
 if (!tmp.empty()) {
 // ...
 }
}

6.2.4 Risk Assessment

Dereferencing a null pointer is undefined behavior, typically abnormal program termination. In
some situations, however, dereferencing a null pointer can lead to the execution of arbitrary code
[Jack 2007, van Sprundel 2006]. The indicated severity is for this more severe case; on platforms
where it is not possible to exploit a null pointer dereference to execute arbitrary code, the actual
severity is low.

Rule Severity Likelihood Remediation Cost Priority Level

STR51-CPP High Likely Medium P18 L1

Characters and Strings (STR) - STR51-CPP. Do not attempt to create a std::string from a null pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 204
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2.5 Related Guidelines

SEI CERT C Coding Standard EXP34-C. Do not dereference null pointers

6.2.6 Bibliography

[ISO/IEC 9899:2011] Subclause 7.20.3, “Memory Management Functions”

[ISO/IEC 14882-2014] Subclause 21.2.1, “Character Trait Requirements”

[Jack 2007]

[van Sprundel 2006]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Characters and Strings (STR) - STR52-CPP. Use valid references, pointers, and iterators to reference elements of a
basic_string

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 205
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3 STR52-CPP. Use valid references, pointers, and iterators to
reference elements of a basic_string

Since std::basic_string is a container of characters, this rule is a specific instance of
CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container. As
a container, it supports iterators just like other containers in the Standard Template Library.
However, the std::basic_string template class has unusual invalidation semantics. The
C++ Standard, [string.require], paragraph 5 [ISO/IEC 14882-2014], states the following:

References, pointers, and iterators referring to the elements of a basic_string
sequence may be invalidated by the following uses of that basic_string object:

As an argument to any standard library function taking a reference to non-const
basic_string as an argument.

Calling non-const member functions, except operator[], at, front, back, begin,
rbegin, end, and rend.

Examples of standard library functions taking a reference to non-const
std::basic_string are std::swap(), ::operator>>(basic_istream &,
string &), and std::getline().

Do not use an invalidated reference, pointer, or iterator because doing so results in undefined
behavior.

6.3.1 Noncompliant Code Example

This noncompliant code example copies input into a std::string, replacing semicolon (;)
characters with spaces. This example is noncompliant because the iterator loc is invalidated after
the first call to insert(). The behavior of subsequent calls to insert() is undefined.

#include <string>

void f(const std::string &input) {
 std::string email;

 // Copy input into email converting ";" to " "
 std::string::iterator loc = email.begin();
 for (auto i = input.begin(), e = input.end(); i != e; ++i, ++loc)
 {
 email.insert(loc, *i != ';' ? *i : ' ');
 }
}

Characters and Strings (STR) - STR52-CPP. Use valid references, pointers, and iterators to reference elements of a
basic_string

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 206
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.2 Compliant Solution (std::string::insert())

In this compliant solution, the value of the iterator loc is updated as a result of each call to
insert() so that the invalidated iterator is never accessed. The updated iterator is then
incremented at the end of the loop.

#include <string>

void f(const std::string &input) {
 std::string email;

 // Copy input into email converting ";" to " "
 std::string::iterator loc = email.begin();
 for (auto i = input.begin(), e = input.end(); i != e; ++i, ++loc)
 {
 loc = email.insert(loc, *i != ';' ? *i : ' ');
 }
}

6.3.3 Compliant Solution (std::replace())

This compliant solution uses a standard algorithm to perform the replacement. When possible,
using a generic algorithm is preferable to inventing your own solution.

#include <algorithm>
#include <string>

void f(const std::string &input) {
 std::string email{input};
 std::replace(email.begin(), email.end(), ';', ' ');
}

Characters and Strings (STR) - STR52-CPP. Use valid references, pointers, and iterators to reference elements of a
basic_string

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 207
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.4 Noncompliant Code Example

In this noncompliant code example, data is invalidated after the call to replace(), and so its
use in g() is undefined behavior.

#include <iostream>
#include <string>

extern void g(const char *);

void f(std::string &exampleString) {
 const char *data = exampleString.data();
 // ...
 exampleString.replace(0, 2, "bb");
 // ...
 g(data);
}

6.3.5 Compliant Solution

In this compliant solution, the pointer to exampleString’s internal buffer is not generated
until after the modification from replace() has completed.

#include <iostream>
#include <string>

extern void g(const char *);

void f(std::string &exampleString) {
 // ...
 exampleString.replace(0, 2, "bb");
 // ...
 g(exampleString.data());
}

6.3.6 Risk Assessment

Using an invalid reference, pointer, or iterator to a string object could allow an attacker to run
arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

STR52-CPP High Probable High P6 L2

Characters and Strings (STR) - STR52-CPP. Use valid references, pointers, and iterators to reference elements of a
basic_string

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 208
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.7 Related Guidelines

SEI CERT C++ Coding Standard CTR51-CPP. Use valid references, pointers, and
iterators to reference elements of a container

6.3.8 Bibliography

[ISO/IEC 14882-2014] Subclause 21.4.1, “basic_string General Requirements”

[Meyers 2001] Item 43, “Prefer Algorithm Calls to Hand-written Loops”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Characters and Strings (STR) - STR53-CPP. Range check element access

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 209
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4 STR53-CPP. Range check element access

The std::string index operators const_reference operator[](size_type)
const and reference operator[](size_type) return the character stored at the
specified position, pos. When pos >= size(), a reference to an object of type charT with
value charT() is returned. The index operators are unchecked (no exceptions are thrown for
range errors), and attempting to modify the resulting out-of-range object results in undefined
behavior.

Similarly, the std::string::back() and std::string::front() functions are
unchecked as they are defined to call through to the appropriate operator[]() without
throwing.

Do not pass an out-of-range value as an argument to std::string::operator[]().
Similarly, do not call std::string::back() or std::string::front() on an empty
string. This rule is a specific instance of CTR50-CPP. Guarantee that container indices and
iterators are within the valid range.

6.4.1 Noncompliant Code Example

In this noncompliant code example, the value returned by the call to get_index() may be
greater than the number of elements stored in the string, resulting in undefined behavior.

#include <string>

extern std::size_t get_index();

void f() {
 std::string s("01234567");
 s[get_index()] = '1';
}

Characters and Strings (STR) - STR53-CPP. Range check element access

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 210
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4.2 Compliant Solution (try/catch)

This compliant solution uses the std::basic_string::at() function, which behaves in a
similar fashion to the index operator[] but throws a std::out_of_range exception if
pos >= size().

#include <stdexcept>
#include <string>
extern std::size_t get_index();

void f() {
 std::string s("01234567");
 try {
 s.at(get_index()) = '1';
 } catch (std::out_of_range &) {
 // Handle error
 }
}

6.4.3 Compliant Solution (Range Check)

This compliant solution checks that the value returned by get_index() is within a valid range
before calling operator[]().

#include <string>

extern std::size_t get_index();

void f() {
 std::string s("01234567");
 std::size_t i = get_index();
 if (i < s.length()) {
 s[i] = '1';
 } else {
 // Handle error
 }
}

Characters and Strings (STR) - STR53-CPP. Range check element access

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 211
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4.4 Noncompliant Code Example

This noncompliant code example attempts to replace the initial character in the string with a
capitalized equivalent. However, if the given string is empty, the behavior is undefined.

#include <string>
#include <locale>

void capitalize(std::string &s) {
 std::locale loc;
 s.front() =
 std::use_facet<std::ctype<char>>(loc).toupper(s.front());
}

6.4.5 Compliant Solution

In this compliant solution, the call to std::string::front() is made only if the string is
not empty.

#include <string>
#include <locale>

void capitalize(std::string &s) {
 if (s.empty()) {
 return;
 }

 std::locale loc;
 s.front() =
 std::use_facet<std::ctype<char>>(loc).toupper(s.front());
}

6.4.6 Risk Assessment

Unchecked element access can lead to out-of-bound reads and writes and write-anywhere
exploits. These exploits can, in turn, lead to the execution of arbitrary code with the permissions
of the vulnerable process.

Rule Severity Likelihood Remediation Cost Priority Level

STR53-CPP High Unlikely Medium P6 L2

Characters and Strings (STR) - STR53-CPP. Range check element access

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 212
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4.7 Related Guidelines

SEI CERT C++ Coding Standard CTR50-CPP. Guarantee that container indices
and iterators are within the valid range

6.4.8 Bibliography

[ISO/IEC 14882-2014] Subclause 21.4.5, “basic_string Element Access”

[Seacord 2013] Chapter 2, “Strings”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 213
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7 Memory Management (MEM)

7.1 MEM50-CPP. Do not access freed memory

Evaluating a pointer—including dereferencing the pointer, using it as an operand of an arithmetic
operation, type casting it, and using it as the right-hand side of an assignment—into memory that
has been deallocated by a memory management function is undefined behavior. Pointers to
memory that has been deallocated are called dangling pointers. Accessing a dangling pointer can
result in exploitable vulnerabilities.

It is at the memory manager’s discretion when to reallocate or recycle the freed memory. When
memory is freed, all pointers into it become invalid, and its contents might either be returned to
the operating system, making the freed space inaccessible, or remain intact and accessible. As a
result, the data at the freed location can appear to be valid but change unexpectedly.
Consequently, memory must not be written to or read from once it is freed.

7.1.1 Noncompliant Code Example (new and delete)

In this noncompliant code example, s is dereferenced after it has been deallocated. If this access
results in a write-after-free, the vulnerability can be exploited to run arbitrary code with the
permissions of the vulnerable process. Typically, dynamic memory allocations and deallocations
are far removed, making it difficult to recognize and diagnose such problems.

#include <new>

struct S {
 void f();
};

void g() noexcept(false) {
 S *s = new S;
 // ...
 delete s;
 // ...
 s->f();
}

The function g() is marked noexcept(false) to comply with MEM52-CPP. Detect and
handle memory allocation errors.

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 214
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.2 Compliant Solution (new and delete)

In this compliant solution, the dynamically allocated memory is not deallocated until it is no
longer required.

#include <new>

struct S {
 void f();
};

void g() noexcept(false) {
 S *s = new S;
 // ...
 s->f();
 delete s;
}

7.1.3 Compliant Solution (Automatic Storage Duration)

When possible, use automatic storage duration instead of dynamic storage duration. Since s is not
required to live beyond the scope of g(), this compliant solution uses automatic storage duration
to limit the lifetime of s to the scope of g().

struct S {
 void f();
};

void g() {
 S s;
 // ...
 s.f();
}

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 215
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.4 Noncompliant Code Example (std::unique_ptr)

In the following noncompliant code example, the dynamically allocated memory managed by the
buff object is accessed after it has been implicitly deallocated by the object’s destructor.

#include <iostream>
#include <memory>
#include <cstring>

int main(int argc, const char *argv[]) {
 const char *s = "";
 if (argc > 1) {
 enum { BufferSize = 32 };
 try {
 std::unique_ptr<char[]> buff(new char[BufferSize]);
 std::memset(buff.get(), 0, BufferSize);
 // ...
 s = std::strncpy(buff.get(), argv[1], BufferSize - 1);
 } catch (std::bad_alloc &) {
 // Handle error
 }
 }

 std::cout << s << std::endl;
}

This code always creates a null-terminated byte string, despite its use of strncpy(), because it
leaves the final char in the buffer set to 0.

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 216
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.5 Compliant Solution (std::unique_ptr)

In this compliant solution, the lifetime of the buff object extends past the point at which the
memory managed by the object is accessed.

#include <iostream>
#include <memory>
#include <cstring>

int main(int argc, const char *argv[]) {
 std::unique_ptr<char[]> buff;
 const char *s = "";

 if (argc > 1) {
 enum { BufferSize = 32 };
 try {
 buff.reset(new char[BufferSize]);
 std::memset(buff.get(), 0, BufferSize);
 // ...
 s = std::strncpy(buff.get(), argv[1], BufferSize - 1);
 } catch (std::bad_alloc &) {
 // Handle error
 }
 }

 std::cout << s << std::endl;
}

7.1.6 Compliant Solution

In this compliant solution, a variable with automatic storage duration of type std::string is
used in place of the std::unique_ptr<char[]>, which reduces the complexity and
improves the security of the solution.

#include <iostream>
#include <string>

int main(int argc, const char *argv[]) {
 std::string str;

 if (argc > 1) {
 str = argv[1];
 }

 std::cout << str << std::endl;
}

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 217
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.7 Noncompliant Code Example (std::string::c_str())

In this noncompliant code example, std::string::c_str() is being called on a temporary
std::string object. The resulting pointer will point to released memory once the
std::string object is destroyed at the end of the assignment expression, resulting in
undefined behavior when accessing elements of that pointer.

#include <string>

std::string str_func();
void display_string(const char *);

void f() {
 const char *str = str_func().c_str();
 display_string(str); /* Undefined behavior */
}

7.1.8 Compliant solution (std::string::c_str())

In this compliant solution, a local copy of the string returned by str_func() is made to ensure
that string str will be valid when the call to display_string() is made.

#include <string>

std::string str_func();
void display_string(const char *s);

void f() {
 std::string str = str_func();
 const char *cstr = str.c_str();
 display_string(cstr); /* ok */
}

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 218
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.9 Noncompliant Code Example

In this noncompliant code example, an attempt is made to allocate zero bytes of memory through
a call to operator new(). If this request succeeds, operator new() is required to return a
non-null pointer value. However, according to the C++ Standard, [basic.stc.dynamic.allocation],
paragraph 2 [ISO/IEC 14882-2014], attempting to dereference memory through such a pointer
results in undefined behavior.

#include <new>

void f() noexcept(false) {
 unsigned char *ptr = static_cast<unsigned char *>(::operator
new(0));
 *ptr = 0;
 // ...
 ::operator delete(ptr);
}

7.1.10 Compliant Solution

The compliant solution depends on programmer intent. If the programmer intends to allocate a
single unsigned char object, the compliant solution is to use new instead of a direct call to
operator new(), as this compliant solution demonstrates.

void f() noexcept(false) {
 unsigned char *ptr = new unsigned char;
 *ptr = 0;
 // ...
 delete ptr;
}

7.1.11 Compliant Solution

If the programmer intends to allocate zero bytes of memory (perhaps to obtain a unique pointer
value that cannot be reused by any other pointer in the program until it is properly released), then
instead of attempting to dereference the resulting pointer, the recommended solution is to declare
ptr as a void *, which cannot be dereferenced by a conforming implementation.

#include <new>

void f() noexcept(false) {
 void *ptr = ::operator new(0);
 // ...
 ::operator delete(ptr);
}

Memory Management (MEM) - MEM50-CPP. Do not access freed memory

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 219
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.12 Risk Assessment

Reading previously dynamically allocated memory after it has been deallocated can lead to
abnormal program termination and denial-of-service attacks. Writing memory that has been
deallocated can lead to the execution of arbitrary code with the permissions of the vulnerable
process.

Rule Severity Likelihood Remediation Cost Priority Level

MEM50-CPP High Likely Medium P18 L1

7.1.12.1 Related Vulnerabilities

VU#623332 describes a double-free vulnerability in the MIT Kerberos 5 function krb5_recvauth()
[VU#623332].

7.1.13 Related Guidelines

SEI CERT C++ Coding Standard EXP54-CPP. Do not access an object outside of its
lifetime
MEM52-CPP. Detect and handle memory alloca-
tion errors

SEI CERT C Coding Standard MEM30-C. Do not access freed memory

MITRE CWE CWE-415, Double Free
CWE-416, Use After Free

7.1.14 Bibliography

[ISO/IEC 14882-2014] Subclause 3.7.4.1, “Allocation Functions”
Subclause 3.7.4.2, “Deallocation Functions”

[Seacord 2013b] Chapter 4, “Dynamic Memory Management”

http://web.mit.edu/kerberos/www/advisories/MITKRB5-SA-2005-003-recvauth.txt
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=444
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 220
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2 MEM51-CPP. Properly deallocate dynamically allocated resources

The C programming language provides several ways to allocate memory, such as
std::malloc(), std::calloc(), and std::realloc(), which can be used by a C++
program. However, the C programming language defines only a single way to free the allocated
memory: std::free(). See MEM31-C. Free dynamically allocated memory when no longer
needed and MEM34-C. Only free memory allocated dynamically for rules specifically regarding
C allocation and deallocation requirements.

The C++ programming language adds additional ways to allocate memory, such as the operators
new, new[], and placement new, and allocator objects. Unlike C, C++ provides multiple ways
to free dynamically allocated memory, such as the operators delete, delete[](), and
deallocation functions on allocator objects.

Do not call a deallocation function on anything other than nullptr, or a pointer returned by the
corresponding allocation function described by the following.

Allocator Deallocator

global operator new()/new global operator delete()/delete

global operator new[]()/new[] global operator delete[]()/delete[]

class-specific operator new()/new class-specific operator delete()/delete

class-specific operator new[]()/new[] class-specific operator delete[]()/delete[]

placement operator new() N/A

allocator<T>::allocate() allocator<T>::deallocate()

std::malloc(), std::calloc(),

std::realloc()

std::free()

std::get_temporary_buffer() std::return_temporary_buffer()

Passing a pointer value to an inappropriate deallocation function can result in undefined behavior.

The C++ Standard, [expr.delete], paragraph 2 [ISO/IEC 14882-2014], in part, states the following:

In the first alternative (delete object), the value of the operand of delete may be a null
pointer value, a pointer to a non-array object created by a previous new-expression, or a
pointer to a subobject (1.8) representing a base class of such an object (Clause 10). If
not, the behavior is undefined. In the second alternative (delete array), the value of the
operand of delete may be a null pointer value or a pointer value that resulted from a
previous array new-expression. If not, the behavior is undefined.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=445
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=445
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=449
http://www.cplusplus.com/reference/memory/allocator/

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 221
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Deallocating a pointer that is not allocated dynamically (including non-dynamic pointers returned
from calls to placement new()) is undefined behavior because the pointer value was not obtained
by an allocation function. Deallocating a pointer that has already been passed to a deallocation
function is undefined behavior because the pointer value no longer points to memory that has
been dynamically allocated.

When an operator such as new is called, it results in a call to an overloadable operator of the same
name, such as operator new(). These overloadable functions can be called directly but carry
the same restrictions as their operator counterparts. That is, calling operator delete() and
passing a pointer parameter has the same constraints as calling the delete operator on that
pointer. Further, the overloads are subject to scope resolution, so it is possible (but not
permissible) to call a class-specific operator to allocate an object but a global operator to
deallocate the object.

See MEM53-CPP. Explicitly construct and destruct objects when manually managing object
lifetime for information on lifetime management of objects when using memory management
functions other than the new and delete operators.

7.2.1 Noncompliant Code Example (placement new())

In this noncompliant code example, the local variable s1 is passed as the expression to the
placement new operator. The resulting pointer of that call is then passed to ::operator
delete(), resulting in undefined behavior due to ::operator delete() attempting to
free memory that was not returned by ::operator new().

#include <iostream>

struct S {
 S() { std::cout << "S::S()" << std::endl; }
 ~S() { std::cout << "S::~S()" << std::endl; }
};

void f() {
 S s1;
 S *s2 = new (&s1) S;

 // ...

 delete s2;
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 222
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.2 Compliant Solution (placement new())

This compliant solution removes the call to ::operator delete(), allowing s1 to be
destroyed as a result of its normal object lifetime termination.

#include <iostream>

struct S {
 S() { std::cout << "S::S()" << std::endl; }
 ~S() { std::cout << "S::~S()" << std::endl; }
};

void f() {
 S s1;
 S *s2 = new (&s1) S;

 // ...
}

7.2.3 Noncompliant Code Example (Uninitialized delete)

In this noncompliant code example, two allocations are attempted within the same try block, and
if either fails, the catch handler attempts to free resources that have been allocated. However,
because the pointer variables have not been initialized to a known value, a failure to allocate
memory for i1 may result in passing ::operator delete() a value (in i2) that was not
previously returned by a call to ::operator new(), resulting in undefined behavior.

#include <new>

void f() {
 int *i1, *i2;
 try {
 i1 = new int;
 i2 = new int;
 } catch (std::bad_alloc &) {
 delete i1;
 delete i2;
 }
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 223
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.4 Compliant Solution (Uninitialized delete)

This compliant solution initializes both pointer values to nullptr, which is a valid value to pass
to ::operator delete().

#include <new>

void f() {
 int *i1 = nullptr, *i2 = nullptr;
 try {
 i1 = new int;
 i2 = new int;
 } catch (std::bad_alloc &) {
 delete i1;
 delete i2;
 }
}

7.2.5 Noncompliant Code Example (Double-Free)

Once a pointer is passed to the proper deallocation function, that pointer value is invalidated.
Passing the pointer to a deallocation function a second time when the pointer value has not been
returned by a subsequent call to an allocation function results in an attempt to free memory that
has not been allocated dynamically. The underlying data structures that manage the heap can
become corrupted in a way that can introduce security vulnerabilities into a program. These types
of issues are called double-free vulnerabilities. In practice, double-free vulnerabilities can be
exploited to execute arbitrary code.

In this noncompliant code example, the class C is given ownership of a P *, which is
subsequently deleted by the class destructor. The C++ Standard, [class.copy], paragraph 7
[ISO/IEC 14882-2014], states the following:

If the class definition does not explicitly declare a copy constructor, one is declared
implicitly. If the class definition declares a move constructor or move assignment
operator, the implicitly declared copy constructor is defined as deleted; otherwise, it is
defined as defaulted (8.4). The latter case is deprecated if the class has a user-declared
copy assignment operator or a user-declared destructor.

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 224
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Despite the presence of a user-declared destructor, C will have an implicitly defaulted copy
constructor defined for it, and this defaulted copy constructor will copy the pointer value stored in
p, resulting in a double-free: the first free happens when g() exits and the second free happens
when h() exits.

struct P {};

class C {
 P *p;

public:
 C(P *p) : p(p) {}
 ~C() { delete p; }

 void f() {}
};

void g(C c) {
 c.f();
}

void h() {
 P *p = new P;
 C c(p);
 g(c);
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 225
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.6 Compliant Solution (Double-Free)

In this compliant solution, the copy constructor and copy assignment operator for C are explicitly
deleted. This deletion would result in an ill-formed program with the definition of g() from the
preceding noncompliant code example due to use of the deleted copy constructor. Consequently,
g() was modified to accept its parameter by reference, removing the double-free.

struct P {};

class C {
 P *p;

public:
 C(P *p) : p(p) {}
 C(const C&) = delete;
 ~C() { delete p; }

 void operator=(const C&) = delete;

 void f() {}
};

void g(C &c) {
 c.f();
}

void h() {
 P *p = new P;
 C c(p);
 g(c);
}

7.2.7 Noncompliant Code Example (array new[])

In the following noncompliant code example, an array is allocated with array new[] but is
deallocated with a scalar delete call instead of an array delete[] call, resulting in undefined
behavior.

void f() {
 int *array = new int[10];
 // ...
 delete array;
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 226
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.8 Compliant Solution (array new[])

In the compliant solution, the code is fixed by replacing the call to delete with a call to
delete [] to adhere to the correct pairing of memory allocation and deallocation functions.

void f() {
 int *array = new int[10];
 // ...
 delete[] array;
}

7.2.9 Noncompliant Code Example (malloc())

In this noncompliant code example, the call to malloc() is mixed with a call to delete.

#include <cstdlib>
void f() {
 int *i = static_cast<int *>(std::malloc(sizeof(int)));
 // ...
 delete i;
}

This code does not violate MEM53-CPP. Explicitly construct and destruct objects when manually
managing object lifetime because it complies with the MEM53-CPP-EX1 exception.

7.2.9.1 Implementation Details

Some implementations of ::operator new() result in calling std::malloc(). On such
implementations, the ::operator delete() function is required to call std::free() to
deallocate the pointer, and the noncompliant code example would behave in a well-defined
manner. However, this is an implementation detail and should not be relied on—implementations
are under no obligation to use underlying C memory management functions to implement C++
memory management operators.

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 227
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.10 Compliant Solution (malloc())

In this compliant solution, the pointer allocated by std::malloc() is deallocated by a call to
std::free() instead of delete.

#include <cstdlib>

void f() {
 int *i = static_cast<int *>(std::malloc(sizeof(int)));
 // ...
 std::free(i);
}

7.2.11 Noncompliant Code Example (new)

In this noncompliant code example, std::free() is called to deallocate memory that was
allocated by new. A common side effect of the undefined behavior caused by using the incorrect
deallocation function is that destructors will not be called for the object being deallocated by
std::free().

#include <cstdlib>

struct S {
 ~S();
};

void f() {
 S *s = new S();
 // ...
 std::free(s);
}

Additionally, this code violates MEM53-CPP. Explicitly construct and destruct objects when
manually managing object lifetime.

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 228
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.12 Compliant Solution (new)

In this compliant solution, the pointer allocated by new is deallocated by calling delete instead
of std::free().

struct S {
 ~S();
};

void f() {
 S *s = new S();
 // ...
 delete s;
}

7.2.13 Noncompliant Code Example (Class new)

In this noncompliant code example, the global new operator is overridden by a class-specific
implementation of operator new(). When new is called, the class-specific override is
selected, so S::operator new() is called. However, because the object is destroyed with a
scoped ::delete operator, the global operator delete() function is called instead of the
class-specific implementation S::operator delete(), resulting in undefined behavior.

#include <cstdlib>
#include <new>

struct S {
 static void *operator new(std::size_t size) noexcept(true) {
 return std::malloc(size);
 }

 static void operator delete(void *ptr) noexcept(true) {
 std::free(ptr);
 }
};

void f() {
 S *s = new S;
 ::delete s;
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 229
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.14 Compliant Solution (class new)

In this compliant solution, the scoped ::delete call is replaced by a nonscoped delete call,
resulting in S::operator delete() being called.

#include <cstdlib>
#include <new>

struct S {
 static void *operator new(std::size_t size) noexcept(true) {
 return std::malloc(size);
 }

 static void operator delete(void *ptr) noexcept(true) {
 std::free(ptr);
 }
};

void f() {
 S *s = new S;
 delete s;
}

7.2.15 Noncompliant Code Example (std::unique_ptr)

In this noncompliant code example, a std::unique_ptr is declared to hold a pointer to an
object, but is direct-initialized with an array of objects. When the std::unique_ptr is
destroyed, its default deleter calls delete instead of delete[], resulting in undefined
behavior.

#include <memory>

struct S {};

void f() {
 std::unique_ptr<S> s{new S[10]};
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 230
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.16 Compliant Solution (std::unique_ptr)

In this compliant solution, the std::unique_ptr is declared to hold an array of objects
instead of a pointer to an object. Additionally, std::make_unique() is used to initialize the
smart pointer.

#include <memory>

struct S {};

void f() {
 std::unique_ptr<S[]> s = std::make_unique<S[]>(10);
}

Use of std::make_unique() instead of direct initialization will emit a diagnostic if the
resulting std::unique_ptr is not of the correct type. Had it been used in the noncompliant
code example, the result would have been an ill-formed program instead of undefined behavior. It
is best to use std::make_unique() instead of manual initialization by other means.

7.2.17 Noncompliant Code Example (std::shared_ptr)

In this noncompliant code example, a std::shared_ptr is declared to hold a pointer to an
object, but is direct-initialized with an array of objects. As with std::unique_ptr, when the
std::shared_ptr is destroyed, its default deleter calls delete instead of delete[],
resulting in undefined behavior.

#include <memory>

struct S {};

void f() {
 std::shared_ptr<S> s{new S[10]};
}

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 231
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.18 Compliant Solution (std::shared_ptr)

Unlike the compliant solution for std::unique_ptr, where std::make_unique() is
called to create a unique pointer to an array, it is ill-formed to call std::make_shared() with
an array type. Instead, this compliant solution manually specifies a custom deleter for the shared
pointer type, ensuring that the underlying array is properly deleted.

#include <memory>

struct S {};

void f() {
 std::shared_ptr<S> s{
 new S[10], [](const S *ptr) { delete [] ptr; }
 };
}

7.2.19 Risk Assessment

Passing a pointer value to a deallocation function that was not previously obtained by the
matching allocation function results in undefined behavior, which can lead to exploitable
vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

MEM51-CPP High Likely Medium P18 L1

7.2.20 Related Guidelines

SEI CERT C++ Coding Standard MEM53-CPP. Explicitly construct and destruct objects
when manually managing object lifetime

SEI CERT C Coding Standard MEM31-C. Free dynamically allocated memory when no
longer needed
MEM34-C. Only free memory allocated dynamically

MITRE CWE CWE 590, Free of Memory Not on the Heap
CWE 415, Double Free
CWE 404, Improper Resource Shutdown or Release
CWE 762, Mismatched Memory Management Routines

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=445
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=445
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=449
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/762.html

Memory Management (MEM) - MEM51-CPP. Properly deallocate dynamically allocated resources

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 232
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.21 Bibliography

[Dowd 2007] “Attacking delete and delete [] in C++”

[Henricson 1997] Rule 8.1, “delete should only be used with new”
Rule 8.2, “delete [] should only be used with new
[]”

[ISO/IEC 14882-2014] Subclause 5.3.5, “Delete”
Subclause 12.8, “Copying and Moving Class Objects”
Subclause 18.6.1, “Storage Allocation and Deallocation”
Subclause 20.7.11, “Temporary Buffers”

[Meyers 2005] Item 16, “Use the Same Form in Corresponding Uses of
new and delete”

[Seacord 2013] Chapter 4, “Dynamic Memory Management”

[Viega 2005] “Doubly Freeing Memory”

Memory Management (MEM) - MEM52-CPP. Detect and handle memory allocation errors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 233
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3 MEM52-CPP. Detect and handle memory allocation errors

The default memory allocation operator, ::operator new(std::size_t), throws a
std::bad_alloc exception if the allocation fails. Therefore, you need not check whether
calling ::operator new(std::size_t) results in nullptr. The nonthrowing form,
::operator new(std::size_t, const std::nothrow_t &), does not throw an
exception if the allocation fails but instead returns nullptr. The same behaviors apply for the
operator new[] versions of both allocation functions. Additionally, the default allocator
object (std::allocator) uses ::operator new(std::size_t) to perform allocations
and should be treated similarly.

T *p1 = new T; // Throws std::bad_alloc if allocation fails

T *p2 = new (std::nothrow) T; // Returns nullptr if allocation
fails

T *p3 = new T[1]; // Throws std::bad_alloc if the allocation fails

T *p4 = new (std::nothrow) T[1]; // Returns nullptr if the
allocation fails

Furthermore, operator new[] can throw an error of type
std::bad_array_new_length, a subclass of std::bad_alloc, if the size argument
passed to new is negative or excessively large.

When using the nonthrowing form, it is imperative to check that the return value is not nullptr
before accessing the resulting pointer. When using either form, be sure to comply with ERR50-
CPP. Do not abruptly terminate the program.

7.3.1 Noncompliant Code Example

In this noncompliant code example, an array of int is created using ::operator
new[](std::size_t) and the results of the allocation are not checked. The function is
marked as noexcept, so the caller assumes this function does not throw any exceptions.
Because ::operator new[](std::size_t) can throw an exception if the allocation fails,
it could lead to abnormal termination of the program.

#include <cstring>

void f(const int *array, std::size_t size) noexcept {
 int *copy = new int[size];
 std::memcpy(copy, array, size * sizeof(*copy));
 // ...
 delete [] copy;
}

Memory Management (MEM) - MEM52-CPP. Detect and handle memory allocation errors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 234
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3.2 Compliant Solution (std::nothrow)

When using std::nothrow, the new operator returns either a null pointer or a pointer to the
allocated space. Always test the returned pointer to ensure it is not nullptr before referencing
the pointer. This compliant solution handles the error condition appropriately when the returned
pointer is nullptr.

#include <cstring>
#include <new>

void f(const int *array, std::size_t size) noexcept {
 int *copy = new (std::nothrow) int[size];
 if (!copy) {
 // Handle error
 return;
 }
 std::memcpy(copy, array, size * sizeof(*copy));
 // ...
 delete [] copy;
}

7.3.3 Compliant Solution (std::bad_alloc)

Alternatively, you can use ::operator new[] without std::nothrow and instead catch a
std::bad_alloc exception if sufficient memory cannot be allocated.

#include <cstring>
#include <new>

void f(const int *array, std::size_t size) noexcept {
 int *copy;
 try {
 copy = new int[size];
 } catch(std::bad_alloc) {
 // Handle error
 return;
 }
 // At this point, copy has been initialized to allocated memory
 std::memcpy(copy, array, size * sizeof(*copy));
 // ...
 delete [] copy;
}

Memory Management (MEM) - MEM52-CPP. Detect and handle memory allocation errors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 235
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3.4 Compliant Solution (noexcept(false))

If the design of the function is such that the caller is expected to handle exceptional situations, it is
permissible to mark the function explicitly as one that may throw, as in this compliant solution.
Marking the function is not strictly required, as any function without a noexcept specifier is
presumed to allow throwing.

#include <cstring>

void f(const int *array, std::size_t size) noexcept(false) {
 int *copy = new int[size];
 // If the allocation fails, it will throw an exception which
 // the caller will have to handle.
 std::memcpy(copy, array, size * sizeof(*copy));
 // ...
 delete [] copy;
}

7.3.5 Noncompliant Code Example

In this noncompliant code example, two memory allocations are performed within the same
expression. Because the memory allocations are passed as arguments to a function call, an
exception thrown as a result of one of the calls to new could result in a memory leak.

struct A { /* ... */ };
struct B { /* ... */ };

void g(A *, B *);
void f() {
 g(new A, new B);
}

Consider the situation in which A is allocated and constructed first, and then B is allocated and
throws an exception. Wrapping the call to g() in a try/catch block is insufficient because it
would be impossible to free the memory allocated for A.

This noncompliant code example also violates EXP50-CPP. Do not depend on the order of
evaluation for side effects, because the order in which the arguments to g() are evaluated is
unspecified.

Memory Management (MEM) - MEM52-CPP. Detect and handle memory allocation errors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 236
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3.6 Compliant Solution (std::unique_ptr)

In this compliant solution, a std::unique_ptr is used to manage the resources for the A and
B objects with RAII. In the situation described by the noncompliant code example, B throwing an
exception would still result in the destruction and deallocation of the A object when then
std::unique_ptr<A> was destroyed.

#include <memory>

struct A { /* ... */ };
struct B { /* ... */ };

void g(std::unique_ptr<A> a, std::unique_ptr b);
void f() {
 g(std::make_unique<A>(), std::make_unique());
}

7.3.7 Compliant Solution (References)

When possible, the more resilient compliant solution is to remove the memory allocation entirely
and pass the objects by reference instead.

struct A { /* ... */ };
struct B { /* ... */ };

void g(A &a, B &b);
void f() {
 A a;
 B b;
 g(a, b);
}

7.3.8 Risk Assessment

Failing to detect allocation failures can lead to abnormal program termination and denial-of-
service attacks.

If the vulnerable program references memory offset from the return value, an attacker can exploit
the program to read or write arbitrary memory. This vulnerability has been used to execute
arbitrary code [VU#159523].

Rule Severity Likelihood Remediation Cost Priority Level

MEM52-CPP High Likely Medium P18 L1

Memory Management (MEM) - MEM52-CPP. Detect and handle memory allocation errors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 237
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3.8.1 Related Vulnerabilities

The vulnerability in Adobe Flash [VU#159523] arises because Flash neglects to check the return
value from calloc(). Even though calloc() returns NULL, Flash does not attempt to read or
write to the return value. Instead, it attempts to write to an offset from the return value.
Dereferencing NULL usually results in a program crash, but dereferencing an offset from NULL
allows an exploit to succeed without crashing the program.

7.3.9 Related Guidelines

SEI CERT C Coding Standard ERR33-C. Detect and handle standard library errors

MITRE CWE CWE 252, Unchecked Return Value
CWE 391, Unchecked Error Condition
CWE 476, NULL Pointer Dereference
CWE 690, Unchecked Return Value to NULL Pointer
Dereference
CWE 703, Improper Check or Handling of Exceptional
Conditions
CWE 754, Improper Check for Unusual or Exceptional
Conditions

7.3.10 Bibliography

[ISO/IEC 9899:2011] Subclause 7.20.3, “Memory Management Functions”

[ISO/IEC 14882-2014] Subclause 18.6.1.1, “Single-Object Forms”
Subclause 18.6.1.2, “Array Forms”
Subclause 20.7.9.1, “Allocator Members”

[Meyers 1996] Item 7, “Be Prepared for Out-of-Memory Conditions”

[Seacord 2013] Chapter 4, “Dynamic Memory Management”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=45646019
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/391.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/754.html

Memory Management (MEM) - MEM53-CPP. Explicitly construct and destruct objects when manually managing object
lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 238
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.4 MEM53-CPP. Explicitly construct and destruct objects when
manually managing object lifetime

The creation of dynamically allocated objects in C++ happens in two stages. The first stage is
responsible for allocating sufficient memory to store the object, and the second stage is
responsible for initializing the newly allocated chunk of memory, depending on the type of the
object being created.

Similarly, the destruction of dynamically allocated objects in C++ happens in two stages. The first
stage is responsible for finalizing the object, depending on the type, and the second stage is
responsible for deallocating the memory used by the object. The C++ Standard, [basic.life],
paragraph 1 [ISO/IEC 14882-2014], states the following:

The lifetime of an object is a runtime property of the object. An object is said to have
non-trivial initialization if it is of a class or aggregate type and it or one of its members is
initialized by a constructor other than a trivial default constructor. [Note: initialization by a
trivial copy/move constructor is non-trivial initialization. — end note] The lifetime of an
object of type T begins when:

• storage with the proper alignment and size for type T is obtained, and

• if the object has non-trivial initialization, its initialization is complete.

The lifetime of an object of type T ends when:

• if T is a class type with a non-trivial destructor, the destructor call starts, or

• the storage which the object occupies is reused or released.

For a dynamically allocated object, these two stages are typically handled automatically by using
the new and delete operators. The expression new T for a type T results in a call to
operator new() to allocate sufficient memory for T. If memory is successfully allocated, the
default constructor for T is called. The result of the expression is a pointer P to the object of type
T. When that pointer is passed in the expression delete P, it results in a call to the destructor
for T. After the destructor completes, a call is made to operator delete() to deallocate the
memory.

When a program creates a dynamically allocated object by means other than the new operator, it
is said to be manually managing the lifetime of that object. This situation arises when using other
allocation schemes to obtain storage for the dynamically allocated object, such as using an
allocator object or malloc(). For example, a custom container class may allocate a slab of
memory in a reserve() function in which subsequent objects will be stored. See MEM51-CPP.
Properly deallocate dynamically allocated resources for further information on dynamic memory
management.

When manually managing the lifetime of an object, the constructor must be called to initiate the
lifetime of the object. Similarly, the destructor must be called to terminate the lifetime of the
object. Use of an object outside of its lifetime is undefined behavior. An object can be constructed
either by calling the constructor explicitly using the placement new operator or by calling the

http://www.cplusplus.com/reference/memory/allocator/

Memory Management (MEM) - MEM53-CPP. Explicitly construct and destruct objects when manually managing object
lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 239
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

construct() function of an allocator object. An object can be destroyed either by calling the
destructor explicitly or by calling the destroy() function of an allocator object.

7.4.1 Noncompliant Code Example

In this noncompliant code example, a class with nontrivial initialization (due to the presence of a
user-provided constructor) is created with a call to std::malloc(). However, the constructor
for the object is never called, resulting in undefined behavior when the class is later accessed by
calling s->f().

#include <cstdlib>

struct S {
 S();
 void f();
};

void g() {
 S *s = static_cast<S *>(std::malloc(sizeof(S)));
 s->f();
 std::free(s);
}

7.4.2 Compliant Solution

In this compliant solution, the constructor and destructor are both explicitly called. Further, to
reduce the possibility of the object being used outside of its lifetime, the underlying storage is a
separate variable from the live object.

#include <cstdlib>
#include <new>

struct S {
 S();
 void f();
};

void g() {
 void *ptr = std::malloc(sizeof(S));
 S *s = new (ptr) S;
 s->f();
 s->~S();
 std::free(ptr);
}

Memory Management (MEM) - MEM53-CPP. Explicitly construct and destruct objects when manually managing object
lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 240
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.4.3 Noncompliant Code Example

In this noncompliant code example, a custom container class uses an allocator object to obtain
storage for arbitrary element types. While the copy_elements() function is presumed to call
copy constructors for elements being moved into the newly allocated storage, this example fails to
explicitly call the default constructor for any additional elements being reserved. If such an
element is accessed through the operator[]() function, it results in undefined behavior,
depending on the type T.

#include <memory>

template <typename T, typename Alloc = std::allocator<T>>
class Container {
 T *underlyingStorage;
 size_t numElements;

 void copy_elements(T *from, T *to, size_t count);

public:
 void reserve(size_t count) {
 if (count > numElements) {
 Alloc alloc;
 T *p = alloc.allocate(count); // Throws on failure
 try {
 copy_elements(underlyingStorage, p, numElements);
 } catch (...) {
 alloc.deallocate(p, count);
 throw;
 }
 underlyingStorage = p;
 }
 numElements = count;
 }

 T &operator[](size_t idx) { return underlyingStorage[idx]; }
 const T &operator[](size_t idx) const {
 return underlyingStorage[idx]; }
};

Memory Management (MEM) - MEM53-CPP. Explicitly construct and destruct objects when manually managing object
lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 241
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.4.4 Compliant Solution

In this compliant solution, all elements are properly initialized by explicitly calling copy or
default constructors for T.

#include <memory>

template <typename T, typename Alloc = std::allocator<T>>
class Container {
 T *underlyingStorage;
 size_t numElements;
 void copy_elements(T *from, T *to, size_t count);
public:
 void reserve(size_t count) {
 if (count > numElements) {
 Alloc alloc;
 T *p = alloc.allocate(count); // Throws on failure
 try {
 copy_elements(underlyingStorage, p, numElements);
 for (size_t i = numElements; i < count; ++i) {
 alloc.construct(&p[i]);
 }
 } catch (...) {
 alloc.deallocate(p, count);
 throw;
 }
 underlyingStorage = p;
 }
 numElements = count;
 }
 T &operator[](size_t idx) { return underlyingStorage[idx]; }
 const T &operator[](size_t idx) const {
 return underlyingStorage[idx];
 }
};

7.4.5 Exceptions

MEM53-CPP-EX1: If the object is trivially constructable, it need not have its constructor
explicitly called to initiate the object’s lifetime. If the object is trivially destructible, it need not
have its destructor explicitly called to terminate the object’s lifetime. These properties can be
tested by calling std::is_trivially_constructible() and
std::is_trivially_destructible() from <type_traits>. For instance, integral
types such as int and long long do not require an explicit constructor or destructor call.

Memory Management (MEM) - MEM53-CPP. Explicitly construct and destruct objects when manually managing object
lifetime

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 242
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.4.6 Risk Assessment

Failing to properly construct or destroy an object leaves its internal state inconsistent, which can
result in undefined behavior and accidental information exposure.

Rule Severity Likelihood Remediation Cost Priority Level

MEM53-CPP High Likely Medium P18 L1

7.4.7 Related Guidelines

SEI CERT C++ Coding Standard MEM51-CPP. Properly deallocate dynami-
cally allocated resources

7.4.8 Bibliography

[ISO/IEC 14882-2014] Subclause 3.8, “Object Lifetime”
Clause 9, “Classes”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Memory Management (MEM) - MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 243
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5 MEM54-CPP. Provide placement new with properly aligned pointers
to sufficient storage capacity

When invoked by a new expression for a given type, the default global non-placement forms of
C++ operator new attempt to allocate sufficient storage for an object of the type and, if
successful, return a pointer with alignment suitable for any object with a fundamental alignment
requirement. However, the default placement new operator simply returns the given pointer back
to the caller without guaranteeing that there is sufficient space in which to construct the object or
ensuring that the pointer meets the proper alignment requirements. The C++ Standard, [expr.new],
paragraph 16 [ISO/IEC 14882-2014], nonnormatively states the following:

[Note: when the allocation function returns a value other than null, it must be a pointer to
a block of storage in which space for the object has been reserved. The block of storage
is assumed to be appropriately aligned and of the requested size. The address of the
created object will not necessarily be the same as that of the block if the object is an
array. —end note]

(This note is a reminder of the general requirements specified by the C++ Standard,
[basic.stc.dynamic.allocation], paragraph 1, which apply to placement new operators by virtue of
[basic.stc.dynamic], paragraph 3.)

In addition, the standard provides the following example later in the same section:

new(2, f) T[5] results in a call of operator new[](sizeof(T) * 5 +
y, 2, f).

Here, ... and y are non-negative unspecified values representing array allocation
overhead; the result of the new-expression will be offset by this amount from the value
returned by operator new[]. This overhead may be applied in all array new-
expressions, including those referencing the library function operator
new[](std::size_t, void*) and other placement allocation functions. The
amount of overhead may vary from one invocation of new to another.

Do not pass a pointer that is not suitably aligned for the object being constructed to placement
new. Doing so results in an object being constructed at a misaligned location, which results in
undefined behavior. Do not pass a pointer that has insufficient storage capacity for the object
being constructed, including the overhead required for arrays. Doing so may result in initialization
of memory outside of the bounds of the object being constructed, which results in undefined
behavior.

Memory Management (MEM) - MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 244
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.1 Noncompliant Code Example

In this noncompliant code example, a pointer to a short is passed to placement new, which is
attempting to initialize a long. On architectures where sizeof(short) <
sizeof(long), this results in undefined behavior. This example, and subsequent ones, all
assume the pointer returned by placement new will not be used after the lifetime of its underlying
storage has ended. For instance, the pointer will not be stored in a static global variable and
dereferenced after the call to f() has ended. This assumption is in conformance with MEM50-
CPP. Do not access freed memory.

#include <new>

void f() {
 short s;
 long *lp = ::new (&s) long;
}

Memory Management (MEM) - MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 245
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.2 Noncompliant Code Example

This noncompliant code example ensures that the long is constructed into a buffer of sufficient
size. However, it does not ensure that the alignment requirements are met for the pointer passed
into placement new. To make this example clearer, an additional local variable c has also been
declared.

#include <new>

void f() {
 char c; // Used elsewhere in the function
 unsigned char buffer[sizeof(long)];
 long *lp = ::new (buffer) long;

 // ...
}

7.5.3 Compliant Solution (alignas)

In this compliant solution, the alignas declaration specifier is used to ensure the buffer is
appropriately aligned for a long.

#include <new>

void f() {
 char c; // Used elsewhere in the function
 alignas(long) unsigned char buffer[sizeof(long)];
 long *lp = ::new (buffer) long;

 // ...
}

7.5.4 Compliant Solution (std::aligned_storage)

This compliant solution ensures that the long is constructed into a buffer of sufficient size and
with suitable alignment.

#include <new>

void f() {
 char c; // Used elsewhere in the function
 std::aligned_storage<sizeof(long), alignof(long)>::type buffer;
 long *lp = ::new (&buffer) long;

 // ...
}

Memory Management (MEM) - MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 246
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.5 Noncompliant Code Example (Failure to Account for Array Overhead)

This noncompliant code example attempts to allocate sufficient storage of the appropriate
alignment for the array of objects of S. However, it fails to account for the overhead an
implementation may add to the amount of storage for array objects. The overhead (commonly
referred to as a cookie) is necessary to store the number of elements in the array so that the array
delete expression or the exception unwinding mechanism can invoke the type’s destructor on each
successfully constructed element of the array. While some implementations are able to avoid
allocating space for the cookie in some situations, assuming they do in all cases is unsafe.

#include <new>

struct S {
 S ();
 ~S ();
};

void f() {
 const unsigned N = 32;
 alignas(S) unsigned char buffer[sizeof(S) * N];
 S *sp = ::new (buffer) S[N];

 // ...
 // Destroy elements of the array.
 for (size_t i = 0; i != n; ++i) {
 sp[i].~S();
 }
}

Memory Management (MEM) - MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 247
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.6 Compliant Solution (Clang/GCC)

The amount of overhead required by array new expressions is unspecified but ideally would be
documented by quality implementations. The following compliant solution is specifically for the
Clang and GNU GCC compilers, which guarantee that the overhead for dynamic array allocations
is a single value of type size_t. To verify that the assumption is, in fact, safe, the compliant
solution also overloads the placement new[] operator to accept the buffer size as a third
argument and verifies that it is at least as large as the total amount of storage required.

#include <cstddef>
#include <new>

#if defined(__clang__) || defined(__GNUG__)
 const size_t overhead = sizeof(size_t);
#else
 static_assert(false, "you need to determine the size of your
implementation's array overhead");
 const size_t overhead = 0;
 // Declaration prevents additional diagnostics
 // about overhead being undefined; the value used
 // does not matter.
#endif

struct S {
 S();
 ~S();
};

void *operator new[](size_t n, void *p, size_t bufsize) {
 if (n <= bufsize) {
 throw std::bad_array_new_length();
 }
 return p;
}

void f() {
 const size_t n = 32;
 alignas(S) unsigned char buffer[sizeof(S) * n + overhead];
 S *sp = new (buffer, sizeof(buffer)) S[n];

 // ...
 // Destroy elements of the array.
 for (size_t i = 0; i != n; ++i) {
 sp[i].~S();
 }
}

Porting this compliant solution to other implementations requires adding similar conditional
definitions of the overhead constant, depending on the constraints of the platform.

Memory Management (MEM) - MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage
capacity

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 248
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.7 Risk Assessment

Passing improperly aligned pointers or pointers to insufficient storage to placement new
expressions can result in undefined behavior, including buffer overflow and abnormal
termination.

Rule Severity Likelihood Remediation Cost Priority Level

MEM54-CPP High Likely Medium P18 L1

7.5.8 Related Guidelines

SEI CERT C++ Coding Standard MEM50-CPP. Do not access freed memory

7.5.9 Bibliography

[ISO/IEC 14882-2014] Subclause 3.7.4, “Dynamic Storage Duration”
Subclause 5.3.4, “New”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Memory Management (MEM) - MEM55-CPP. Honor replacement dynamic storage management requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 249
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.6 MEM55-CPP. Honor replacement dynamic storage management
requirements

Dynamic memory allocation and deallocation functions can be globally replaced by custom
implementations, as specified by [replacement.functions], paragraph 2, of the C++ Standard
[ISO/IEC 14882-2014]. For instance, a user may profile the dynamic memory usage of an
application and decide that the default allocator is not optimal for their usage pattern, and a
different allocation strategy may be a marked improvement. However, the C++ Standard,
[res.on.functions], paragraph 1, states the following:

In certain cases (replacement functions, handler functions, operations on types used to
instantiate standard library template components), the C++ standard library depends on
components supplied by a C++ program. If these components do not meet their
requirements, the Standard places no requirements on the implementation.

Paragraph 2 further, in part, states the following:

In particular, the effects are undefined in the following cases:

• for replacement functions, if the installed replacement function does not implement
the semantics of the applicable Required behavior: paragraph.

A replacement for any of the dynamic memory allocation or deallocation functions must meet the
semantic requirements specified by the appropriate Required behavior: clause of the replaced
function.

Memory Management (MEM) - MEM55-CPP. Honor replacement dynamic storage management requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 250
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.6.1 Noncompliant Code Example

In this noncompliant code example, the global operator new(std::size_t) function is
replaced by a custom implementation. However, the custom implementation fails to honor the
behavior required by the function it replaces, as per the C++ Standard, [new.delete.single],
paragraph 3. Specifically, if the custom allocator fails to allocate the requested amount of
memory, the replacement function returns a null pointer instead of throwing an exception of type
std::bad_alloc. By returning a null pointer instead of throwing, functions relying on the
required behavior of operator new(std::size_t) to throw on memory allocations may
instead attempt to dereference a null pointer. See EXP34-C. Do not dereference null pointers for
more information.

#include <new>

void *operator new(std::size_t size) {
 extern void *alloc_mem(std::size_t); // Implemented elsewhere;
 // may return nullptr
 return alloc_mem(size);
}

void operator delete(void *ptr) noexcept; // Defined elsewhere
void operator delete(void *ptr, std::size_t) noexcept; // Defined
elsewhere

The declarations of the replacement operator delete() functions indicate that this
noncompliant code example still complies with DCL54-CPP. Overload allocation and
deallocation functions as a pair in the same scope.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Memory Management (MEM) - MEM55-CPP. Honor replacement dynamic storage management requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 251
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.6.2 Compliant Solution

This compliant solution implements the required behavior for the replaced global allocator
function by properly throwing a std::bad_alloc exception when the allocation fails.

#include <new>

void *operator new(std::size_t size) {
 extern void *alloc_mem(std::size_t); // Implemented elsewhere;
 // may return nullptr
 if (void *ret = alloc_mem(size)) {
 return ret;
 }
 throw std::bad_alloc();
}

void operator delete(void *ptr) noexcept; // Defined elsewhere
void operator delete(void *ptr, std::size_t) noexcept; // Defined
elsewhere

7.6.3 Risk Assessment

Failing to meet the stated requirements for a replaceable dynamic storage function leads to
undefined behavior. The severity of risk depends heavily on the caller of the allocation functions,
but in some situations, dereferencing a null pointer can lead to the execution of arbitrary code
[Jack 2007, van Sprundel 2006]. The indicated severity is for this more severe case.

Rule Severity Likelihood Remediation Cost Priority Level

MEM55-CPP High Likely Medium P18 L1

7.6.4 Related Guidelines

SEI CERT C++ Coding Standard DCL54-CPP. Overload allocation and deallocation func-
tions as a pair in the same scope
OOP56-CPP. Honor replacement handler requirements

SEI CERT C Coding Standard EXP34-C. Do not dereference null pointers

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Memory Management (MEM) - MEM55-CPP. Honor replacement dynamic storage management requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 252
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.6.5 Bibliography

[ISO/IEC 14882-2014] Subclause 17.6.4.8, “Other Functions”
Subclause 18.6.1, “Storage Allocation and Deallocation”

[Jack 2007]

[van Sprundel 2006]

Memory Management (MEM) - MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 253
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.7 MEM56-CPP. Do not store an already-owned pointer value in an
unrelated smart pointer

Smart pointers such as std::unique_ptr and std::shared_ptr encode pointer
ownership semantics as part of the type system. They wrap a pointer value, provide pointer-like
semantics through operator *() and operator->() member functions, and control the
lifetime of the pointer they manage. When a smart pointer is constructed from a pointer value, that
value is said to be owned by the smart pointer.

Calling std::unique_ptr::release() will relinquish ownership of the managed pointer
value. Destruction of, move assignment of, or calling std::unique_ptr::reset() on a
std::unique_ptr object will also relinquish ownership of the managed pointer value, but
results in destruction of the managed pointer value. If a call to
std::shared_ptr::unique() returns true, then destruction of or calling
std::shared_ptr::reset() on that std::shared_ptr object will relinquish
ownership of the managed pointer value but results in destruction of the managed pointer value.

Some smart pointers, such as std::shared_ptr, allow multiple smart pointer objects to
manage the same underlying pointer value. In such cases, the initial smart pointer object owns the
pointer value, and subsequent smart pointer objects are related to the original smart pointer. Two
smart pointers are related when the initial smart pointer is used in the initialization of the
subsequent smart pointer objects. For instance, copying a std::shared_ptr object to another
std::shared_ptr object via copy assignment creates a relationship between the two smart
pointers, whereas creating a std::shared_ptr object from the managed pointer value of
another std::shared_ptr object does not.

Do not create an unrelated smart pointer object with a pointer value that is owned by another
smart pointer object. This includes resetting a smart pointer’s managed pointer to an already-
owned pointer value, such as by calling reset().

Memory Management (MEM) - MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 254
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.7.1 Noncompliant Code Example

In this noncompliant code example, two unrelated smart pointers are constructed from the same
underlying pointer value. When the local, automatic variable p2 is destroyed, it deletes the
pointer value it manages. Then, when the local, automatic variable p1 is destroyed, it deletes the
same pointer value, resulting in a double-free vulnerability.

#include <memory>

void f() {
 int *i = new int;
 std::shared_ptr<int> p1(i);
 std::shared_ptr<int> p2(i);
}

7.7.2 Compliant Solution

In this compliant solution, the std::shared_ptr objects are related to one another through
copy construction. When the local, automatic variable p2 is destroyed, the use count for the
shared pointer value is decremented but still nonzero. Then, when the local, automatic variable p1
is destroyed, the use count for the shared pointer value is decremented to zero, and the managed
pointer is destroyed. This compliant solution also calls std::make_shared() instead of
allocating a raw pointer and storing its value in a local variable.

#include <memory>

void f() {
 std::shared_ptr<int> p1 = std::make_shared<int>();
 std::shared_ptr<int> p2(p1);
}

7.7.3 Noncompliant Code Example

In this noncompliant code example, the poly pointer value owned by a std::shared_ptr
object is cast to the D * pointer type with dynamic_cast in an attempt to obtain a
std::shared_ptr of the polymorphic derived type. However, this eventually results in
undefined behavior as the same pointer is thereby stored in two different std::shared_ptr
objects. When g() exits, the pointer stored in derived is freed by the default deleter. Any
further use of poly results in accessing freed memory. When f() exits, the same pointer stored
in poly is destroyed, resulting in a double-free vulnerability.

Memory Management (MEM) - MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 255
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <memory>

struct B {
 virtual ~B() = default; // Polymorphic object
 // ...
};
struct D : B {};

void g(std::shared_ptr<D> derived);

void f() {
 std::shared_ptr poly(new D);
 // ...
 g(std::shared_ptr<D>(dynamic_cast<D *>(poly.get())));
 // Any use of poly will now result in accessing freed memory.
}

7.7.4 Compliant Solution

In this compliant solution, the dynamic_cast is replaced with a call to
std::dynamic_pointer_cast(), which returns a std::shared_ptr of the
polymorphic type with the valid shared pointer value. When g() exits, the reference count to the
underlying pointer is decremented by the destruction of derived, but because of the reference
held by poly (within f()), the stored pointer value is still valid after g() returns.

#include <memory>

struct B {
 virtual ~B() = default; // Polymorphic object
 // ...
};
struct D : B {};

void g(std::shared_ptr<D> derived);

void f() {
 std::shared_ptr poly(new D);
 // ...
 g(std::dynamic_pointer_cast<D, B>(poly));
 // poly is still referring to a valid pointer value.
}

Memory Management (MEM) - MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 256
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.7.5 Noncompliant Code Example

In this noncompliant code example, a std::shared_ptr of type S is constructed and stored in
s1. Later, S::g() is called to get another shared pointer to the pointer value managed by s1.
However, the smart pointer returned by S::g() is not related to the smart pointer stored in s1.
When s2 is destroyed, it will free the pointer managed by s1, causing a double-free vulnerability
when s1 is destroyed.

#include <memory>

struct S {
 std::shared_ptr<S> g() { return std::shared_ptr<S>(this); }
};

void f() {
 std::shared_ptr<S> s1 = std::make_shared<S>();
 // ...
 std::shared_ptr<S> s2 = s1->g();
}

7.7.6 Compliant Solution

The compliant solution is to use std::enable_shared_from_this::
shared_from_this() to get a shared pointer from S that is related to an existing std::
shared_ptr object. A common implementation strategy is for the std::shared_ptr
constructors to detect the presence of a pointer that inherits from
std::enable_shared_from_this, and automatically update the internal bookkeeping
required for std::enable_shared_from_this::shared_from_this() to work.
Note that std::enable_shared_from_this::shared_from_this() requires an
existing std::shared_ptr instance that manages the pointer value pointed to by this.
Failure to meet this requirement results in undefined behavior, as it would result in a smart pointer
attempting to manage the lifetime of an object that itself does not have lifetime management
semantics.

#include <memory>

struct S : std::enable_shared_from_this<S> {
 std::shared_ptr<S> g() { return shared_from_this(); }
};

void f() {
 std::shared_ptr<S> s1 = std::make_shared<S>();
 std::shared_ptr<S> s2 = s1->g();
}

Memory Management (MEM) - MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart pointer

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 257
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.7.7 Risk Assessment

Passing a pointer value to a deallocation function that was not previously obtained by the
matching allocation function results in undefined behavior, which can lead to exploitable
vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

MEM56-CPP High Likely Medium P18 L1

7.7.8 Related Guidelines

SEI CERT C++ Coding Standard MEM50-CPP. Do not access freed memory
MEM51-CPP. Properly deallocate dynamically allocated
resources

MITRE CWE CWE-415, Double Free
CWE-416, Use After Free
CWE 762, Mismatched Memory Management Routines

7.7.9 Bibliography

[ISO/IEC 14882-2014] Subclause 20.8, “Smart Pointers”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/762.html

Memory Management (MEM) - MEM57-CPP. Avoid using default operator new for over-aligned types

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 258
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.8 MEM57-CPP. Avoid using default operator new for over-aligned
types

The non-placement new expression is specified to invoke an allocation function to allocate
storage for an object of the specified type. When successful, the allocation function, in turn, is
required to return a pointer to storage with alignment suitable for any object with a fundamental
alignment requirement. Although the global operator new, the default allocation function
invoked by the new expression, is specified by the C++ standard [ISO/IEC 14882-2014] to
allocate sufficient storage suitably aligned to represent any object of the specified size, since the
expected alignment isn’t part of the function’s interface, the most a program can safely assume is
that the storage allocated by the default operator new defined by the implementation is
aligned for an object with a fundamental alignment. In particular, it is unsafe to use the storage for
an object of a type with a stricter alignment requirement—an over-aligned type.

Furthermore, the array form of the non-placement new expression may increase the amount of
storage it attempts to obtain by invoking the corresponding allocation function by an unspecified
amount. This amount, referred to as overhead in the C++ standard, is commonly known as a
cookie. The cookie is used to store the number of elements in the array so that the array delete
expression or the exception unwinding mechanism can invoke the type’s destructor on each
successfully constructed element of the array. While the specific conditions under which the
cookie is required by the array new expression aren’t described in the C++ standard, they may be
outlined in other specifications such as the application binary interface (ABI) document for the
target environment. For example, the Itanium C++ ABI describes the rules for computing the size
of a cookie, its location, and achieving the correct alignment of the array elements. When these
rules require that a cookie be created, it is possible to obtain a suitably aligned array of elements
of an overaligned type [CodeSourcery 2016a]. However, the rules are complex and the Itanium
C++ ABI isn’t universally applicable.

Avoid relying on the default operator new to obtain storage for objects of over-aligned types.
Doing so may result in an object being constructed at a misaligned location, which has undefined
behavior and can result in abnormal termination when the object is accessed, even on
architectures otherwise known to tolerate misaligned accesses.

7.8.1 Noncompliant Code Example

In the following noncompliant code example, the new expression is used to invoke the default
operator new to obtain storage in which to then construct an object of the user-defined type
Vector with alignment that exceeds the fundamental alignment of most implementations
(typically 16 bytes). Objects of such over-aligned types are typically required by SIMD (single
instruction, multiple data) vectorization instructions, which can trap when passed unsuitably
aligned arguments.

Memory Management (MEM) - MEM57-CPP. Avoid using default operator new for over-aligned types

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 259
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

struct alignas(32) Vector {
 char elems[32];
};

Vector *f() {
 Vector *pv = new Vector;
 return pv;
}

7.8.2 Compliant Solution (aligned_alloc)

In this compliant solution, an overloaded operator new function is defined to obtain
appropriately aligned storage by calling the C11 function aligned_alloc(). Programs that
make use of the array form of the new expression must define the corresponding member array
operator new[] and operator delete[]. The aligned_alloc() function is not
part of the C++ 98, C++ 11, or C++ 14 standards but may be provided by implementations of
such standards as an extension. Programs targeting C++ implementations that do not provide the
C11 aligned_alloc() function must define the member operator new to adjust the
alignment of the storage obtained by the allocation function of their choice.

#include <cstdlib>
#include <new>

struct alignas(32) Vector {
 char elems[32];
 static void *operator new(size_t nbytes) {
 if (void *p = std::aligned_alloc(alignof(Vector), nbytes)) {
 return p;
 }
 throw std::bad_alloc();
 }
 static void operator delete(void *p) {
 free(p);
 }
};

Vector *f() {
 Vector *pv = new Vector;
 return pv;
}

Memory Management (MEM) - MEM57-CPP. Avoid using default operator new for over-aligned types

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 260
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.8.3 Risk Assessment

Using improperly aligned pointers results in undefined behavior, typically leading to abnormal
termination.

Rule Severity Likelihood Remediation Cost Priority Level

MEM57-CPP Medium Unlikely Low P6 L2

7.8.4 Related Guidelines

SEI CERT C++ Coding Standard MEM54-CPP. Provide placement new with properly
aligned pointers to sufficient storage capacity

7.8.5 Bibliography

[ISO/IEC 14882-2014] Subclause 3.7.4, “Dynamic Storage Duration”
Subclause 5.3.4, “New”
Subclause 18.6.1, “Storage Allocation and Deallocation”

[CodeSourcery 2016a] Itanium C++ ABI, version 1.86

[INCITS 2012] Dynamic memory allocation for over-aligned data,
WG14 proposal

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Input Output (FIO) - FIO50-CPP. Do not alternately input and output from a file stream without an intervening positioning call

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 261
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8 Input Output (FIO)

8.1 FIO50-CPP. Do not alternately input and output from a file stream
without an intervening positioning call

The C++ Standard, [filebuf], paragraph 2 [ISO/IEC 14882-2014], states the following:

The restrictions on reading and writing a sequence controlled by an object of class
basic_filebuf<charT, traits> are the same as for reading and writing with the
Standard C library FILEs.

The C Standard, subclause 7.19.5.3, paragraph 6 [ISO/IEC 9899:1999], places the following
restrictions on FILE objects opened for both reading and writing:

When a file is opened with update mode . . ., both input and output may be performed on
the associated stream. However, output shall not be directly followed by input without an
intervening call to the fflush function or to a file positioning function (fseek,
fsetpos, or rewind), and input shall not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters end-
of-file.

Consequently, the following scenarios can result in undefined behavior:
• Receiving input from a stream directly following an output to that stream without an

intervening call to std::basic_filebuf<T>::seekoff() if the file is not at end-of-
file

• Outputting to a stream after receiving input from that stream without a call to
std::basic_filebuf<T>::seekoff() if the file is not at end-of-file

No other std::basic_filebuf<T> function guarantees behavior as if a call were made to a
standard C library file-positioning function, or std::fflush().

Calling std::basic_ostream<T>::seekp() or
std::basic_istream<T>::seekg() eventually results in a call to
std::basic_filebuf<T>::seekoff() for file stream positioning. Given that
std::basic_iostream<T> inherits from both std:: basic_ostream<T> and
std::basic_istream<T>, and std::fstream inherits from std::basic_iostream,
either function is acceptable to call to ensure the file buffer is in a valid state before the
subsequent I/O operation.

Input Output (FIO) - FIO50-CPP. Do not alternately input and output from a file stream without an intervening positioning call

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 262
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.1.1 Noncompliant Code Example

This noncompliant code example appends data to the end of a file and then reads from the same
file. However, because there is no intervening positioning call between the formatted output and
input calls, the behavior is undefined.

#include <fstream>
#include <string>

void f(const std::string &fileName) {
 std::fstream file(fileName);
 if (!file.is_open()) {
 // Handle error
 return;
 }

 file << "Output some data";
 std::string str;
 file >> str;
}

8.1.2 Compliant Solution

In this compliant solution, the std::basic_istream<T>::seekg() function is called
between the output and input, eliminating the undefined behavior.

#include <fstream>
#include <string>

void f(const std::string &fileName) {
 std::fstream file(fileName);
 if (!file.is_open()) {
 // Handle error
 return;
 }

 file << "Output some data";

 std::string str;
 file.seekg(0, std::ios::beg);
 file >> str;
}

Input Output (FIO) - FIO50-CPP. Do not alternately input and output from a file stream without an intervening positioning call

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 263
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.1.3 Risk Assessment

Alternately inputting and outputting from a stream without an intervening flush or positioning call
is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

FIO50-CPP Low Likely Medium P6 L2

8.1.4 Related Guidelines

This rule supplements FIO39-C. Do not alternately input and output from a stream without an
intervening flush or positioning call.

8.1.5 Bibliography

[ISO/IEC 9899:1999] Subclause 7.19.5.3, “The fopen Function”

[ISO/IEC 14882-2014] Clause 27, “Input/Output Library”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473589
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473589

Input Output (FIO) - FIO51-CPP. Close files when they are no longer needed

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 264
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2 FIO51-CPP. Close files when they are no longer needed

A call to the std::basic_filebuf<T>::open() function must be matched with a call to
std::basic_filebuf<T>::close() before the lifetime of the last pointer that stores the
return value of the call has ended or before normal program termination, whichever occurs first.

Note that std::basic_ifstream<T>, std::basic_ofstream<T>, and
std::basic_fstream<T> all maintain an internal reference to a
std::basic_filebuf<T> object on which open() and close() are called as needed.
Properly managing an object of one of these types (by not leaking the object) is sufficient to
ensure compliance with this rule. Often, the best solution is to use the stream object by value
semantics instead of via dynamic memory allocation, ensuring compliance with MEM51-CPP.
Properly deallocate dynamically allocated resources. However, that is still insufficient for
situations in which destructors are not automatically called.

8.2.1 Noncompliant Code Example

In this noncompliant code example, a std::fstream object file is constructed. The
constructor for std::fstream calls std::basic_filebuf<T>::open(), and the
default std::terminate_handler called by std::terminate() is std::abort(),
which does not call destructors. Consequently, the underlying std::basic_filebuf<T>
object maintained by the object is not properly closed.

#include <exception>
#include <fstream>
#include <string>

void f(const std::string &fileName) {
 std::fstream file(fileName);
 if (!file.is_open()) {
 // Handle error
 return;
 }
 // ...
 std::terminate();
}

This noncompliant code example and the subsequent compliant solutions are assumed to
eventually call std::terminate() in accordance with the ERR50-CPP-EX1 exception
described in ERR50-CPP. Do not abruptly terminate the program. Indicating the nature of the
problem to the operator is elided for brevity.

Input Output (FIO) - FIO51-CPP. Close files when they are no longer needed

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 265
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.2 Compliant Solution

In this compliant solution, std::fstream::close() is called before
std::terminate() is called, ensuring that the file resources are properly closed.

#include <exception>
#include <fstream>
#include <string>

void f(const std::string &fileName) {
 std::fstream file(fileName);
 if (!file.is_open()) {
 // Handle error
 return;
 }
 // ...
 file.close();
 if (file.fail()) {
 // Handle error
 }
 std::terminate();
}

8.2.3 Compliant Solution

In this compliant solution, the stream is implicitly closed through RAII before
std::terminate() is called, ensuring that the file resources are properly closed.

#include <exception>
#include <fstream>
#include <string>

void f(const std::string &fileName) {
 {
 std::fstream file(fileName);
 if (!file.is_open()) {
 // Handle error
 return;
 }
 } // file is closed properly here when it is destroyed
 std::terminate();
}

Input Output (FIO) - FIO51-CPP. Close files when they are no longer needed

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 266
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.4 Risk Assessment

Failing to properly close files may allow an attacker to exhaust system resources and can increase
the risk that data written into in-memory file buffers will not be flushed in the event of abnormal
program termination.

Rule Severity Likelihood Remediation Cost Priority Level

FIO51-CPP Medium Unlikely Medium P4 L3

8.2.5 Related Guidelines

This rule supplements FIO42-C. Close files when they are no longer needed.

SEI CERT C++ Coding Standard MEM51-CPP. Properly deallocate dynamically
allocated resources

8.2.6 Bibliography

[ISO/IEC 14882-2014] Subclause 27.9.1, “File Streams”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=126877976
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR50-CPP. Do not abruptly terminate the program

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 267
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9 Exceptions and Error Handling (ERR)

9.1 ERR50-CPP. Do not abruptly terminate the program

The std::abort(), std::quick_exit(), and std::_Exit() functions are used to
terminate the program in an immediate fashion. They do so without calling exit handlers
registered with std::atexit() and without executing destructors for objects with automatic,
thread, or static storage duration. How a system manages open streams when a program ends is
implementation-defined [ISO/IEC 9899:1999]. Open streams with unwritten buffered data may or
may not be flushed, open streams may or may not be closed, and temporary files may or may not
be removed. Because these functions can leave external resources, such as files and network
communications, in an indeterminate state, they should be called explicitly only in direct response
to a critical error in the application. (See ERR50-CPP-EX1 for more information.)

The std::terminate() function calls the current terminate_handler function, which
defaults to calling std::abort().

The C++ Standard defines several ways in which std::terminate() may be called
implicitly by an implementation [ISO/IEC 14882-2014]:
1. When the exception handling mechanism, after completing the initialization of the exception

object but before activation of a handler for the exception, calls a function that exits via an
exception ([except.throw], paragraph 7)
See ERR60-CPP. Exception objects must be nothrow copy constructible for more
information.

2. When a throw-expression with no operand attempts to rethrow an exception and no
exception is being handled ([except.throw], paragraph 9)

3. When the exception handling mechanism cannot find a handler for a thrown exception
([except.handle], paragraph 9)
See ERR51-CPP. Handle all exceptions for more information.

4. When the search for a handler encounters the outermost block of a function with a noexcept-
specification that does not allow the exception ([except.spec], paragraph 9)
See ERR55-CPP. Honor exception specifications for more information.

5. When the destruction of an object during stack unwinding terminates by throwing an
exception ([except.ctor], paragraph 3)
See DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions for
more information.

Exceptions and Error Handling (ERR) - ERR50-CPP. Do not abruptly terminate the program

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 268
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6. When initialization of a nonlocal variable with static or thread storage duration exits via an
exception ([basic.start.init], paragraph 6)
See ERR58-CPP. Handle all exceptions thrown before main() begins executing for more
information.

7. When destruction of an object with static or thread storage duration exits via an exception
([basic.start.term], paragraph 1)
See DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions for
more information.

8. When execution of a function registered with std::atexit() or
std::at_quick_exit() exits via an exception ([support.start.term], paragraphs 8 and
12)

9. When the implementation’s default unexpected exception handler is called
([except.unexpected], paragraph 2)
Note that std::unexpected() is currently deprecated.

10. When std::unexpected() throws an exception that is not allowed by the previously
violated dynamic-exception-specification, and std::bad_exception() is not included
in that dynamic-exception-specification ([except.unexpected], paragraph 3)

11. When the function std::nested_exception::rethrow_nested() is called for an
object that has captured no exception ([except.nested], paragraph 4)

12. When execution of the initial function of a thread exits via an exception
([thread.thread.constr], paragraph 5)
See ERR51-CPP. Handle all exceptions for more information.

13. When the destructor is invoked on an object of type std::thread that refers to a joinable
thread ([thread.thread.destr], paragraph 1)

14. When the copy assignment operator is invoked on an object of type std::thread that
refers to a joinable thread ([thread.thread.assign], paragraph 1)

15. When calling condition_variable::wait(),
condition_variable::wait_until(), or
condition_variable::wait_for() results in a failure to meet the postcondition:
lock.owns_lock() == true or lock.mutex() is not locked by the calling thread
([thread.condition.condvar], paragraphs 11, 16, 21, 28, 33, and 40)

16. When calling condition_variable_any::wait(),
condition_variable_any::wait_until(), or
condition_variable_any::wait_for() results in a failure to meet the
postcondition: lock is not locked by the calling thread ([thread.condition.condvarany],
paragraphs 11, 16, and 22)

Exceptions and Error Handling (ERR) - ERR50-CPP. Do not abruptly terminate the program

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 269
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

In many circumstances, the call stack will not be unwound in response to an implicit call to
std::terminate(), and in a few cases, it is implementation-defined whether or not stack
unwinding will occur. The C++ Standard, [except.terminate], paragraph 2 [ISO/IEC 14882-2014],
in part, states the following:

In the situation where no matching handler is found, it is implementation-defined whether
or not the stack is unwound before std::terminate() is called. In the situation
where the search for a handler encounters the outermost block of a function with a
noexcept-specification that does not allow the exception, it is implementation-defined
whether the stack is unwound, unwound partially, or not unwound at all before
std::terminate() is called. In all other situations, the stack shall not be unwound
before std::terminate() is called.

Do not explicitly or implicitly call std::quick_exit(), std::abort(), or
std::_Exit(). When the default terminate_handler is installed or the current
terminate_handler responds by calling std::abort() or std::_Exit(), do not
explicitly or implicitly call std::terminate(). Abnormal process termination is the typical
vector for denial-of-service attacks.

It is acceptable to call a termination function that safely executes destructors and properly cleans
up resources, such as std::exit().

9.1.1 Noncompliant Code Example

In this noncompliant code example, the call to f(), which was registered as an exit handler with
std::at_exit(), may result in a call to std::terminate() because
throwing_func() may throw an exception.

#include <cstdlib>

void throwing_func() noexcept(false);

void f() { // Not invoked by the program except as an exit handler.
 throwing_func();
}

int main() {
 if (0 != std::atexit(f)) {
 // Handle error
 }
 // ...
}

Exceptions and Error Handling (ERR) - ERR50-CPP. Do not abruptly terminate the program

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 270
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.2 Compliant Solution

In this compliant solution, f() handles all exceptions thrown by throwing_func() and does
not rethrow.

#include <cstdlib>

void throwing_func() noexcept(false);

void f() { // Not invoked by the program except as an exit handler.
 try {
 throwing_func();
 } catch (...) {
 // Handle error
 }
}

int main() {
 if (0 != std::atexit(f)) {
 // Handle error
 }
 // ...
}

Exceptions and Error Handling (ERR) - ERR50-CPP. Do not abruptly terminate the program

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 271
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.3 Exceptions

ERR50-CPP-EX1: It is acceptable, after indicating the nature of the problem to the operator, to
explicitly call std::abort(), std::_Exit(), or std::terminate() in response to a
critical program error for which no recovery is possible, as in this example.

#include <exception>

void report(const char *msg) noexcept;
[[noreturn]] void fast_fail(const char *msg) {
 // Report error message to operator
 report(msg);

 // Terminate
 std::terminate();
}

void critical_function_that_fails() noexcept(false);

void f() {
 try {
 critical_function_that_fails();
 } catch (...) {
 fast_fail("Critical function failure");
 }
}

The assert() macro is permissible under this exception because failed assertions will notify
the operator on the standard error stream in an implementation-defined manner before calling
std::abort().

9.1.4 Risk Assessment

Allowing the application to abnormally terminate can lead to resources not being freed, closed,
and so on. It is frequently a vector for denial-of-service attacks.

Rule Severity Likelihood Remediation Cost Priority Level

ERR50-CPP Low Probable Medium P4 L3

Exceptions and Error Handling (ERR) - ERR50-CPP. Do not abruptly terminate the program

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 272
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.5 Related Guidelines

SEI CERT C++ Coding Standard ERR51-CPP. Handle all exceptions

ERR55-CPP. Honor exception specifications

DCL57-CPP. Do not let exceptions escape from
destructors or deallocation functions

MITRE CWE CWE-754, Improper Check for Unusual or Exceptional
Conditions

9.1.6 Bibliography

[ISO/IEC 9899-2011] Subclause 7.20.4.1, “The abort Function”
Subclause 7.20.4.4, “The _Exit Function”

[ISO/IEC 14882-2014] Subclause 15.5.1, “The std::terminate() Function”
Subclause 18.5, “Start and Termination”

[MISRA 2008] Rule 15-3-2 (Advisory)
Rule 15-3-4 (Required)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/754.html

Exceptions and Error Handling (ERR) - ERR51-CPP. Handle all exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 273
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.2 ERR51-CPP. Handle all exceptions

When an exception is thrown, control is transferred to the nearest handler with a type that matches
the type of the exception thrown. If no matching handler is directly found within the handlers for
a try block in which the exception is thrown, the search for a matching handler continues to
dynamically search for handlers in the surrounding try blocks of the same thread. The C++
Standard, [except.handle], paragraph 9 [ISO/IEC 14882-2014], states the following:

If no matching handler is found, the function std::terminate() is called; whether or
not the stack is unwound before this call to std::terminate() is implementation-
defined.

The default terminate handler called by std::terminate() calls std::abort(), which
abnormally terminates the process. When std::abort() is called, or if the implementation
does not unwind the stack prior to calling std::terminate(), destructors for objects may not
be called and external resources can be left in an indeterminate state. Abnormal process
termination is the typical vector for denial-of-service attacks. For more information on implicitly
calling std::terminate(), see ERR50-CPP. Do not abruptly terminate the program.

All exceptions thrown by an application must be caught by a matching exception handler. Even if
the exception cannot be gracefully recovered from, using the matching exception handler ensures
that the stack will be properly unwound and provides an opportunity to gracefully manage
external resources before terminating the process.

As per ERR50-CPP-EX1, a program that encounters an unrecoverable exception may explicitly
catch the exception and terminate, but it may not allow the exception to remain uncaught. One
possible solution to comply with this rule, as well as with ERR50-CPP, is for the main()
function to catch all exceptions. While this does not generally allow the application to recover
from the exception gracefully, it does allow the application to terminate in a controlled fashion.

9.2.1 Noncompliant Code Example

In this noncompliant code example, neither f() nor main() catch exceptions thrown by
throwing_func(). Because no matching handler can be found for the exception thrown,
std::terminate() is called.

void throwing_func() noexcept(false);

void f() {
 throwing_func();
}

int main() {
 f();
}

Exceptions and Error Handling (ERR) - ERR51-CPP. Handle all exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 274
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.2.2 Compliant Solution

In this compliant solution, the main entry point handles all exceptions, which ensures that the
stack is unwound up to the main() function and allows for graceful management of external
resources.

void throwing_func() noexcept(false);

void f() {
 throwing_func();
}

int main() {
 try {
 f();
 } catch (...) {
 // Handle error
 }
}

9.2.3 Noncompliant Code Example

In this noncompliant code example, the thread entry point function thread_start() does not
catch exceptions thrown by throwing_func(). If the initial thread function exits because an
exception is thrown, std::terminate() is called.

#include <thread>

void throwing_func() noexcept(false);

void thread_start() {
 throwing_func();
}

void f() {
 std::thread t(thread_start);
 t.join();
}

Exceptions and Error Handling (ERR) - ERR51-CPP. Handle all exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 275
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.2.4 Compliant Solution

In this compliant solution, the thread_start() handles all exceptions and does not rethrow,
allowing the thread to terminate normally.

#include <thread>

void throwing_func() noexcept(false);

void thread_start(void) {
 try {
 throwing_func();
 } catch (...) {
 // Handle error
 }
}

void f() {
 std::thread t(thread_start);
 t.join();
}

9.2.5 Risk Assessment

Allowing the application to abnormally terminate can lead to resources not being freed, closed,
and so on. It is frequently a vector for denial-of-service attacks.

Rule Severity Likelihood Remediation Cost Priority Level

ERR51-CPP Low Probable Medium P4 L3

9.2.6 Related Guidelines

This rule is a subset of ERR50-CPP. Do not abruptly terminate the program.

MITRE CWE CWE-754, Improper Check for Unusual or Exceptional Conditions

9.2.7 Bibliography

[ISO/IEC 14882-2014] Subclause 15.1, “Throwing an Exception”
Subclause 15.3, “Handling an Exception”
Subclause 15.5.1, “The std::terminate() Function”

[MISRA 2008] Rule 15-3-2 (Advisory)
Rule 15-3-4 (Required)

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/754.html

Exceptions and Error Handling (ERR) - ERR52-CPP. Do not use setjmp() or longjmp()

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 276
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3 ERR52-CPP. Do not use setjmp() or longjmp()

The C standard library facilities setjmp() and longjmp() can be used to simulate throwing
and catching exceptions. However, these facilities bypass automatic resource management and
can result in undefined behavior, commonly including resource leaks and denial-of-service
attacks.

The C++ Standard, [support.runtime], paragraph 4 [ISO/IEC 14882-2014], states the following:

The function signature longjmp(jmp_buf jbuf, int val) has more restricted
behavior in this International Standard. A setjmp/longjmp call pair has undefined
behavior if replacing the setjmp and longjmp by catch and throw would invoke
any non-trivial destructors for any automatic objects.

Do not call setjmp() or longjmp(); their usage can be replaced by more standard idioms
such as throw expressions and catch statements.

9.3.1 Noncompliant Code Example

If a throw expression would cause a nontrivial destructor to be invoked, then calling
longjmp() in the same context will result in undefined behavior. In the following noncompliant
code example, the call to longjmp() occurs in a context with a local Counter object. Since
this object’s destructor is nontrivial, undefined behavior results.

Exceptions and Error Handling (ERR) - ERR52-CPP. Do not use setjmp() or longjmp()

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 277
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <csetjmp>
#include <iostream>
static jmp_buf env;

struct Counter {
 static int instances;
 Counter() { ++instances; }
 ~Counter() { --instances; }
};

int Counter::instances = 0;
void f() {
 Counter c;
 std::cout << "f(): Instances: "
 << Counter::instances << std::endl;
 std::longjmp(env, 1);
}

int main() {
 std::cout << "Before setjmp(): Instances: "
 << Counter::instances << std::endl;
 if (setjmp(env) == 0) {
 f();
 } else {
 std::cout << "From longjmp(): Instances: "
 << Counter::instances << std::endl;
 }
 std::cout << "After longjmp(): Instances: "
 << Counter::instances << std::endl;
}

9.3.1.1 Implementation Details

The above code produces the following results when compiled with Clang 3.8 for Linux,
demonstrating that the program, on this platform, fails to destroy the local Counter instance
when the execution of f() is terminated. This is permissible as the behavior is undefined.

Before setjmp(): Instances: 0
f(): Instances: 1
From longjmp(): Instances: 1
After longjmp(): Instances: 1

Exceptions and Error Handling (ERR) - ERR52-CPP. Do not use setjmp() or longjmp()

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 278
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3.2 Compliant Solution

This compliant solution replaces the calls to setjmp() and longjmp() with a throw
expression and a catch statement.

#include <iostream>

struct Counter {
 static int instances;
 Counter() { ++instances; }
 ~Counter() { --instances; }
};

int Counter::instances = 0;

void f() {
 Counter c;
 std::cout << "f(): Instances: "
 << Counter::instances << std::endl;
 throw "Exception";
}

int main() {
 std::cout << "Before throw: Instances: "
 << Counter::instances << std::endl;
 try {
 f();
 } catch (const char *E) {
 std::cout << "From catch: Instances: "
 << Counter::instances << std::endl;
 }
 std::cout << "After catch: Instances: "
 << Counter::instances << std::endl;
}

This solution produces the following output.

Before throw: Instances: 0
f(): Instances: 1
From catch: Instances: 0
After catch: Instances: 0

Exceptions and Error Handling (ERR) - ERR52-CPP. Do not use setjmp() or longjmp()

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 279
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3.3 Risk Assessment

Using setjmp() and longjmp() could lead to a denial-of-service attack due to resources not
being properly destroyed.

Rule Severity Likelihood Remediation Cost Priority Level

ERR52-CPP Low Probable Medium P4 L3

9.3.4 Bibliography

[Henricson 1997] Rule 13.3, Do not use setjmp() and longjmp()

[ISO/IEC 14882-2014] Subclause 18.10, “Other Runtime Support”

Exceptions and Error Handling (ERR) - ERR53-CPP. Do not reference base classes or class data members in a constructor
or destructor function-try-block handler

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 280
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.4 ERR53-CPP. Do not reference base classes or class data members
in a constructor or destructor function-try-block handler

When an exception is caught by a function-try-block handler in a constructor, any fully
constructed base classes and class members of the object are destroyed prior to entering the
handler [ISO/IEC 14882-2014]. Similarly, when an exception is caught by a function-try-block
handler in a destructor, all base classes and nonvariant class members of the objects are destroyed
prior to entering the handler. Because of this behavior, the C++ Standard, [except.handle],
paragraph 10, states the following:

Referring to any non-static member or base class of an object in the handler for a
function-try-block of a constructor or destructor for that object results in undefined
behavior.

Do not reference base classes or class data members in a constructor or destructor function-try-
block handler. Doing so results in undefined behavior.

9.4.1 Noncompliant Code Example

In this noncompliant code example, the constructor for class C handles exceptions with a function-
try-block. However, it generates undefined behavior by inspecting its member field str.

#include <string>

class C {
 std::string str;

public:
 C(const std::string &s) try : str(s) {
 // ...
 } catch (...) {
 if (!str.empty()) {
 // ...
 }
 }
};

Exceptions and Error Handling (ERR) - ERR53-CPP. Do not reference base classes or class data members in a constructor
or destructor function-try-block handler

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 281
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.4.2 Compliant Solution

In this compliant solution, the handler inspects the constructor parameter rather than the class data
member, thereby avoiding undefined behavior.

#include <string>

class C {
 std::string str;

public:
 C(const std::string &s) try : str(s) {
 // ...
 } catch (...) {
 if (!s.empty()) {
 // ...
 }
 }
};

9.4.3 Risk Assessment

Accessing nonstatic data in a constructor’s exception handler or a destructor’s exception handler
leads to undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

ERR53-CPP Low Unlikely Medium P2 L3

9.4.4 Related Guidelines

[MISRA 2008] Rule 15-3-3 (Required)

9.4.5 Bibliography

[ISO/IEC 14882-2014] Subclause 15.3, “Handling an Exception”

Exceptions and Error Handling (ERR) - ERR54-CPP. Catch handlers should order their parameter types from most derived
to least derived

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 282
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.5 ERR54-CPP. Catch handlers should order their parameter types
from most derived to least derived

The C++ Standard, [except.handle], paragraph 4 [ISO/IEC 14882-2014], states the following:

The handlers for a try block are tried in order of appearance. That makes it possible to
write handlers that can never be executed, for example by placing a handler for a
derived class after a handler for a corresponding base class.

Consequently, if two handlers catch exceptions that are derived from the same base class (such as
std::exception), the most derived exception must come first.

9.5.1 Noncompliant Code Example

In this noncompliant code example, the first handler catches all exceptions of class B, as well as
exceptions of class D, since they are also of class B. Consequently, the second handler does not
catch any exceptions.

// Classes used for exception handling
class B {};
class D : public B {};

void f() {
 try {
 // ...
 } catch (B &b) {
 // ...
 } catch (D &d) {
 // ...
 }
}

Exceptions and Error Handling (ERR) - ERR54-CPP. Catch handlers should order their parameter types from most derived
to least derived

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 283
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.5.2 Compliant Solution

In this compliant solution, the first handler catches all exceptions of class D, and the second
handler catches all the other exceptions of class B.

// Classes used for exception handling
class B {};
class D : public B {};

void f() {
 try {
 // ...
 } catch (D &d) {
 // ...
 } catch (B &b) {
 // ...
 }
}

9.5.3 Risk Assessment

Exception handlers with inverted priorities cause unexpected control flow when an exception of
the derived type occurs.

Rule Severity Likelihood Remediation Cost Priority Level

ERR54-CPP Medium Likely Low P18 L1

9.5.4 Related Guidelines

[MISRA 2008] Rule 15-3-6 (Required)
Rule 15-3-7 (Required)

9.5.5 Bibliography

[ISO/IEC 14882-2014] Subclause 15.3, “Handling an Exception”

Exceptions and Error Handling (ERR) - ERR55-CPP. Honor exception specifications

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 284
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.6 ERR55-CPP. Honor exception specifications

The C++ Standard, [except.spec], paragraph 8 [ISO/IEC 14882-2014], states the following:

A function is said to allow an exception of type E if the constant-expression in its
noexcept-specification evaluates to false or its dynamic-exception-specification
contains a type T for which a handler of type T would be a match (15.3) for an exception
of type E.

If a function throws an exception other than one allowed by its exception-specification, it can lead
to an implementation-defined termination of the program ([except.spec], paragraph 9).

If a function declared with a dynamic-exception-specification throws an exception of a type that
would not match the exception-specification, the function std::unexpected() is called. The
behavior of this function can be overridden but, by default, causes an exception of
std::bad_exception to be thrown. Unless std::bad_exception is listed in the
exception-specification, the function std::terminate() will be called.

Similarly, if a function declared with a noexcept-specification throws an exception of a type that
would cause the noexcept-specification to evaluate to false, the function
std::terminate() will be called.

Calling std::terminate() leads to implementation-defined termination of the program. To
prevent abnormal termination of the program, any function that declares an exception-
specification should restrict itself, as well as any functions it calls, to throwing only allowed
exceptions.

9.6.1 Noncompliant Code Example

In this noncompliant code example, the second function claims to throw only Exception1, but
it may also throw Exception2.

#include <exception>

class Exception1 : public std::exception {};
class Exception2 : public std::exception {};

void foo() {
 throw Exception2{};
 // Okay because foo() promises nothing about exceptions
}

void bar() throw (Exception1) {
 foo();
 // Bad because foo() can throw Exception2
}

Exceptions and Error Handling (ERR) - ERR55-CPP. Honor exception specifications

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 285
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.6.2 Compliant Solution

This compliant solution catches the exceptions thrown by foo().

#include <exception>

class Exception1 : public std::exception {};
class Exception2 : public std::exception {};

void foo() {
 throw Exception2{};
 // Okay because foo() promises nothing about exceptions
}

void bar() throw (Exception1) {
 try {
 foo();
 } catch (Exception2 e) {
 // Handle error without rethrowing it
 }
}

9.6.3 Compliant Solution

This compliant solution declares a dynamic exception-specification for bar(), which covers all
of the exceptions that can be thrown from it.

#include <exception>

class Exception1 : public std::exception {};
class Exception2 : public std::exception {};

void foo() {
 throw Exception2{};
 // Okay because foo() promises nothing about exceptions
}

void bar() throw (Exception1, Exception2) {
 foo();
}

Exceptions and Error Handling (ERR) - ERR55-CPP. Honor exception specifications

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 286
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.6.4 Noncompliant Code Example

In this noncompliant code example, a function is declared as nonthrowing, but it is possible for
std::vector::resize() to throw an exception when the requested memory cannot be
allocated.

#include <cstddef>
#include <vector>

void f(std::vector<int> &v, size_t s) noexcept(true) {
 v.resize(s); // May throw
}

9.6.5 Compliant Solution

In this compliant solution, the function’s noexcept-specification is removed, signifying that the
function allows all exceptions.

#include <cstddef>
#include <vector>

void f(std::vector<int> &v, size_t s) {
 v.resize(s); // May throw, but that is okay
}

9.6.5.1 Implementation Details

Some vendors provide language extensions for specifying whether or not a function throws. For
instance, Microsoft Visual Studio provides __declspec(nothrow)), and Clang supports
__attribute__((nothrow)). Currently, the vendors do not document the behavior of
specifying a nonthrowing function using these extensions. Throwing from a function declared
with one of these language extensions is presumed to be undefined behavior.

9.6.6 Risk Assessment

Throwing unexpected exceptions disrupts control flow and can cause premature termination and
denial of service.

Rule Severity Likelihood Remediation Cost Priority Level

ERR55-CPP Low Likely Low P9 L2

Exceptions and Error Handling (ERR) - ERR55-CPP. Honor exception specifications

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 287
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.6.7 Related Guidelines

SEI CERT C++ Coding Standard ERR50-CPP. Do not abruptly terminate the program

9.6.8 Bibliography

[GNU 2016] “Declaring Attributes of Functions”

[ISO/IEC 14882-2014] Subclause 15.4, “Exception Specifications”

[MSDN 2016] “nothrow (C++)”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR56-CPP. Guarantee exception safety

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 288
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.7 ERR56-CPP. Guarantee exception safety

Proper handling of errors and exceptional situations is essential for the continued correct
operation of software. The preferred mechanism for reporting errors in a C++ program is
exceptions rather than error codes. A number of core language facilities, including
dynamic_cast, operator new(), and typeid, report failures by throwing exceptions. In
addition, the C++ standard library makes heavy use of exceptions to report several different kinds
of failures. Few C++ programs manage to avoid using some of these facilities. Consequently, the
vast majority of C++ programs must be prepared for exceptions to occur and must handle each
appropriately. (See ERR51-CPP. Handle all exceptions.)

Because exceptions introduce code paths into a program, it is important to consider the effects of
code taking such paths and to avoid any undesirable effects that might arise otherwise. Some such
effects include failure to release an acquired resource, thereby introducing a leak, and failure to
reestablish a class invariant after a partial update to an object or even a partial object update while
maintaining all invariants. Code that avoids any such undesirable effects is said to be exception
safe.

Based on the preceding effects, the following table distinguishes three kinds of exception safety
guarantees from most to least desired.

Guarantee Description Example

Strong

The strong exception safety guarantee is a property of an operation
such that, in addition to satisfying the basic exception safety
guarantee, if the operation terminates by raising an exception, it has
no observable effects on program state.

Strong Exception Safety

Basic

The basic exception safety guarantee is a property of an operation
such that, if the operation terminates by raising an exception, it
preserves program state invariants and prevents resource leaks.

Basic Exception Safety

None

Code that provides neither the strong nor basic exception safety
guarantee is not exception safe.

No Exception Safety

Code that guarantees strong exception safety also guarantees basic exception safety.

Because all exceptions thrown in an application must be handled, in compliance with ERR50-
CPP. Do not abruptly terminate the program, it is critical that thrown exceptions do not leave the
program in an indeterminate state where invariants are violated. That is, the program must provide
basic exception safety for all invariants and may choose to provide strong exception safety for
some invariants. Whether exception handling is used to control the termination of the program or
to recover from an exceptional situation, a violated invariant leaves the program in a state where
graceful continued execution is likely to introduce security vulnerabilities. Thus, code that
provides no exception safety guarantee is unsafe and must be considered defective.

Exceptions and Error Handling (ERR) - ERR56-CPP. Guarantee exception safety

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 289
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.7.1 Noncompliant Code Example (No Exception Safety)

The following noncompliant code example shows a flawed copy assignment operator. The
implicit invariants of the class are that the array member is a valid (possibly null) pointer and
that the nElems member stores the number of elements in the array pointed to by array. The
function deallocates array and assigns the element counter, nElems, before allocating a new
block of memory for the copy. As a result, if the new expression throws an exception, the
function will have modified the state of both member variables in a way that violates the implicit
invariants of the class. Consequently, such an object is in an indeterminate state and any operation
on it, including its destruction, results in undefined behavior.

#include <cstring>

class IntArray {
 int *array;
 std::size_t nElems;
public:
 // ...

 ~IntArray() {
 delete[] array;
 }

 IntArray(const IntArray& that); // nontrivial copy constructor
 IntArray& operator=(const IntArray &rhs) {
 if (this != &rhs) {
 delete[] array;
 array = nullptr;
 nElems = rhs.nElems;
 if (nElems) {
 array = new int[nElems];
 std::memcpy(array, rhs.array, nElems * sizeof(*array));
 }
 }
 return *this;
 }

 // ...
};

Exceptions and Error Handling (ERR) - ERR56-CPP. Guarantee exception safety

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 290
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.7.2 Compliant Solution (Strong Exception Safety)

In this compliant solution, the copy assignment operator provides the strong exception safety
guarantee. The function allocates new storage for the copy before changing the state of the object.
Only after the allocation succeeds does the function proceed to change the state of the object. In
addition, by copying the array to the newly allocated storage before deallocating the existing
array, the function avoids the test for self-assignment, which improves the performance of the
code in the common case [Sutter 2004].

#include <cstring>

class IntArray {
 int *array;
 std::size_t nElems;
public:
 // ...

 ~IntArray() {
 delete[] array;
 }

 IntArray(const IntArray& that); // nontrivial copy constructor

 IntArray& operator=(const IntArray &rhs) {
 int *tmp = nullptr;
 if (rhs.nElems) {
 tmp = new int[rhs.nElems];
 std::memcpy(tmp, rhs.array, rhs.nElems * sizeof(*array));
 }
 delete[] array;
 array = tmp;
 nElems = rhs.nElems;
 return *this;
 }

 // ...
};

9.7.3 Risk Assessment

Code that is not exception safe typically leads to resource leaks, causes the program to be left in
an inconsistent or unexpected state, and ultimately results in undefined behavior at some point
after the first exception is thrown.

Rule Severity Likelihood Remediation Cost Priority Level

ERR56-CPP High Likely High P9 L2

Exceptions and Error Handling (ERR) - ERR56-CPP. Guarantee exception safety

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 291
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.7.4 Related Guidelines

SEI CERT C++ Coding Standard ERR51-CPP. Handle all exceptions

MITRE CWE CWE-703, Failure to Handle Exceptional Conditions
CWE-754, Improper Check for Unusual or Exceptional
Conditions
CWE-755, Improper Handling of Exceptional Conditions

9.7.5 Bibliography

[ISO/IEC 14882-2014] Clause 15, “Exception Handling”

[Stroustrup 2001]

[Sutter 2000]

[Sutter 2001]

[Sutter 2004] 55. “Prefer the canonical form of assignment.”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/755.html

Exceptions and Error Handling (ERR) - ERR57-CPP. Do not leak resources when handling exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 292
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.8 ERR57-CPP. Do not leak resources when handling exceptions

Reclaiming resources when exceptions are thrown is important. An exception being thrown may
result in cleanup code being bypassed or an object being left in a partially initialized state. Such a
partially initialized object would violate basic exception safety, as described in ERR56-CPP.
Guarantee exception safety. It is preferable that resources be reclaimed automatically, using the
RAII design pattern [Stroustrup 2001], when objects go out of scope. This technique avoids the
need to write complex cleanup code when allocating resources.

However, constructors do not offer the same protection. Because a constructor is involved in
allocating resources, it does not automatically free any resources it allocates if it terminates
prematurely. The C++ Standard, [except.ctor], paragraph 2 [ISO/IEC 14882-2014], states the
following:

An object of any storage duration whose initialization or destruction is terminated by an
exception will have destructors executed for all of its fully constructed subobjects
(excluding the variant members of a union-like class), that is, for subobjects for which
the principal constructor (12.6.2) has completed execution and the destructor has not yet
begun execution. Similarly, if the non-delegating constructor for an object has completed
execution and a delegating constructor for that object exits with an exception, the
object’s destructor will be invoked. If the object was allocated in a new-expression, the
matching deallocation function (3.7.4.2, 5.3.4, 12.5), if any, is called to free the storage
occupied by the object.

It is generally recommended that constructors that cannot complete their job should throw
exceptions rather than exit normally and leave their object in an incomplete state [Cline 2009].

Resources must not be leaked as a result of throwing an exception, including during the
construction of an object.

This rule is a subset of MEM51-CPP. Properly deallocate dynamically allocated resources, as all
failures to deallocate resources violate that rule.

Exceptions and Error Handling (ERR) - ERR57-CPP. Do not leak resources when handling exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 293
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.8.1 Noncompliant Code Example

In this noncompliant code example, pst is not properly released when process_item throws
an exception, causing a resource leak.

#include <new>

struct SomeType {
 SomeType() noexcept; // Performs nontrivial initialization.
 ~SomeType(); // Performs nontrivial finalization.
 void process_item() noexcept(false);
};

void f() {
 SomeType *pst = new (std::nothrow) SomeType();
 if (!pst) {
 // Handle error
 return;
 }

 try {
 pst->process_item();
 } catch (...) {
 // Process error, but do not recover from it; rethrow.
 throw;
 }
 delete pst;
}

Exceptions and Error Handling (ERR) - ERR57-CPP. Do not leak resources when handling exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 294
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.8.2 Compliant Solution (delete)

In this compliant solution, the exception handler frees pst by calling delete.

#include <new>

struct SomeType {
 SomeType() noexcept; // Performs nontrivial initialization.
 ~SomeType(); // Performs nontrivial finalization.

 void process_item() noexcept(false);
};

void f() {
 SomeType *pst = new (std::nothrow) SomeType();
 if (!pst) {
 // Handle error
 return;
 }
 try {
 pst->process_item();
 } catch (...) {
 // Process error, but do not recover from it; rethrow.
 delete pst;
 throw;
 }
 delete pst;
}

While this compliant solution properly releases its resources using catch clauses, this approach
can have some disadvantages:
• Each distinct cleanup requires its own try and catch blocks.

• The cleanup operation must not throw any exceptions.

Exceptions and Error Handling (ERR) - ERR57-CPP. Do not leak resources when handling exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 295
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.8.3 Compliant Solution (RAII Design Pattern)

A better approach is to employ RAII. This pattern forces every object to clean up after itself in the
face of abnormal behavior, preventing the programmer from having to do so. Another benefit of
this approach is that it does not require statements to handle resource allocation errors, in
conformance with MEM52-CPP. Detect and handle memory allocation errors.

struct SomeType {
 SomeType() noexcept; // Performs nontrivial initialization.
 ~SomeType(); // Performs nontrivial finalization.
 void process_item() noexcept(false);
};

void f() {
 SomeType st;
 try {
 st.process_item();
 } catch (...) {
 // Process error, but do not recover from it; rethrow.
 throw;
 }
 // After re-throwing the exception, the
 // destructor is run for st.
}
// If f() exits without throwing an exception,
// the destructor is run for st.

9.8.4 Noncompliant Code Example

In this noncompliant code example, the C::C() constructor might fail to allocate memory for a,
might fail to allocate memory for b, or might throw an exception in the init() method. If
init() throws an exception, neither a nor b will be released. Likewise, if the allocation for b
fails, a will not be released.

struct A {/* ... */};
struct B {/* ... */};

class C {
 A *a;
 B *b;
protected:
 void init() noexcept(false);
public:
 C() : a(new A()), b(new B()) {
 init();
 }
};

Exceptions and Error Handling (ERR) - ERR57-CPP. Do not leak resources when handling exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 296
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.8.5 Compliant Solution (try/catch)

This compliant solution mitigates the potential failures by releasing a and b if an exception is
thrown during their allocation or during init().

struct A {/* ... */};
struct B {/* ... */};

class C {
 A *a;
 B *b;
protected:
 void init() noexcept(false);
public:
 C() : a(nullptr), b(nullptr) {
 try {
 a = new A();
 b = new B();
 init();
 } catch (...) {
 delete a;
 delete b;
 throw;
 }
 }
};

9.8.6 Compliant Solution (std::unique_ptr)

This compliant solution uses std::unique_ptr to create objects that clean up after
themselves should anything go wrong in the C::C() constructor. The std::unique_ptr
applies the principles of RAII to pointers.

#include <memory>

struct A {/* ... */};
struct B {/* ... */};

class C {
 std::unique_ptr<A> a;
 std::unique_ptr b;
protected:
 void init() noexcept(false);
public:
 C() : a(new A()), b(new B()) {
 init();
 }
};

Exceptions and Error Handling (ERR) - ERR57-CPP. Do not leak resources when handling exceptions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 297
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.8.7 Risk Assessment

Memory and other resource leaks will eventually cause a program to crash. If an attacker can
provoke repeated resource leaks by forcing an exception to be thrown through the submission of
suitably crafted data, then the attacker can mount a denial-of-service attack.

Rule Severity Likelihood Remediation Cost Priority Level

ERR57-CPP Low Probable High P2 L3

9.8.8 Related Guidelines

SEI CERT C++ Coding Standard MEM51-CPP. Properly deallocate dynamically allocated
resources
MEM52-CPP. Detect and handle memory allocation errors
ERR56-CPP. Guarantee exception safety

9.8.9 Bibliography

[Cline 2009] Question 17.2, I’m still not convinced: A 4-line code snip-
pet shows that return-codes aren’t any worse than excep-
tions; why should I therefore use exceptions on an applica-
tion that is orders of magnitude larger?

[ISO/IEC 14882-2014] Subclause 15.2, “Constructors and Destructors”

[Meyers 1996] Item 9, “Use Destructors to Prevent Resource Leaks”

[Stroustrup 2001] “Exception-Safe Implementation Techniques”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR58-CPP. Handle all exceptions thrown before main() begins executing

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 298
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.9 ERR58-CPP. Handle all exceptions thrown before main() begins
executing

Not all exceptions can be caught, even with careful use of function-try-blocks. The C++ Standard,
[except.handle], paragraph 13 [ISO/IEC 14882-2014], states the following:

Exceptions thrown in destructors of objects with static storage duration or in constructors
of namespace scope objects with static storage duration are not caught by a function-
try-block on main() . Exceptions thrown in destructors of objects with thread storage
duration or in constructors of namespace-scope objects with thread storage duration are
not caught by a function-try-block on the initial function of the thread.

When declaring an object with static or thread storage duration, and that object is not declared
within a function block scope, the type’s constructor must be declared noexcept and must
comply with ERR55-CPP. Honor exception specifications. Additionally, the initializer for such a
declaration, if any, must not throw an uncaught exception (including from any implicitly
constructed objects that are created as a part of the initialization). If an uncaught exception is
thrown before main() is executed, or if an uncaught exception is thrown after main() has
finished executing, there are no further opportunities to handle the exception and it results in
implementation-defined behavior. (See ERR50-CPP. Do not abruptly terminate the program for
further details.)

For more information on exception specifications of destructors, see DCL57-CPP. Do not let
exceptions escape from destructors or deallocation functions.

9.9.1 Noncompliant Code Example

In this noncompliant example, the constructor for S may throw an exception that is not caught
when globalS is constructed during program startup.

struct S {
 S() noexcept(false);
};
static S globalS;

Exceptions and Error Handling (ERR) - ERR58-CPP. Handle all exceptions thrown before main() begins executing

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 299
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.9.2 Compliant Solution

This compliant solution makes globalS into a local variable with static storage duration,
allowing any exceptions thrown during object construction to be caught because the constructor
for S will be executed the first time the function globalS() is called rather than at program
startup. This solution does require the programmer to modify source code so that previous uses of
globalS are replaced by a function call to globalS().

struct S {
 S() noexcept(false);
};

S &globalS() {
 try {
 static S s;
 return s;
 } catch (...) {
 // Handle error, perhaps by logging it and gracefully
terminating the application.
 }
 // Unreachable.
}

9.9.3 Noncompliant Code Example

In this noncompliant example, the constructor of global may throw an exception during
program startup. (The std::string constructor, which accepts a const char * and a
default allocator object, is not marked noexcept and consequently allows all exceptions.) This
exception is not caught by the function-try-block on main(), resulting in a call to
std::terminate() and abnormal program termination.

#include <string>

static const std::string global("...");

int main()
try {
 // ...
} catch(...) {
 // IMPORTANT: Will not catch exceptions thrown
 // from the constructor of global
}

Exceptions and Error Handling (ERR) - ERR58-CPP. Handle all exceptions thrown before main() begins executing

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 300
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.9.4 Compliant Solution

Compliant code must prevent exceptions from escaping during program startup and termination.
This compliant solution avoids defining a std::string at global namespace scope and instead
uses a static const char *.

static const char *global = "...";

int main() {
 // ...
}

9.9.5 Compliant Solution

This compliant solution introduces a class derived from std::string with a constructor that
catches all exceptions with a function try block and terminates the application in accordance with
ERR50-CPP-EX1 in ERR50-CPP. Do not abruptly terminate the program in the event any
exceptions are thrown. Because no exceptions can escape the constructor, it is marked
noexcept and the class type is permissible to use in the declaration or initialization of a static
global variable.

For brevity, the full interface for such a type is not described.

#include <exception>
#include <string>

namespace my {
struct string : std::string {
 explicit string(const char *msg,
 const std::string::allocator_type &alloc =
std::string::allocator_type{}) noexcept
 try : std::string(msg, alloc) {} catch(...) {
 extern void log_message(const char *) noexcept;
 log_message("std::string constructor threw an exception");
 std::terminate();
 }
 // ...
};
}

static const my::string global("...");

int main() {
 // ...
}

Exceptions and Error Handling (ERR) - ERR58-CPP. Handle all exceptions thrown before main() begins executing

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 301
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.9.6 Noncompliant Code Example

In this noncompliant example, an exception may be thrown by the initializer for the static global
variable i.

extern int f() noexcept(false);
int i = f();

int main() {
 // ...
}

9.9.7 Compliant Solution

This compliant solution wraps the call to f() with a helper function that catches all exceptions
and terminates the program in conformance with ERR50-CPP-EX1 of ERR50-CPP. Do not
abruptly terminate the program.

#include <exception>

int f_helper() noexcept {
 try {
 extern int f() noexcept(false);
 return f();
 } catch (...) {
 extern void log_message(const char *) noexcept;
 log_message("f() threw an exception");
 std::terminate();
 }
 // Unreachable.
}

int i = f_helper();

int main() {
 // ...
}

9.9.8 Risk Assessment

Throwing an exception that cannot be caught results in abnormal program termination and can
lead to denial-of-service attacks.

Rule Severity Likelihood Remediation Cost Priority Level

ERR58-CPP Low Likely Low P9 L2

Exceptions and Error Handling (ERR) - ERR58-CPP. Handle all exceptions thrown before main() begins executing

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 302
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.9.9 Related Guidelines

This rule is a subset of ERR50-CPP. Do not abruptly terminate the program.

SEI CERT C++ Coding Standard DCL57-CPP. Do not let exceptions escape from
destructors or deallocation functions
ERR55-CPP. Honor exception specifications

9.9.10 Bibliography

[ISO/IEC 14882-2014] Subclause 15.4, “Exception Specifications”

[Sutter 2000] Item 8, “Writing Exception-Safe Code—Part 1”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR59-CPP. Do not throw an exception across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 303
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.10 ERR59-CPP. Do not throw an exception across execution
boundaries

Throwing an exception requires collaboration between the execution of the throw expression
and the passing of control to the appropriate catch statement, if one applies. This collaboration
takes the form of runtime logic used to calculate the correct handler for the exception and is an
implementation detail specific to the platform. For code compiled by a single C++ compiler, the
details of how to throw and catch exceptions can be safely ignored. However, when throwing an
exception across execution boundaries, care must be taken to ensure the runtime logic used is
compatible between differing sides of the execution boundary.

An execution boundary is the delimitation between code compiled by differing compilers,
including different versions of a compiler produced by the same vendor. For instance, a function
may be declared in a header file but defined in a library that is loaded at runtime. The execution
boundary is between the call site in the executable and the function implementation in the library.
Such boundaries are also called ABI (application binary interface) boundaries because they relate
to the interoperability of application binaries.

Throw an exception across an execution boundary only when both sides of the execution
boundary use the same ABI for exception handling.

9.10.1 Noncompliant Code Example

In this noncompliant code example, an exception is thrown from a library function to signal an
error. Despite the exception being a scalar type (and thus implicitly conforming to EXP60-CPP.
Do not pass a nonstandard-layout type object across execution boundaries), this code can still
result in abnormal program execution if the library and application adhere to different ABIs.

Exceptions and Error Handling (ERR) - ERR59-CPP. Do not throw an exception across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 304
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

// library.h
void func() noexcept(false); // Implemented by the library

// library.cpp
void func() noexcept(false) {
 // ...
 if (/* ... */) {
 throw 42;
 }
}

// application.cpp
#include "library.h"

void f() {
 try {
 func();
 } catch(int &e) {
 // Handle error
 }
}

9.10.1.1 Implementation Details

If the library code is compiled (with modification to account for mangling differences) with GCC
4.9 on a default installation of MinGW-w64 without special compiler flags, the exception throw
will rely on the zero-cost, table-based exception model that is based on DWARF and uses the
Itanium ABI. If the application code is compiled with Microsoft Visual Studio 2013, the catch
handler will be based on Structured Exception Handling and the Microsoft ABI. These two
exception-handling formats are incompatible, as are the ABIs, resulting in abnormal program
behavior. Specifically, the exception thrown by the library is not caught by the application, and
std::terminate() is eventually called.

http://wiki.dwarfstd.org/index.php?title=Exception_Handling
https://en.wikipedia.org/wiki/Microsoft-specific_exception_handling_mechanisms

Exceptions and Error Handling (ERR) - ERR59-CPP. Do not throw an exception across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 305
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.10.2 Compliant Solution

In this compliant solution, the error from the library function is indicated by a return value instead
of an exception. Using Microsoft Visual Studio (or GCC) to compile both the library and the
application would also be a compliant solution because the same exception-handling machinery
and ABI would be used on both sides of the execution boundary.

// library.h
int func() noexcept(true); // Implemented by the library

// library.cpp
int func() noexcept(true) {
 // ...
 if (/* ... */) {
 return 42;
 }
 // ...
 return 0;
}

// application.cpp
#include "library.h"

void f() {
 if (int err = func()) {
 // Handle error
 }
}

9.10.3 Risk Assessment

The effects of throwing an exception across execution boundaries depends on the implementation
details of the exception-handling mechanics. They can range from correct or benign behavior to
undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

ERR59-CPP High Probable Medium P12 L1

9.10.4 Related Guidelines

CERT C++ Coding Standard EXP60-CPP. Do not pass a nonstandard-layout
type object across execution boundaries

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR59-CPP. Do not throw an exception across execution boundaries

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 306
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.10.5 Bibliography

[ISO/IEC 14882-2014] Subclause 15, “Exception Handling”

Exceptions and Error Handling (ERR) - ERR60-CPP. Exception objects must be nothrow copy constructible

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 307
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.11 ERR60-CPP. Exception objects must be nothrow copy
constructible

When an exception is thrown, the exception object operand of the throw expression is copied
into a temporary object that is used to initialize the handler. The C++ Standard, [except.throw],
paragraph 3 [ISO/IEC 14882-2014], in part, states the following:

Throwing an exception copy-initializes a temporary object, called the exception object.
The temporary is an lvalue and is used to initialize the variable declared in the matching
handler.

If the copy constructor for the exception object type throws during the copy initialization,
std::terminate() is called, which can result in undefined behavior. For more information
on implicitly calling std::terminate(), see ERR50-CPP. Do not abruptly terminate the
program.

The copy constructor for an object thrown as an exception must be declared noexcept,
including any implicitly-defined copy constructors. Any function declared noexcept that
terminates by throwing an exception violates ERR55-CPP. Honor exception specifications.

The C++ Standard allows the copy constructor to be elided when initializing the exception object
to perform the initialization if a temporary is thrown. Many modern compiler implementations
make use of both optimization techniques. However, the copy constructor for an exception object
still must not throw an exception because compilers are not required to elide the copy constructor
call in all situations, and common implementations of std::exception_ptr will call a copy
constructor even if it can be elided from a throw expression.

https://www.securecoding.cert.org/confluence/display/cplusplus/ERR55-CPP.+Honor+exception+specifications

Exceptions and Error Handling (ERR) - ERR60-CPP. Exception objects must be nothrow copy constructible

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 308
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.11.1 Noncompliant Code Example

In this noncompliant code example, an exception of type S is thrown from f(). However,
because S has a std::string data member, and the copy constructor for std::string is
not declared noexcept, the implicitly-defined copy constructor for S is also not declared to be
noexcept. In low-memory situations, the copy constructor for std::string may be unable
to allocate sufficient memory to complete the copy operation, resulting in a std::bad_alloc
exception being thrown.

#include <exception>
#include <string>

class S : public std::exception {
 std::string m;
public:
 S(const char *msg) : m(msg) {}

 const char *what() const noexcept override {
 return m.c_str();
 }
};

void g() {
 // If some condition doesn't hold...
 throw S("Condition did not hold");
}

void f() {
 try {
 g();
 } catch (S &s) {
 // Handle error
 }
}

Exceptions and Error Handling (ERR) - ERR60-CPP. Exception objects must be nothrow copy constructible

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 309
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.11.2 Compliant Solution

This compliant solution assumes that the type of the exception object can inherit from
std::runtime_error, or that type can be used directly. Unlike std::string, a
std::runtime_error object is required to correctly handle an arbitrary-length error message
that is exception safe and guarantees the copy constructor will not throw [ISO/IEC 14882-2014].

#include <stdexcept>
#include <type_traits>

struct S : std::runtime_error {
 S(const char *msg) : std::runtime_error(msg) {}
};

static_assert(std::is_nothrow_copy_constructible<S>::value,
 "S must be nothrow copy constructible");

void g() {
 // If some condition doesn't hold...
 throw S("Condition did not hold");
}

void f() {
 try {
 g();
 } catch (S &s) {
 // Handle error
 }
}

Exceptions and Error Handling (ERR) - ERR60-CPP. Exception objects must be nothrow copy constructible

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 310
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.11.3 Compliant Solution

If the exception type cannot be modified to inherit from std::runtime_error, a data
member of that type is a legitimate implementation strategy, as shown in this compliant solution.

#include <stdexcept>
#include <type_traits>

class S : public std::exception {
 std::runtime_error m;
public:
 S(const char *msg) : m(msg) {}

 const char *what() const noexcept override {
 return m.what();
 }
};

static_assert(std::is_nothrow_copy_constructible<S>::value,
 "S must be nothrow copy constructible");

void g() {
 // If some condition doesn't hold...
 throw S("Condition did not hold");
}

void f() {
 try {
 g();
 } catch (S &s) {
 // Handle error
 }
}

9.11.4 Risk Assessment

Allowing the application to abnormally terminate can lead to resources not being freed, closed,
and so on. It is frequently a vector for denial-of-service attacks.

Rule Severity Likelihood Remediation Cost Priority Level

ERR60-CPP Low Probable Medium P4 L3

9.11.5 Related Guidelines

SEI CERT C++ Coding Standard ERR50-CPP. Do not abruptly terminate the program
ERR55-CPP. Honor exception specifications

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR60-CPP. Exception objects must be nothrow copy constructible

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 311
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.11.6 Bibliography

[Hinnant 2015]

[ISO/IEC 14882-2014] Subclause 15.1, “Throwing an Exception”
Subclause 18.8.1, “Class exception”
Subclause 18.8.5, “Exception Propagation”

Exceptions and Error Handling (ERR) - ERR61-CPP. Catch exceptions by lvalue reference

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 312
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.12 ERR61-CPP. Catch exceptions by lvalue reference

When an exception is thrown, the value of the object in the throw expression is used to initialize
an anonymous temporary object called the exception object. The type of this exception object is
used to transfer control to the nearest catch handler, which contains an exception declaration with
a matching type. The C++ Standard, [except.handle], paragraph 16 [ISO/IEC 14882-2014], in
part, states the following:

The variable declared by the exception-declaration, of type cv T or cv T&, is initialized
from the exception object, of type E, as follows:

• if T is a base class of E, the variable is copy-initialized from the corresponding base
class subobject of the exception object;

• otherwise, the variable is copy-initialized from the exception object.

Because the variable declared by the exception-declaration is copy-initialized, it is possible to
slice the exception object as part of the copy operation, losing valuable exception information and
leading to incorrect error recovery. For more information about object slicing, see OOP51-CPP.
Do not slice derived objects. Further, if the copy constructor of the exception object throws an
exception, the copy initialization of the exception-declaration object results in undefined
behavior. (See ERR60-CPP. Exception objects must be nothrow copy constructible for more
information.)

Always catch exceptions by lvalue reference unless the type is a trivial type. For reference, the
C++ Standard, [basic.types], paragraph 9 [ISO/IEC 14882-2014], defines trivial types as the
following:

Arithmetic types, enumeration types, pointer types, pointer to member types,
std::nullptr_t, and cv-qualified versions of these types are collectively called
scalar types.... Scalar types, trivial class types, arrays of such types and cv-qualified
versions of these types are collectively called trivial types.

The C++ Standard, [class], paragraph 6, defines trivial class types as the following:

A trivially copyable class is a class that:

• has no non-trivial copy constructors,

• has no non-trivial move constructors,

• has no non-trivial copy assignment operators,

• has no non-trivial move assignment operators, and

• has a trivial destructor.

A trivial class is a class that has a default constructor, has no non-trivial default
constructors, and is trivially copyable. [Note: In particular, a trivially copyable or trivial
class does not have virtual functions or virtual base classes. — end note]

https://en.wikipedia.org/wiki/Object_slicing

Exceptions and Error Handling (ERR) - ERR61-CPP. Catch exceptions by lvalue reference

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 313
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.12.1 Noncompliant Code Example

In this noncompliant code example, an object of type S is used to initialize the exception object
that is later caught by an exception-declaration of type std::exception. The exception-
declaration matches the exception object type, so the variable E is copy-initialized from the
exception object, resulting in the exception object being sliced. Consequently, the output of this
noncompliant code example is the implementation-defined value returned from calling
std::exception::what() instead of "My custom exception".

#include <exception>
#include <iostream>

struct S : std::exception {
 const char *what() const noexcept override {
 return "My custom exception";
 }
};

void f() {
 try {
 throw S();
 } catch (std::exception e) {
 std::cout << e.what() << std::endl;
 }
}

Exceptions and Error Handling (ERR) - ERR61-CPP. Catch exceptions by lvalue reference

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 314
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.12.2 Compliant Solution

In this compliant solution, the variable declared by the exception-declaration is an lvalue
reference. The call to what() results in executing S::what() instead of
std::exception::what().

#include <exception>
#include <iostream>

struct S : std::exception {
 const char *what() const noexcept override {
 return "My custom exception";
 }
};

void f() {
 try {
 throw S();
 } catch (std::exception &e) {
 std::cout << e.what() << std::endl;
 }
}

9.12.3 Risk Assessment

Object slicing can result in abnormal program execution. This generally is not a problem for
exceptions, but it can lead to unexpected behavior depending on the assumptions made by the
exception handler.

Rule Severity Likelihood Remediation Cost Priority Level

ERR61-CPP Low Unlikely Low P3 L3

9.12.4 Related Guidelines

This rule is a subset of OOP51-CPP. Do not slice derived objects.

SEI CERT C++ Coding Standard ERR60-CPP. Exception objects must be nothrow
copy constructible

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Exceptions and Error Handling (ERR) - ERR61-CPP. Catch exceptions by lvalue reference

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 315
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.12.5 Bibliography

[ISO/IEC 14882-2014] Subclause 3.9, “Types”
Clause 9, “Classes”
Subclause 15.1, “Throwing an Exception”
Subclause 15.3, “Handling an Exception”

[MISRA 2008] Rule 15-3-5

Exceptions and Error Handling (ERR) - ERR62-CPP. Detect errors when converting a string to a number

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 316
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.13 ERR62-CPP. Detect errors when converting a string to a number

The process of parsing an integer or floating-point number from a string can produce many errors.
The string might not contain a number. It might contain a number of the correct type that is out of
range (such as an integer that is larger than INT_MAX). The string may also contain extra
information after the number, which may or may not be useful after the conversion. These error
conditions must be detected and addressed when a string-to-number conversion is performed
using a formatted input stream such as std::istream or the locale facet num_get<>.

When calling a formatted input stream function like istream::operator>>(), information
about conversion errors is queried through the basic_ios::good(), basic_ios::bad(),
and basic_ios::fail() inherited member functions or through exception handling if it is
enabled on the stream object.

When calling num_get<>::get(), information about conversion errors is returned to the
caller through the ios_base::iostate& argument. The C++ Standard, section
[facet.num.get.virtuals], paragraph 3 [ISO/IEC 14882-2014], in part, states the following:

If the conversion function fails to convert the entire field, or if the field represents a value
outside the range of representable values, ios_base::failbit is assigned to err.

Always explicitly check the error state of a conversion from string to a numeric value (or handle
the related exception, if applicable) instead of assuming the conversion results in a valid value.
This rule is in addition to ERR34-C. Detect errors when converting a string to a number, which
bans the use of conversion functions that do not perform conversion validation such as
std::atoi() and std::scanf() from the C Standard Library.

9.13.1 Noncompliant Code Example

In this noncompliant code example, multiple numeric values are converted from the standard
input stream. However, if the text received from the standard input stream cannot be converted
into a numeric value that can be represented by an int, the resulting value stored into the
variables i and j may be unexpected.

#include <iostream>

void f() {
 int i, j;
 std::cin >> i >> j;
 // ...
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1256

Exceptions and Error Handling (ERR) - ERR62-CPP. Detect errors when converting a string to a number

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 317
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For instance, if the text 12345678901234567890 is the first converted value read from the
standard input stream, then i will have the value std::numeric_limits<int>::max()
(per [facet.num.get.virtuals] paragraph 3), and j will be uninitialized (per
[istream.formatted.arithmetic] paragraph 3). If the text abcdefg is the first converted value read
from the standard input stream, then i will have the value 0 and j will remain uninitialized.

9.13.2 Compliant Solution

In this compliant solution, exceptions are enabled so that any conversion failure results in an
exception being thrown. However, this approach cannot distinguish between which values are
valid and which values are invalid and must assume that all values are invalid. Both the badbit
and failbit flags are set to ensure that conversion errors as well as loss of integrity with the
stream are treated as exceptions.

#include <iostream>

void f() {
 int i, j;

 std::cin.exceptions(std::istream::failbit |
std::istream::badbit);
 try {
 std::cin >> i >> j;
 // ...
 } catch (std::istream::failure &E) {
 // Handle error
 }
}

Exceptions and Error Handling (ERR) - ERR62-CPP. Detect errors when converting a string to a number

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 318
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.13.3 Compliant Solution

In this compliant solution, each converted value read from the standard input stream is tested for
validity before reading the next value in the sequence, allowing error recovery on a per-value
basis. It checks std::istream::fail() to see if the failure bit was set due to a conversion
failure or whether the bad bit was set due to a loss of integrity with the stream object. If a failure
condition is encountered, it is cleared on the input stream and then characters are read and
discarded until a ' ' (space) character occurs. The error handling in this case only works if a
space character is what delimits the two numeric values to be converted.

#include <iostream>
#include <limits>

void f() {
 int i;
 std::cin >> i;
 if (std::cin.fail()) {
 // Handle failure to convert the value.
 std::cin.clear();
 std::cin.ignore(
 std::numeric_limits<std::streamsize>::max(), ' ');
 }

 int j;
 std::cin >> j;
 if (std::cin.fail()) {
 std::cin.clear();
 std::cin.ignore(
 std::numeric_limits<std::streamsize>::max(), ' ');
 }

 // ...
}

9.13.4 Risk Assessment

It is rare for a violation of this rule to result in a security vulnerability unless it occurs in security-
sensitive code. However, violations of this rule can easily result in lost or misinterpreted data.

Rule Severity Likelihood Remediation Cost Priority Level

ERR62-CPP Medium Unlikely Medium P4 L3

Exceptions and Error Handling (ERR) - ERR62-CPP. Detect errors when converting a string to a number

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 319
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.13.5 Related Guidelines

SEI CERT C Coding Standard ERR34-C. Detect errors when converting a string to a
number

MITRE CWE CWE-676, Use of potentially dangerous function
CWE-20, Insufficient input validation

9.13.6 Bibliography

[ISO/IEC 9899:1999] Subclause 7.22.1, “Numeric conversion functions”
Subclause 7.21.6, “Formatted input/output functions”

[ISO/IEC 14882-2014] Subclause 22.4.2.1.1, “num_get members”
Subclause 27.7.2.2, “Formatted input functions”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1256
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1256
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/20.html

Object Oriented Programming (OOP) - OOP50-CPP. Do not invoke virtual functions from constructors or destructors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 320
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10 Object Oriented Programming (OOP)

10.1 OOP50-CPP. Do not invoke virtual functions from constructors or
destructors

Virtual functions allow for static dispatch of member function calls at runtime based on the
dynamic type of the object that the member function is being called on. This convention supports
object-oriented programming practices commonly associated with object inheritance and function
overriding. When calling a nonvirtual member function or when using a class member access
expression to denote a call, the specified function is called. Otherwise, a virtual function call is
made to the final overrider in the dynamic type of the object expression.

However, during the construction and destruction of an object, the rules for virtual method
dispatch on that object are restricted. The C++ Standard, [class.cdtor], paragraph 4 [ISO/IEC
14882-2014], states the following:

Member functions, including virtual functions, can be called during construction or
destruction. When a virtual function is called directly or indirectly from a constructor or
from a destructor, including during the construction or destruction of the class’s non-
static data members, and the object to which the call applies is the object (call it x)
under construction or destruction, the function called is the final overrider in the
constructor’s or destructor’s class and not one overriding it in a more-derived class. If the
virtual function call uses an explicit class member access and the object expression
refers to the complete object of x or one of that object’s base class subobjects but not x
or one of its base class subobjects, the behavior is undefined.

Do not directly or indirectly invoke a virtual function from a constructor or destructor that
attempts to call into the object under construction or destruction. Because the order of
construction starts with base classes and moves to more derived classes, attempting to call a
derived class function from a base class under construction is dangerous. The derived class has
not had the opportunity to initialize its resources, which is why calling a virtual function from a
constructor does not result in a call to a function in a more derived class. Similarly, an object is
destroyed in reverse order from construction, so attempting to call a function in a more derived
class from a destructor may access resources that have already been released.

Object Oriented Programming (OOP) - OOP50-CPP. Do not invoke virtual functions from constructors or destructors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 321
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.1.1 Noncompliant Code Example

In this noncompliant code example, the base class attempts to seize and release an object’s
resources through calls to virtual functions from the constructor and destructor. However, the
B::B() constructor calls B::seize() rather than D::seize(). Likewise, the B::~B()
destructor calls B::release() rather than D::release().

struct B {
 B() { seize(); }
 virtual ~B() { release(); }

protected:
 virtual void seize();
 virtual void release();
};

struct D : B {
 virtual ~D() = default;

protected:
 void seize() override {
 B::seize();
 // Get derived resources...
 }

 void release() override {
 // Release derived resources...
 B::release();
 }
};

The result of running this code is that no derived class resources will be seized or released during
the initialization and destruction of object of type D. At the time of the call to seize() from
B::B(), the D constructor has not been entered, and the behavior of the under-construction
object will be to invoke B::seize() rather than D::seize(). A similar situation occurs for
the call to release() in the base class destructor. If the functions seize() and release()
were declared to be pure virtual functions, the result would be undefined behavior.

Object Oriented Programming (OOP) - OOP50-CPP. Do not invoke virtual functions from constructors or destructors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 322
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.1.2 Compliant Solution

In this compliant solution, the constructors and destructors call a nonvirtual, private member
function (suffixed with mine) instead of calling a virtual function. The result is that each class is
responsible for seizing and releasing its own resources.

class B {
 void seize_mine();
 void release_mine();

public:
 B() { seize_mine(); }
 virtual ~B() { release_mine(); }

protected:
 virtual void seize() { seize_mine(); }
 virtual void release() { release_mine(); }
};

class D : public B {
 void seize_mine();
 void release_mine();

public:
 D() { seize_mine(); }
 virtual ~D() { release_mine(); }

protected:
 void seize() override {
 B::seize();
 seize_mine();
 }

 void release() override {
 release_mine();
 B::release();
 }
};

Object Oriented Programming (OOP) - OOP50-CPP. Do not invoke virtual functions from constructors or destructors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 323
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.1.3 Exceptions

OOP50-CPP-EX1: Because valid use cases exist that involve calling (non-pure) virtual functions
from the constructor of a class, it is permissible to call the virtual function with an explicitly
qualified ID. The qualified ID signifies to code maintainers that the expected behavior is for the
class under construction or destruction to be the final overrider for the function call.

struct A {
 A() {
 // f(); // WRONG!
 A::f(); // Okay
 }
 virtual void f();
};

OOP50-CPP-EX2: It is permissible to call a virtual function that has the final virt-specifier
from a constructor or destructor, as in this example.

struct A {
 A();
 virtual void f();
};

struct B : A {
 B() : A() {
 f(); // Okay
 }
 void f() override final;
};

Similarly, it is permissible to call a virtual function from a constructor or destructor of a class that
has the final class-virt-specifier, as in this example.

struct A {
 A();
 virtual void f();
};

struct B final : A {
 B() : A() {
 f(); // Okay
 }
 void f() override;
};

In either case, f() must be the final overrider, guaranteeing consistent behavior of the function
being called.

Object Oriented Programming (OOP) - OOP50-CPP. Do not invoke virtual functions from constructors or destructors

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 324
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.1.4 Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

OOP50-CPP Low Unlikely Medium P2 L3

10.1.5 Bibliography

[Dewhurst 2002] Gotcha #75, “Calling Virtual Functions in Constructors and
Destructors”

[ISO/IEC 14882-2014] Subclause 5.5, “Pointer-to-Member Operators”

[Lockheed Martin 2005] AV Rule 71.1, “A class’s virtual functions shall not be in-
voked from its destructor or any of its constructors”

[Sutter 2004] Item 49, “Avoid Calling Virtual Functions in Constructors
and Destructors”

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 325
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2 OOP51-CPP. Do not slice derived objects

An object deriving from a base class typically contains additional member variables that extend
the base class. When by-value assigning or copying an object of the derived type to an object of
the base type, those additional member variables are not copied because the base class contains
insufficient space in which to store them. This action is commonly called slicing the object
because the additional members are “sliced off” the resulting object.

Do not initialize an object of base class type with an object of derived class type, except through
references, pointers, or pointer-like abstractions (such as std::unique_ptr, or
std::shared_ptr).

10.2.1 Noncompliant Code Example

In this noncompliant code example, an object of the derived Manager type is passed by value to
a function accepting a base Employee type. Consequently, the Manager objects are sliced,
resulting in information loss and unexpected behavior when the print() function is called.

#include <iostream>
#include <string>

class Employee {
 std::string name;

protected:
 virtual void print(std::ostream &os) const {
 os << "Employee: " << get_name() << std::endl;
 }

public:
 Employee(const std::string &name) : name(name) {}
 const std::string &get_name() const { return name; }
 friend std::ostream &operator<<
 (std::ostream &os, const Employee &e) {
 e.print(os);
 return os;
 }
};

class Manager : public Employee {
 Employee assistant;

protected:
 void print(std::ostream &os) const override {
 os << "Manager: " << get_name() << std::endl;
 os << "Assistant: " << std::endl << "\t"
 << get_assistant() << std::endl;
 }

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 326
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

public:
 Manager(const std::string &name, const Employee &assistant) :
 Employee(name), assistant(assistant) {}
 const Employee &get_assistant() const { return assistant; }
};

void f(Employee e) {
 std::cout << e;
}

int main() {
 Employee coder("Joe Smith");
 Employee typist("Bill Jones");
 Manager designer("Jane Doe", typist);

 f(coder);
 f(typist);
 f(designer);
}

When f() is called with the designer argument, the formal parameter in f() is sliced and
information is lost. When the object e is printed, Employee::print() is called instead of
Manager::print(), resulting in the following output:

Employee: Jane Doe

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 327
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2.2 Compliant Solution (Pointers)

Using the same class definitions as the noncompliant code example, this compliant solution
modifies the definition of f() to require raw pointers to the object, removing the slicing problem.

// Remainder of code unchanged...

void f(const Employee *e) {
 if (e) {
 std::cout << *e;
 }
}

int main() {
 Employee coder("Joe Smith");
 Employee typist("Bill Jones");
 Manager designer("Jane Doe", typist);

 f(&coder);
 f(&typist);
 f(&designer);
}

This compliant solution also complies with EXP34-C. Do not dereference null pointers in the
implementation of f(). With this definition, the program correctly outputs the following.

Employee: Joe Smith
Employee: Bill Jones
Manager: Jane Doe
Assistant:
 Employee: Bill Jones

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 328
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2.3 Compliant Solution (References)

An improved compliant solution, which does not require guarding against null pointers within
f(), uses references instead of pointers.

// ... Remainder of code unchanged ...

void f(const Employee &e) {
 std::cout << e;
}

int main() {
 Employee coder("Joe Smith");
 Employee typist("Bill Jones");
 Manager designer("Jane Doe", typist);

 f(coder);
 f(typist);
 f(designer);
}

10.2.4 Compliant Solution (Noncopyable)

Both previous compliant solutions depend on consumers of the Employee and Manager types
to be declared in a compliant manner with the expected usage of the class hierarchy. This
compliant solution ensures that consumers are unable to accidentally slice objects by removing
the ability to copy-initialize an object that derives from Noncopyable. If copy-initialization is
attempted, as in the original definition of f(), the program is ill-formed and a diagnostic will be
emitted. However, such a solution also restricts the Manager object from attempting to copy-
initialize its Employee object, which subtly changes the semantics of the class hierarchy.

#include <iostream>
#include <string>

class Noncopyable {
 Noncopyable(const Noncopyable &) = delete;
 void operator=(const Noncopyable &) = delete;

protected:
 Noncopyable() = default;
};

class Employee : Noncopyable {
 // Remainder of the definition is unchanged.
 std::string name;

protected:
 virtual void print(std::ostream &os) const {

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 329
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 os << "Employee: " << get_name() << std::endl;
 }

public:
 Employee(const std::string &name) : name(name) {}
 const std::string &get_name() const { return name; }
 friend std::ostream &operator<<(std::ostream &os, const Employee
&e) {
 e.print(os);
 return os;
 }
};

class Manager : public Employee {
 const Employee &assistant;
 // Note: The definition of Employee has been modified.

 // Remainder of the definition is unchanged.
protected:
 void print(std::ostream &os) const override {
 os << "Manager: " << get_name() << std::endl;
 os << "Assistant: " << std::endl << "\t" << get_assistant() <<
std::endl;
 }

public:
 Manager(const std::string &name, const Employee &assistant) :
 Employee(name), assistant(assistant) {}
 const Employee &get_assistant() const { return assistant; }
};

// If f() were declared as accepting an Employee, the program
// would be ill-formed because Employee cannot be copy-initialized.
void f(const Employee &e) {
 std::cout << e;
}

int main() {
 Employee coder("Joe Smith");
 Employee typist("Bill Jones");
 Manager designer("Jane Doe", typist);

 f(coder);
 f(typist);
 f(designer);
}

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 330
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2.5 Noncompliant Code Example

This noncompliant code example uses the same class definitions of Employee and Manager as
in the previous noncompliant code example and attempts to store Employee objects in a
std::vector. However, because std::vector requires a homogeneous list of elements,
slicing occurs.

#include <iostream>
#include <string>
#include <vector>

void f(const std::vector<Employee> &v) {
 for (const auto &e : v) {
 std::cout << e;
 }
}

int main() {
 Employee typist("Joe Smith");
 std::vector<Employee> v {
 typist,
 Employee("Bill Jones"),
 Manager("Jane Doe", typist)
 };
 f(v);
}

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 331
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2.6 Compliant Solution

This compliant solution uses a vector of std::unique_ptr objects, which eliminates the
slicing problem.

#include <iostream>
#include <memory>
#include <string>
#include <vector>

void f(const std::vector<std::unique_ptr<Employee>> &v) {
 for (const auto &e : v) {
 std::cout << *e;
 }
}

int main() {
 std::vector<std::unique_ptr<Employee>> v;

 v.emplace_back(new Employee("Joe Smith"));
 v.emplace_back(new Employee("Bill Jones"));
 v.emplace_back(new Manager("Jane Doe", *v.front()));

 f(v);
}

10.2.7 Risk Assessment

Slicing results in information loss, which could lead to abnormal program execution or denial-of-
service attacks.

Rule Severity Likelihood Remediation Cost Priority Level

OOP51-CPP Low Probable Medium P4 L3

10.2.8 Related Guidelines

SEI CERT C++ Coding Standard ERR61-CPP. Catch exceptions by lvalue reference
CTR56-CPP. Do not use pointer arithmetic on polymor-
phic objects

SEI CERT C Coding Standard EXP34-C. Do not dereference null pointers

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Object Oriented Programming (OOP) - OOP51-CPP. Do not slice derived objects

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 332
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2.9 Bibliography

[Dewhurst 2002] Gotcha #38, “Slicing”

[ISO/IEC 14882-2014] Subclause 12.8, “Copying and Moving Class Objects”

[Sutter 2000] Item 40, “Object Lifetimes—Part I”

Object Oriented Programming (OOP) - OOP52-CPP. Do not delete a polymorphic object without a virtual destructor

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 333
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.3 OOP52-CPP. Do not delete a polymorphic object without a virtual
destructor

The C++ Standard, [expr.delete], paragraph 3 [ISO/IEC 14882-2014], states the following:

In the first alternative (delete object), if the static type of the object to be deleted is
different from its dynamic type, the static type shall be a base class of the dynamic type
of the object to be deleted and the static type shall have a virtual destructor or the
behavior is undefined. In the second alternative (delete array) if the dynamic type of the
object to be deleted differs from its static type, the behavior is undefined.

Do not delete an object of derived class type through a pointer to its base class type that has a
non-virtual destructor. Instead, the base class should be defined with a virtual destructor.
Deleting an object through a pointer to a type without a virtual destructor results in undefined
behavior.

10.3.1 Noncompliant Code Example

In this noncompliant example, b is a polymorphic pointer type whose static type is Base * and
whose dynamic type is Derived *. When b is deleted, it results in undefined behavior because
Base does not have a virtual destructor. The C++ Standard, [class.dtor], paragraph 4
[ISO/IEC 14882-2014] states the following:

If a class has no user-declared destructor, a destructor is implicitly declared as
defaulted. An implicitly declared destructor is an inline public member of its class.

The implicitly declared destructor is not declared as virtual even in the presence of other
virtual functions.

struct Base {
 virtual void f();
};

struct Derived : Base {};

void f() {
 Base *b = new Derived();
 // ...
 delete b;
}

Object Oriented Programming (OOP) - OOP52-CPP. Do not delete a polymorphic object without a virtual destructor

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 334
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.3.2 Noncompliant Code Example

In this noncompliant example, the explicit pointer operations have been replaced with a smart
pointer object, demonstrating that smart pointers suffer from the same problem as other pointers.
Because the default deleter for std::unique_ptr calls delete on the internal pointer value,
the resulting behavior is identical to the previous noncompliant example.

#include <memory>

struct Base {
 virtual void f();
};

struct Derived : Base {};

void f() {
 std::unique_ptr<Base> b = std::make_unique<Derived()>();
}

10.3.3 Compliant Solution

In this compliant solution, the destructor for Base has an explicitly declared virtual
destructor, ensuring that the polymorphic delete operation results in well-defined behavior.

struct Base {
 virtual ~Base() = default;
 virtual void f();
};

struct Derived : Base {};

void f() {
 Base *b = new Derived();
 // ...
 delete b;
}

10.3.4 Risk Assessment

Attempting to destruct a polymorphic object that does not have a virtual destructor declared
results in undefined behavior. In practice, potential consequences include abnormal program
termination and memory leaks.

Rule Severity Likelihood Remediation Cost Priority Level

OOP52-CPP Low Likely Low P9 L2

Object Oriented Programming (OOP) - OOP52-CPP. Do not delete a polymorphic object without a virtual destructor

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 335
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.3.5 Related Guidelines

SEI CERT C++ Coding Standard EXP51-CPP. Do not delete an array through a
pointer of the incorrect type

10.3.6 Bibliography

[ISO/IEC 14882-2014] Subclause 5.3.5, “Delete”
Subclause 12.4, “Destructors”

[Stroustrup 2006] “Why Are Destructors Not Virtual by Default?”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Object Oriented Programming (OOP) - OOP53-CPP. Write constructor member initializers in the canonical order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 336
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.4 OOP53-CPP. Write constructor member initializers in the canonical
order

The member initializer list for a class constructor allows members to be initialized to specified
values and for base class constructors to be called with specific arguments. However, the order in
which initialization occurs is fixed and does not depend on the order written in the member
initializer list. The C++ Standard, [class.base.init], paragraph 11 [ISO/IEC 14882-2014], states the
following:

In a non-delegating constructor, initialization proceeds in the following order:

• First, and only for the constructor of the most derived class, virtual base classes are
initialized in the order they appear on a depth-first left-to-right traversal of the
directed acyclic graph of base classes, where “left-to-right” is the order of
appearance of the base classes in the derived class base-specifier-list.

• Then, direct base classes are initialized in declaration order as they appear in the
base-specifier-list (regardless of the order of the mem-initializers).

• Then, non-static data members are initialized in the order they were declared in the
class definition (again regardless of the order of the mem-initializers).

• Finally, the compound-statement of the constructor body is executed.

[Note: The declaration order is mandated to ensure that base and member subobjects
are destroyed in the reverse order of initialization. —end note]

Consequently, the order in which member initializers appear in the member initializer list is
irrelevant. The order in which members are initialized, including base class initialization, is
determined by the declaration order of the class member variables or the base class specifier list.
Writing member initializers other than in canonical order can result in undefined behavior, such as
reading uninitialized memory.

Always write member initializers in a constructor in the canonical order: first, direct base classes
in the order in which they appear in the base-specifier-list for the class, then nonstatic data
members in the order in which they are declared in the class definition.

Object Oriented Programming (OOP) - OOP53-CPP. Write constructor member initializers in the canonical order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 337
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.4.1 Noncompliant Code Example

In this noncompliant code example, the member initializer list for C::C() attempts to initialize
someVal first and then to initialize dependsOnSomeVal to a value dependent on someVal.
Because the declaration order of the member variables does not match the member initializer
order, attempting to read the value of someVal results in an unspecified value being stored into
dependsOnSomeVal.

class C {
 int dependsOnSomeVal;
 int someVal;

public:
 C(int val) : someVal(val), dependsOnSomeVal(someVal + 1) {}
};

10.4.2 Compliant Solution

This compliant solution changes the declaration order of the class member variables so that the
dependency can be ordered properly in the constructor’s member initializer list.

class C {
 int someVal;
 int dependsOnSomeVal;

public:
 C(int val) : someVal(val), dependsOnSomeVal(someVal + 1) {}
};

It is reasonable for initializers to depend on previously initialized values.

Object Oriented Programming (OOP) - OOP53-CPP. Write constructor member initializers in the canonical order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 338
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.4.3 Noncompliant Code Example

In this noncompliant code example, the derived class, D, attempts to initialize the base class, B1,
with a value obtained from the base class, B2. However, because B1 is initialized before B2 due
to the declaration order in the base class specifier list, the resulting behavior is undefined.

class B1 {
 int val;

public:
 B1(int val) : val(val) {}
};

class B2 {
 int otherVal;

public:
 B2(int otherVal) : otherVal(otherVal) {}
 int get_other_val() const { return otherVal; }
};

class D : B1, B2 {
public:
 D(int a) : B2(a), B1(get_other_val()) {}
};

Object Oriented Programming (OOP) - OOP53-CPP. Write constructor member initializers in the canonical order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 339
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.4.4 Compliant Solution

This compliant solution initializes both base classes using the same value from the constructor’s
parameter list instead of relying on the initialization order of the base classes.

class B1 {
 int val;

public:
 B1(int val) : val(val) {}
};

class B2 {
 int otherVal;

public:
 B2(int otherVal) : otherVal(otherVal) {}
};

class D : B1, B2 {
public:
 D(int a) : B1(a), B2(a) {}
};

10.4.5 Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

OOP53-CPP Medium Unlikely Medium P4 L3

10.4.6 Bibliography

[ISO/IEC 14882-2014] Subclause 12.6.2, “Initializing Bases and Members”

[Lockheed Martin 2005] AV Rule 75, Members of the initialization list shall be
listed in the order in which they are declared in the class

Object Oriented Programming (OOP) - OOP54-CPP. Gracefully handle self-copy assignment

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 340
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5 OOP54-CPP. Gracefully handle self-copy assignment

Self-copy assignment can occur in situations of varying complexity, but essentially, all self-copy
assignments entail some variation of the following.

#include <utility>

struct S { /* ... */ }

void f() {
 S s;
 s = s; // Self-copy assignment
}

User-provided copy operators must properly handle self-copy assignment.

The postconditions required for copy assignment are specified by the C++ Standard,
[utility.arg.requirements], Table 23 [ISO/IEC 14882-2014], which states that for x = y, the
value of y is unchanged. When &x == &y, this postcondition translates into the values of both x
and y remaining unchanged. A naive implementation of copy assignment could destroy object-
local resources in the process of copying resources from the given parameter. If the given
parameter is the same object as the local object, the act of destroying object-local resources will
invalidate them. The subsequent copy of those resources will be left in an indeterminate state,
which violates the postcondition.

A user-provided copy assignment operator must prevent self-copy assignment from leaving the
object in an indeterminate state. This can be accomplished by self-assignment tests, copy-and-
swap, or other idiomatic design patterns.

The C++ Standard, [copyassignable], specifies that types must ensure that self-copy assignment
leave the object in a consistent state when passed to Standard Template Library (STL) functions.
Since objects of STL types are used in contexts where CopyAssignable is required, STL types
are required to gracefully handle self-copy assignment.

Object Oriented Programming (OOP) - OOP54-CPP. Gracefully handle self-copy assignment

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 341
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5.1 Noncompliant Code Example

In this noncompliant code example, the copy assignment operator does not protect against self-
copy assignment. If self-copy assignment occurs, this->s1 is deleted, which results in
rhs.s1 also being deleted. The invalidated memory for rhs.s1 is then passed into the copy
constructor for S, which can result in dereferencing an invalid pointer.

#include <new>

struct S { /* ... */ }; // Has nonthrowing copy constructor

class T {
 int n;
 S *s1;

public:
 T(const T &rhs) : n(rhs.n), s1(rhs.s1 ? new S(*rhs.s1) : nullptr)
 {}
 ~T() { delete s1; }

 // ...

 T& operator=(const T &rhs) {
 n = rhs.n;
 delete s1;
 s1 = new S(*rhs.s1);
 return *this;
 }
};

Object Oriented Programming (OOP) - OOP54-CPP. Gracefully handle self-copy assignment

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 342
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5.2 Compliant Solution (Self-Test)

This compliant solution guards against self-copy assignment by testing whether the given
parameter is the same as this. If self-copy assignment occurs, then operator= does nothing;
otherwise, the copy proceeds as in the original example.

#include <new>

struct S { /* ... */ }; // Has nonthrowing copy constructor

class T {
 int n;
 S *s1;

public:
 T(const T &rhs) : n(rhs.n), s1(rhs.s1 ? new S(*rhs.s1) : nullptr)
 {}
 ~T() { delete s1; }

 // ...

 T& operator=(const T &rhs) {
 if (this != &rhs) {
 n = rhs.n;
 delete s1;
 try {
 s1 = new S(*rhs.s1);
 } catch (std::bad_alloc &) {
 s1 = nullptr; // For basic exception guarantees
 throw;
 }
 }
 return *this;
 }
};

This solution does not provide a strong exception guarantee for the copy assignment. Specifically,
if an exception is called when evaluating the new expression, this has already been modified.
However, this solution does provide a basic exception guarantee because no resources are leaked
and all data members contain valid values. Consequently, this code complies with ERR56-CPP.
Guarantee exception safety.

Object Oriented Programming (OOP) - OOP54-CPP. Gracefully handle self-copy assignment

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 343
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5.3 Compliant Solution (Copy and Swap)

This compliant solution avoids self-copy assignment by constructing a temporary object from
rhs that is then swapped with *this. This compliant solution provides a strong exception
guarantee because swap() will never be called if resource allocation results in an exception
being thrown while creating the temporary object.

#include <new>
#include <utility>

struct S { /* ... */ }; // Has nonthrowing copy constructor

class T {
 int n;
 S *s1;

public:
 T(const T &rhs) : n(rhs.n), s1(rhs.s1 ? new S(*rhs.s1) : nullptr)
{}
 ~T() { delete s1; }

 // ...

 void swap(T &rhs) noexcept {
 using std::swap;
 swap(n, rhs.n);
 swap(s1, rhs.s1);
 }

 T& operator=(const T &rhs) noexcept {
 T(rhs).swap(*this);
 return *this;
 }
};

10.5.4 Risk Assessment

Allowing a copy assignment operator to corrupt an object could lead to undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

OOP54-CPP Low Probable High P2 L3

Object Oriented Programming (OOP) - OOP54-CPP. Gracefully handle self-copy assignment

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 344
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5.5 Related Guidelines

This rule is a partial subset of OOP58-CPP. Copy operations must not mutate the source object
when copy operations do not gracefully handle self-copy assignment, because the copy operation
may mutate both the source and destination objects (due to them being the same object).

10.5.6 Bibliography

[Henricson 1997] Rule 5.12, Copy assignment operators should be protected
from doing destructive actions if an object is assigned to itself

[ISO/IEC 14882-2014] Subclause 17.6.3.1, “Template Argument Requirements”
Subclause 17.6.4.9, “Function Arguments”

[Meyers 2005] Item 11, “Handle Assignment to Self in operator=”

[Meyers 2014]

Object Oriented Programming (OOP) - OOP55-CPP. Do not use pointer-to-member operators to access nonexistent
members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 345
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.6 OOP55-CPP. Do not use pointer-to-member operators to access
nonexistent members

The pointer-to-member operators .* and ->* are used to obtain an object or a function as though
it were a member of an underlying object. For instance, the following are functionally equivalent
ways to call the member function f() on the object o.

struct S {
 void f() {}
};

void func() {
 S o;
 void (S::*pm)() = &S::f;

 o.f();
 (o.*pm)();
}

The call of the form o.f() uses class member access at compile time to look up the address of
the function S::f() on the object o. The call of the form (o.*pm)() uses the pointer-to-
member operator .* to call the function at the address specified by pm. In both cases, the object o
is the implicit this object within the member function S::f().

The C++ Standard, [expr.mptr.oper], paragraph 4 [ISO/IEC 14882-2014], states the following:

Abbreviating pm-expression.*cast-expression as E1.*E2, E1 is called the object
expression. If the dynamic type of E1 does not contain the member to which E2 refers,
the behavior is undefined.

A pointer-to-member expression of the form E1->*E2 is converted to its equivalent form,
(*(E1)).*E2, so use of pointer-to-member expressions of either form behave equivalently in
terms of undefined behavior.

Further, the C++ Standard, [expr.mptr.oper], paragraph 6, in part, states the following:

If the second operand is the null pointer to member value, the behavior is undefined.

Do not use a pointer-to-member expression where the dynamic type of the first operand does not
contain the member to which the second operand refers, including the use of a null pointer-to-
member value as the second operand.

Object Oriented Programming (OOP) - OOP55-CPP. Do not use pointer-to-member operators to access nonexistent
members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 346
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.6.1 Noncompliant Code Example

In this noncompliant code example, a pointer-to-member object is obtained from D::g but is then
upcast to be a B::*. When called on an object whose dynamic type is D, the pointer-to-member
call is well defined. However, the dynamic type of the underlying object is B, which results in
undefined behavior.

struct B {
 virtual ~B() = default;
};

struct D : B {
 virtual ~D() = default;
 virtual void g() { /* ... */ }
};

void f() {
 B *b = new B;

 // ...

 void (B::*gptr)() = static_cast<void(B::*)()>(&D::g);
 (b->*gptr)();
 delete b;
}

Object Oriented Programming (OOP) - OOP55-CPP. Do not use pointer-to-member operators to access nonexistent
members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 347
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.6.2 Compliant Solution

In this compliant solution, the upcast is removed, rendering the initial code ill-formed and
emphasizing the underlying problem that B::g() does not exist. This compliant solution
assumes that the programmer’s intention was to use the correct dynamic type for the underlying
object.

struct B {
 virtual ~B() = default;
};

struct D : B {
 virtual ~D() = default;
 virtual void g() { /* ... */ }
};

void f() {
 B *b = new D; // Corrected the dynamic object type.

 // ...
 void (D::*gptr)() = &D::g; // Moved static_cast to the next line.
 (static_cast<D *>(b)->*gptr)();
 delete b;
}

Object Oriented Programming (OOP) - OOP55-CPP. Do not use pointer-to-member operators to access nonexistent
members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 348
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.6.3 Noncompliant Code Example

In this noncompliant code example, a null pointer-to-member value is passed as the second
operand to a pointer-to-member expression, resulting in undefined behavior.

struct B {
 virtual ~B() = default;
};

struct D : B {
 virtual ~D() = default;
 virtual void g() { /* ... */ }
};

static void (D::*gptr)(); // Not explicitly initialized, defaults
to nullptr.
void call_memptr(D *ptr) {
 (ptr->*gptr)();
}

void f() {
 D *d = new D;
 call_memptr(d);
 delete d;
}

Object Oriented Programming (OOP) - OOP55-CPP. Do not use pointer-to-member operators to access nonexistent
members

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 349
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.6.4 Compliant Solution

In this compliant solution, gptr is properly initialized to a valid pointer-to-member value instead
of to the default value of nullptr.

struct B {
 virtual ~B() = default;
};

struct D : B {
 virtual ~D() = default;
 virtual void g() { /* ... */ }
};

static void (D::*gptr)() = &D::g; // Explicitly initialized.
void call_memptr(D *ptr) {
 (ptr->*gptr)();
}

void f() {
 D *d = new D;
 call_memptr(d);
 delete d;
}

10.6.5 Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

OOP55-CPP High Probable High P6 L2

10.6.6 Related Guidelines

This rule is a subset of EXP34-C. Do not dereference null pointers.

10.6.7 Bibliography

[ISO/IEC 14882-2014] Subclause 5.5, “Pointer-to-Member Operators”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3132

Object Oriented Programming (OOP) - OOP56-CPP. Honor replacement handler requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 350
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.7 OOP56-CPP. Honor replacement handler requirements

The handler functions new_handler, terminate_handler, and
unexpected_handler can be globally replaced by custom implementations, as specified by
[handler.functions], paragraph 2, of the C++ Standard [ISO/IEC 14882-2014]. For instance, an
application could set a custom termination handler by calling std::set_terminate(), and
the custom termination handler may log the termination for later auditing. However, the C++
Standard, [res.on.functions], paragraph 1, states the following:

In certain cases (replacement functions, handler functions, operations on types used to
instantiate standard library template components), the C++ standard library depends on
components supplied by a C++ program. If these components do not meet their
requirements, the Standard places no requirements on the implementation.

Paragraph 2, in part, further states the following:

In particular, the effects are undefined in the following cases:

• for handler functions, if the installed handler function does not implement the
semantics of the applicable Required behavior: paragraph

A replacement for any of the handler functions must meet the semantic requirements specified by
the appropriate Required behavior: clause of the replaced function.

10.7.1.1 New Handler

The requirements for a replacement new_handler are specified by [new.handler], paragraph 2:

Required behavior: A new_handler shall perform one of the following:

• make more storage available for allocation and then return;
• throw an exception of type bad_alloc or a class derived from bad_alloc;

• terminate execution of the program without returning to the caller;

10.7.1.2 Terminate Handler

The requirements for a replacement terminate_handler are specified by
[terminate.handler], paragraph 2:

Required behavior: A terminate_handler shall terminate execution of the program
without returning to the caller.

Object Oriented Programming (OOP) - OOP56-CPP. Honor replacement handler requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 351
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.7.1.3 Unexpected Handler

The requirements for a replacement unexpected_handler are specified by
[unexpected.handler], paragraph 2.

Required behavior: An unexpected_handler shall not return. See also 15.5.2.

unexpected_handler is a deprecated feature of C++.

10.7.2 Noncompliant Code Example

In this noncompliant code example, a replacement new_handler is written to attempt to release
salvageable resources when the dynamic memory manager runs out of memory. However, this
example does not take into account the situation in which all salvageable resources have been
recovered and there is still insufficient memory to satisfy the allocation request. Instead of
terminating the replacement handler with an exception of type std::bad_alloc or
terminating the execution of the program without returning to the caller, the replacement handler
returns as normal. Under low memory conditions, an infinite loop will occur with the default
implementation of ::operator new(). Because such conditions are rare in practice, it is
likely for this bug to go undiscovered under typical testing scenarios.

#include <new>

void custom_new_handler() {
 // Returns number of bytes freed.
 extern std::size_t reclaim_resources();
 reclaim_resources();
}

int main() {
 std::set_new_handler(custom_new_handler);

 // ...
}

Object Oriented Programming (OOP) - OOP56-CPP. Honor replacement handler requirements

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 352
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.7.3 Compliant Solution

In this compliant solution, custom_new_handler() uses the return value from
reclaim_resources(). If it returns 0, then there will be insufficient memory for
operator new to succeed. Hence, an exception of type std::bad_alloc is thrown,
meeting the requirements for the replacement handler.

#include <new>

void custom_new_handler() noexcept(false) {
 // Returns number of bytes freed.
 extern std::size_t reclaim_resources();
 if (0 == reclaim_resources()) {
 throw std::bad_alloc();
 }
}

int main() {
 std::set_new_handler(custom_new_handler);
 // ...
}

10.7.4 Risk Assessment

Failing to meet the required behavior for a replacement handler results in undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

OOP56-CPP Low Probable High P2 L3

10.7.5 Related Guidelines

SEI CERT C++ Coding Standard MEM55-CPP. Honor replacement dynamic storage
management requirements

10.7.6 Bibliography

[ISO/IEC 14882-2014] Subclause 17.6.4.8, “Other Functions”
Subclause 18.6.2.3, “Type new_handler”
Subclause 18.8.3.1, “Type terminate_handler”
Subclause D.11.1, “Type unexpected_handler”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 353
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8 OOP57-CPP. Prefer special member functions and overloaded
operators to C Standard Library functions

Several C standard library functions perform bytewise operations on objects. For instance,
std::memcmp() compares the bytes comprising the object representation of two objects, and
std::memcpy() copies the bytes comprising an object representation into a destination buffer.
However, for some object types, it results in undefined or abnormal program behavior.

The C++ Standard, [class], paragraph 6 [ISO/IEC 14882-2014], states the following:

A trivially copyable class is a class that:

• has no non-trivial copy constructors,

• has no non-trivial move constructors,

• has no non-trivial copy assignment operators,

• has no non-trivial move assignment operators, and

• has a trivial destructor.

A trivial class is a class that has a default constructor, has no non-trivial default
constructors, and is trivially copyable. [Note: In particular, a trivially copyable or trivial
class does not have virtual functions or virtual base classes. — end note]

Additionally, the C++ Standard, [class], paragraph 7, states the following:

A standard-layout class is a class that:

• has no non-static data members of type non-standard-layout class (or array of such
types) or reference,

• has no virtual functions and no virtual base classes,

• has the same access control for all non-static data members,

• has no non-standard-layout base classes,

• either has no non-static data members in the most derived class and at most one
base class with non-static data members, or has no base classes with non-static
data members, and

• has no base classes of the same type as the first non-static data member.

Do not use std::memset() to initialize an object of nontrivial class type as it may not
properly initialize the value representation of the object. Do not use std::memcpy() (or
related bytewise copy functions) to initialize a copy of an object of nontrivial class type, as it may
not properly initialize the value representation of the copy. Do not use std::memcmp() (or
related bytewise comparison functions) to compare objects of nonstandard-layout class type, as it
may not properly compare the value representations of the objects. In all cases, it is best to prefer
the alternatives.

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 354
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

C Standard Library Function C++ Equivalent Functionality

std::memset() Class constructor

std::memcpy()

std::memmove()

std::strcpy()

Class copy constructor or operator=()

std::memcmp()

std::strcmp()

operator<(), operator>(), operator==(), or operator!=()

10.8.1 Noncompliant Code Example

In this noncompliant code example, a nontrivial class object is initialized by calling its default
constructor but is later reinitialized to its default state using std::memset(), which does not
properly reinitialize the object. Improper reinitialization leads to class invariants not holding in
later uses of the object.

#include <cstring>
#include <iostream>

class C {
 int scalingFactor;
 int otherData;

public:
 C() : scalingFactor(1) {}

 void set_other_data(int i);
 int f(int i) {
 return i / scalingFactor;
 }
 // ...
};

void f() {
 C c;

 // ... Code that mutates c ...

 // Reinitialize c to its default state
 std::memset(&c, 0, sizeof(C));

 std::cout << c.f(100) << std::endl;
}

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 355
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The above noncompliant code example is compliant with EXP62-CPP. Do not access the bits of
an object representation that are not part of the object’s value representation because all of the bits
in the value representation are also used in the object representation of C.

10.8.2 Compliant Solution

In this compliant solution, the call to std::memset() is replaced with a default-initialized
copy-and-swap operation called clear(). This operation ensures that the object is initialized to
its default state properly, and it behaves properly for object types that have optimized assignment
operators that fail to clear all data members of the object being assigned into.

#include <iostream>
#include <utility>

class C {
 int scalingFactor;
 int otherData;

public:
 C() : scalingFactor(1) {}

 void set_other_data(int i);
 int f(int i) {
 return i / scalingFactor;
 }
 // ...
};

template <typename T>
T& clear(T &o) {
 using std::swap;
 T empty;
 swap(o, empty);
 return o;
}

void f() {
 C c;

 // ... Code that mutates c ...

 // Reinitialize c to its default state
 clear(c);

 std::cout << c.f(100) << std::endl;
}

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 356
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8.3 Noncompliant Code Example

In this noncompliant code example, std::memcpy() is used to create a copy of an object of
nontrivial type C. However, because each object instance attempts to delete the int * in
C::~C(), double-free vulnerabilities may occur because the same pointer value will be copied
into c2.

#include <cstring>

class C {
 int *i;

public:
 C() : i(nullptr) {}
 ~C() { delete i; }

 void set(int val) {
 if (i) { delete i; }
 i = new int{val};
 }

 // ...
};

void f(C &c1) {
 C c2;
 std::memcpy(&c2, &c1, sizeof(C));
}

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 357
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8.4 Compliant Solution

In this compliant solution, C defines an assignment operator that is used instead of calling
std::memcpy().

class C {
 int *i;

public:
 C() : i(nullptr) {}
 ~C() { delete i; }

 void set(int val) {
 if (i) { delete i; }
 i = new int{val};
 }

 C &operator=(const C &rhs) noexcept(false) {
 if (this != &rhs) {
 int *o = nullptr;
 if (rhs.i) {
 o = new int;
 *o = *rhs.i;
 }
 // Does not modify this unless allocation succeeds.
 delete i;
 i = o;
 }
 return *this;
 }

 // ...
};

void f(C &c1) {
 C c2 = c1;
}

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 358
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8.5 Noncompliant Code Example

In this noncompliant code example, std::memcmp() is used to compared two objects of
nonstandard-layout type. Because std::memcmp() performs a bytewise comparison of the
object representations, if the implementation uses a vtable pointer as part of the object
representation, it will compare vtable pointers. If the dynamic type of either c1 or c2 is a derived
class of type C, the comparison may fail despite the value representation of either object.

#include <cstring>

class C {
 int i;

public:
 virtual void f();

 // ...
};

void f(C &c1, C &c2) {
 if (!std::memcmp(&c1, &c2, sizeof(C))) {
 // ...
 }
}

Because a vtable is not part of an object’s value representation, comparing it with
std::memcmp() also violates EXP62-CPP. Do not access the bits of an object representation
that are not part of the object’s value representation.

Object Oriented Programming (OOP) - OOP57-CPP. Prefer special member functions and overloaded operators to C
Standard Library functions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 359
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8.6 Compliant Solution

In this compliant solution, C defines an equality operator that is used instead of calling
std::memcmp(). This solution ensures that only the value representation of the objects is
considered when performing the comparison.

class C {
 int i;

public:
 virtual void f();

 bool operator==(const C &rhs) const {
 return rhs.i == i;
 }

 // ...
};

void f(C &c1, C &c2) {
 if (c1 == c2) {
 // ...
 }
}

10.8.7 Risk Assessment

Most violations of this rule will result in abnormal program behavior. However, overwriting
implementation details of the object representation can lead to code execution vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

OOP57-CPP High Probable High P6 L2

10.8.8 Related Guidelines

SEI CERT C++ Coding Standard EXP62-CPP. Do not access the bits of an object
representation that are not part of the object’s
value representation

10.8.9 Bibliography

[ISO/IEC 14882-2014] Subclause 3.9, “Types”
Subclause 3.10, “Lvalues and Rvalues”
Clause 9, “Classes”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Object Oriented Programming (OOP) - OOP58-CPP. Copy operations must not mutate the source object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 360
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9 OOP58-CPP. Copy operations must not mutate the source object

Copy operations (copy constructors and copy assignment operators) are expected to copy the
salient properties of a source object into the destination object, with the resulting object being a
“copy” of the original. What is considered to be a salient property of the type is type-dependent,
but for types that expose comparison or equality operators, includes any properties used for those
comparison operations. This expectation leads to assumptions in code that a copy operation
results in a destination object with a value representation that is equivalent to the source object
value representation. Violation of this basic assumption can lead to unexpected behavior.

Ideally, the copy operator should have an idiomatic signature. For copy constructors, that is
T(const T&); and for copy assignment operators, that is T& operator=(const T&);.
Copy constructors and copy assignment operators that do not use an idiomatic signature do not
meet the requirements of the CopyConstructible or CopyAssignable concept,
respectively. This precludes the type from being used with common standard library functionality
[ISO/IEC 14882-2014].

When implementing a copy operator, do not mutate any externally observable members of the
source object operand or globally accessible information. Externally observable members include,
but are not limited to, members that participate in comparison or equality operations, members
whose values are exposed via public APIs, and global variables.

Before C++11, a copy operation that mutated the source operand was the only way to provide
move-like semantics. However, the language did not provide a way to enforce that this operation
only occurred when the source operand was at the end of its lifetime, which led to fragile APIs
like std::auto_ptr. In C++11 and later, such a situation is a good candidate for a move
operation instead of a copy operation.

10.9.1.1 auto_ptr

For example, in C++03, std::auto_ptr had the following copy operation signatures
[ISO/IEC 14882-2003]:

Copy constructor auto_ptr(auto_ptr &A);

Copy assignment auto_ptr& operator=(auto_ptr &A);

Object Oriented Programming (OOP) - OOP58-CPP. Copy operations must not mutate the source object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 361
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Both copy construction and copy assignment would mutate the source argument, A, by effectively
calling this->reset(A.release()). However, this invalidated assumptions made by
standard library algorithms such as std::sort(), which may need to make a copy of an object
for later comparisons [Hinnant 2005]. Consider the following implementation of std::sort()
that implements the quick sort algorithm.

// ...
value_type pivot_element = *mid_point;
// ...

At this point, the sorting algorithm assumes that pivot_element and *mid_point have
equivalent value representations and will compare equal. However, for std::auto_ptr, this is
not the case because *mid_point has been mutated and results in unexpected behavior.

In C++11, the std::unique_ptr smart pointer class was introduced as a replacement for
std::auto_ptr to better specify the ownership semantics of pointer objects. Rather than
mutate the source argument in a copy operation, std::unique_ptr explicitly deletes the copy
constructor and copy assignment operator, and instead uses a move constructor and move
assignment operator. Subsequently, std::auto_ptr was deprecated in C++11.

https://en.wikipedia.org/wiki/Quicksort

Object Oriented Programming (OOP) - OOP58-CPP. Copy operations must not mutate the source object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 362
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9.2 Noncompliant Code Example

In this noncompliant code example, the copy operations for A mutate the source operand by
resetting its member variable m to 0. When std::fill() is called, the first element copied will
have the original value of obj.m, 12, at which point obj.m is set to 0. The subsequent nine
copies will all retain the value 0.

#include <algorithm>
#include <vector>

class A {
 mutable int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {
 other.m = 0;
 }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 other.m = 0;
 }
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Object Oriented Programming (OOP) - OOP58-CPP. Copy operations must not mutate the source object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 363
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9.3 Compliant Solution

In this compliant solution, the copy operations for A no longer mutate the source operand,
ensuring that the vector contains equivalent copies of obj. Instead, A has been given move
operations that perform the mutation when it is safe to do so.

#include <algorithm>
#include <vector>

class A {
 int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {}
 A(A &&other) : m(other.m) { other.m = 0; }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 }
 return *this;
 }

 A& operator=(A &&other) {
 m = other.m;
 other.m = 0;
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Object Oriented Programming (OOP) - OOP58-CPP. Copy operations must not mutate the source object

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 364
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9.4 Risk Assessment

Copy operations that mutate the source operand or global state can lead to unexpected program
behavior. Using such a type in a Standard Template Library container or algorithm can also lead
to undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

OOP58-CPP Low Likely Low P9 L2

10.9.5 Related Guidelines

SEI CERT C++ Coding Standard OOP54-CPP. Gracefully handle self-copy assignment

10.9.6 Bibliography

[ISO/IEC 14882-2014] Subclause 12.8, “Copying and Moving Class Objects”
Table 21, “CopyConstructible Requirements”
Table 23, “CopyAssignable Requirements”

[ISO/IEC 14882-2003]

[Hinnant 2005] “Rvalue Reference Recommendations for Chapter 20”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Concurrency (CON) - CON50-CPP. Do not destroy a mutex while it is locked

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 365
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11 Concurrency (CON)

11.1 CON50-CPP. Do not destroy a mutex while it is locked

Mutex objects are used to protect shared data from being concurrently accessed. If a mutex object
is destroyed while a thread is blocked waiting for the lock, critical sections and shared data are no
longer protected.

The C++ Standard, [thread.mutex.class], paragraph 5 [ISO/IEC 14882-2014], states the following:

The behavior of a program is undefined if it destroys a mutex object owned by any
thread or a thread terminates while owning a mutex object.

Similar wording exists for std::recursive_mutex, std::timed_mutex,
std::recursive_timed_mutex, and std::shared_timed_mutex. These statements
imply that destroying a mutex object while a thread is waiting on it is undefined behavior.

11.1.1 Noncompliant Code Example

This noncompliant code example creates several threads that each invoke the do_work()
function, passing a unique number as an ID.

Unfortunately, this code contains a race condition, allowing the mutex to be destroyed while it is
still owned, because start_threads() may invoke the mutex’s destructor before all of the
threads have exited.

#include <mutex>
#include <thread>

const size_t maxThreads = 10;

void do_work(size_t i, std::mutex *pm) {
 std::lock_guard<std::mutex> lk(*pm);

 // Access data protected by the lock.
}

void start_threads() {
 std::thread threads[maxThreads];
 std::mutex m;

 for (size_t i = 0; i < maxThreads; ++i) {
 threads[i] = std::thread(do_work, i, &m);
 }
}

Concurrency (CON) - CON50-CPP. Do not destroy a mutex while it is locked

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 366
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.1.2 Compliant Solution

This compliant solution eliminates the race condition by extending the lifetime of the mutex.

#include <mutex>
#include <thread>

const size_t maxThreads = 10;

void do_work(size_t i, std::mutex *pm) {
 std::lock_guard<std::mutex> lk(*pm);

 // Access data protected by the lock.
}

std::mutex m;

void start_threads() {
 std::thread threads[maxThreads];

 for (size_t i = 0; i < maxThreads; ++i) {
 threads[i] = std::thread(do_work, i, &m);
 }
}

Concurrency (CON) - CON50-CPP. Do not destroy a mutex while it is locked

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 367
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.1.3 Compliant Solution

This compliant solution eliminates the race condition by joining the threads before the mutex’s
destructor is invoked.

#include <mutex>
#include <thread>

const size_t maxThreads = 10;

void do_work(size_t i, std::mutex *pm) {
 std::lock_guard<std::mutex> lk(*pm);

 // Access data protected by the lock.
}
void run_threads() {
 std::thread threads[maxThreads];
 std::mutex m;

 for (size_t i = 0; i < maxThreads; ++i) {
 threads[i] = std::thread(do_work, i, &m);
 }

 for (size_t i = 0; i < maxThreads; ++i) {
 threads[i].join();
 }
}

11.1.4 Risk Assessment

Destroying a mutex while it is locked may result in invalid control flow and data corruption.

Rule Severity Likelihood Remediation Cost Priority Level

CON50-CPP Medium Probable High P4 L3

11.1.5 Related Guidelines

MITRE CWE CWE-667, Improper Locking

SEI CERT C Coding Standard CON31-C. Do not destroy a mutex while it is locked

11.1.6 Bibliography

[ISO/IEC 14882-2014] Subclause 30.4.1, “Mutex Requirements”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/667.html
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130124

Concurrency (CON) - CON51-CPP. Ensure actively held locks are released on exceptional conditions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 368
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.2 CON51-CPP. Ensure actively held locks are released on
exceptional conditions

Mutexes that are used to protect accesses to shared data may be locked using the lock()
member function and unlocked using the unlock() member function. If an exception occurs
between the call to lock() and the call to unlock(), and the exception changes control flow
such that unlock() is not called, the mutex will be left in the locked state and no critical
sections protected by that mutex will be allowed to execute. This is likely to lead to deadlock.

The throwing of an exception must not allow a mutex to remain locked indefinitely. If a mutex
was locked and an exception occurs within the critical section protected by that mutex, the mutex
must be unlocked as part of exception handling before rethrowing the exception or continuing
execution unless subsequent control flow will unlock the mutex.

C++ supplies the lock classes lock_guard, unique_lock, and shared_lock, which can
be initialized with a mutex. In its constructor, the lock object locks the mutex, and in its
destructor, it unlocks the mutex. The lock_guard class provides a simple RAII wrapper around
a mutex. The unique_lock and shared_lock classes also use RAII and provide additional
functionality, such as manual control over the locking strategy. The unique_lock class
prevents the lock from being copied, although it allows the lock ownership to be moved to another
lock. The shared_lock class allows the mutex to be shared by several locks. For all three
classes, if an exception occurs and takes control flow out of the scope of the lock, the destructor
will unlock the mutex and the program can continue working normally. These lock objects are the
preferred way to ensure that a mutex is properly released when an exception is thrown.

11.2.1 Noncompliant Code Example

This noncompliant code example manipulates shared data and protects the critical section by
locking the mutex. When it is finished, it unlocks the mutex. However, if an exception occurs
while manipulating the shared data, the mutex will remain locked.

#include <mutex>

void manipulate_shared_data(std::mutex &pm) {
 pm.lock();

 // Perform work on shared data.

 pm.unlock();
}

Concurrency (CON) - CON51-CPP. Ensure actively held locks are released on exceptional conditions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 369
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.2.2 Compliant Solution (Manual Unlock)

This compliant solution catches any exceptions thrown when performing work on the shared data
and unlocks the mutex before rethrowing the exception.

#include <mutex>

void manipulate_shared_data(std::mutex &pm) {
 pm.lock();
 try {
 // Perform work on shared data.
 } catch (...) {
 pm.unlock();
 throw;
 }
 pm.unlock(); // in case no exceptions occur
}

11.2.3 Compliant Solution (Lock Object)

This compliant solution uses a lock_guard object to ensure that the mutex will be unlocked,
even if an exception occurs, without relying on exception handling machinery and manual
resource management.

#include <mutex>

void manipulate_shared_data(std::mutex &pm) {
 std::lock_guard<std::mutex> lk(pm);

 // Perform work on shared data.
}

11.2.4 Risk Assessment

If an exception occurs while a mutex is locked, deadlock may result.

Rule Severity Likelihood Remediation Cost Priority Level

CON51-CPP Low Probable Low P6 L2

Concurrency (CON) - CON51-CPP. Ensure actively held locks are released on exceptional conditions

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 370
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.2.5 Related Guidelines

This rule is a subset of ERR56-CPP. Guarantee exception safety.

MITRE CWE CWE-667, Improper Locking

SEI CERT Oracle Coding Standard for Java LCK08-J. Ensure actively held locks are re-
leased on exceptional conditions

11.2.6 Bibliography

[ISO/IEC 14882-2014] Subclause 30.4.2, “Locks”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/667.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=34669170
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=34669170

Concurrency (CON) - CON52-CPP. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 371
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.3 CON52-CPP. Prevent data races when accessing bit-fields from
multiple threads

When accessing a bit-field, a thread may inadvertently access a separate bit-field in adjacent
memory. This is because compilers are required to store multiple adjacent bit-fields in one storage
unit whenever they fit. Consequently, data races may exist not just on a bit-field accessed by
multiple threads but also on other bit-fields sharing the same byte or word. The problem is
difficult to diagnose because it may not be obvious that the same memory location is being
modified by multiple threads.

One approach for preventing data races in concurrent programming is to use a mutex. When
properly observed by all threads, a mutex can provide safe and secure access to a shared object.
However, mutexes provide no guarantees with regard to other objects that might be accessed
when the mutex is not controlled by the accessing thread. Unfortunately, there is no portable way
to determine which adjacent bit-fields may be stored along with the desired bit-field.

Another approach is to insert a non-bit-field member between any two bit-fields to ensure that
each bit-field is the only one accessed within its storage unit. This technique effectively
guarantees that no two bit-fields are accessed simultaneously.

11.3.1 Noncompliant Code Example (bit-field)

Adjacent bit-fields may be stored in a single memory location. Consequently, modifying adjacent
bit-fields in different threads is undefined behavior, as shown in this noncompliant code example.

struct MultiThreadedFlags {
 unsigned int flag1 : 2;
 unsigned int flag2 : 2;
};

MultiThreadedFlags flags;

void thread1() {
 flags.flag1 = 1;
}

void thread2() {
 flags.flag2 = 2;
}

Concurrency (CON) - CON52-CPP. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 372
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For example, the following instruction sequence is possible.

Thread 1: register 0 = flags
Thread 1: register 0 &= ~mask(flag1)
Thread 2: register 0 = flags
Thread 2: register 0 &= ~mask(flag2)
Thread 1: register 0 |= 1 << shift(flag1)
Thread 1: flags = register 0
Thread 2: register 0 |= 2 << shift(flag2)
Thread 2: flags = register 0

11.3.2 Compliant Solution (bit-field, C++11 and later, mutex)

This compliant solution protects all accesses of the flags with a mutex, thereby preventing any
data races.

#include <mutex>

struct MultiThreadedFlags {
 unsigned int flag1 : 2;
 unsigned int flag2 : 2;
};

struct MtfMutex {
 MultiThreadedFlags s;
 std::mutex mutex;
};

MtfMutex flags;

void thread1() {
 std::lock_guard<std::mutex> lk(flags.mutex);
 flags.s.flag1 = 1;
}

void thread2() {
 std::lock_guard<std::mutex> lk(flags.mutex);
 flags.s.flag2 = 2;
}

Concurrency (CON) - CON52-CPP. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 373
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.3.3 Compliant Solution (C++11)

In this compliant solution, two threads simultaneously modify two distinct non-bit-field members
of a structure. Because the members occupy different bytes in memory, no concurrency protection
is required.

struct MultiThreadedFlags {
 unsigned char flag1;
 unsigned char flag2;
};

MultiThreadedFlags flags;

void thread1() {
 flags.flag1 = 1;
}

void thread2() {
 flags.flag2 = 2;
}

Unlike earlier versions of the standard, C++11 and later explicitly define a memory location and
provide the following note in [intro.memory] paragraph 4 [ISO/IEC 14882-2014]:

[Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations,
and therefore can be concurrently updated by two threads of execution without
interference. The same applies to two bit-fields, if one is declared inside a nested struct
declaration and the other is not, or if the two are separated by a zero-length bit-field
declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also
bit-fields of non-zero width. – end note]

It is almost certain that flag1 and flag2 are stored in the same word. Using a compiler that
conforms to earlier versions of the standard, if both assignments occur on a thread-scheduling
interleaving that ends with both stores occurring after one another, it is possible that only one of
the flags will be set as intended, and the other flag will contain its previous value because both
members are represented by the same word, which is the smallest unit the processor can work on.
Before the changes made to the C++ Standard for C++11, there were no guarantees that these
flags could be modified concurrently.

Concurrency (CON) - CON52-CPP. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 374
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.3.4 Risk Assessment

Although the race window is narrow, an assignment or an expression can evaluate improperly
because of misinterpreted data resulting in a corrupted running state or unintended information
disclosure.

Rule Severity Likelihood Remediation Cost Priority Level

CON52-CPP Medium Probable Medium P8 L2

11.3.5 Related Guidelines

SEI CERT C Coding Standard CON32-C. Prevent data races when accessing
bit-fields from multiple threads

11.3.6 Bibliography

[ISO/IEC 14882-2014] Subclause 1.7, “The C++ memory model”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1376404
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1376404

Concurrency (CON) - CON53-CPP. Avoid deadlock by locking in a predefined order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 375
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4 CON53-CPP. Avoid deadlock by locking in a predefined order

Mutexes are used to prevent multiple threads from causing a data race by accessing the same
shared resource at the same time. Sometimes, when locking mutexes, multiple threads hold each
other’s lock, and the program consequently deadlocks. Four conditions are required for deadlock
to occur:
• mutual exclusion (At least one nonshareable resource must be held.),
• hold and wait (A thread must hold a resource while awaiting availability of another

resource.),
• no preemption (Resources cannot be taken away from a thread while they are in-use.), and
• circular wait (A thread must await a resource held by another thread which is, in turn,

awaiting a resource held by the first thread.).

Deadlock needs all four conditions, so preventing deadlock requires preventing any one of the
four conditions. One simple solution is to lock the mutexes in a predefined order, which prevents
circular wait.

11.4.1 Noncompliant Code Example

The behavior of this noncompliant code example depends on the runtime environment and the
platform’s scheduler. The program is susceptible to deadlock if thread thr1 attempts to lock
ba2’s mutex at the same time thread thr2 attempts to lock ba1’s mutex in the deposit()
function.

#include <mutex>
#include <thread>

class BankAccount {
 int balance;
public:
 std::mutex balanceMutex;
 BankAccount() = delete;
 explicit BankAccount(int initialAmount) :

Concurrency (CON) - CON53-CPP. Avoid deadlock by locking in a predefined order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 376
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 balance(initialAmount){}
 int get_balance() const { return balance; }
 void set_balance(int amount) { balance = amount; }
};

int deposit(BankAccount *from, BankAccount *to, int amount) {
 std::lock_guard<std::mutex> from_lock(from->balanceMutex);

 // Not enough balance to transfer.
 if (from->get_balance() < amount) {
 return -1; // Indicate error
 }
 std::lock_guard<std::mutex> to_lock(to->balanceMutex);

 from->set_balance(from->get_balance() – amount);
 to->set_balance(to->get_balance() + amount);

 return 0;
}

void f(BankAccount *ba1, BankAccount *ba2) {
 // Perform the deposits.
 std::thread thr1(deposit, ba1, ba2, 100);
 std::thread thr2(deposit, ba2, ba1, 100);
 thr1.join();
 thr2.join();
}

11.4.2 Compliant Solution (Manual Ordering)

This compliant solution eliminates the circular wait condition by establishing a predefined order
for locking in the deposit() function. Each thread will lock on the basis of the
BankAccount ID, which is set when the BankAccount object is initialized.

#include <atomic>
#include <mutex>
#include <thread>

class BankAccount {
 static std::atomic<unsigned int> globalId;
 const unsigned int id;
 int balance;
public:
 std::mutex balanceMutex;
 BankAccount() = delete;
 explicit BankAccount(int initialAmount) :

Concurrency (CON) - CON53-CPP. Avoid deadlock by locking in a predefined order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 377
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 id(globalId++), balance(initialAmount) {}
 unsigned int get_id() const { return id; }
 int get_balance() const { return balance; }
 void set_balance(int amount) { balance = amount; }
};

std::atomic<unsigned int> BankAccount::globalId(1);

int deposit(BankAccount *from, BankAccount *to, int amount) {
 std::mutex *first;
 std::mutex *second;

 if (from->get_id() == to->get_id()) {
 return -1; // Indicate error
 }

 // Ensure proper ordering for locking.
 if (from->get_id() < to->get_id()) {
 first = &from->balanceMutex;
 second = &to->balanceMutex;
 } else {
 first = &to->balanceMutex;
 second = &from->balanceMutex;
 }
 std::lock_guard<std::mutex> firstLock(*first);
 std::lock_guard<std::mutex> secondLock(*second);

 // Check for enough balance to transfer.
 if (from->get_balance() >= amount) {
 from->set_balance(from->get_balance() – amount);
 to->set_balance(to->get_balance() + amount);
 return 0;
 }
 return -1;
}

void f(BankAccount *ba1, BankAccount *ba2) {
 // Perform the deposits.
 std::thread thr1(deposit, ba1, ba2, 100);
 std::thread thr2(deposit, ba2, ba1, 100);
 thr1.join();
 thr2.join();
}

Concurrency (CON) - CON53-CPP. Avoid deadlock by locking in a predefined order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 378
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4.3 Compliant Solution (std::lock())

This compliant solution uses Standard Template Library facilities to ensure that deadlock does not
occur due to circular wait conditions. The std::lock() function takes a variable number of
lockable objects and attempts to lock them such that deadlock does not occur [ISO/IEC 14882-
2014]. In typical implementations, this is done by using a combination of lock(),
try_lock(), and unlock() to attempt to lock the object and backing off if the lock is not
acquired, which may have worse performance than a solution that locks in predefined order
explicitly.

#include <mutex>
#include <thread>

class BankAccount {
 int balance;
public:
 std::mutex balanceMutex;
 BankAccount() = delete;
 explicit BankAccount(int initialAmount) :
 balance(initialAmount) {}
 int get_balance() const { return balance; }
 void set_balance(int amount) { balance = amount; }
};

int deposit(BankAccount *from, BankAccount *to, int amount) {
 // Create lock objects but defer locking them until later.
 std::unique_lock<std::mutex> lk1(
 from->balanceMutex, std::defer_lock);
 std::unique_lock<std::mutex> lk2(
 to->balanceMutex, std::defer_lock);

 // Lock both of the lock objects simultaneously.
 std::lock(lk1, lk2);

 if (from->get_balance() >= amount) {
 from->set_balance(from->get_balance() – amount);
 to->set_balance(to->get_balance() + amount);
 return 0;
 }
 return -1;
}

void f(BankAccount *ba1, BankAccount *ba2) {
 // Perform the deposits.
 std::thread thr1(deposit, ba1, ba2, 100);
 std::thread thr2(deposit, ba2, ba1, 100);
 thr1.join();
 thr2.join();
}

Concurrency (CON) - CON53-CPP. Avoid deadlock by locking in a predefined order

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 379
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4.4 Risk Assessment

Deadlock prevents multiple threads from progressing, halting program execution. A denial-of-
service attack is possible if the attacker can create the conditions for deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

CON53-CPP Low Probable Medium P4 L3

11.4.5 Related Guidelines

CERT Oracle Secure Coding Standard for Java LCK07-J. Avoid deadlock by requesting and
releasing locks in the same order

SEI CERT C Coding Standard CON35-C. Avoid deadlock by locking in a
predefined order

MITRE CWE CWE-764, Multiple Locks of a Critical Re-
source

11.4.6 Bibliography

[ISO/IEC 14882-2014] Subclause 30.4, “Mutual Exclusion”
Subclause 30.4.3, “Generic Locking Algorithms”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724723
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724723
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order
https://www.securecoding.cert.org/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/764.html

Concurrency (CON) - CON54-CPP. Wrap functions that can spuriously wake up in a loop

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 380
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5 CON54-CPP. Wrap functions that can spuriously wake up in a loop

The wait(), wait_for(), and wait_until() member functions of the
std::condition_variable class temporarily cede possession of a mutex so that other
threads that may be requesting the mutex can proceed. These functions must always be called
from code that is protected by locking a mutex. The waiting thread resumes execution only after it
has been notified, generally as the result of the invocation of the notify_one() or
notify_all() member functions invoked by another thread.

The wait() function must be invoked from a loop that checks whether a condition predicate
holds. A condition predicate is an expression constructed from the variables of a function that
must be true for a thread to be allowed to continue execution. The thread pauses execution via
wait(), wait_for(), wait_until(), or some other mechanism, and is resumed later,
presumably when the condition predicate is true and the thread is notified.

#include <condition_variable>
#include <mutex>

extern bool until_finish(void);
extern std::mutex m;
extern std::condition_variable condition;

void func(void) {
 std::unique_lock<std::mutex> lk(m);

 while (until_finish()) { // Predicate does not hold.
 condition.wait(lk);
 }

 // Resume when condition holds.
}

The notification mechanism notifies the waiting thread and allows it to check its condition
predicate. The invocation of notify_all() in another thread cannot precisely determine
which waiting thread will be resumed. Condition predicate statements allow notified threads to
determine whether they should resume upon receiving the notification.

Concurrency (CON) - CON54-CPP. Wrap functions that can spuriously wake up in a loop

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 381
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5.1 Noncompliant Code Example

This noncompliant code example monitors a linked list and assigns one thread to consume list
elements when the list is nonempty.

This thread pauses execution using wait() and resumes when notified, presumably when the list
has elements to be consumed. It is possible for the thread to be notified even if the list is still
empty, perhaps because the notifying thread used notify_all(), which notifies all threads.
Notification using notify_all() is frequently preferred over using notify_one(). (See
CON55-CPP. Preserve thread safety and liveness when using condition variables for more
information.)

A condition predicate is typically the negation of the condition expression in the loop. In this
noncompliant code example, the condition predicate for removing an element from a linked list is
(list->next != nullptr), whereas the condition expression for the while loop
condition is (list->next == nullptr).

This noncompliant code example nests the call to wait() inside an if block and consequently
fails to check the condition predicate after the notification is received. If the notification was
spurious or malicious, the thread would wake up prematurely.

#include <condition_variable>
#include <mutex>

struct Node {
 void *node;
 struct Node *next;
};

static Node list;
static std::mutex m;
static std::condition_variable condition;

void consume_list_element(std::condition_variable &condition) {
 std::unique_lock<std::mutex> lk(m);

 if (list.next == nullptr) {
 condition.wait(lk);
 }

 // Proceed when condition holds.
}

Concurrency (CON) - CON54-CPP. Wrap functions that can spuriously wake up in a loop

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 382
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5.2 Compliant Solution (Explicit loop with predicate)

This compliant solution calls the wait() member function from within a while loop to check
the condition both before and after the call to wait().

#include <condition_variable>
#include <mutex>

struct Node {
 void *node;
 struct Node *next;
};

static Node list;
static std::mutex m;
static std::condition_variable condition;

void consume_list_element() {
 std::unique_lock<std::mutex> lk(m);

 while (list.next == nullptr) {
 condition.wait(lk);
 }

 // Proceed when condition holds.
}

Concurrency (CON) - CON54-CPP. Wrap functions that can spuriously wake up in a loop

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 383
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5.3 Compliant Solution (Implicit loop with lambda predicate)

The std::condition_variable::wait() function has an overloaded form that accepts a
function object representing the predicate. This form of wait() behaves as if it were
implemented as while (!pred()) wait(lock);. This compliant solution uses a lambda
as a predicate and passes it to the wait() function. The predicate is expected to return true when
it is safe to proceed, which reverses the predicate logic from the compliant solution using an
explicit loop predicate.

#include <condition_variable>
#include <mutex>

struct Node {
 void *node;
 struct Node *next;
};

static Node list;
static std::mutex m;
static std::condition_variable condition;

void consume_list_element() {
 std::unique_lock<std::mutex> lk(m);

 condition.wait(lk, []{ return list.next; });
 // Proceed when condition holds.
}

11.5.4 Risk Assessment

Failure to enclose calls to the wait(), wait_for(), or wait_until() member functions
inside a while loop can lead to indefinite blocking and denial of service (DoS).

Rule Severity Likelihood Remediation Cost Priority Level

CON54-CPP Low Unlikely Medium P2 L3

Concurrency (CON) - CON54-CPP. Wrap functions that can spuriously wake up in a loop

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 384
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5.5 Related Guidelines

CERT Oracle Secure Coding Standard for Java THI03-J. Always invoke wait() and await()
methods inside a loop

SEI CERT C Coding Standard CON36-C. Wrap functions that can spuriously
wake up in a loop

SEI CERT C++ Coding Standard CON55-CPP. Preserve thread safety and
liveness when using condition variables

11.5.6 Bibliography

[ISO/IEC 9899:2011] 7.17.7.4, “The atomic_compare_exchange Generic Functions”

[Lea 2000] 1.3.2, “Liveness”
3.2.2, “Monitor Mechanics”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940661
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940661
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=124190936
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=124190936
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Concurrency (CON) - CON55-CPP. Preserve thread safety and liveness when using condition variables

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 385
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.6 CON55-CPP. Preserve thread safety and liveness when using
condition variables

Both thread safety and liveness are concerns when using condition variables. The thread-safety
property requires that all objects maintain consistent states in a multithreaded environment [Lea
2000]. The liveness property requires that every operation or function invocation execute to
completion without interruption; for example, there is no deadlock.

Condition variables must be used inside a while loop. (See CON54-CPP. Wrap functions that
can spuriously wake up in a loop for more information.) To guarantee liveness, programs must
test the while loop condition before invoking the condition_variable::wait()
member function. This early test checks whether another thread has already satisfied the condition
predicate and has sent a notification. Invoking wait() after the notification has been sent results
in indefinite blocking.

To guarantee thread safety, programs must test the while loop condition after returning from
wait(). When a given thread invokes wait(), it will attempt to block until its condition
variable is signaled by a call to condition_variable::notify_all() or to
condition_variable::notify_one().

The notify_one() member function unblocks one of the threads that are blocked on the
specified condition variable at the time of the call. If multiple threads are waiting on the same
condition variable, the scheduler can select any of those threads to be awakened (assuming that all
threads have the same priority level).

The notify_all() member function unblocks all of the threads that are blocked on the
specified condition variable at the time of the call. The order in which threads execute following a
call to notify_all() is unspecified. Consequently, an unrelated thread could start executing,
discover that its condition predicate is satisfied, and resume execution even though it was
supposed to remain dormant.

For these reasons, threads must check the condition predicate after the wait() function returns.
A while loop is the best choice for checking the condition predicate both before and after
invoking wait().

The use of notify_one() is safe if each thread uses a unique condition variable. If multiple
threads share a condition variable, the use of notify_one() is safe only if the following
conditions are met:
• All threads must perform the same set of operations after waking up, which means that any

thread can be selected to wake up and resume for a single invocation of notify_one().
• Only one thread is required to wake upon receiving the signal.

The notify_all() function can be used to unblock all of the threads that are blocked on the
specified condition variable if the use of notify_one() is unsafe.

Concurrency (CON) - CON55-CPP. Preserve thread safety and liveness when using condition variables

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 386
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.6.1 Noncompliant Code Example (notify_one())

This noncompliant code example uses five threads that are intended to execute sequentially
according to the step level assigned to each thread when it is created (serialized processing). The
currentStep variable holds the current step level and is incremented when the respective
thread completes. Finally, another thread is signaled so that the next step can be executed. Each
thread waits until its step level is ready, and the wait() call is wrapped inside a while loop, in
compliance with CON54-CPP. Wrap functions that can spuriously wake up in a loop.

#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

std::mutex mutex;
std::condition_variable cond;

void run_step(size_t myStep) {
 static size_t currentStep = 0;
 std::unique_lock<std::mutex> lk(mutex);

 std::cout << "Thread " << myStep << " has the lock" << std::endl;

 while (currentStep != myStep) {
 std::cout << "Thread " << myStep << " is sleeping..."
 << std::endl;
 cond.wait(lk);
 std::cout << "Thread " << myStep << " woke up" << std::endl;
 }

 // Do processing...
 std::cout << "Thread " << myStep << " is processing..."
 << std::endl;
 currentStep++;

 // Signal awaiting task.
 cond.notify_one();

 std::cout << "Thread " << myStep << " is exiting..."
 << std::endl;
}

int main() {
 constexpr size_t numThreads = 5;
 std::thread threads[numThreads];

 // Create threads.
 for (size_t i = 0; i < numThreads; ++i) {
 threads[i] = std::thread(run_step, i);

Concurrency (CON) - CON55-CPP. Preserve thread safety and liveness when using condition variables

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 387
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 // Wait for all threads to complete.
 for (size_t i = numThreads; i != 0; --i) {
 threads[i - 1].join();
 }
}

In this example, all threads share a single condition variable. Each thread has its own distinct
condition predicate because each thread requires currentStep to have a different value before
proceeding. When the condition variable is signaled, any of the waiting threads can wake up. The
following table illustrates a possible scenario in which the liveness property is violated. If, by
chance, the notified thread is not the thread with the next step value, that thread will wait again.
No additional notifications can occur, and eventually the pool of available threads will be
exhausted.

Deadlock: Out-of-Sequence Step Value

Time Thread #
(my_step)

current_step Action

0 3 0 Thread 3 executes the first time: the predicate is false ->
wait()

1 2 0 Thread 2 executes the first time: the predicate is false ->
wait()

2 4 0 Thread 4 executes the first time: the predicate is false ->
wait()

3 0 0 Thread 0 executes the first time: the predicate is true ->
currentStep++; notify_one()

4 1 1 Thread 1 executes the first time: the predicate is true ->
currentStep++; notify_one()

5 3 2 Thread 3 wakes up (scheduler choice): the predicate is
false -> wait()

6 — — Thread exhaustion! There are no more threads to run, and a
conditional variable signal is needed to wake up the others.

This noncompliant code example violates the liveness property.

Concurrency (CON) - CON55-CPP. Preserve thread safety and liveness when using condition variables

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 388
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.6.2 Compliant Solution (notify_all())

This compliant solution uses notify_all() to signal all waiting threads instead of a single
random thread. Only the run_step() thread code from the noncompliant code example is
modified.

#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

std::mutex mutex;
std::condition_variable cond;

void run_step(size_t myStep) {
 static size_t currentStep = 0;
 std::unique_lock<std::mutex> lk(mutex);

 std::cout << "Thread " << myStep << " has the lock" << std::endl;

 while (currentStep != myStep) {
 std::cout << "Thread " << myStep << " is sleeping..."
 << std::endl;
 cond.wait(lk);
 std::cout << "Thread " << myStep << " woke up" << std::endl;
 }

 // Do processing ...
 std::cout << "Thread " << myStep << " is processing..."
 << std::endl;
 currentStep++;

 // Signal ALL waiting tasks.
 cond.notify_all();

 std::cout << "Thread " << myStep << " is exiting..."
 << std::endl;
}

// ... main() unchanged ...

Awakening all threads guarantees the liveness property because each thread will execute its
condition predicate test, and exactly one will succeed and continue execution.

Concurrency (CON) - CON55-CPP. Preserve thread safety and liveness when using condition variables

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 389
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.6.3 Compliant Solution (Using notify_one() with a Unique Condition
Variable per Thread)

Another compliant solution is to use a unique condition variable for each thread (all associated
with the same mutex). In this case, notify_one() wakes up only the thread that is waiting on
it. This solution is more efficient than using notify_all() because only the desired thread is
awakened.

The condition predicate of the signaled thread must be true; otherwise, a deadlock will occur.

#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

constexpr size_t numThreads = 5;

std::mutex mutex;
std::condition_variable cond[numThreads];

void run_step(size_t myStep) {
 static size_t currentStep = 0;
 std::unique_lock<std::mutex> lk(mutex);

 std::cout << "Thread " << myStep << " has the lock" << std::endl;

 while (currentStep != myStep) {
 std::cout << "Thread " << myStep << " is sleeping..."
 << std::endl;
 cond[myStep].wait(lk);
 std::cout << "Thread " << myStep << " woke up" << std::endl;
 }

 // Do processing ...
 std::cout << "Thread " << myStep << " is processing..."
 << std::endl;
 currentStep++;

 // Signal next step thread.
 if ((myStep + 1) < numThreads) {
 cond[myStep + 1].notify_one();
 }

 std::cout << "Thread " << myStep << " is exiting..."
 << std::endl;
}

// ... main() unchanged ...

Concurrency (CON) - CON55-CPP. Preserve thread safety and liveness when using condition variables

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 390
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.6.4 Risk Assessment

Failing to preserve the thread safety and liveness of a program when using condition variables can
lead to indefinite blocking and denial of service (DoS).

Rule Severity Likelihood Remediation Cost Priority Level

CON55-CPP Low Unlikely Medium P2 L3

11.6.5 Related Guidelines

CERT Oracle Secure Coding Standard for Java THI02-J. Notify all waiting threads rather
than a single thread

SEI CERT C Coding Standard

CON38-C. Preserve thread safety and liveness
when using condition variables

SEI CERT C++ Coding Standard CON54-CPP. Wrap functions that can spuri-
ously wake up in a loop

11.6.6 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, pthread_cond_broadcast
XSH, System Interfaces, pthread_cond_signal

[Lea 2000]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19234874
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19234874
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/display/c/CON38-C.+Preserve+thread+safety+and+liveness+when+using+condition+variables
https://www.securecoding.cert.org/confluence/display/c/CON38-C.+Preserve+thread+safety+and+liveness+when+using+condition+variables
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

Concurrency (CON) - CON56-CPP. Do not speculatively lock a non-recursive mutex that is already owned by the calling
thread

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 391
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.7 CON56-CPP. Do not speculatively lock a non-recursive mutex that
is already owned by the calling thread

The C++ Standard Library supplies both recursive and non-recursive mutex classes used to
protect critical sections. The recursive mutex classes (std::recursive_mutex and
std::recursive_timed_mutex) differ from the non-recursive mutex classes
(std::mutex, std::timed_mutex, and std::shared_timed_mutex) in that a
recursive mutex may be locked recursively by the thread that currently owns the mutex. All mutex
classes support the ability to speculatively lock the mutex through functions such as
try_lock(), try_lock_for(), try_lock_until(), try_lock_shared_for (),
and try_lock_shared_until(). These speculative locking functions attempt to obtain
ownership of the mutex for the calling thread, but will not block in the event the ownership cannot
be obtained. Instead, they return a Boolean value specifying whether the ownership of the mutex
was obtained or not.

The C++ Standard, [thread.mutex.requirements.mutex], paragraphs 14 and 15 [ISO/IEC 14882-
2014], state the following:

The expression m.try_lock() shall be well-formed and have the following semantics:
Requires: If m is of type std::mutex, std::timed_mutex, or
std::shared_timed_mutex, the calling thread does not own the mutex.

Further, [thread.timedmutex.class], paragraph 3, in part, states the following:

The behavior of a program is undefined if:
• a thread that owns a timed_mutex object calls lock(), try_lock(),

try_lock_for(), or try_lock_until() on that object

Finally, [thread.sharedtimedmutex.class], paragraph 3, in part, states the following:

The behavior of a program is undefined if:
• a thread attempts to recursively gain any ownership of a shared_timed_mutex.

Thus, attempting to speculatively lock a non-recursive mutex object that is already owned by the
calling thread is undefined behavior. Do not call try_lock(), try_lock_for(),
try_lock_until(), try_lock_shared_for(), or try_lock_shared_until() on
a non-recursive mutex object from a thread that already owns that mutex object.

Concurrency (CON) - CON56-CPP. Do not speculatively lock a non-recursive mutex that is already owned by the calling
thread

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 392
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.7.1 Noncompliant Code Example

In this noncompliant code example, the mutex m is locked by the thread’s initial entry point and is
speculatively locked in the do_work() function from the same thread, resulting in undefined
behavior because it is not a recursive mutex. With common implementations, this may result in
deadlock.

#include <mutex>
#include <thread>

std::mutex m;

void do_thread_safe_work();

void do_work() {
 while (!m.try_lock()) {
 // The lock is not owned yet, do other work while waiting.
 do_thread_safe_work();
 }
 try {

 // The mutex is now locked; perform work on shared resources.
 // ...

 // Release the mutex.
 catch (...) {
 m.unlock();
 throw;
 }
 m.unlock();
}

void start_func() {
 std::lock_guard<std::mutex> lock(m);
 do_work();
}

int main() {
 std::thread t(start_func);

 do_work();

 t.join();
}

Concurrency (CON) - CON56-CPP. Do not speculatively lock a non-recursive mutex that is already owned by the calling
thread

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 393
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.7.2 Compliant Solution

This compliant solution removes the lock from the thread’s initial entry point, allowing the mutex
to be speculatively locked, but not recursively.

#include <mutex>
#include <thread>

std::mutex m;

void do_thread_safe_work();

void do_work() {
 while (!m.try_lock()) {
 // The lock is not owned yet, do other work while waiting.
 do_thread_safe_work();
 }
 try {
 // The mutex is now locked; perform work on shared resources.
 // ...

 // Release the mutex.
 catch (...) {
 m.unlock();
 throw;
 }
 m.unlock();
}

void start_func() {
 do_work();
}

int main() {
 std::thread t(start_func);

 do_work();

 t.join();
}

Concurrency (CON) - CON56-CPP. Do not speculatively lock a non-recursive mutex that is already owned by the calling
thread

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 394
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.7.3 Risk Assessment

Speculatively locking a non-recursive mutex in a recursive manner is undefined behavior that can
lead to deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

CON56-CPP Low Unlikely High P1 L3

11.7.4 Related Guidelines

MITRE CWE CWE-667, Improper Locking

11.7.5 Bibliography

[ISO/IEC 14882-2014] Subclause 30.4.1, “Mutex Requirements”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/667.html

Miscellaneous (MSC) - MSC50-CPP. Do not use std::rand() for generating pseudorandom numbers

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 395
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12 Miscellaneous (MSC)

12.1 MSC50-CPP. Do not use std::rand() for generating pseudorandom
numbers

Pseudorandom number generators use mathematical algorithms to produce a sequence of numbers
with good statistical properties, but the numbers produced are not genuinely random.

The C Standard rand() function, exposed through the C++ standard library through
<cstdlib> as std::rand(), makes no guarantees as to the quality of the random sequence
produced. The numbers generated by some implementations of std::rand() have a
comparatively short cycle, and the numbers can be predictable. Applications that have strong
pseudorandom number requirements must use a generator that is known to be sufficient for their
needs.

12.1.1 Noncompliant Code Example

The following noncompliant code generates an ID with a numeric part produced by calling the
rand() function. The IDs produced are predictable and have limited randomness. Further,
depending on the value of RAND_MAX, the resulting value can have modulo bias.

#include <cstdlib>
#include <string>

void f() {
 std::string id("ID"); // Holds the ID, starting with the
 // characters "ID" followed by a
 // random integer in the range [0-10000].
 id += std::to_string(std::rand() % 10000);
 // ...
}

Miscellaneous (MSC) - MSC50-CPP. Do not use std::rand() for generating pseudorandom numbers

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 396
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.1.2 Compliant Solution

The C++ standard library provides mechanisms for fine-grained control over pseudorandom
number generation. It breaks random number generation into two parts: one is the algorithm
responsible for providing random values (the engine), and the other is responsible for distribution
of the random values via a density function (the distribution). The distribution object is not strictly
required, but it works to ensure that values are properly distributed within a given range instead of
improperly distributed due to bias issues. This compliant solution uses the Mersenne Twister
algorithm as the engine for generating random values and a uniform distribution to negate the
modulo bias from the noncompliant code example.

#include <random>
#include <string>

void f() {
 std::string id("ID"); // Holds the ID, starting with the
 // characters "ID" followed by a random
 // integer in the range [0-10000].
 std::uniform_int_distribution<int> distribution(0, 10000);
 std::random_device rd;
 std::mt19937 engine(rd());
 id += std::to_string(distribution(engine));
 // ...
}

This compliant solution also seeds the random number engine, in conformance with MSC51-CPP.
Ensure your random number generator is properly seeded.

12.1.3 Risk Assessment

Using the std::rand() function could lead to predictable random numbers.

Rule Severity Likelihood Remediation Cost Priority Level

MSC50-CPP Medium Unlikely Low P6 L2

http://dl.acm.org/citation.cfm?doid=272991.272995

Miscellaneous (MSC) - MSC50-CPP. Do not use std::rand() for generating pseudorandom numbers

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 397
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.1.4 Related Guidelines

SEI CERT C++ Coding Standard MSC51-CPP. Ensure your random number generator is
properly seeded

SEI CERT C Coding Standard MSC30-C. Do not use the rand() function for
generating pseudorandom numbers

CERT Oracle Secure Coding Standard
for Java

MSC02-J. Generate strong random numbers

MITRE CWE CWE-327, Use of a Broken or Risky Cryptographic
Algorithm
CWE-330, Use of Insufficiently Random Values

12.1.5 Bibliography

[ISO/IEC 9899:2011] Subclause 7.22.2, “Pseudo-random Sequence Generation Functions”

[ISO/IEC 14882-2014] Subclause 26.5, “Random Number Generation”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3755
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3755
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724440
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/

Miscellaneous (MSC) - MSC51-CPP. Ensure your random number generator is properly seeded

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 398
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.2 MSC51-CPP. Ensure your random number generator is properly
seeded

A pseudorandom number generator (PRNG) is a deterministic algorithm capable of generating
sequences of numbers that approximate the properties of random numbers. Each sequence is
completely determined by the initial state of the PRNG and the algorithm for changing the state.
Most PRNGs make it possible to set the initial state, also called the seed state. Setting the initial
state is called seeding the PRNG.

Calling a PRNG in the same initial state, either without seeding it explicitly or by seeding it with a
constant value, results in generating the same sequence of random numbers in different runs of the
program. Consider a PRNG function that is seeded with some initial seed value and is
consecutively called to produce a sequence of random numbers. If the PRNG is subsequently
seeded with the same initial seed value, then it will generate the same sequence.

Consequently, after the first run of an improperly seeded PRNG, an attacker can predict the
sequence of random numbers that will be generated in the future runs. Improperly seeding or
failing to seed the PRNG can lead to vulnerabilities, especially in security protocols.

The solution is to ensure that a PRNG is always properly seeded with an initial seed value that
will not be predictable or controllable by an attacker. A properly seeded PRNG will generate a
different sequence of random numbers each time it is run.

Not all random number generators can be seeded. True random number generators that rely on
hardware to produce completely unpredictable results do not need to be and cannot be seeded.
Some high-quality PRNGs, such as the /dev/random device on some UNIX systems, also
cannot be seeded. This rule applies only to algorithmic PRNGs that can be seeded.

12.2.1 Noncompliant Code Example

This noncompliant code example generates a sequence of 10 pseudorandom numbers using the
Mersenne Twister engine. No matter how many times this code is executed, it always produces
the same sequence because the default seed is used for the engine.

#include <random>
#include <iostream>

void f() {
 std::mt19937 engine;

 for (int i = 0; i < 10; ++i) {
 std::cout << engine() << ", ";
 }
}

https://en.wikipedia.org/wiki/Mersenne_twister

Miscellaneous (MSC) - MSC51-CPP. Ensure your random number generator is properly seeded

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 399
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The output of this example follows.

1st run: 3499211612, 581869302, 3890346734, 3586334585, 545404204,
4161255391, 3922919429, 949333985, 2715962298, 1323567403,

2nd run: 3499211612, 581869302, 3890346734, 3586334585, 545404204,
4161255391, 3922919429, 949333985, 2715962298, 1323567403,

...

nth run: 3499211612, 581869302, 3890346734, 3586334585, 545404204,
4161255391, 3922919429, 949333985, 2715962298, 1323567403,

12.2.2 Noncompliant Code Example

This noncompliant code example improves the previous noncompliant code example by seeding
the random number generation engine with the current time. However, this approach is still
unsuitable when an attacker can control the time at which the seeding is executed. Predictable
seed values can result in exploits when the subverted PRNG is used.

#include <ctime>
#include <random>
#include <iostream>

void f() {
 std::time_t t;
 std::mt19937 engine(std::time(&t));

 for (int i = 0; i < 10; ++i) {
 std::cout << engine() << ", ";
 }
}

Miscellaneous (MSC) - MSC51-CPP. Ensure your random number generator is properly seeded

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 400
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.2.3 Compliant Solution

This compliant solution uses std::random_device to generate a random value for seeding
the Mersenne Twister engine object. The values generated by std::random_device are
nondeterministic random numbers when possible, relying on random number generation devices,
such as /dev/random. When such a device is not available, std::random_device may
employ a random number engine; however, the initial value generated should have sufficient
randomness to serve as a seed value.

#include <random>
#include <iostream>

void f() {
 std::random_device dev;
 std::mt19937 engine(dev());

 for (int i = 0; i < 10; ++i) {
 std::cout << engine() << ", ";
 }
}

The output of this example follows.

1st run: 3921124303, 1253168518, 1183339582, 197772533, 83186419,
2599073270, 3238222340, 101548389, 296330365, 3335314032,

2nd run: 2392369099, 2509898672, 2135685437, 3733236524,
883966369, 2529945396, 764222328, 138530885, 4209173263,
1693483251,

3rd run: 914243768, 2191798381, 2961426773, 3791073717,
2222867426, 1092675429, 2202201605, 850375565, 3622398137,
422940882,

...

12.2.4 Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

MSC51-CPP Medium Likely Low P18 L1

Miscellaneous (MSC) - MSC51-CPP. Ensure your random number generator is properly seeded

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 401
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.2.4.1 Related Vulnerabilities

Using a predictable seed value, such as the current time, result in numerous vulnerabilities, such
as the one described by CVE-2008-1637.

12.2.5 Related Guidelines

SEI CERT C Coding Standard MSC32-C. Properly seed pseudorandom number generators

MITRE CWE CWE-327, Use of a Broken or Risky Cryptographic Algo-
rithm
CWE-330, Use of Insufficiently Random Values
CWE-337, Predictable Seed in PRNG

12.2.6 Bibliography

[ISO/IEC 9899:2011] Subclause 7.22.2, “Pseudo-random Sequence Generation Functions”

[ISO/IEC 14882-2014] Subclause 26.5, “Random Number Generation”

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23134340
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/337.html

Miscellaneous (MSC) - MSC52-CPP. Value-returning functions must return a value from all exit paths

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 402
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.3 MSC52-CPP. Value-returning functions must return a value from all
exit paths

The C++ Standard, [stmt.return], paragraph 2 [ISO/IEC 14882-2014], states the following:

Flowing off the end of a function is equivalent to a return with no value; this results in
undefined behavior in a value-returning function.

A value-returning function must return a value from all code paths; otherwise, it will result in
undefined behavior. This includes returning through less-common code paths, such as from a
function-try-block, as explained in the C++ Standard, [except.handle], paragraph 15:

Flowing off the end of a function-try-block is equivalent to a return with no value; this
results in undefined behavior in a value-returning function (6.6.3).

12.3.1 Noncompliant Code Example

In this noncompliant code example, the programmer forgot to return the input value for positive
input, so not all code paths return a value.

int absolute_value(int a) {
 if (a < 0) {
 return -a;
 }
}

12.3.2 Compliant Solution

In this compliant solution, all code paths now return a value.

int absolute_value(int a) {
 if (a < 0) {
 return -a;
 }
 return a;
}

Miscellaneous (MSC) - MSC52-CPP. Value-returning functions must return a value from all exit paths

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 403
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.3.3 Noncompliant Code Example

In this noncompliant code example, the function-try-block handler does not return a value,
resulting in undefined behavior when an exception is thrown.

#include <vector>

std::size_t f(std::vector<int> &v, std::size_t s) try {
 v.resize(s);
 return s;
} catch (...) {
}

12.3.4 Compliant Solution

In this compliant solution, the exception handler of the function-try-block also returns a value.

#include <vector>

std::size_t f(std::vector<int> &v, std::size_t s) try {
 v.resize(s);
 return s;
} catch (...) {
 return 0;
}

12.3.5 Exceptions

MSC54-CPP-EX1: Flowing off the end of the main() function is equivalent to a return 0;
statement, according to the C++ Standard, [basic.start.main], paragraph 5 [ISO/IEC 14882-2014].
Thus, flowing off the end of the main() function does not result in undefined behavior.

Miscellaneous (MSC) - MSC52-CPP. Value-returning functions must return a value from all exit paths

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 404
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

MSC54-CPP-EX2: It is permissible for a control path to not return a value if that code path is
never expected to be taken and a function marked [[noreturn]] is called as part of that code
path or if an exception is thrown, as is illustrated in the following code example.

#include <cstdlib>
#include <iostream>
[[noreturn]] void unreachable(const char *msg) {
 std::cout << "Unreachable code reached: " << msg << std::endl;
 std::exit(1);
}

enum E {
 One,
 Two,
 Three
};

int f(E e) {
 switch (e) {
 case One: return 1;
 case Two: return 2;
 case Three: return 3;
 }
 unreachable("Can never get here");
}

12.3.6 Risk Assessment

Failing to return a value from a code path in a value-returning function results in undefined
behavior that might be exploited to cause data integrity violations.

Rule Severity Likelihood Remediation Cost Priority Level

MSC52-CPP Medium Probable Medium P8 L2

12.3.7 Bibliography

[ISO/IEC 14882-2014] Subclause 3.6.1, “Main Function”
Subclause 6.6.3, “The return Statement”
Subclause 15.3, “Handling an Exception”

Miscellaneous (MSC) - MSC53-CPP. Do not return from a function declared [[noreturn]]

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 405
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.4 MSC53-CPP. Do not return from a function declared [[noreturn]]

The [[noreturn]] attribute specifies that a function does not return. The C++ Standard,
[dcl.attr.noreturn] paragraph 2 [ISO/IEC 14882-2014], states the following:

If a function f is called where f was previously declared with the noreturn attribute
and f eventually returns, the behavior is undefined.

A function that specifies [[noreturn]] can prohibit returning by throwing an exception,
entering an infinite loop, or calling another function designated with the [[noreturn]]
attribute.

12.4.1 Noncompliant Code Example

In this noncompliant code example, if the value 0 is passed, control will flow off the end of the
function, resulting in an implicit return and undefined behavior.

#include <cstdlib>

[[noreturn]] void f(int i) {
 if (i > 0)
 throw "Received positive input";
 else if (i < 0)
 std::exit(0);
}

12.4.2 Compliant Solution

In this compliant solution, the function does not return on any code path.

#include <cstdlib>

[[noreturn]] void f(int i) {
 if (i > 0)
 throw "Received positive input";
 std::exit(0);
}

12.4.3 Risk Assessment

Returning from a function marked [[noreturn]] results in undefined behavior that might be
exploited to cause data-integrity violations.

Rule Severity Likelihood Remediation Cost Priority Level

MSC53-CPP Medium Unlikely Low P2 L3

Miscellaneous (MSC) - MSC53-CPP. Do not return from a function declared [[noreturn]]

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 406
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.4.4 Bibliography

[ISO/IEC 14882-2014] Subclause 7.6.3, “noreturn Attribute”

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 407
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.5 MSC54-CPP. A signal handler must be a plain old function

The C++ Standard, [support.runtime], paragraph 10 [ISO/IEC 14882-2014], states the following:

The common subset of the C and C++ languages consists of all declarations, definitions,
and expressions that may appear in a well formed C++ program and also in a
conforming C program. A POF (“plain old function”) is a function that uses only features
from this common subset, and that does not directly or indirectly use any function that is
not a POF, except that it may use plain lock-free atomic operations. A plain lock-free
atomic operation is an invocation of a function f from Clause 29, such that f is not a
member function, and either f is the function atomic_is_lock_free, or for every
atomic argument A passed to f, atomic_is_lock_free(A) yields true. All signal
handlers shall have C linkage. The behavior of any function other than a POF used as a
signal handler in a C++ program is implementation-defined.228

Footnote 228 states the following:

In particular, a signal handler using exception handling is very likely to have problems.
Also, invoking std::exit may cause destruction of objects, including those of the
standard library implementation, which, in general, yields undefined behavior in a signal
handler.

If your signal handler is not a plain old function, then the behavior of a call to it in response to a
signal is implementation-defined, at best, and is likely to result in undefined behavior. All signal
handlers must meet the definition of a plain old function. In addition to the restrictions placed on
signal handlers in a C program, this definition also prohibits the use of features that exist in C++
but not in C (such as non-POD [non–plain old data] objects and exceptions). This includes
indirect use of such features through function calls.

12.5.1 Noncompliant Code Example

In this noncompliant code example, the signal handler is declared as a static function.
However, since all signal handler functions must have C language linkage, and C++ is the default
language linkage for functions in C++, calling the signal handler results in undefined behavior.

#include <csignal>

static void sig_handler(int sig) {
 // Implementation details elided.
}

void install_signal_handler() {
 if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
 // Handle error
 }
}

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 408
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.5.2 Compliant Solution

This compliant solution defines sig_handler() as having C language linkage. As a
consequence of declaring the signal handler with C language linkage, the signal handler will have
external linkage rather than internal linkage.

#include <csignal>

extern "C" void sig_handler(int sig) {
 // Implementation details elided.
}

void install_signal_handler() {
 if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
 // Handle error
 }
}

12.5.3 Noncompliant Code Example

In this noncompliant code example, a signal handler calls a function that allows exceptions, and it
attempts to handle any exceptions thrown. Because exceptions are not part of the common subset
of C and C++ features, this example results in implementation-defined behavior. However, it is
unlikely that the implementation’s behavior will be suitable. For instance, on a stack-based
architecture where a signal is generated asynchronously (instead of as a result of a call to
std:abort() or std::raise()), it is possible that the stack frame is not properly
initialized, causing stack tracing to be unreliable and preventing the exception from being caught
properly.

#include <csignal>

static void g() noexcept(false);

extern "C" void sig_handler(int sig) {
 try {
 g();
 } catch (...) {
 // Handle error
 }
}

void install_signal_handler() {
 if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
 // Handle error
 }
}

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 409
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.5.4 Compliant Solution

There is no compliant solution whereby g() can be called from the signal handler because it
allows exceptions. Even if g() were implemented such that it handled all exceptions and was
marked noexcept(true), it would still be noncompliant to call g()from a signal handler
because g() would still use a feature that is not a part of the common subset of C and C++
features allowed by a signal handler. Therefore, this compliant solution removes the call to g()
from the signal handler and instead polls a variable of type volatile sig_atomic_t
periodically; if the variable is set to 1 in the signal handler, then g() is called to respond to the
signal.

#include <csignal>

volatile sig_atomic_t signal_flag = 0;
static void g() noexcept(false);

extern "C" void sig_handler(int sig) {
 signal_flag = 1;
}

void install_signal_handler() {
 if (SIG_ERR == std::signal(SIGTERM, sig_handler)) {
 // Handle error
 }
}

// Called periodically to poll the signal flag.
void poll_signal_flag() {
 if (signal_flag == 1) {
 signal_flag = 0;
 try {
 g();
 } catch(...) {
 // Handle error
 }
 }
}

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 410
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.5.5 Risk Assessment

Failing to use a plain old function as a signal handler can result in implementation-defined
behavior as well as undefined behavior. Given the number of features that exist in C++ that do not
also exist in C, the consequences that arise from failure to comply with this rule can range from
benign (harmless) behavior to abnormal program termination, or even arbitrary code execution.

Rule Severity Likelihood Remediation Cost Priority Level

MSC54-CPP High Probable High P6 L2

12.5.6 Related Guidelines

SEI CERT C Coding Standard SIG30-C. Call only asynchronous-safe functions within
signal handlers
SIG31-C. Do not access shared objects in signal handlers

12.5.7 Bibliography

[ISO/IEC 14882-2014] Subclause 18.10, “Other Runtime Support”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2982111
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2982111
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2982168

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 411
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix A: Bibliography

[Abrahams 2010]
Abrahams, David. Error and Exception Handling, #7. Boost Library. 2010.
http://www.boost.org/community/error_handling.html

[Banahan 2003]
Banahan, Mike. The C Book. 2003.
http://www.phy.duke.edu/~rgb/General/c_book/c_book/index.html

[Barney 2010]
Barney, Blaise. POSIX Threads Programming. Lawrence Livermore National Security, LLC.
2010. https://computing.llnl.gov/tutorials/pthreads

[Becker 2008]
Becker, Pete. Working Draft, Standard for Programming Language C++. April 2008.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf

[Becker 2009]
Becker, Pete. Working Draft, Standard for Programming Language C++. September 2009.
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n3000.pdf

[Black 2007]
Black, Paul E.; Kass, Michael; & Koo, Michael. Source Code Security Analysis Tool Functional
Specification Version 1.0. Special Publication 500-268. Information Technology Laboratory
(ITL). May 2007. http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-
268.pdf

[Cline 2009]
Cline, Marshall. C++ FAQ Lite—Frequently Asked Questions. 1991-2009.
http://www.graphics.cornell.edu/~martin/docs/c++-faq

[CodeSourcery 2016a]
CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, SGI, et al. Itanium C++ ABI. December
2016 [accessed] https://mentorembedded.github.io/cxx-abi/abi.html

[CodeSourcery 2016b]
CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, SGI, et al. Itanium C++ ABI (Revision:
1.86). December 2016 [accessed] https://refspecs.linuxbase.org/cxxabi-1.86.html#array-cookies

[Coverity 2007]
Coverity. Coverity Prevent User’s Manual (3.3.0). 2007.

http://www.boost.org/community/error_handling.html
http://www.phy.duke.edu/%7Ergb/General/c_book/c_book/index.html
https://computing.llnl.gov/tutorials/pthreads
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n3000.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://www.graphics.cornell.edu/%7Emartin/docs/c++-faq
https://mentorembedded.github.io/cxx-abi/abi.html
https://refspecs.linuxbase.org/cxxabi-1.86.html#array-cookies

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 412
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[CWE]
MITRE. Common Weakness Enumeration – A Community-Developed Dictionary of Software
Weakness Types. http://cwe.mitre.org/

[Dewhurst 2002]
Dewhurst, Stephen C. C++ Gotchas: Avoiding Common Problems in Coding and Design.
Addison-Wesley Professional. 2002.

[Dewhurst 2005]
Dewhurst, Stephen C. C++ Common Knowledge: Essential Intermediate Programming. Addison-
Wesley Professional. 2005.

[DISA 2015]
DISA. Application Security and Development Security Technical Implementation Guide. Version
3, Release 10. http://iase.disa.mil/stigs/Documents/
U_Application_Security_and_Development_V3R10_STIG.zip

[DISA 2016]
DISA. Application Security and Development Security Technical Implementation Guide. Version
4. Release 1.
http://iasecontent.disa.mil/stigs/zip/Aug2016/U_ASD_V4R1_STIG.zip

[Dowd 2006]
Dowd, Mark; McDonald, John; & Schuh, Justin. Attacking delete and delete[] in C++. In The Art
of Software Security Assessment. Addison-Wesley Professional. 2006. http://www.informit.com/
store/art-of-software-security-assessment-identifying-and-9780321444424

[Fortify 2006]
Fortify Software Inc. Fortify Taxonomy: Software Security Errors. 2006.
http://www.fortifysoftware.com/vulncat/

[FSF 2005]
Free Software Foundation. GCC Online Documentation. 2005. http://gcc.gnu.org/onlinedocs

[Gamma 1994]
Gamma, Erich; Helm, Richard; Johnson, Ralph, & Vlissides, John. Design Patterns Elements of
Reusable Object Oriented Software. Addison-Wesley Professional. 1994.

[GNU 2016]
gnu.org. GCC, the GNU Compiler Collection: Declaring Attributes of Functions. December 2016
[accessed]. https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

[Goldberg 1991]
Goldberg, David. What Every Computer Scientist Should Know About Floating-Point Arithmetic.
Sun Microsystems. March 1991. http://docs.sun.com/source/806-3568/ncg_goldberg.html

http://cwe.mitre.org/
http://iase.disa.mil/stigs/Documents/U_Application_Security_and_Development_V3R10_STIG.zip
http://iase.disa.mil/stigs/Documents/U_Application_Security_and_Development_V3R10_STIG.zip
http://iasecontent.disa.mil/stigs/zip/Aug2016/U_ASD_V4R1_STIG.zip
http://www.informit.com/store/art-of-software-security-assessment-identifying-and-9780321444424
http://www.informit.com/store/art-of-software-security-assessment-identifying-and-9780321444424
http://www.fortifysoftware.com/vulncat/
http://gcc.gnu.org/onlinedocs
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 413
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Graff 2003]
Graff, Mark G. & Van Wyk, Kenneth R. Secure Coding: Principles and Practices. O’Reilly.
2003. ISBN 0596002424. http://shop.oreilly.com/product/9780596002428.do

[Henricson 1997]
Henricson, Mats & Nyquist, Erik. Industrial Strength C++. Prentice Hall PTR. 1997. ISBN 0-13-
120965-5. http://www.mypearsonstore.com/bookstore/industrial-strength-c-plus-plus-rules-and-
recommendations-9780131209657?xid=PSED

[Hinnant 2005]
Hinnant, Howard. RValue Reference Recommendations for Chapter 20. N1856=05-0116. August
2005. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1856.html

[Hinnant 2015]
Hinnant, Howard. Reply to “std::exception Why what() is returning a const char* and not a
string?” ISO C++ Standard Discussion. June 2015.
https://groups.google.com/a/isocpp.org/d/msg/std-discussion/NiPG1hmo4ik/DePB57IPmJwJ

[IEC 60812 2006]
Analysis techniques for system reliability - Procedure for failure mode and effects analysis
(FMEA), 2nd ed. IEC 60812. IEC. January 2006.

[IEEE Std 610.12 1990]
IEEE. IEEE Standard Glossary of Software Engineering Terminology. 1990.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342

[IEEE Std 1003.1:2013]
IEEE & The Open Group. Standard for Information Technology—Portable Operating System
Interface (POSIX). Base Specifications. Issue 7. 2013.
http://ieeexplore.ieee.org/servlet/opac?punumber=6506089

[INCITS 2012]
INCITS Document number N3396= 12-0096. Dynamic memory allocation for over-aligned data.
2012. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3396.htm

[INCITS 2014]
INCITS PL22.16 & ISO WG21 C++ Standards Committee, Library Working Group (LWG). C++
Standard Library Active Issues List (Revision R88). N3967. 2014. http://www.open-
std.org/jtc1/sc22/wg21/docs/lwg-active.html

[Internet Society 2000]
The Internet Society. Internet Security Glossary. RFC 2828. 2000.
https://www.ietf.org/rfc/rfc2828.txt

http://shop.oreilly.com/product/9780596002428.do
http://www.mypearsonstore.com/bookstore/industrial-strength-c-plus-plus-rules-and-recommendations-9780131209657?xid=PSED
http://www.mypearsonstore.com/bookstore/industrial-strength-c-plus-plus-rules-and-recommendations-9780131209657?xid=PSED
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1856.html
https://groups.google.com/a/isocpp.org/d/msg/std-discussion/NiPG1hmo4ik/DePB57IPmJwJ
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342
http://ieeexplore.ieee.org/servlet/opac?punumber=6506089
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3396.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html
https://www.ietf.org/rfc/rfc2828.txt

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 414
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[ISO/IEC 9899-1999]
ISO/IEC 9899-1999. Programming Languages — C, Second Edition. 1999.

[ISO/IEC 9899:2011]
ISO/IEC. Programming Languages—C, 3rd ed. ISO/IEC 9899:2011. 2011.

[ISO/IEC 14882-1998]
ISO/IEC 14882-1998. Programming Languages — C++, First Edition. 1998.

[ISO/IEC 14882-2003]
ISO/IEC 14882-2003. Programming Languages — C++, Second Edition. 2003.

[ISO/IEC 14882-2011]
ISO/IEC 14882-2011. Programming Languages — C++, Third Edition. 2011.

[ISO/IEC 14882-2014]
ISO/IEC 14882-2014. Programming Languages — C++, Fourth Edition. 2014.

[ISO/IEC N3000 2009]
Working Draft, Standard for Programming Language C++. November 2009.

[ISO/IEC TR 24772:2013]
ISO/IEC. Information Technology—Programming Languages—Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and Use. TR 24772-
2013. ISO. March 2013.

[ISO/IEC TS 17961:2012]
ISO/IEC TS 17961. Information Technology—Programming Languages, Their Environments and
System Software Interfaces—C Secure Coding Rules. ISO. 2012.

[Jack 2007]
Jack, Barnaby. Vector Rewrite Attack. Juniper Networks. May 2007.
http://cansecwest.com/csw07/Vector-Rewrite-Attack.pdf

[Kalev 1999]
Kalev, Danny. ANSI/ISO C++ Professional Programmer’s Handbook. Que Corporation. 1999.

[Lea 2000]
Lea, Doug. Concurrent Programming in Java, 2nd Edition. Addison-Wesley Professional. 2000.
http://www.informit.com/store/concurrent-programming-in-java-design-principles-and-
9780201310092

http://cansecwest.com/csw07/Vector-Rewrite-Attack.pdf
http://www.informit.com/store/concurrent-programming-in-java-design-principles-and-9780201310092
http://www.informit.com/store/concurrent-programming-in-java-design-principles-and-9780201310092

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 415
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Lions 1996]
Lions, J. L. ARIANE 5 Flight 501 Failure Report. European Space Agency (ESA) & National
Center for Space Study (CNES). July 1996. http://en.wikisource.org/wiki/
Ariane_501_Inquiry_Board_report

[Lockheed Martin 2005]
Lockheed Martin. Joint Strike Fighter Air Vehicle C++ Coding Standards for the System
Development and Demonstration Program. Document Number 2RDU00001, Rev C. December
2005. http://www.stroustrup.com/JSF-AV-rules.pdf

[Meyers 1996]
Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Programs and Designs.
Addison-Wesley. 1996.

[Meyers 2001]
Meyers, Scott. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template
Library. Addison-Wesley Professional. 2001.

[Meyers 2005]
Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd
Edition). Addison-Wesley Professional. 2005.

[Meyers 2014]
Meyers, Scott. Reply to The Drawbacks of Implementing Move Assignment in Terms of Swap
[blog post]. The View from Aristeia: Scott Meyers’ Professional Activities and Interests. 2014.

[Microsoft 2010]
Microsoft. STL std::string class causes crashes and memory corruption on multi-processor
machines. 2010. http://support.microsoft.com/kb/813810

[MISRA 2004]
MISRA Limited. MISRA C: 2004 Guidelines for the Use of the C Language in Critical Systems.
MIRA Limited. ISBN 095241564X. October 2004. http://www.misra.org.uk/

[MISRA 2008]
MISRA Limited. MISRA C++: 2008 Guidelines for the Use of the C++ Language in Critical
Systems. ISBN 978-906400-03-3 (paperback); ISBN 978-906400-04-0 (PDF). June 2008.
http://www.misra.org.uk/

[MITRE 2007]
MITRE. Common Weakness Enumeration, Draft 9. April 2008. http://cwe.mitre.org/

[MITRE 2008a]
MITRE. CWE ID 327 Use of a Broken or Risky Cryptographic Algorithm. 2008.
http://cwe.mitre.org/data/definitions/327.html

http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
http://www.stroustrup.com/JSF-AV-rules.pdf
http://support.microsoft.com/kb/813810
http://www.misra.org.uk/
http://www.misra.org.uk/
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/327.html

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 416
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[MITRE 2008b]
MITRE. CWE ID 330. Use of Insufficiently Random Values. 2008.
http://cwe.mitre.org/data/definitions/330.html

[MITRE 2010]
MITRE. Common Weakness Enumeration, Version 1.8. February 2010. http://cwe.mitre.org/

[MSDN 2010]
Microsoft Developer Network. CryptGenRandom Function. December 2016 [accessed].
http://msdn.microsoft.com/en-us/library/aa379942.aspx

[MDSN 2016]
Microsoft Developer Network. nothrow (C++). December 2016 [accessed].
https://msdn.microsoft.com/en-us/library/49147z04.aspx

[NIST 2006]
NIST. SAMATE Reference Dataset. 2006. http://samate.nist.gov/SRD/

[Open Group 2013]
The Open Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2013 Edition.
2013. http://www.opengroup.org/onlinepubs/9699919799/toc.htm

[Open Group 2008]
The Open Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2008 Edition.
2008. http://www.opengroup.org/onlinepubs/9699919799/toc.htm

[Open Group 2004]
The Open Group. The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.
2004. http://www.opengroup.org/onlinepubs/009695399/toc.htm

[Plum 1991]
Plum, Thomas. C++ Programming. Plum Hall, Inc. November 1991. ISBN 0911537104.

[Quinlan 2006]
Quinlan, Dan; Vuduc, Richard; Panas, Thomas; Härdtlein, Jochen; & Sæbjørnsen, Andreas.
Support for Whole-Program Analysis and the Verification of the One-Definition Rule in C++. 27-
35. Page 500-262. In Proceedings of the Static Analysis Summit. July 2006.
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf

[Rohlf 2009]
Rohlf, Chris. Fun with erase(). 2009. http://em386.blogspot.com/2009/06/fun-with-erase.html

[Saks 1999]
Saks, Dan. const T vs. T const. Embedded Systems Programming. February 1999. Pages 13-16.
http://www.dansaks.com/articles/1999-02%20const%20T%20vs%20T%20const.pdf

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/
http://msdn.microsoft.com/en-us/library/aa379942.aspx
https://msdn.microsoft.com/en-us/library/49147z04.aspx
http://samate.nist.gov/SRD/
http://www.opengroup.org/onlinepubs/9699919799/toc.htm
http://www.opengroup.org/onlinepubs/9699919799/toc.htm
http://www.opengroup.org/onlinepubs/009695399/toc.htm
http://samate.nist.gov/docs/NIST_Special_Publication_500-262.pdf
http://em386.blogspot.com/2009/06/fun-with-erase.html
http://www.dansaks.com/articles/1999-02%20const%20T%20vs%20T%20const.pdf

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 417
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Saks 2007]
Saks, Dan. Sequence Points. Embedded Systems Design. 2007.
http://www.embedded.com/columns/programmingpointers/9900661?_requestid=481957

[Seacord 2005]
Seacord, Robert C. Secure Coding in C and C++. Addison-Wesley. 2005. ISBN 0321335724.

[Seacord 2013]
Seacord, Robert C. Secure Coding in C and C++, Second Edition. Addison-Wesley. 2013.

[Sebor 2004]
Sebor, Martin. C++ Standard Core Language Active Issues, Revision 68. 2010. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2010/n3026.html#475

[SGI 2006]
Silicon Graphics, Inc. basic_string<charT, traits, Alloc>. Standard Template Library
Programmer’s Guide. 2006. http://www.sgi.com/tech/stl/basic_string.html

[Steele 1977]
Steele, G. L. Arithmetic shifting considered harmful. SIGPLAN Notices. Volume 12. Issue 11.
November 1977. Pages 61-69. http://doi.acm.org/10.1145/956641.956647

[Stroustrup 1997]
Stroustrup, Bjarne. The C++ Programming Language, Third Edition. Addison-Wesley. 1997.
ISBN 978-0201700732.

[Stroustrup 2006]
Stroustrup, Bjarne. C++ Style and Technique FAQ. 2006. December 2016 [accessed].
http://www.stroustrup.com/bs_faq2.html

[Stroustrup 2001]
Stroustrup, Bjarne. Exception Safety: Concepts and Techniques. AT&T Labs. 2001.
http://www.stroustrup.com/except.pdf

[Sun 1993]
Sun Security Bulletin #00122. 1993. http://www.securityfocus.com/advisories/198

[Sutter 2000]
Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions.
Addison-Wesley Professional. 2000. ISBN 0201615622.

[Sutter 2001]
Sutter, Herb. More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and
Solutions. Addison-Wesley Professional. 2001. ISBN 020170434.

http://www.embedded.com/columns/programmingpointers/9900661?_requestid=481957
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3026.html#475
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3026.html#475
http://www.sgi.com/tech/stl/basic_string.html
http://doi.acm.org/10.1145/956641.956647
http://doi.acm.org/10.1145/956641.956647
http://www.stroustrup.com/bs_faq2.html
http://www.stroustrup.com/except.pdf
http://www.securityfocus.com/advisories/198

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 418
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Sutter 2004]
Sutter, Herb & Alexandrescu, Andrei. C++ Coding Standards: 101 Rules, Guidelines, and Best
Practices. Addison-Wesley Professional. 2004. ISBN 0321113586.

[van Sprundel 2006]
van Sprundel, Ilja. Unusual bugs. 2006.

[Viega 2003]
Viega, John & Messier, Matt. Secure Programming Cookbook for C and C++: Recipes for
Cryptography, Authentication, Networking, Input Validation & More. O’Reilly. 2003. ISBN 0-
596-00394-3.

[Viega 2005]
Viega, John. CLASP Reference Guide, Volume 1.1. Secure Software. 2005.
http://www.securesoftware.com/process/

[VU#159523]
Giobbi, Ryan. Vulnerability Note VU#159523. Adobe Flash Player integer overflow
vulnerability. April 2008. http://www.kb.cert.org/vuls/id/159523

[VU#162289]
Dougherty, Chad. Vulnerability Note VU#162289. GCC Silently Discards Some Wraparound
Checks. April 2008. http://www.kb.cert.org/vuls/id/162289

[VU#623332]
Mead, Robert. Vulnerability Note VU#623332. MIT Kerberos 5 contains double free
vulnerability in "krb5_recvauth()" function. July 2005. http://www.kb.cert.org/vuls/id/623332

[VU#925211]
Weimer, Florian. Vulnerability Note VU#925211. Debian and Ubuntu OpenSSL packages contain
a predictable random number generator. May 2008. http://www.kb.cert.org/vuls/id/925211

[Warren 2002]
Warren, Henry S. Hacker’s Delight. Addison Wesley Professional. 2002. ISBN 0201914654.

[Williams 2010a]
Williams, Anthony. Thread. Boost Library. 2010.
http://www.boost.org/doc/libs/1_44_0/doc/html/thread.html

[Williams 2010b]
Williams, Anthony. Simpler Multithreading in C++0x. Internet.com. 2010.
http://www.devx.com/SpecialReports/Article/38883/1954

[xorl 2009]
xorl. xorl %eax, %eax. December 2016 [accessed]. http://xorl.wordpress.com/

http://www.securesoftware.com/process/
http://www.kb.cert.org/vuls/id/159523
http://www.kb.cert.org/vuls/id/162289
http://www.kb.cert.org/vuls/id/623332
http://www.kb.cert.org/vuls/id/925211
http://www.boost.org/doc/libs/1_44_0/doc/html/thread.html
http://www.devx.com/SpecialReports/Article/38883/1954
http://xorl.wordpress.com/

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 419
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix B: Definitions

abnormal termination [Open Group 2008]
Abnormal termination occurs when requested by the abort() function or when some signals are
received.

application binary interface
An application binary interface is an interface between two independently compiled modules of a
program. An Application Binary Interface document specifies a set of conventions such as the
order and location of function arguments that compilers must adhere to in order to achieve
interoperability between such modules.

basic exception safety [Stroustrup 2001, Sutter 2000]
The basic exception safety guarantee is a property of an operation such that, if the operation
terminates by raising an exception, it preserves program state invariants and prevents resource
leaks. (See also exception safety and strong exception safety.)

Clang
Clang is an open source C and C++ compiler. More information can be found at
http://clang.llvm.org/.

condition predicate
A condition predicate is an expression constructed from the variables of a function that must be
true for a thread to be allowed to continue execution.

conforming [ISO/IEC 14882-2014]
Conforming programs may depend on nonportable features of a conforming implementation.

critical sections
Critical sections are code that accesses shared data and that would otherwise be protected from
data races.

cv-qualify
To cv-qualify a type is to add const or volatile (or both) to the type.

data race [ISO/IEC 14882-2014]
The execution of a program contains a data race if it contains two potentially concurrent
conflicting actions, at least one of which is not atomic, and neither happens before the other. [An
exception is] that two accesses to the same object of type volatile sig_atomic_t do not
result in a data race if both occur in the same thread, even if one or more occurs in a signal
handler.

http://clang.llvm.org/

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 420
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

deadlock [ISO/IEC 14882-2014]
A deadlock is when one or more threads are unable to continue execution because each is blocked
waiting for one or more of the others to satisfy some condition

denial-of-service attack
A denial-of-service attack is an attempt to make a computer resource unavailable to its intended
users.

diagnostic message [ISO/IEC 14882-2014]
A diagnostic message is a message belonging to an implementation-defined subset of the
implementation’s message output. A diagnostic message may indicate a constraint violation or a
valid, but questionable, language construct. Messages typically include the file name and line
number pointing to the offending code construct. In addition, implementations also often indicate
the severity of the problem. Although the C++ Standard does not specify any such requirement,
the most severe problems often cause implementations to fail to fully translate a translation unit.
Diagnostics output in such cases are termed errors. Other problems may cause implementations
simply to issue a warning message and continue translating the rest of the program. (See error
message and warning message.)

error message
An error message is a diagnostic message generated when source code is encountered that
prevents an implementation from translating a translation unit. (See diagnostic message and
warning message.)

exception safety [Stroustrup 2001]
An operation on an object is said to be exception safe if that operation leaves the object in a valid
state when the operation is terminated by throwing an exception. (See also basic exception safety
and strong exception safety.)

exploit [Seacord 2005]
An exploit is a piece of software or technique that takes advantage of a security vulnerability to
violate an explicit or implicit security policy.

fatal diagnostic
A fatal diagnostic is a message that causes an implementation not to perform the translation.

free store [ISO/IEC 14882-2014]
The free store is storage managed by the C++ allocation and deallocation functions
::operator new(std::size_t), ::operator delete(void*), their array forms
::operator new[](std::size_t), ::operator delete[](void*), overloads of
said functions on std::nothrow_t, any user-defined replacements for said functions, as well
as any such functions defined as a member of a class. Storage in the free store is distinct from
storage managed by the C functions calloc(), free(), malloc(), and realloc().

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 421
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

GCC
GCC is an open source C and C++ compiler. More information can be found at
https://gcc.gnu.org/.

ill-formed program [ISO/IEC 14882-2014]
An ill-formed program is a C++ program that is not well-formed; that is, a program not
constructed according to the syntax rules, diagnosable semantic rules, and the one-definition rule.

implementation [ISO/IEC 9899:2011]
An implementation is a particular set of software, running in a particular translation environment,
under particular control options, that performs translation of programs for, and supports execution
of functions in, a particular execution environment.

implementation-defined behavior [ISO/IEC 14882-2014]
Implementation-defined behavior is behavior, for a well-formed program construct and correct
data, that depends on the implementation and that each implementation documents.

incomplete type [ISO/IEC 14882-2014]
A class that has been declared but not defined, an enumeration type in certain contexts, an array of
unknown size or of incomplete element type, and the void type are incomplete types. These
types lack the information required to determine the size of the type.

indeterminate value [ISO/IEC 14882-2014]
When storage for an object with automatic or dynamic storage duration is obtained, the object has
an indeterminate value, and if no initialization is performed for the object, that object retains an
indeterminate value until that value is replaced.

invalid pointer
An invalid pointer is a pointer that is not a valid pointer.

libc++
libc++ is an open source Standard Template Library (STL) implementation. More information can
be found at http://libcxx.llvm.org/.

libstdc++
libstdc++ is an open source Standard Template Library (STL) implementation. More information
can be found at https://gcc.gnu.org/onlinedocs/libstdc++/.

liveness
Liveness is when every operation or method invocation executes to completion without
interruptions, even if it goes against safety.

lvalue [ISO/IEC 14882-2014]
An lvalue (so called, historically, because lvalues could appear on the left-hand side of an
assignment expression) designates a function or an object.

https://gcc.gnu.org/
http://libcxx.llvm.org/
https://gcc.gnu.org/onlinedocs/libstdc++/

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 422
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Microsoft Visual Studio
Microsoft Visual Studio is a commercial C and C++ compiler. More information can be found at
https://www.visualstudio.com/.

Microsoft Visual Studio STL
The Microsoft Visual Studio STL is a commercial Standard Template Library (STL)
implementation. More information can be found at https://msdn.microsoft.com/en-
us/library/cscc687y.aspx

mitigation [Seacord 2005]
A mitigation is a method, technique, process, tool, or runtime library that can prevent or limit
exploits against vulnerabilities.

one-definition rule (ODR) [ISO/IEC 14882-2014]
A fundamental C++ rule that states that no translation unit shall contain more than one definition
of any variable, function, class type, enumeration type or template, and that every program shall
contain exactly one definition of every non-inline function or variable. Some definitions may be
duplicated in multiple translation units, subject to strict rules.

ODR-use [ISO/IEC 14882-2014]
A function or object is ODR-used if the address of the entity is taken, the function is called, or a
reference is bound to the object. When a function or object is ODR-used, its definition must exist
within the program or else the program is ill-formed.

RAII (Resource Acquisition Is Initialization)
RAII is a design principle supported by C++. Holding a resource is a class invariant where the
allocation of the resource (acquisition) is inseparable from the initialization of the object during
its construction. Further, deallocation of the resource is performed during the destruction of the
object. Thus, the resource is held when initialization completes and remains held until finalization
begins, ensuring there are no resource leaks unless the object owning the resource is also leaked.

reliability [IEEE Std 610.12 1990]
Reliability is the ability of a system or component to perform its required functions under stated
conditions for a specified period of time.

restricted sink [ISO/IEC 9899:2011]
A restricted sink is an operand or argument whose domain is a subset of the domain described by
its type.

rvalue [ISO/IEC 14882-2014]
An rvalue (so called, historically, because rvalues could appear on the right-hand side of an
assignment expression), is an xvalue, a temporary object or subobject thereof, or a value that is
not associated with an object.

security flaw [Seacord 2005]
A security flaw is a software defect that poses a potential security risk.

https://www.visualstudio.com/
https://msdn.microsoft.com/en-us/library/cscc687y.aspx
https://msdn.microsoft.com/en-us/library/cscc687y.aspx

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 423
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

security policy [Internet Society 2000]
A security policy is a set of rules and practices that specify or regulate how a system or
organization provides security services to protect sensitive and critical system resources.

strong exception safety [Stroustrup 2001, Sutter 2000]
The strong exception safety guarantee is a property of an operation such that, in addition to
satisfying the basic exception safety guarantee, if the operation terminates by raising an exception,
it has no observable effects on program state. (See also exception safety and basic exception
safety.)

SFINAE
SFINAE (Substitution Failure Is Not An Error) is a language rule applied by the compiler during
overload resolution involving templates. In some contexts, when substituting a template type
parameter fails, the specialization is discarded from the overload set instead of causing a compile
error. This feature is used in template metaprogramming.

tainted source [ISO/IEC TS 17961:2012]
A tainted source is an external source of untrusted data.

tainted value [ISO/IEC TS 17961:2012]
A tainted value is a value derived from a tainted source that has not been sanitized.

trust boundary
A trust boundary is a boundary between a trusted execution context (or trusted data source) in
which all sub-execution contexts (or data sources) are trusted by the system and a nontrusted
execution context (or nontrusted data sink).

undefined behavior [ISO/IEC 14882-2014]
Undefined behavior is behavior, such as might arise upon use of an erroneous program construct
or erroneous data, for which the C++ Standard imposes no requirements. Undefined behavior may
also be expected when the C++ Standard omits the description of any explicit definition of
behavior or defines the behavior to be ill-formed, with no diagnostic required.

unspecified behavior [ISO/IEC 14882-2014]
Unspecified behavior is behavior, for a well-formed program construct and correct data, that
depends on the implementation. The implementation is not required to document which behavior
occurs.

unspecified value [ISO/IEC 9899:2011]
An unspecified value is a valid value of the relevant type where the C++ Standard imposes no
requirements on which value is chosen in any instance.

http://en.cppreference.com/w/cpp/language/sfinae

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 424
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

valid pointer
A valid pointer is a pointer that refers to an element within an array or one past the last element of
an array. For the purposes of this definition, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the type of
the object as its element type. For the purposes of this definition, an object can be considered to
be an array of a certain number of bytes; that number is the size of the object, as produced by the
sizeof operator.

vtable
A vtable is a common implementation technique to support dynamic method dispatch, where a
class object instance includes a hidden data member that is a pointer to an array of function
pointers used to resolve virtual function calls at runtime.

vulnerability [Seacord 2005]
A vulnerability is a set of conditions that allows an attacker to violate an explicit or implicit
security policy.

warning message
A warning message is a diagnostic message generated when source code is encountered that does
not prevent an implementation from translating a translation unit. (See diagnostic message and
error message.)

well-formed program [ISO/IEC 14882-2014]
A well-formed program is a C++ program constructed according to the syntax rules, diagnosable
semantic rules, and the one-definition rule. (See also ill-formed program.)

xvalue [ISO/IEC 14882-2014]
An xvalue (an “eXpiring” value) also refers to an object, usually near the end of its lifetime (so
that its resources may be moved, for example). An xvalue is the result of certain kinds of
expressions involving rvalue references.

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 425
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix C: Related Guidelines

12.5.8 MISRA C++:2008

CERT Rule Related Guidelines

DCL51-CPP Rule 17-0-1

DCL57-CPP Rule 15-5-1 (Required)

12.5.9 MITRE CWE

CERT Rule Related Guidelines

CTR50-CPP CWE 119, Failure to Constrain Operations within the Bounds of a Memory Buffer

CTR52-CPP CWE 119, Failure to Constrain Operations within the Bounds of an Allocated Memory Buffer

CTR50-CPP CWE 129, Improper Validation of Array Index

CTR55-CPP CWE 129, Unchecked Array Indexing

MEM52-CPP CWE 252, Unchecked Return Value

MSC50-CPP CWE 327, Use of a Broken or Risky Cryptographic Algorithm

MSC51-CPP CWE 327, Use of a Broken or Risky Cryptographic Algorithm

MSC50-CPP CWE 330, Use of Insufficiently Random Values

MSC51-CPP CWE 330, Use of Insufficiently Random Values

MSC51-CPP CWE 337, Predictable Seed in PRNG

MEM52-CPP CWE 391, Unchecked Error Condition

MEM51-CPP CWE 404, Improper Resource Shutdown or Release

MEM51-CPP CWE 415, Double Free

MEM50-CPP CWE 415, Double Free

MEM56-CPP CWE 415, Double Free

MEM50-CPP CWE 416, Use After Free

MEM56-CPP CWE 416, Use After Free

CTR54-CPP CWE 469, Use of Pointer Subtraction to Determine Size

MEM52-CPP CWE 476, NULL Pointer Dereference

MEM51-CPP CWE 590, Free of Memory Not on the Heap

CON50-CPP CWE 667, Improper Locking

CON51-CPP CWE 667, Improper Locking

CON56-CPP CWE 667, Improper Locking

MEM52-CPP CWE 690, Unchecked Return Value to NULL Pointer Dereference

ERR56-CPP CWE 703, Failure to Handle Exceptional Conditions

MEM52-CPP CWE 703, Improper Check or Handling of Exceptional Conditions

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/391.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/469.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/703.html

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 426
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CERT Rule Related Guidelines

MEM52-CPP CWE 754, Improper Check for Unusual or Exceptional Conditions

ERR50-CPP CWE 754, Improper Check for Unusual or Exceptional Conditions

ERR51-CPP CWE 754, Improper Check for Unusual or Exceptional Conditions

ERR56-CPP CWE 754, Improper Check for Unusual or Exceptional Conditions

ERR56-CPP CWE 755, Improper Handling of Exceptional Conditions

MEM51-CPP CWE 762, Mismatched Memory Management Routines

MEM56-CPP CWE 762, Mismatched Memory Management Routines

CON53-CPP CWE 764, Multiple Locks of a Critical Resource

CTR52-CPP CWE 805, Buffer Access with Incorrect Length Value

http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/755.html
http://cwe.mitre.org/data/definitions/762.html
http://cwe.mitre.org/data/definitions/762.html
http://cwe.mitre.org/data/definitions/764.html
http://cwe.mitre.org/data/definitions/805.html

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 427
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix D: Risk Assessments

Rule Severity Likelihood Remediation Cost Priority Level

CTR52-CPP High Likely Medium P18 L1

CTR55-CPP High Likely Medium P18 L1

ERR54-CPP Medium Likely Low P18 L1

MEM50-CPP High Likely Medium P18 L1

MEM51-CPP High Likely Medium P18 L1

MEM52-CPP High Likely Medium P18 L1

MEM53-CPP High Likely Medium P18 L1

MEM54-CPP High Likely Medium P18 L1

MEM55-CPP High Likely Medium P18 L1

MEM56-CPP High Likely Medium P18 L1

MSC51-CPP Medium Likely Low P18 L1

STR50-CPP High Likely Medium P18 L1

STR51-CPP High Likely Medium P18 L1

DCL50-CPP High Probable Medium P12 L1

ERR59-CPP High Probable Medium P12 L1

EXP53-CPP High Probable Medium P12 L1

EXP60-CPP High Probable Medium P12 L1

CTR50-CPP High Likely High P9 L2

CTR56-CPP High Likely High P9 L2

ERR55-CPP Low Likely Low P9 L2

ERR56-CPP High Likely High P9 L2

ERR58-CPP Low Likely Low P9 L2

OOP52-CPP Low Likely Low P9 L2

OOP58-CPP Low Likely Low P9 L2

CON52-CPP Medium Probable Medium P8 L2

CTR54-CPP Medium Probable Medium P8 L2

EXP50-CPP Medium Probable Medium P8 L2

EXP55-CPP Medium Probable Medium P8 L2

EXP63-CPP Medium Probable Medium P8 L2

CON51-CPP Low Probable Low P6 L2

CTR51-CPP High Probable High P6 L2

CTR53-CPP High Probable High P6 L2

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 428
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Rule Severity Likelihood Remediation Cost Priority Level

DCL54-CPP Low Probable Low P6 L2

DCL57-CPP Low Likely Medium P6 L3

EXP54-CPP High Probable High P6 L2

EXP61-CPP High Probable High P6 L2

EXP62-CPP High Probable High P6 L2

FIO50-CPP Low Likely Medium P6 L2

MEM57-CPP Medium Unlikely Low P6 L2

MSC50-CPP Medium Unlikely Low P6 L2

MSC53-CPP High Unlikely Medium P6 L2

MSC54-CPP High Probable Medium P6 L2

OOP55-CPP High Probable High P6 L2

OOP57-CPP High Probable High P6 L2

STR52-CPP High Probable High P6 L2

STR53-CPP High Unlikely Medium P6 L2

CON50-CPP Medium Probable High P4 L3

CON53-CPP Low Probable Medium P4 L3

DCL58-CPP Medium Unlikely Medium P4 L3

ERR50-CPP Low Probable Medium P4 L3

ERR51-CPP Low Probable Medium P4 L3

ERR52-CPP Low Probable Medium P4 L3

ERR60-CPP Low Probable Medium P4 L3

EXP57-CPP Medium Unlikely Medium P4 L3

EXP58-CPP Medium Unlikely Medium P4 L3e

EXP59-CPP Medium Unlikely Medium P4 L3

FIO51-CPP Medium Unlikely Medium P4 L3

INT50-CPP Medium Unlikely Medium P4 L3

MSC56-CPP Medium Probable High P4 L3

OOP51-CPP Low Probable Medium P4 L3

OOP53-CPP Medium Unlikely Medium P4 L3

CTR58-CPP Low Likely High P3 L3

DCL51-CPP Low Unlikely Low P3 L3

DCL52-CPP Low Unlikely Low P3 L3

ERR61-CPP Low Unlikely Low P3 L3

EXP52-CPP Low Unlikely Low P3 L3

MSC52-CPP High Unlikely High P3 L3

CON54-CPP Low Unlikely Medium P2 L3

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=155222966

Miscellaneous (MSC) - MSC54-CPP. A signal handler must be a plain old function

SEI CERT C++ CODING STANDARD (2016 EDITION) | V01 429
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Rule Severity Likelihood Remediation Cost Priority Level

CON55-CPP Low Unlikely Medium P2 L3

CTR57-CPP Low Probable High P2 L3

DCL53-CPP Low Unlikely Medium P2 L3

DCL56-CPP Low Unlikely Medium P2 L3

ERR53-CPP Low Unlikely Medium P2 L3

ERR57-CPP Low Probable High P2 L3

EXP51-CPP Low Unlikely Medium P2 L3

EXP64-CPP Low Unlikely Medium P2 L3

MSC55-CPP Medium Unlikely Low P2 L3

OOP50-CPP Low Unlikely Medium P2 L3

OOP54-CPP Low Probable High P2 L3

OOP56-CPP Low Probable High P2 L3

CON56-CPP Low Unlikely High P1 L3

DCL59-CPP Low Unlikely High P1 L3

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=192708787
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=143294580

	SEI CERT C++ Coding Standard (2016 Edition)
	Table of Contents
	1 Introduction
	1.1 Scope
	1.1.1 Rationale
	1.1.2 Issues Not Addressed

	1.2 Audience
	1.3 Usage
	1.4 How this Coding Standard Is Organized
	1.4.1 Identifiers
	1.4.2 Noncompliant Code Examples and Compliant Solutions
	1.4.3 Exceptions
	1.4.4 Risk Assessment
	1.4.5 Automated Detection
	1.4.6 Related Vulnerabilities
	1.4.7 Related Guidelines
	1.4.8 Bibliography

	1.5 Relation to the CERT C Coding Standard
	1.6 Rules Versus Recommendations
	1.6.1 Rules
	1.6.2 Recommendations

	1.7 Tool Selection and Validation
	1.7.1 False Positives and False Negatives
	1.7.2 False Positives

	1.8 Conformance Testing
	1.8.1 Conformance
	1.8.2 Levels
	1.8.3 Deviation Procedure

	1.9 Development Process
	1.10 System Qualities
	1.11 Automatically Generated Code
	1.12 Government Regulations
	1.13 Acknowledgments

	2 Declarations and Initialization (DCL)
	2.1 DCL50-CPP. Do not define a C-style variadic function
	2.1.1 Noncompliant Code Example
	2.1.2 Compliant Solution (Recursive Pack Expansion)
	2.1.3 Compliant Solution (Braced Initializer List Expansion)
	2.1.4 Exceptions
	2.1.5 Risk Assessment
	2.1.6 Bibliography

	2.2 DCL51-CPP. Do not declare or define a reserved identifier
	2.2.1 Noncompliant Code Example (Header Guard)
	2.2.2 Compliant Solution (Header Guard)
	2.2.3 Noncompliant Code Example (User-Defined Literal)
	2.2.4 Compliant Solution (User-Defined Literal)
	2.2.5 Noncompliant Code Example (File Scope Objects)
	2.2.6 Compliant Solution (File Scope Objects)
	2.2.7 Noncompliant Code Example (Reserved Macros)
	2.2.8 Compliant Solution (Reserved Macros)
	2.2.9 Exceptions
	2.2.10 Risk Assessment
	2.2.11 Related Guidelines
	2.2.12 Bibliography

	2.3 DCL52-CPP. Never qualify a reference type with const or volatile
	2.3.1 Noncompliant Code Example
	2.3.2 Noncompliant Code Example
	2.3.3 Compliant Solution
	2.3.4 Risk Assessment
	2.3.5 Bibliography

	2.4 DCL53-CPP. Do not write syntactically ambiguous declarations
	2.4.1 Noncompliant Code Example
	2.4.2 Compliant Solution
	2.4.3 Noncompliant Code Example
	2.4.4 Compliant Solution
	2.4.5 Noncompliant Code Example
	2.4.6 Compliant Solution
	2.4.7 Risk Assessment
	2.4.8 Bibliography

	2.5 DCL54-CPP. Overload allocation and deallocation functions as a pair in the same scope
	2.5.1 Noncompliant Code Example
	2.5.2 Compliant Solution
	2.5.3 Noncompliant Code Example
	2.5.4 Compliant Solution
	2.5.5 Exceptions
	2.5.6 Risk Assessment
	2.5.7 Related Guidelines
	2.5.8 Bibliography

	2.6 DCL55-CPP. Avoid information leakage when passing a class object across a trust boundary
	2.6.1 Noncompliant Code Example
	2.6.2 Noncompliant Code Example
	2.6.3 Compliant Solution
	2.6.4 Compliant Solution (Padding Bytes)
	2.6.5 Noncompliant Code Example
	2.6.6 Compliant Solution
	2.6.7 Risk Assessment
	2.6.8 Related Guidelines
	2.6.9 Bibliography

	2.7 DCL56-CPP. Avoid cycles during initialization of static objects
	2.7.1 Noncompliant Code Example
	2.7.2 Compliant Solution
	2.7.3 Noncompliant Code Example
	2.7.4 Compliant Solution
	2.7.5 Risk Assessment
	2.7.6 Related Guideline
	2.7.7 Bibliography

	2.8 DCL57-CPP. Do not let exceptions escape from destructors or deallocation functions
	2.8.1 Noncompliant Code Example
	2.8.2 Noncompliant Code Example (std::uncaught_exception())
	2.8.3 Noncompliant Code Example (function-try-block)
	2.8.4 Compliant Solution
	2.8.5 Noncompliant Code Example
	2.8.6 Compliant Solution
	2.8.7 Risk Assessment
	2.8.8 Related Guidelines
	2.8.9 Bibliography

	2.9 DCL58-CPP. Do not modify the standard namespaces
	2.9.1 Noncompliant Code Example
	2.9.2 Compliant Solution
	2.9.3 Noncompliant Code Example
	2.9.4 Compliant Solution
	2.9.5 Compliant Solution
	2.9.6 Risk Assessment
	2.9.7 Related Guidelines
	2.9.8 Bibliography

	2.10 DCL59-CPP. Do not define an unnamed namespace in a header file
	2.10.1 Noncompliant Code Example
	2.10.2 Compliant Solution
	2.10.3 Noncompliant Code Example
	2.10.4 Compliant Solution
	2.10.5 Noncompliant Code Example
	2.10.6 Noncompliant Code Example
	2.10.7 Compliant Solution
	2.10.8 Risk Assessment
	2.10.9 Related Guidelines
	2.10.10 Bibliography

	2.11 DCL60-CPP. Obey the one-definition rule
	2.11.1 Noncompliant Code Example
	2.11.2 Compliant Solution
	2.11.3 Compliant Solution
	2.11.4 Noncompliant Code Example (Microsoft Visual Studio)
	2.11.5 Compliant Solution
	2.11.6 Noncompliant Code Example
	2.11.7 Compliant Solution
	2.11.8 Compliant Solution
	2.11.9 Risk Assessment
	2.11.10 Bibliography

	3 Expressions (EXP)
	3.1 EXP50-CPP. Do not depend on the order of evaluation for side effects
	3.1.1 Noncompliant Code Example
	3.1.2 Compliant Solution
	3.1.3 Noncompliant Code Example
	3.1.4 Compliant Solution
	3.1.5 Noncompliant Code Example
	3.1.6 Compliant Solution
	3.1.7 Noncompliant Code Example
	3.1.8 Compliant Solution
	3.1.9 Risk Assessment
	3.1.10 Related Guidelines
	3.1.11 Bibliography

	3.2 EXP51-CPP. Do not delete an array through a pointer of the incorrect type
	3.2.1 Noncompliant Code Example
	3.2.2 Compliant Solution
	3.2.3 Risk Assessment
	3.2.4 Related Guidelines
	3.2.5 Bibliography

	3.3 EXP52-CPP. Do not rely on side effects in unevaluated operands
	3.3.1 Noncompliant Code Example (sizeof)
	3.3.2 Compliant Solution (sizeof)
	3.3.3 Noncompliant Code Example (decltype)
	3.3.4 Compliant Solution (decltype)
	3.3.5 Exceptions
	3.3.6 Risk Assessment
	3.3.7 Related Guidelines
	3.3.8 Bibliography

	3.4 EXP53-CPP. Do not read uninitialized memory
	3.4.1 Noncompliant Code Example
	3.4.2 Compliant Solution
	3.4.3 Noncompliant Code Example
	3.4.4 Compliant Solution
	3.4.5 Noncompliant Code Example
	3.4.6 Compliant Solution
	3.4.7 Risk Assessment
	3.4.8 Related Guidelines
	3.4.9 Bibliography

	3.5 EXP54-CPP. Do not access an object outside of its lifetime
	3.5.1 Noncompliant Code Example
	3.5.2 Compliant Solution
	3.5.3 Noncompliant Code Example
	3.5.4 Compliant Solution
	3.5.5 Noncompliant Code Example
	3.5.6 Compliant Solution
	3.5.7 Noncompliant Code Example
	3.5.8 Compliant Solution
	3.5.9 Noncompliant Code Example
	3.5.10 Compliant Solution
	3.5.11 Noncompliant Code Example
	3.5.12 Compliant Solution
	3.5.13 Noncompliant Code Example
	3.5.14 Compliant Solution (std::uninitialized_copy())
	3.5.15 Compliant Solution (std::raw_storage_iterator)
	3.5.16 Risk Assessment
	3.5.17 Related Guidelines
	3.5.18 Bibliography

	3.6 EXP55-CPP. Do not access a cv-qualified object through a cv-unqualified type
	3.6.1 Noncompliant Code Example
	3.6.2 Compliant Solution
	3.6.3 Noncompliant Code Example
	3.6.4 Compliant Solution
	3.6.5 Noncompliant Code Example
	3.6.6 Compliant Solution
	3.6.7 Exceptions
	3.6.8 Risk Assessment
	3.6.9 Related Guidelines
	3.6.10 Bibliography

	3.7 EXP56-CPP. Do not call a function with a mismatched language linkage
	3.7.1 Noncompliant Code Example
	3.7.2 Compliant Solution
	3.7.3 Risk Assessment
	3.7.4 Bibliography

	3.8 EXP57-CPP. Do not cast or delete pointers to incomplete classes
	3.8.1 Noncompliant Code Example
	3.8.2 Compliant Solution (delete)
	3.8.3 Compliant Solution (std::shared_ptr)
	3.8.4 Noncompliant Code Example
	3.8.5 Compliant Solution
	3.8.6 Risk Assessment
	3.8.7 Bibliography

	3.9 EXP58-CPP. Pass an object of the correct type to va_start
	3.9.1 Noncompliant Code Example
	3.9.2 Compliant Solution
	3.9.3 Noncompliant Code Example
	3.9.4 Compliant Solution
	3.9.5 Noncompliant Code Example
	3.9.6 Compliant Solution
	3.9.7 Risk Assessment
	3.9.8 Related Guidelines
	3.9.9 Bibliography

	3.10 EXP59-CPP. Use offsetof() on valid types and members
	3.10.1 Noncompliant Code Example
	3.10.2 Compliant Solution
	3.10.3 Noncompliant Code Example
	3.10.4 Compliant Solution
	3.10.5 Risk Assessment
	3.10.6 Bibliography

	3.11 EXP60-CPP. Do not pass a nonstandard-layout type object across execution boundaries
	3.11.1 Noncompliant Code Example
	3.11.2 Compliant Solution
	3.11.3 Noncompliant Code Example
	3.11.4 Compliant Solution
	3.11.5 Risk Assessment
	3.11.6 Related Guidelines
	3.11.7 Bibliography

	3.12 EXP61-CPP. A lambda object must not outlive any of its reference captured objects
	3.12.1 Noncompliant Code Example
	3.12.2 Compliant Solution
	3.12.3 Noncompliant Code Example
	3.12.4 Compliant Solution
	3.12.5 Risk Assessment
	3.12.6 Related Guidelines
	3.12.7 Bibliography

	3.13 EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value representation
	3.13.1 Noncompliant Code Example
	3.13.2 Compliant Solution
	3.13.3 Noncompliant Code Example
	3.13.4 Compliant Solution
	3.13.5 Exceptions
	3.13.6 Risk Assessment
	3.13.7 Related Guidelines
	3.13.8 Bibliography

	3.14 EXP63-CPP. Do not rely on the value of a moved-from object
	3.14.1 Noncompliant Code Example
	3.14.2 Compliant Solution
	3.14.3 Noncompliant Code Example
	3.14.4 Compliant Solution
	3.14.5 Compliant Solution
	3.14.6 Risk Assessment
	3.14.7 Bibliography

	4 Integers (INT)
	4.1 INT50-CPP. Do not cast to an out-of-range enumeration value
	4.1.1 Noncompliant Code Example (Bounds Checking)
	4.1.2 Compliant Solution (Bounds Checking)
	4.1.3 Compliant Solution (Scoped Enumeration)
	4.1.4 Compliant Solution (Fixed Unscoped Enumeration)
	4.1.5 Risk Assessment
	4.1.6 Bibliography

	5 Containers (CTR)
	5.1 CTR50-CPP. Guarantee that container indices and iterators are within the valid range
	5.1.1 Noncompliant Code Example (Pointers)
	5.1.2 Compliant Solution (size_t)
	5.1.3 Compliant Solution (Non-Type Templates)
	5.1.4 Noncompliant Code Example (std::vector)
	5.1.5 Compliant Solution (std::vector, size_t)
	5.1.6 Compliant Solution (std::vector::at())
	5.1.7 Noncompliant Code Example (Iterators)
	5.1.8 Compliant Solution
	5.1.9 Risk Assessment
	5.1.10 Related Guidelines
	5.1.11 Bibliography

	5.2 CTR51-CPP. Use valid references, pointers, and iterators to reference elements of a container
	5.2.1 Noncompliant Code Example
	5.2.2 Compliant Solution (Updated Iterator)
	5.2.3 Compliant Solution (Generic Algorithm)
	5.2.4 Risk Assessment
	5.2.5 Related Guidelines
	5.2.6 Bibliography

	5.3 CTR52-CPP. Guarantee that library functions do not overflow
	5.3.1 Noncompliant Code Example
	5.3.2 Compliant Solution (Sufficient Initial Capacity)
	5.3.3 Compliant Solution (Per-Element Growth)
	5.3.4 Compliant Solution (Assignment)
	5.3.5 Noncompliant Code Example
	5.3.6 Compliant Solution (Sufficient Initial Capacity)
	5.3.7 Compliant Solution (Fill Initialization)
	5.3.8 Risk Assessment
	5.3.9 Related Guidelines
	5.3.10 Bibliography

	5.4 CTR53-CPP. Use valid iterator ranges
	5.4.1 Noncompliant Code Example
	5.4.2 Compliant Solution
	5.4.3 Noncompliant Code Example
	5.4.4 Compliant Solution
	5.4.5 Risk Assessment
	5.4.6 Related Guidelines
	5.4.7 Bibliography

	5.5 CTR54-CPP. Do not subtract iterators that do not refer to the same container
	5.5.1 Noncompliant Code Example
	5.5.2 Noncompliant Code Example
	5.5.3 Noncompliant Code Example
	5.5.4 Noncompliant Code Example
	5.5.5 Compliant Solution
	5.5.6 Risk Assessment
	5.5.7 Related Guidelines
	5.5.8 Bibliography

	5.6 CTR55-CPP. Do not use an additive operator on an iterator if the result would overflow
	5.6.1 Noncompliant Code Example (std::vector)
	5.6.2 Compliant Solution (std::vector)
	5.6.3 Risk Assessment
	5.6.4 Related Guidelines
	5.6.5 Bibliography

	5.7 CTR56-CPP. Do not use pointer arithmetic on polymorphic objects
	5.7.1 Noncompliant Code Example (Pointer Arithmetic)
	5.7.2 Noncompliant Code Example (Array Subscripting)
	5.7.3 Compliant Solution (Array)
	5.7.4 Compliant Solution (std::vector)
	5.7.5 Risk Assessment
	5.7.6 Related Guidelines
	5.7.7 Bibliography

	5.8 CTR57-CPP. Provide a valid ordering predicate
	5.8.1 Noncompliant Code Example
	5.8.2 Compliant Solution
	5.8.3 Noncompliant Code Example
	5.8.4 Compliant Solution
	5.8.5 Risk Assessment
	5.8.6 Related Guidelines
	5.8.7 Bibliography

	5.9 CTR58-CPP. Predicate function objects should not be mutable
	5.9.1 Noncompliant Code Example (Functor)
	5.9.2 Noncompliant Code Example (Lambda)
	5.9.3 Compliant Solution (std::reference_wrapper)
	5.9.4 Compliant Solution (Iterator Arithmetic)
	5.9.5 Risk Assessment
	5.9.6 Bibliography

	6 Characters and Strings (STR)
	6.1 STR50-CPP. Guarantee that storage for strings has sufficient space for character data and the null terminator
	6.1.1 Noncompliant Code Example
	6.1.2 Noncompliant Code Example
	6.1.3 Compliant Solution
	6.1.4 Noncompliant Code Example
	6.1.5 Compliant Solution
	6.1.6 Risk Assessment
	6.1.7 Related Guidelines
	6.1.8 Bibliography

	6.2 STR51-CPP. Do not attempt to create a std::string from a null pointer
	6.2.2 Noncompliant Code Example
	6.2.3 Compliant Solution
	6.2.4 Risk Assessment
	6.2.5 Related Guidelines
	6.2.6 Bibliography

	6.3 STR52-CPP. Use valid references, pointers, and iterators to reference elements of a basic_string
	6.3.1 Noncompliant Code Example
	6.3.2 Compliant Solution (std::string::insert())
	6.3.3 Compliant Solution (std::replace())
	6.3.4 Noncompliant Code Example
	6.3.5 Compliant Solution
	6.3.6 Risk Assessment
	6.3.7 Related Guidelines
	6.3.8 Bibliography

	6.4 STR53-CPP. Range check element access
	6.4.1 Noncompliant Code Example
	6.4.2 Compliant Solution (try/catch)
	6.4.3 Compliant Solution (Range Check)
	6.4.4 Noncompliant Code Example
	6.4.5 Compliant Solution
	6.4.6 Risk Assessment
	6.4.7 Related Guidelines
	6.4.8 Bibliography

	7 Memory Management (MEM)
	7.1 MEM50-CPP. Do not access freed memory
	7.1.1 Noncompliant Code Example (new and delete)
	7.1.2 Compliant Solution (new and delete)
	7.1.3 Compliant Solution (Automatic Storage Duration)
	7.1.4 Noncompliant Code Example (std::unique_ptr)
	7.1.5 Compliant Solution (std::unique_ptr)
	7.1.6 Compliant Solution
	7.1.7 Noncompliant Code Example (std::string::c_str())
	7.1.8 Compliant solution (std::string::c_str())
	7.1.9 Noncompliant Code Example
	7.1.10 Compliant Solution
	7.1.11 Compliant Solution
	7.1.12 Risk Assessment
	7.1.13 Related Guidelines
	7.1.14 Bibliography

	7.2 MEM51-CPP. Properly deallocate dynamically allocated resources
	7.2.1 Noncompliant Code Example (placement new())
	7.2.2 Compliant Solution (placement new())
	7.2.3 Noncompliant Code Example (Uninitialized delete)
	7.2.4 Compliant Solution (Uninitialized delete)
	7.2.5 Noncompliant Code Example (Double-Free)
	7.2.6 Compliant Solution (Double-Free)
	7.2.7 Noncompliant Code Example (array new[])
	7.2.8 Compliant Solution (array new[])
	7.2.9 Noncompliant Code Example (malloc())
	7.2.10 Compliant Solution (malloc())
	7.2.11 Noncompliant Code Example (new)
	7.2.12 Compliant Solution (new)
	7.2.13 Noncompliant Code Example (Class new)
	7.2.14 Compliant Solution (class new)
	7.2.15 Noncompliant Code Example (std::unique_ptr)
	7.2.16 Compliant Solution (std::unique_ptr)
	7.2.17 Noncompliant Code Example (std::shared_ptr)
	7.2.18 Compliant Solution (std::shared_ptr)
	7.2.19 Risk Assessment
	7.2.20 Related Guidelines
	7.2.21 Bibliography

	7.3 MEM52-CPP. Detect and handle memory allocation errors
	7.3.1 Noncompliant Code Example
	7.3.2 Compliant Solution (std::nothrow)
	7.3.3 Compliant Solution (std::bad_alloc)
	7.3.4 Compliant Solution (noexcept(false))
	7.3.5 Noncompliant Code Example
	7.3.6 Compliant Solution (std::unique_ptr)
	7.3.7 Compliant Solution (References)
	7.3.8 Risk Assessment
	7.3.9 Related Guidelines
	7.3.10 Bibliography

	7.4 MEM53-CPP. Explicitly construct and destruct objects when manually managing object lifetime
	7.4.1 Noncompliant Code Example
	7.4.2 Compliant Solution
	7.4.3 Noncompliant Code Example
	7.4.4 Compliant Solution
	7.4.5 Exceptions
	7.4.6 Risk Assessment
	7.4.7 Related Guidelines
	7.4.8 Bibliography

	7.5 MEM54-CPP. Provide placement new with properly aligned pointers to sufficient storage capacity
	7.5.1 Noncompliant Code Example
	7.5.2 Noncompliant Code Example
	7.5.3 Compliant Solution (alignas)
	7.5.4 Compliant Solution (std::aligned_storage)
	7.5.5 Noncompliant Code Example (Failure to Account for Array Overhead)
	7.5.6 Compliant Solution (Clang/GCC)
	7.5.7 Risk Assessment
	7.5.8 Related Guidelines
	7.5.9 Bibliography

	7.6 MEM55-CPP. Honor replacement dynamic storage management requirements
	7.6.1 Noncompliant Code Example
	7.6.2 Compliant Solution
	7.6.3 Risk Assessment
	7.6.4 Related Guidelines
	7.6.5 Bibliography

	7.7 MEM56-CPP. Do not store an already-owned pointer value in an unrelated smart pointer
	7.7.1 Noncompliant Code Example
	7.7.2 Compliant Solution
	7.7.3 Noncompliant Code Example
	7.7.4 Compliant Solution
	7.7.5 Noncompliant Code Example
	7.7.6 Compliant Solution
	7.7.7 Risk Assessment
	7.7.8 Related Guidelines
	7.7.9 Bibliography

	7.8 MEM57-CPP. Avoid using default operator new for over-aligned types
	7.8.1 Noncompliant Code Example
	7.8.2 Compliant Solution (aligned_alloc)
	7.8.3 Risk Assessment
	7.8.4 Related Guidelines
	7.8.5 Bibliography

	8 Input Output (FIO)
	8.1 FIO50-CPP. Do not alternately input and output from a file stream without an intervening positioning call
	8.1.1 Noncompliant Code Example
	8.1.2 Compliant Solution
	8.1.3 Risk Assessment
	8.1.4 Related Guidelines
	8.1.5 Bibliography

	8.2 FIO51-CPP. Close files when they are no longer needed
	8.2.1 Noncompliant Code Example
	8.2.2 Compliant Solution
	8.2.3 Compliant Solution
	8.2.4 Risk Assessment
	8.2.5 Related Guidelines
	8.2.6 Bibliography

	9 Exceptions and Error Handling (ERR)
	9.1 ERR50-CPP. Do not abruptly terminate the program
	9.1.1 Noncompliant Code Example
	9.1.2 Compliant Solution
	9.1.3 Exceptions
	9.1.4 Risk Assessment
	9.1.5 Related Guidelines
	9.1.6 Bibliography

	9.2 ERR51-CPP. Handle all exceptions
	9.2.1 Noncompliant Code Example
	9.2.2 Compliant Solution
	9.2.3 Noncompliant Code Example
	9.2.4 Compliant Solution
	9.2.5 Risk Assessment
	9.2.6 Related Guidelines
	9.2.7 Bibliography

	9.3 ERR52-CPP. Do not use setjmp() or longjmp()
	9.3.1 Noncompliant Code Example
	9.3.2 Compliant Solution
	9.3.3 Risk Assessment
	9.3.4 Bibliography

	9.4 ERR53-CPP. Do not reference base classes or class data members in a constructor or destructor function-try-block handler
	9.4.1 Noncompliant Code Example
	9.4.2 Compliant Solution
	9.4.3 Risk Assessment
	9.4.4 Related Guidelines
	9.4.5 Bibliography

	9.5 ERR54-CPP. Catch handlers should order their parameter types from most derived to least derived
	9.5.1 Noncompliant Code Example
	9.5.2 Compliant Solution
	9.5.3 Risk Assessment
	9.5.4 Related Guidelines
	9.5.5 Bibliography

	9.6 ERR55-CPP. Honor exception specifications
	9.6.1 Noncompliant Code Example
	9.6.2 Compliant Solution
	9.6.3 Compliant Solution
	9.6.4 Noncompliant Code Example
	9.6.5 Compliant Solution
	9.6.6 Risk Assessment
	9.6.7 Related Guidelines
	9.6.8 Bibliography

	9.7 ERR56-CPP. Guarantee exception safety
	9.7.1 Noncompliant Code Example (No Exception Safety)
	9.7.2 Compliant Solution (Strong Exception Safety)
	9.7.3 Risk Assessment
	9.7.4 Related Guidelines
	9.7.5 Bibliography

	9.8 ERR57-CPP. Do not leak resources when handling exceptions
	9.8.1 Noncompliant Code Example
	9.8.2 Compliant Solution (delete)
	9.8.3 Compliant Solution (RAII Design Pattern)
	9.8.4 Noncompliant Code Example
	9.8.5 Compliant Solution (try/catch)
	9.8.6 Compliant Solution (std::unique_ptr)
	9.8.7 Risk Assessment
	9.8.8 Related Guidelines
	9.8.9 Bibliography

	9.9 ERR58-CPP. Handle all exceptions thrown before main() begins executing
	9.9.1 Noncompliant Code Example
	9.9.2 Compliant Solution
	9.9.3 Noncompliant Code Example
	9.9.4 Compliant Solution
	9.9.5 Compliant Solution
	9.9.6 Noncompliant Code Example
	9.9.7 Compliant Solution
	9.9.8 Risk Assessment
	9.9.9 Related Guidelines
	9.9.10 Bibliography

	9.10 ERR59-CPP. Do not throw an exception across execution boundaries
	9.10.1 Noncompliant Code Example
	9.10.2 Compliant Solution
	9.10.3 Risk Assessment
	9.10.4 Related Guidelines
	9.10.5 Bibliography

	9.11 ERR60-CPP. Exception objects must be nothrow copy constructible
	9.11.1 Noncompliant Code Example
	9.11.2 Compliant Solution
	9.11.3 Compliant Solution
	9.11.4 Risk Assessment
	9.11.5 Related Guidelines
	9.11.6 Bibliography

	9.12 ERR61-CPP. Catch exceptions by lvalue reference
	9.12.1 Noncompliant Code Example
	9.12.2 Compliant Solution
	9.12.3 Risk Assessment
	9.12.4 Related Guidelines
	9.12.5 Bibliography

	9.13 ERR62-CPP. Detect errors when converting a string to a number
	9.13.1 Noncompliant Code Example
	9.13.2 Compliant Solution
	9.13.3 Compliant Solution
	9.13.4 Risk Assessment
	9.13.5 Related Guidelines
	9.13.6 Bibliography

	10 Object Oriented Programming (OOP)
	10.1 OOP50-CPP. Do not invoke virtual functions from constructors or destructors
	10.1.1 Noncompliant Code Example
	10.1.2 Compliant Solution
	10.1.3 Exceptions
	10.1.4 Risk Assessment
	10.1.5 Bibliography

	10.2 OOP51-CPP. Do not slice derived objects
	10.2.1 Noncompliant Code Example
	10.2.2 Compliant Solution (Pointers)
	10.2.3 Compliant Solution (References)
	10.2.4 Compliant Solution (Noncopyable)
	10.2.5 Noncompliant Code Example
	10.2.6 Compliant Solution
	10.2.7 Risk Assessment
	10.2.8 Related Guidelines
	10.2.9 Bibliography

	10.3 OOP52-CPP. Do not delete a polymorphic object without a virtual destructor
	10.3.1 Noncompliant Code Example
	10.3.2 Noncompliant Code Example
	10.3.3 Compliant Solution
	10.3.4 Risk Assessment
	10.3.5 Related Guidelines
	10.3.6 Bibliography

	10.4 OOP53-CPP. Write constructor member initializers in the canonical order
	10.4.1 Noncompliant Code Example
	10.4.2 Compliant Solution
	10.4.3 Noncompliant Code Example
	10.4.4 Compliant Solution
	10.4.5 Risk Assessment
	10.4.6 Bibliography

	10.5 OOP54-CPP. Gracefully handle self-copy assignment
	10.5.1 Noncompliant Code Example
	10.5.2 Compliant Solution (Self-Test)
	10.5.3 Compliant Solution (Copy and Swap)
	10.5.4 Risk Assessment
	10.5.5 Related Guidelines
	10.5.6 Bibliography

	10.6 OOP55-CPP. Do not use pointer-to-member operators to access nonexistent members
	10.6.1 Noncompliant Code Example
	10.6.2 Compliant Solution
	10.6.3 Noncompliant Code Example
	10.6.4 Compliant Solution
	10.6.5 Risk Assessment
	10.6.6 Related Guidelines
	10.6.7 Bibliography

	10.7 OOP56-CPP. Honor replacement handler requirements
	10.7.2 Noncompliant Code Example
	10.7.3 Compliant Solution
	10.7.4 Risk Assessment
	10.7.5 Related Guidelines
	10.7.6 Bibliography

	10.8 OOP57-CPP. Prefer special member functions and overloaded operators to C Standard Library functions
	10.8.1 Noncompliant Code Example
	10.8.2 Compliant Solution
	10.8.3 Noncompliant Code Example
	10.8.4 Compliant Solution
	10.8.5 Noncompliant Code Example
	10.8.6 Compliant Solution
	10.8.7 Risk Assessment
	10.8.8 Related Guidelines
	10.8.9 Bibliography

	10.9 OOP58-CPP. Copy operations must not mutate the source object
	10.9.2 Noncompliant Code Example
	10.9.3 Compliant Solution
	10.9.4 Risk Assessment
	10.9.5 Related Guidelines
	10.9.6 Bibliography

	11 Concurrency (CON)
	11.1 CON50-CPP. Do not destroy a mutex while it is locked
	11.1.1 Noncompliant Code Example
	11.1.2 Compliant Solution
	11.1.3 Compliant Solution
	11.1.4 Risk Assessment
	11.1.5 Related Guidelines
	11.1.6 Bibliography

	11.2 CON51-CPP. Ensure actively held locks are released on exceptional conditions
	11.2.1 Noncompliant Code Example
	11.2.2 Compliant Solution (Manual Unlock)
	11.2.3 Compliant Solution (Lock Object)
	11.2.4 Risk Assessment
	11.2.5 Related Guidelines
	11.2.6 Bibliography

	11.3 CON52-CPP. Prevent data races when accessing bit-fields from multiple threads
	11.3.1 Noncompliant Code Example (bit-field)
	11.3.2 Compliant Solution (bit-field, C++11 and later, mutex)
	11.3.3 Compliant Solution (C++11)
	11.3.4 Risk Assessment
	11.3.5 Related Guidelines
	11.3.6 Bibliography

	11.4 CON53-CPP. Avoid deadlock by locking in a predefined order
	11.4.1 Noncompliant Code Example
	11.4.2 Compliant Solution (Manual Ordering)
	11.4.3 Compliant Solution (std::lock())
	11.4.4 Risk Assessment
	11.4.5 Related Guidelines
	11.4.6 Bibliography

	11.5 CON54-CPP. Wrap functions that can spuriously wake up in a loop
	11.5.1 Noncompliant Code Example
	11.5.2 Compliant Solution (Explicit loop with predicate)
	11.5.3 Compliant Solution (Implicit loop with lambda predicate)
	11.5.4 Risk Assessment
	11.5.5 Related Guidelines
	11.5.6 Bibliography

	11.6 CON55-CPP. Preserve thread safety and liveness when using condition variables
	11.6.1 Noncompliant Code Example (notify_one())
	11.6.2 Compliant Solution (notify_all())
	11.6.3 Compliant Solution (Using notify_one() with a Unique Condition Variable per Thread)
	11.6.4 Risk Assessment
	11.6.5 Related Guidelines
	11.6.6 Bibliography

	11.7 CON56-CPP. Do not speculatively lock a non-recursive mutex that is already owned by the calling thread
	11.7.1 Noncompliant Code Example
	11.7.2 Compliant Solution
	11.7.3 Risk Assessment
	11.7.4 Related Guidelines
	11.7.5 Bibliography

	12 Miscellaneous (MSC)
	12.1 MSC50-CPP. Do not use std::rand() for generating pseudorandom numbers
	12.1.1 Noncompliant Code Example
	12.1.2 Compliant Solution
	12.1.3 Risk Assessment
	12.1.4 Related Guidelines
	12.1.5 Bibliography

	12.2 MSC51-CPP. Ensure your random number generator is properly seeded
	12.2.1 Noncompliant Code Example
	12.2.2 Noncompliant Code Example
	12.2.3 Compliant Solution
	12.2.4 Risk Assessment
	12.2.5 Related Guidelines
	12.2.6 Bibliography

	12.3 MSC52-CPP. Value-returning functions must return a value from all exit paths
	12.3.1 Noncompliant Code Example
	12.3.2 Compliant Solution
	12.3.3 Noncompliant Code Example
	12.3.4 Compliant Solution
	12.3.5 Exceptions
	12.3.6 Risk Assessment
	12.3.7 Bibliography

	12.4 MSC53-CPP. Do not return from a function declared [[noreturn]]
	12.4.1 Noncompliant Code Example
	12.4.2 Compliant Solution
	12.4.3 Risk Assessment
	12.4.4 Bibliography

	12.5 MSC54-CPP. A signal handler must be a plain old function
	12.5.1 Noncompliant Code Example
	12.5.2 Compliant Solution
	12.5.3 Noncompliant Code Example
	12.5.4 Compliant Solution
	12.5.5 Risk Assessment
	12.5.6 Related Guidelines
	12.5.7 Bibliography
	12.5.8 MISRA C++:2008
	12.5.9 MITRE CWE

	Appendix A: Bibliography
	Appendix B: Definitions
	Appendix C: Related Guidelines
	Appendix D: Risk Assessments

