
SEI CERT
C Coding Standard
Rules for Developing Safe, Reliable, and Secure Systems

2016 Edition

v2016-06-29-1140

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg. 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0003560

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems i
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table of Contents

1 Introduction 1
1.1 Scope 2
1.2 Audience 3
1.3 History 4
1.4 ISO/IEC TS 17961 C Secure Coding Rules 5
1.5 Tool Selection and Validation 7
1.6 Taint Analysis 9
1.7 Rules Versus Recommendations 10
1.8 Conformance Testing 11
1.9 Development Process 12
1.10 Usage 13
1.11 System Qualities 13
1.12 Vulnerability Metric 13
1.13 How This Coding Standard Is Organized 14
1.14 Automatically Generated Code 18
1.15 Government Regulations 19
1.16 Acknowledgments 20

2 Preprocessor (PRE) 23
2.1 PRE30-C. Do not create a universal character name through concatenation 23
2.2 PRE31-C. Avoid side effects in arguments to unsafe macros 25
2.3 PRE32-C. Do not use preprocessor directives in invocations of function-like macros 30

3 Declarations and Initialization (DCL) 32
3.1 DCL30-C. Declare objects with appropriate storage durations 32
3.2 DCL31-C. Declare identifiers before using them 36
3.3 DCL36-C. Do not declare an identifier with conflicting linkage classifications 40
3.4 DCL37-C. Do not declare or define a reserved identifier 43
3.5 DCL38-C. Use the correct syntax when declaring a flexible array member 50
3.6 DCL39-C. Avoid information leakage when passing a structure across a trust boundary 53
3.7 DCL40-C. Do not create incompatible declarations of the same function or object 60
3.8 DCL41-C. Do not declare variables inside a switch statement before the first case label 66

4 Expressions (EXP) 68
4.1 EXP30-C. Do not depend on the order of evaluation for side effects 68
4.2 EXP32-C. Do not access a volatile object through a nonvolatile reference 74
4.3 EXP33-C. Do not read uninitialized memory 76
4.4 EXP34-C. Do not dereference null pointers 85
4.5 EXP35-C. Do not modify objects with temporary lifetime 90
4.6 EXP36-C. Do not cast pointers into more strictly aligned pointer types 93
4.7 EXP37-C. Call functions with the correct number and type of arguments 98
4.8 EXP39-C. Do not access a variable through a pointer of an incompatible type 103
4.9 EXP40-C. Do not modify constant objects 109
4.10 EXP42-C. Do not compare padding data 111
4.11 EXP43-C. Avoid undefined behavior when using restrict-qualified pointers 114

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems ii
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.12 EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic 122
4.13 EXP45-C. Do not perform assignments in selection statements 126
4.14 EXP46-C. Do not use a bitwise operator with a Boolean-like operand 131

5 Integers (INT) 132
5.1 INT30-C. Ensure that unsigned integer operations do not wrap 132
5.2 INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data 138
5.3 INT32-C. Ensure that operations on signed integers do not result in overflow 147
5.4 INT33-C. Ensure that division and remainder operations do not result in divide-by-zero

errors 157
5.5 INT34-C. Do not shift an expression by a negative number of bits or by greater than or

equal to the number of bits that exist in the operand 160
5.6 INT35-C. Use correct integer precisions 166
5.7 INT36-C. Converting a pointer to integer or integer to pointer 169

6 Floating Point (FLP) 173
6.1 FLP30-C. Do not use floating-point variables as loop counters 173
6.2 FLP32-C. Prevent or detect domain and range errors in math functions 176
6.3 FLP34-C. Ensure that floating-point conversions are within range of the new type 185
6.4 FLP36-C. Preserve precision when converting integral values to floating-point type 189
6.5 FLP37-C. Do not use object representations to compare floating-point values 191

7 Array (ARR) 193
7.1 ARR30-C. Do not form or use out-of-bounds pointers or array subscripts 193
7.2 ARR32-C. Ensure size arguments for variable length arrays are in a valid range 203
7.3 ARR36-C. Do not subtract or compare two pointers that do not refer to the same array 207
7.4 ARR37-C. Do not add or subtract an integer to a pointer to a non-array object 209
7.5 ARR38-C. Guarantee that library functions do not form invalid pointers 212
7.6 ARR39-C. Do not add or subtract a scaled integer to a pointer 222

8 Characters and Strings (STR) 226
8.1 STR30-C. Do not attempt to modify string literals 226
8.2 STR31-C. Guarantee that storage for strings has sufficient space for character

data and the null terminator 230
8.3 STR32-C. Do not pass a non-null-terminated character sequence to a library function

that expects a string 242
8.4 STR34-C. Cast characters to unsigned char before converting to larger integer sizes 247
8.5 STR37-C. Arguments to character-handling functions must be representable as an

unsigned char 251
8.6 STR38-C. Do not confuse narrow and wide character strings and functions 253

9 Memory Management (MEM) 256
9.1 MEM30-C. Do not access freed memory 256
9.2 MEM31-C. Free dynamically allocated memory when no longer needed 262
9.3 MEM33-C. Allocate and copy structures containing a flexible array member

dynamically 264
9.4 MEM34-C. Only free memory allocated dynamically 269
9.5 MEM35-C. Allocate sufficient memory for an object 273
9.6 MEM36-C. Do not modify the alignment of objects by calling realloc() 277

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems iii
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10 Input/Output (FIO) 281
10.1 FIO30-C. Exclude user input from format strings 281
10.2 FIO32-C. Do not perform operations on devices that are only appropriate for files 285
10.3 FIO34-C. Distinguish between characters read from a file and EOF or WEOF 291
10.4 FIO37-C. Do not assume that fgets() or fgetws() returns a nonempty string when

successful 296
10.5 FIO38-C. Do not copy a FILE object 299
10.6 FIO39-C. Do not alternately input and output from a stream without an intervening

flush or positioning call 301
10.7 FIO40-C. Reset strings on fgets() or fgetws() failure 304
10.8 FIO41-C. Do not call getc(), putc(), getwc(), or putwc() with a stream argument that

has side effects 306
10.9 FIO42-C. Close files when they are no longer needed 309
10.10 FIO44-C. Only use values for fsetpos() that are returned from fgetpos() 313
10.11 FIO45-C. Avoid TOCTOU race conditions while accessing files 315
10.12 FIO46-C. Do not access a closed file 319
10.13 FIO47-C. Use valid format strings 321

11 Environment (ENV) 326
11.1 ENV30-C. Do not modify the object referenced by the return value of certain functions 326
11.2 ENV31-C. Do not rely on an environment pointer following an operation that may

invalidate it 331
11.3 ENV32-C. All exit handlers must return normally 336
11.4 ENV33-C. Do not call system() 340
11.5 ENV34-C. Do not store pointers returned by certain functions 347

12 Signals (SIG) 353
12.1 SIG30-C. Call only asynchronous-safe functions within signal handlers 353
12.2 SIG31-C. Do not access shared objects in signal handlers 363
12.3 SIG34-C. Do not call signal() from within interruptible signal handlers 367
12.4 SIG35-C. Do not return from a computational exception signal handler 371

13 Error Handling (ERR) 374
13.1 ERR30-C. Set errno to zero before calling a library function known to set errno,

and check errno only after the function returns a value indicating failure 374
13.2 ERR32-C. Do not rely on indeterminate values of errno 381
13.3 ERR33-C. Detect and handle standard library errors 386

14 Concurrency (CON) 403
14.1 CON30-C. Clean up thread-specific storage 403
14.2 CON31-C. Do not destroy a mutex while it is locked 407
14.3 CON32-C. Prevent data races when accessing bit-fields from multiple threads 410
14.4 CON33-C. Avoid race conditions when using library functions 414
14.5 CON34-C. Declare objects shared between threads with appropriate storage durations 418
14.6 CON35-C. Avoid deadlock by locking in a predefined order 426
14.7 CON36-C. Wrap functions that can spuriously wake up in a loop 431
14.8 CON37-C. Do not call signal() in a multithreaded program 435
14.9 CON38-C. Preserve thread safety and liveness when using condition variables 437
14.10 CON39-C. Do not join or detach a thread that was previously joined or detached 445

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems iv
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.11 CON40-C. Do not refer to an atomic variable twice in an expression 447
14.12 CON41-C. Wrap functions that can fail spuriously in a loop 451

15 Miscellaneous (MSC) 455
15.1 MSC30-C. Do not use the rand() function for generating pseudorandom numbers 455
15.2 MSC32-C. Properly seed pseudorandom number generators 459
15.3 MSC33-C. Do not pass invalid data to the asctime() function 463
15.4 MSC37-C. Ensure that control never reaches the end of a non-void function 466
15.5 MSC38-C. Do not treat a predefined identifier as an object if it might only

be implemented as a macro 470
15.6 MSC39-C. Do not call va_arg() on a va_list that has an indeterminate value 473
15.7 MSC40-C. Do not violate constraints 476

Appendix A: Bibliography 481

Appendix B: Definitions 501

Appendix C: Undefined Behavior 510

Appendix D: Unspecified Behavior 525

Introduction - Scope

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 1
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

The SEI CERT C Coding Standard, 2016 Edition provides rules for secure coding in the C pro-
gramming language. The goal of these rules and recommendations is to develop safe, reliable, and
secure systems, for example by eliminating undefined behaviors that can lead to undefined pro-
gram behaviors and exploitable vulnerabilities. Conformance to the coding rules defined in this
standard are necessary (but not sufficient) to ensure the safety, reliability, and security of software
systems developed in the C programming language. It is also necessary, for example, to have a
safe and secure design. Safety-critical systems typically have stricter requirements than are im-
posed by this coding standard, for example requiring that all memory be statically allocated. How-
ever, the application of this coding standard will result in high-quality systems that are reliable,
robust, and resistant to attack.

Each rule consists of a title, a description, and noncompliant code examples and compliant solu-
tions. The title is a concise, but sometimes imprecise, description of the rule. The description
specifies the normative requirements of the rule. The noncompliant code examples are examples
of code that would constitute a violation of the rule. The accompanying compliant solutions
demonstrate equivalent code that does not violate the rule or any other rules in this coding stand-
ard.

A well-documented and enforceable coding standard is an essential element of coding in the C
programming language. Coding standards encourage programmers to follow a uniform set of rules
determined by the requirements of the project and organization rather than by the programmer’s
familiarity. Once established, these standards can be used as a metric to evaluate source code (us-
ing manual or automated processes).

CERT’s coding standards are being widely adopted by industry. Cisco Systems, Inc. announced
its adoption of the CERT C Secure Coding Standard as a baseline programming standard in its
product development in October 2011 at Cisco’s annual SecCon conference. Recently, Oracle has
integrated all of CERT’s secure coding standards into its existing secure coding standards. This
adoption is the most recent step of a long collaboration: CERT and Oracle previously worked to-
gether in authoring The CERT Oracle Secure Coding Standard for Java (Addison-Wesley, 2011).

This standard is based on the C rules available on the CERT Secure Coding wiki as of 30 March
2016. The wiki contains ongoing updates of the standard between official published releases. If
you are interested in contributing to the rules, create an account on the wiki and then request con-
tributor privileges by sending email to info@sei.cmu.edu.

The Secure Coding eNewsletter contains news from the CERT Secure Coding Initiative as well as
summaries of recent updates to the standard rules. If you are interested in receiving updates di-
rectly, subscribe to the eNewsletter through our website or send a request to info@sei.cmu.edu.

https://www.securecoding.cert.org/
http://www.cert.org/secure-coding/publications/secure-coding-enewsletter.cfm
http://cert.org/secure-coding/contact.cfm
mailto:info@sei.cmu.edu
mailto:info@sei.cmu.edu

Introduction - Scope

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 2
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.1 Scope

The CERT C Secure Coding Standard was developed specifically for versions of the C program-
ming language defined by
• ISO/IEC 9899:2011 ISO/IEC, Programming Languages—C, 3rd ed. [ISO/IEC 9899:2011]
• ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

Although the guidelines for this standard were developed for C11, they can also be applied to ear-
lier versions of the C programming language, including C99. Variations between versions of the
C Standard that would affect the proper application of these guidelines are noted where applica-
ble.

Most guidelines have a noncompliant code example that is a C11-conforming program to ensure
that the problem identified by the guideline is within the scope of the standard. However, the best
solutions to secure coding problems are often platform specific. In many cases, this standard pro-
vides appropriate compliant solutions for both POSIX and Windows operating systems. Language
and library extensions that have been published as ISO/IEC technical reports or technical specifi-
cations are frequently given precedence, such has those described by ISO/IEC TR 24731-2, Ex-
tensions to the C Library—Part II: Dynamic Allocation Functions [ISO/IEC TR 24731-2:2010].
In many cases, compliant solutions are also provided for specific platforms such as Linux or
OpenBSD. Occasionally, interesting or illustrative implementation-specific behaviors are de-
scribed.

1.1.1 Rationale

A coding standard for the C programming language can create the highest value for the longest
period of time by focusing on the C Standard (C11) and the relevant post-C11 technical reports.

The C Standard documents existing practice where possible. That is, most features must be tested
in an implementation before being included in the standard. The CERT C Coding Standard has a
different purpose: to establish a set of best practices, which sometimes requires introducing new
practices that may not be widely known or used when existing practices are inadequate. To put it
a different way, the CERT C Coding Standard attempts to drive change rather than just document
it.

For example, the optional but normative Annex K, “Bounds-Checking Interfaces,” introduced in
C11, is gaining support but at present is implemented by only a few vendors. It introduces func-
tions such as memcpy_s(), which serve the purpose of security by adding the destination buffer
size to the API. A forward-looking document could not reasonably ignore these functions simply
because they are not yet widely implemented. The base C Standard is more widely implemented
than Annex K, but even if it were not, it is the direction in which the industry is moving. Develop-
ers of new C code, especially, need guidance that is usable, on and makes the best use of, the
compilers and tools that are now being developed and are being supported into the future.

Introduction - Audience

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 3
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Some vendors have extensions to C, and some also have implemented only part of the C Standard
before stopping development. Consequently, it is not possible to back up and discuss only C95,
C90, or C99. The vendor support equation is too complicated to draw a line and say that a certain
compiler supports exactly a certain standard. Whatever demarcation point is selected, different
vendors are on opposite sides of it for different parts of the language. Supporting all possibilities
would require testing the cross-product of each compiler with each language feature. Conse-
quently, we have selected a demarcation point that is the most recent in time so that the rules and
recommendations defined by the standard will be applicable for as long as possible. As a result of
the variations in support, source-code portability is enhanced when the programmer uses only the
features specified by C99. This is one of many trade-offs between security and portability inherent
to C language programming.

The value of forward-looking information increases with time before it starts to decrease. The
value of backward-looking information starts to decrease immediately.

For all of these reasons, the priority of this standard is to support new code development using
C11 and the post-C11 technical reports that have not been incorporated into the C Standard. A
close-second priority is supporting remediation of old code using C99 and the technical reports.

This coding standard does make contributions to support older compilers when these contribu-
tions can be significant and doing so does not compromise other priorities. The intent is not to
capture all deviations from the standard but to capture only a few important ones.

1.1.2 Issues Not Addressed
A number of issues are not addressed by this secure coding standard.

1.1.2.1 Coding Style
Coding style issues are subjective, and it has proven impossible to develop a consensus on appro-
priate style guidelines. Consequently, the CERT C Secure Coding Standard does not require the
enforcement of any particular coding style but only suggests that development organizations de-
fine or adopt style guidelines and apply these guidelines consistently. The easiest way to apply a
coding style consistently is to use a code-formatting tool. Many interactive development environ-
ments (IDEs) provide such capabilities.

1.1.2.2 Controversial Rules
In general, the CERT coding standards try to avoid the inclusion of controversial rules that lack a
broad consensus.

1.2 Audience

The CERT C Secure Coding Standard is primarily intended for developers of C language pro-
grams but may also be used by software acquirers to define the requirements for software. The

Introduction - History

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 4
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

standard is of particular interest to developers who are building high-quality systems that are reli-
able, robust, and resistant to attack.

While not intended for C++ programmers, the standard may also be of some value to these devel-
opers because the vast majority of issues identified for C language programs are also issues in
C++ programs, although in many cases the solutions are different.

1.3 History

The idea of a CERT secure coding standard arose at the Spring 2006 meeting of the C Standards
Committee (more formally, ISO/IEC JTC1/SC22/WG14) in Berlin, Germany [Seacord 2013a].
The C Standard is an authoritative document, but its audience is primarily compiler implementers,
and, as noted by many, its language is obscure and often impenetrable. A secure coding standard
would be targeted primarily toward C language programmers and would provide actionable guid-
ance on how to code securely in the language.

The CERT C Secure Coding Standard was developed on the CERT Secure Coding wiki following
a community-based development process. Experts from the community, including members of the
WG14 C Standards Committee, were invited to contribute and were provided with edit privileges
on the wiki. Members of the community can register for a free account on the wiki to comment on
the coding standards and individual rules. Reviewers who provide high-quality comments are fre-
quently extended edit privileges so they can directly contribute to the development and evolution
of the coding standard. Today, the CERT Secure Coding wiki has 2,502 registered users.

This wiki-based community development process has many advantages. Most important, it en-
gages a broad group of experts to form a consensus opinion on the content of the rules. The main
disadvantage of developing a secure coding standard on a wiki is that the content is constantly
evolving. This instability may be acceptable if you want the latest information and are willing to
entertain the possibility that a recent change has not yet been fully vetted. However, many soft-
ware development organizations require a static set of rules and recommendations that they can
adopt as requirements for their software development process.

Toward this end, a stable snapshot of the CERT C Secure Coding Standard was produced after
two and a half years of community development and published as The CERT C Secure Coding
Standard. With the production of the manuscript for the book in June 2008, version 1.0 (the book)
and the wiki versions of the secure coding standard began to diverge. A second snapshot was
taken in December 2013 and was published in April 2014 as The CERT C Coding Standard, sec-
ond edition. The wiki had become so comprehensive by this time that only the rules were included
in the second edition of the book. A third snapshot was taken in March 2016 and published in
June 2016 as SEI CERT C Coding Standard, 2016 edition, as a downloadable PDF document.

The CERT C secure coding guidelines were first reviewed by WG14 at the London meeting in
April 2007 and again at the Kona, Hawaii, meeting in August 2007.

http://www.securecoding.cert.org/

Introduction - ISO/IEC TS 17961 C Secure Coding Rules

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 5
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The topic of whether INCITS PL22.11 should submit the CERT C Secure Coding Standard to
WG14 as a candidate for publication as a type 2 or type 3 technical report was discussed at the
J11/U.S. TAG Meeting, April 15, 2008, as reported in the minutes. J11 is now Task Group
PL22.11, Programming Language C, and this technical committee is the U.S. Technical Advisory
Group to ISO/IEC JTC 1 SC22/WG14.

A straw poll was taken on the question, “Who has time to work on this project?” for which the
vote was 4 (has time) to 12 (has no time). Some of the feedback we received afterwards was that
although the CERT C Secure Coding Standard was a strong set of guidelines that had been devel-
oped with input from many of the technical experts at WG14 and had been reviewed by WG14 on
several occasions, WG14 was not normally in the business of “blessing” guidance to developers.
However, WG14 was certainly in the business of defining normative requirements for tools such
as compilers.

Armed with this knowledge, we proposed that WG14 establish a study group to consider the prob-
lem of producing analyzable secure coding guidelines for the C language. The study group first
met on October 27, 2009. CERT contributed an automatically enforceable subset of the C secure
coding rules to ISO/IEC for use in the standardization process.

Participants in the study group included analyzer vendors such as Coverity, Fortify, GammaTech,
Gimpel, Klocwork, and LDRA; security experts; language experts; and consumers. A new work
item to develop and publish ISO/IEC TS 17961, C Secure Coding Rules, was approved for WG14
in March 2012, and the study group concluded. Roberto Bagnara, the Italian National Body repre-
sentative to WG 14, later joined the WG14 editorial committee. ISO/IEC TS 17961:2013(E), In-
formation Technology—Programming Languages, Their Environments and System Software In-
terfaces—C Secure Coding Rules [ISO/IEC TS 17961:2013] was officially published in
November 2013 and is available for purchase at the ISO store.

The CERT Secure Coding wiki contains ongoing updates of the standard between official pub-
lished releases. If you are interested in contributing to the rules, create an account on the wiki and
then request contributor privileges by sending a request to info@sei.cmu.edu.

The Secure Coding eNewsletter contains news from the CERT Secure Coding Initiative as well as
summaries of recent updates to the standard rules. If you are interested in getting updates, sub-
scribe to the eNewsletter through our website or by sending a request to info@sei.cmu.edu.

1.4 ISO/IEC TS 17961 C Secure Coding Rules

The purpose of ISO/IEC TS 17961 [ISO/IEC TS 17961:2013] is to establish a baseline set of re-
quirements for analyzers, including static analysis tools and C language compilers, to be applied
by vendors that wish to diagnose insecure code beyond the requirements of the language standard.
All rules are meant to be enforceable by static analysis. The criterion for selecting these rules is
that analyzers that implement these rules must be able to effectively discover secure coding errors
without generating excessive false positives.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=61134
https://www.securecoding.cert.org/
mailto:info@sei.cmu.edu
http://www.cert.org/secure-coding/publications/secure-coding-enewsletter.cfm
http://cert.org/secure-coding/contact.cfm
mailto:info@sei.cmu.edu

Introduction - ISO/IEC TS 17961 C Secure Coding Rules

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 6
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

To date, the application of static analysis to security has been performed in an ad-hoc manner by
different vendors, resulting in non-uniform coverage of significant security issues. ISO/IEC TS
17961 enumerates secure coding rules and requires analysis engines to diagnose violations of
these rules as a matter of conformance to the specification [ISO/IEC TS 17961:2013]. These rules
may be extended in an implementation-dependent manner, which provides a minimum coverage
guarantee to customers of any and all conforming static analysis implementations.

ISO/IEC TS 17961 specifies rules for secure coding in the C programming language and includes
code examples for each rule. Noncompliant code examples demonstrate language constructs that
have weaknesses with potentially exploitable security implications; such examples are expected to
elicit a diagnostic from a conforming analyzer for the affected language construct. Compliant ex-
amples are expected not to elicit a diagnostic. ISO/IEC TS 17961 does not specify the mechanism
by which these rules are enforced or any particular coding style to be enforced [ISO/IEC TS
17961:2013].

The following table shows how ISO/IEC TS 17961 relates to other standards and guidelines. Of
the publications listed, ISO/IEC TS 17961 is the only one for which the immediate audience is an-
alyzers and not developers.

ISO/IEC TS 17961 Compared with Other Standards
Coding
Standard

C Standard Security
Standard

Safety
Standard

International
Standard

Whole
Language

CWE None/all Yes No No N/A
MISRA C2 C89 No Yes No No
MISRA C3 C99 No Yes No No
CERT C99 C99 Yes No No Yes
CERT C11 C11 Yes Yes No Yes
ISO/IEC TS
17961

C11 Yes No Yes Yes

A conforming analyzer must be capable of producing a diagnostic for each distinct rule in the
technical specification upon detecting a violation of that rule in isolation. If the same program text
violates multiple rules simultaneously, a conforming analyzer may aggregate diagnostics but must
produce at least one diagnostic. The diagnostic message might be of the form

Accessing freed memory in function abc, file xyz.c, line nnn.

ISO/IEC TS 17961 does not require an analyzer to produce a diagnostic message for any violation
of any syntax rule or constraint specified by the C Standard [ISO/IEC TS 17961:2013]. Conform-
ance is defined only with respect to source code that is visible to the analyzer. Binary-only librar-
ies, and calls to them, are outside the scope of these rules.

An interesting aspect of the technical specification is the portability assumptions, known within
the group as the “San Francisco rule” because the assumptions evolved at a meeting hosted by
Coverity at its headquarters. The San Francisco rule states that a conforming analyzer must be
able to diagnose violations of guidelines for at least one C implementation but does not need to

Introduction - Tool Selection and Validation

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 7
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

diagnose a rule violation if the result is documented for the target implementation and does not
cause a security flaw. Variations in quality of implementation permit an analyzer to produce diag-
nostics concerning portability issues. For example, the following program fragment can produce a
diagnostic, such as the mismatch between %d and long int:

long i; printf ("i = %d", i);

This mismatch might not be a problem for all target implementations, but it is a portability prob-
lem because not all implementations have the same representation for int and long.

In addition to other goals already stated, the CERT C Coding Standard has been updated for con-
sistency with ISO/IEC TS 17961. Although the documents serve different audiences, consistency
between the documents should improve the ability of developers to use ISO/IEC TS 17961–con-
forming analyzers to find violations of rules from this coding standard. The Secure Coding Vali-
dation Suite is a set of tests developed by CERT to validate the rules defined in ISO/IEC TS
17961. These tests are based on the examples in this technical specification and are distributed
with a BSD-style license.

1.5 Tool Selection and Validation

Although rule checking can be performed manually, with increasing program size and complex-
ity, it rapidly becomes infeasible. For this reason, the use of static analysis tools is recommended.

When choosing a compiler (which should be understood to include the linker), a C-compliant
compiler should be used whenever possible. A conforming implementation will produce at least
one diagnostic message if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. It is also likely that any analyzers you may use assume a C-compliant
compiler.

When choosing a source code analysis tool, it is clearly desirable that the tool be able to enforce
as many of the guidelines on the wiki as possible. Not all recommendations are enforceable; some
are strictly meant to be informative.

Although CERT recommends the use of an ISO/IEC TS 17961–conforming analyzer, the Soft-
ware Engineering Institute, as a federally funded research and development center (FFRDC), is
not in a position to endorse any particular vendor or tool. Vendors are encouraged to develop con-
forming analyzers, and users of this coding standard are free to evaluate and select whichever ana-
lyzers best suit their purposes.

1.5.1 Completeness and Soundness
It should be recognized that, in general, determining conformance to coding rules and recommen-
dations is computationally undecidable. The precision of static analysis has practical limitations.
For example, the halting theorem of computer science states that programs exist in which exact

https://github.com/SEI-CERT/scvs
https://github.com/SEI-CERT/scvs

Introduction - Tool Selection and Validation

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 8
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

control flow cannot be determined statically. Consequently, any property dependent on control
flow—such as halting—may be indeterminate for some programs. A consequence of undecidabil-
ity is that it may be impossible for any tool to determine statically whether a given guideline is
satisfied in specific circumstances. The widespread presence of such code may also lead to unex-
pected results from an analysis tool.

Regardless of how checking is performed, the analysis may generate
• False negatives: Failure to report a real flaw in the code is usually regarded as the most seri-

ous analysis error, as it may leave the user with a false sense of security. Most tools err on the
side of caution and consequently generate false positives. However, in some cases, it may be
deemed better to report some high-risk flaws and miss others than to overwhelm the user with
false positives.

• False positives: The tool reports a flaw when one does not exist. False positives may occur
because the code is too complex for the tool to perform a complete analysis. The use of fea-
tures such as function pointers and libraries may make false positives more likely.

To the greatest extent feasible, an analyzer should be both complete and sound with respect to en-
forceable guidelines. An analyzer is considered sound with respect to a specific guideline if it can-
not give a false-negative result, meaning it finds all violations of the guideline within the entire
program. An analyzer is considered complete if it cannot issue false-positive results, or false
alarms. The possibilities for a given guideline are outlined in the following figure.

 False Positives
 Y N

Fa
ls

e
N

eg
at

iv
es

N
Complete
with False
Positives

Complete
and Sound

Y
Incomplete
with False
Positives

Incomplete

Compilers and source code analysis tools are trusted processes, meaning that a degree of reliance
is placed on the output of the tools. Accordingly, developers must ensure that this trust is not mis-
placed. Ideally, trust should be achieved by the tool supplier running appropriate validation tests
such as the Secure Coding Validation Suite.

1.5.2 False Positives
Although many guidelines list common exceptions, it is difficult if not impossible to develop a
complete list of exceptions for each guideline. Consequently, it is important that source code com-
plies with the intent of each guideline and that tools, to the greatest extent possible, minimize

Introduction - Taint Analysis

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 9
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

false positives that do not violate the intent of the guideline. The degree to which tools minimize
false-positive diagnostics is a quality-of-implementation issue.

1.6 Taint Analysis

1.6.1 Taint and Tainted Sources
Certain operations and functions have a domain that is a subset of the type domain of their oper-
ands or parameters. When the actual values are outside of the defined domain, the result might be
undefined or at least unexpected. If the value of an operand or argument may be outside the do-
main of an operation or function that consumes that value, and the value is derived from any ex-
ternal input to the program (such as a command-line argument, data returned from a system call,
or data in shared memory), that value is tainted, and its origin is known as a tainted source. A
tainted value is not necessarily known to be out of the domain; rather, it is not known to be in the
domain. Only values, and not the operands or arguments, can be tainted; in some cases, the same
operand or argument can hold tainted or untainted values along different paths. In this regard,
taint is an attribute of a value that is assigned to any value originating from a tainted source.

1.6.2 Restricted Sinks
Operands and arguments whose domain is a subset of the domain described by their types are
called restricted sinks. Any integer operand used in a pointer arithmetic operation is a restricted
sink for that operand. Certain parameters of certain library functions are restricted sinks because
these functions perform address arithmetic with these parameters, or control the allocation of a re-
source, or pass these parameters on to another restricted sink. All string input parameters to li-
brary functions are restricted sinks because it is possible to pass in a character sequence that is not
null terminated. The exceptions are input parameters to strncpy() and strncpy_s(), which
explicitly allow the source character sequence not to be null terminated.

1.6.3 Propagation
Taint is propagated through operations from operands to results unless the operation itself im-
poses constraints on the value of its result that subsume the constraints imposed by restricted
sinks. In addition to operations that propagate the same sort of taint, there are operations that
propagate taint of one sort of an operand to taint of a different sort for their results, the most nota-
ble example of which is strlen() propagating the taint of its argument with respect to string
length to the taint of its return value with respect to range. Although the exit condition of a loop is
not normally considered to be a restricted sink, a loop whose exit condition depends on a tainted
value propagates taint to any numeric or pointer variables that are increased or decreased by
amounts proportional to the number of iterations of the loop.

1.6.4 Sanitization
To remove the taint from a value, the value must be sanitized to ensure that it is in the defined do-
main of any restricted sink into which it flows. Sanitization is performed by replacement or termi-
nation. In replacement, out-of-domain values are replaced by in-domain values, and processing

Introduction - Rules Versus Recommendations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 10
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

continues using an in-domain value in place of the original. In termination, the program logic ter-
minates the path of execution when an out-of-domain value is detected, often simply by branching
around whatever code would have used the value.

In general, sanitization cannot be recognized exactly using static analysis. Analyzers that perform
taint analysis usually provide some extralinguistic mechanism to identify sanitizing functions that
sanitize an argument (passed by address) in place, return a sanitized version of an argument, or
return a status code indicating whether the argument is in the required domain. Because such ex-
tralinguistic mechanisms are outside the scope of this coding standard, we use a set of rudimen-
tary definitions of sanitization that is likely to recognize real sanitization but might cause nonsan-
itizing or ineffectively sanitizing code to be misconstrued as sanitizing.

The following definition of sanitization presupposes that the analysis is in some way maintaining
a set of constraints on each value encountered as the simulated execution progresses: a given path
through the code sanitizes a value with respect to a given restricted sink if it restricts the range of
that value to a subset of the defined domain of the restricted sink type. For example, sanitization
of signed integers with respect to an array index operation must restrict the range of that integer
value to numbers between zero and the size of the array minus one.

This description is suitable for numeric values, but sanitization of strings with respect to content is
more difficult to recognize in a general way.

1.7 Rules Versus Recommendations

This coding standard contains 99 coding rules. The CERT Coding Standards wiki also has 185
recommendations at the time of this writing. Rules are meant to provide normative requirements
for code; recommendations are meant to provide guidance that, when followed, should improve
the safety, reliability, and security of software systems. However, a violation of a recommenda-
tion does not necessarily indicate the presence of a defect in the code. Rules and recommenda-
tions are collectively referred to as guidelines.

The wiki also contains two platform-specific annexes at the time of this writing; one annex is for
POSIX and the other one is for Windows. These annexes have been omitted from this standard
because they are not part of the core standard.

This standard is based on the C rules available on the CERT Secure Coding wiki as of 30 March
2016.

1.7.1 Rules
Rules must meet the following criteria:
1. Violation of the guideline is likely to result in a defect that may adversely affect the safety,

reliability, or security of a system, for example, by introducing a security flaw that may re-
sult in an exploitable vulnerability.

https://www.securecoding.cert.org/

Introduction - Conformance Testing

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 11
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2. The guideline does not rely on source code annotations or assumptions.
3. Conformance to the guideline can be determined through automated analysis (either static or

dynamic), formal methods, or manual inspection techniques.

1.7.2 Recommendations

Recommendations are suggestions for improving code quality. Guidelines are defined to be rec-
ommendations when all of the following conditions are met:
1. Application of a guideline is likely to improve the safety, reliability, or security of software

systems.
2. One or more of the requirements necessary for a guideline to be considered a rule cannot be

met.

The set of recommendations that a particular development effort adopts depends on the require-
ments of the final software product. Projects with stricter requirements may decide to dedicate
more resources to ensuring the safety, reliability, and security of a system and consequently are
likely to adopt a broader set of recommendations.

1.8 Conformance Testing

To ensure that the source code conforms to this coding standard, it is necessary to have measures
in place that check for rule violations. The most effective means of achieving this goal is to use
one or more ISO/IEC TS 17961–conforming analyzers. Where a guideline cannot be checked by a
tool, a manual review is required.

The Source Code Analysis Laboratory (SCALe) provides a means for evaluating the conformance
of software systems against this and other coding standards. CERT coding standards provide a
normative set of rules against which software systems can be evaluated. Conforming software
systems should demonstrate improvements in the safety, reliability, and security over noncon-
forming systems.

The SCALe team at CERT analyzes a developer’s source code and provides a detailed report of
findings to guide the code’s repair. After the developer has addressed these findings and the
SCALe team determines that the product version conforms to the standard, CERT issues the de-
veloper a certificate and lists the system in a registry of conforming systems.

1.8.1 Conformance
Conformance to the CERT C Coding Standard requires that the code not contain any violations of
the rules specified in this standard. If an exceptional condition is claimed, the exception must cor-
respond to a predefined exceptional condition, and the application of this exception must be docu-
mented in the source code. Conformance with the recommendations on the wiki is not necessary
to claim conformance with the CERT C Coding Standard. Conformance to the recommendations

http://www.cert.org/secure-coding/products-services/scale.cfm

Introduction - Development Process

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 12
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

will, in many cases, make it easier to conform to the rules, eliminating many potential sources of
defects.

1.8.2 Levels
Rules and recommendations in this standard are classified into three levels (see How this Coding
Standard is Organized). Emphasis should be placed on conformance Level 1 (L1) rules. Software
systems that have been validated as complying with all Level 1 rules are considered to be L1 con-
forming. Software systems can be assessed as L1, L2, or fully conforming, depending on the set
of rules to which the system has been validated.

1.8.3 Deviation Procedure
Strict adherence to all rules is unlikely and, consequently, deviations associated with specific rule
violations are necessary. Deviations can be used in cases where a true-positive finding is uncon-
tested as a rule violation but the code is nonetheless determined to be correct. An uncontested
true-positive finding may be the result of a design or architecture feature of the software or may
occur for a valid reason that was unanticipated by the coding standard. In this respect, the devia-
tion procedure allows for the possibility that coding rules are overly strict [Seacord 2013].

Deviations are not granted for reasons of performance or usability. A software system that suc-
cessfully passes conformance testing must not contain defects or exploitable vulnerabilities. Devi-
ation requests are evaluated by the lead assessor, and if the developer can provide sufficient evi-
dence that the deviation will not result in a vulnerability, the deviation request is accepted.
Deviations are used infrequently because it is almost always easier to fix a coding error than it is
to provide an argument that the coding error does not result in a vulnerability.

1.9 Development Process

The development of a coding standard for any programming language is a difficult undertaking
that requires significant community involvement. The following development process has been
used to create this standard:
1. Rules and recommendations for a coding standard are solicited from the communities in-

volved in the development and application of each programming language, including the for-
mal or de facto standards bodies responsible for the documented standard.

2. These rules and recommendations are edited by members of the CERT technical staff for
content and style and placed on the CERT Secure Coding Standards website for comment
and review.

3. The user community may then comment on the publicly posted content using threaded dis-
cussions and other communication tools. Once a consensus develops that the rule or recom-
mendation is appropriate and correct, the final rule is incorporated into an officially released
version of the secure coding standard.

https://www.securecoding.cert.org/

Introduction - Usage

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 13
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Early drafts of the CERT C Secure Coding Standard have been reviewed by the ISO/IEC
JTC1/SC22/WG14 international standardization working group for the C programming language
and by other industry groups as appropriate.

1.10 Usage

The rules in this standard may be extended with organization-specific rules. However, the rules in
the standard must be obeyed to claim conformance with the standard.

Training may be developed to educate software professionals regarding the appropriate applica-
tion of coding standards. After passing an examination, these trained programmers may also be
certified as coding professionals. For example, the Software Developer Certification (SDC) is a
credentialing program developed at Carnegie Mellon University. The SDC uses authentic exami-
nation to
1. Identify job candidates with specific programming skills
2. Demonstrate the presence of a well-trained software workforce
3. Provide guidance to educational and training institutions

Once a coding standard has been established, tools and processes can be developed or modified to
determine conformance with the standard.

1.11 System Qualities

The goal of this coding standard is to produce safe, reliable, and secure systems. Additional re-
quirements might exist for safety-critical systems, such as the absence of dynamic memory alloca-
tion. Other software quality attributes of interest include portability, usability, availability, main-
tainability, readability, and performance.

Many of these attributes are interrelated in interesting ways. For example, readability is an attrib-
ute of maintainability; both are important for limiting the introduction of defects during mainte-
nance that can result in security flaws or reliability issues. In addition, readability aids code in-
spection by safety officers. Reliability and availability require proper resource management,
which also contributes to the safety and security of the system. System attributes such as perfor-
mance and security are often in conflict, requiring trade-offs to be considered.

1.12 Vulnerability Metric

The CERT vulnerability metric value is a number between 0 and 180 that assigns an approximate
severity to the vulnerability. This number considers several factors:
• Is information about the vulnerability widely available or known?

http://www.open-std.org/jtc1/sc22/wg14/
http://www.open-std.org/jtc1/sc22/wg14/

Introduction - How This Coding Standard Is Organized

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 14
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• Is the vulnerability being exploited in incidents reported to CERT or other incident response
teams?

• Is the Internet infrastructure (for example, routers, name servers, critical Internet protocols) at
risk because of this vulnerability?

• How many systems on the Internet are at risk from this vulnerability?
• What is the impact of exploiting the vulnerability?
• How easy is it to exploit the vulnerability?
• What are the preconditions required to exploit the vulnerability?

Because the questions are answered with approximate values based on our own judgments and
may differ significantly from one site to another, readers should not rely too heavily on the metric
for prioritizing their response to vulnerabilities. Rather, this metric may be useful for separating
the serious vulnerabilities from the larger number of less severe vulnerabilities described in the
database. Because the questions are not all weighted equally, the resulting score is not linear; that
is, a vulnerability with a metric of 40 is not twice as severe as one with a metric of 20.

An alternative vulnerability severity metric is the Common Vulnerability Scoring System
(CVSS).

1.13 How This Coding Standard Is Organized

This coding standard is organized into 15 chapters containing rules in specific topic areas fol-
lowed by four appendices. Appendix A contains the bibliography. Appendix B lists the definitions
of terms used throughout the standard. Appendix C lists the undefined behaviors from the C
Standard, Annex J, J.2 [ISO/IEC 9899:2011], numbered and classified for easy reference. These
numbered undefined behaviors are referenced frequently from the rules. Appendix D lists unspec-
ified behaviors from the C Standard, Annex J, J.2 [ISO/IEC 9899:2011]. These unspecified be-
haviors are occasionally referenced from the rules as well.

Most rules have a consistent structure. Each rule in this standard has a unique identifier, which is
included in the title. The title and the introductory paragraphs define the rule and are typically fol-
lowed by one or more pairs of noncompliant code examples and compliant solutions. Each rule
also includes a risk assessment, related guidelines, and a bibliography (where applicable). Rules
may also include a table of related vulnerabilities. The recommendations on the CERT Coding
Standards wiki are organized in a similar fashion.

1.13.1 Identifiers
Each rule and recommendation is given a unique identifier. These identifiers consist of three
parts:
• A three-letter mnemonic representing the section of the standard
• A two-digit numeric value in the range of 00 to 99
• The letter C indicating that this is a C language guideline

http://www.first.org/cvss/

Introduction - How This Coding Standard Is Organized

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 15
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The three-letter mnemonic can be used to group similar coding practices and to indicate which
category a coding practice belongs to.

The numeric value is used to give each coding practice a unique identifier. Numeric values in the
range of 00 to 29 are reserved for recommendations, and values in the range of 30 to 99 are re-
served for rules. Rules and recommendations are frequently referenced from the rules in this
standard by their identifier and title. Rules can be found in this standard’s table of contents,
whereas recommendations can be found only on the wiki.

1.13.2 Noncompliant Code Examples and Compliant Solutions
Noncompliant code examples illustrate code that violates the guideline under discussion. It is im-
portant to note that these are only examples, and eliminating all occurrences of the example does
not necessarily mean that the code being analyzed is now compliant with the guideline.

Noncompliant code examples are typically followed by compliant solutions, which show how the
noncompliant code example can be recoded in a secure, compliant manner. Except where noted,
noncompliant code examples should contain violations only of the guideline under discussion.
Compliant solutions should comply with all of the secure coding rules but may on occasion fail to
comply with a recommendation.

1.13.3 Exceptions
Any rule or recommendation may specify a small set of exceptions detailing the circumstances
under which the guideline is not necessary to ensure the safety, reliability, or security of software.
Exceptions are informative only and are not required to be followed.

1.13.4 Risk Assessment
Each guideline in the CERT C Coding Standard contains a risk assessment section that attempts to
provide software developers with an indication of the potential consequences of not addressing a
particular rule or recommendation in their code (along with some indication of expected remedia-
tion costs). This information may be used to prioritize the repair of rule violations by a develop-
ment team. The metric is designed primarily for remediation projects. It is generally assumed that
new code will be developed to be compliant with the entire coding standard and applicable recom-
mendations.

Each rule and recommendation has an assigned priority. Priorities are assigned using a metric
based on Failure Mode, Effects, and Criticality Analysis (FMECA) [IEC 60812]. Three values are
assigned for each rule on a scale of 1 to 3 for severity, likelihood, and remediation cost.

Severity—How serious are the consequences of the rule being ignored?
Value Meaning Examples of Vulnerability

1 Low Denial-of-service attack, abnor-
mal termination

2 Medium Data integrity violation, uninten-
tional information disclosure

Introduction - How This Coding Standard Is Organized

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 16
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 High Run arbitrary code

Likelihood—How likely is it that a flaw introduced by ignoring the rule can lead to an exploita-
ble vulnerability?

Value Meaning

1 Unlikely
2 Probable
3 Likely

Remediation Cost—How expensive is it to comply with the rule?
Value Meaning Detection Correction

1 High Manual Manual
2 Medium Automatic Manual
3 Low Automatic Automatic

The three values are then multiplied together for each rule. This product provides a measure that
can be used in prioritizing the application of the rules. The products range from 1 to 27, although
only the following 10 distinct values are possible: 1, 2, 3, 4, 6, 8, 9, 12, 18, and 27. Rules and rec-
ommendations with a priority in the range of 1 to 4 are Level 3 rules, 6 to 9 are Level 2, and 12 to
27 are Level 1. The following are possible interpretations of the priorities and levels.

Priorities and Levels

Level Priorities Possible Interpretation

L1 12, 18, 27 High severity, likely, inexpensive
to repair

L2 6, 8, 9 Medium severity, probable, me-
dium cost to repair

L3 1, 2, 3, 4 Low severity, unlikely, expensive
to repair

Specific projects may begin remediation by implementing all rules at a particular level before pro-
ceeding to the lower priority rules, as shown in the following illustration.

Introduction - How This Coding Standard Is Organized

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 17
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Recommendations are not compulsory and are provided for information purposes only.

1.13.5 Automated Detection
On the wiki, both rules and recommendations frequently have sections that describe automated
detection. These sections provide additional information on analyzers that can automatically diag-
nose violations of coding guidelines. Most automated analyses for the C programming language
are neither sound nor complete, so the inclusion of a tool in this section typically means that the
tool can diagnose some violations of this particular rule. Although the Secure Coding Validation
Suite can be used to test the ability of analyzers to diagnose violations of rules from ISO/IEC TS
19761, no currently available conformance test suite can assess the ability of analyzers to diag-
nose violations of the rules in this standard. Consequently, the information in automated detection
sections on the wiki may be
• Provided by the vendors
• Determined by CERT by informally evaluating the analyzer
• Determined by CERT by reviewing the vendor documentation

Where possible, we try to reference the exact version of the tool for which the results were ob-
tained. Because these tools evolve continuously, this information can rapidly become dated and
obsolete.

Introduction - Automatically Generated Code

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 18
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.13.6 Related Vulnerabilities
The risk assessment sections on the wiki also contain a link to search for related vulnerabilities on
the CERT website. Whenever possible, CERT Vulnerability Notes are tagged with a keyword cor-
responding to the unique ID of the coding guideline. This search provides you with an up-to-date
list of real-world vulnerabilities that have been determined to be at least partially caused by a vio-
lation of this specific guideline. These vulnerabilities are labeled as such only when the vulnera-
bility analysis team at the CERT/CC is able to evaluate the source code and precisely determine
the cause of the vulnerability. Because many vulnerability notes refer to vulnerabilities in closed-
source software systems, it is not always possible to provide this additional analysis. Conse-
quently, the related vulnerabilities field tends to be somewhat sparsely populated.

Related vulnerability sections are included only for specific rules in this standard, when the infor-
mation is both relevant and interesting.

1.13.7 Related Guidelines
The related guidelines sections contain links to guidelines in related standards, technical specifica-
tions, and guideline collections such as Information Technology—Programming Languages, Their
Environments and System Software Interfaces—C Secure Coding Rules [ISO/IEC TS
17961:2013]; Information Technology—Programming Languages—Guidance to Avoiding Vul-
nerabilities in Programming Languages through Language Selection and Use [ISO/IEC TR
24772:2013]; MISRA C 2012: Guidelines for the Use of the C Language in Critical Systems
[MISRA C:2012]; and CWE IDs in MITRE’s Common Weakness Enumeration (CWE) [MITRE
2010].

You can create a unique URL to get more information on CWEs by appending the relevant ID to
the end of a fixed string. For example, to find more information about CWE-192, Integer Coer-
cion Error,” you can append 192.html to http://cwe.mitre.org/data/definitions/ and enter the result-
ing URL in your browser: http://cwe.mitre.org/data/definitions/192.html.

The other referenced technical specifications, technical reports, and guidelines are commercially
available.

1.13.8 Bibliography
Most guidelines have a small bibliography section that lists documents and sections in those
documents that provide information relevant to the rule.

1.14 Automatically Generated Code

If a code-generating tool is to be used, it is necessary to select an appropriate tool and undertake
validation. Adherence to the requirements of this document may provide one criterion for as-
sessing a tool.

http://www.cert.org/vuls/
http://www.cert.org/vuls/
http://cwe.mitre.org/data/definitions/192.html

Introduction - Government Regulations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 19
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Coding guidance varies depending on how code is generated and maintained. Categories of code
include the following:
• Tool-generated, tool-maintained code that is specified and maintained in a higher level format

from which language-specific source code is generated. The source code is generated from
this higher level description and then provided as input to the language compiler. The gener-
ated source code is never viewed or modified by the programmer.

• Tool-generated, hand-maintained code that is specified and maintained in a higher level for-
mat from which language-specific source code is generated. It is expected or anticipated,
however, that at some point in the development cycle, the tool will cease to be used and the
generated source code will be visually inspected and/or manually modified and maintained.

• Hand-coded code is manually written by a programmer using a text editor or interactive de-
velopment environment; the programmer maintains source code directly in the source-code
format provided to the compiler.

Source code that is written and maintained by hand must have the following properties:
• Readability
• Program comprehension

These requirements are not applicable for source code that is never directly handled by a program-
mer, although requirements for correct behavior still apply. Reading and comprehension require-
ments apply to code that is tool generated and hand maintained but do not apply to code that is
tool generated and tool maintained. Tool-generated, tool-maintained code can impose consistent
constraints that ensure the safety of some constructs that are risky in hand-generated code.

1.15 Government Regulations

Developing software to secure coding rules is a good idea and is increasingly a requirement. The
National Defense Authorization Act for Fiscal Year 2013, Section 933, “Improvements in Assur-
ance of Computer Software Procured by the Department of Defense,” requires evidence that gov-
ernment software development and maintenance organizations and contractors are conforming in
computer software coding to approved secure coding standards of the Department of Defense
(DoD) during software development, upgrade, and maintenance activities, including through the
use of inspection and appraisals.

DoD acquisition programs are specifying The Application Security and Development Security
Technical Implementation Guide (STIG), Version 3, Release 10 [DISA 2015] in requests for pro-
posal (RFPs). Section 2.1.5, “Coding Standards,” requires that “the Program Manager will ensure
the development team follows a set of coding standards.”

The proper application of this standard would enable a system to comply with the following re-
quirements from the Application Security and Development Security Technical Implementation
Guide, Version 3, Release 10 [DISA 2015]:

Introduction - Acknowledgments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 20
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• (APP2060.1: CAT II) The Program Manager will ensure the development team follows a set
of coding standards.

• (APP2060.2: CAT II) The Program Manager will ensure the development team creates a list
of unsafe functions to avoid and document this list in the coding standards.

• (APP3550: CAT I) The Designer will ensure the application is not vulnerable to integer
arithmetic issues.

• (APP3560: CAT I) The Designer will ensure the application does not contain format string
vulnerabilities.

• (APP3570: CAT I) The Designer will ensure the application does not allow command injec-
tion.

• (APP3590.1: CAT I) The Designer will ensure the application does not have buffer over-
flows.

• (APP3590.2: CAT I) The Designer will ensure the application does not use functions known
to be vulnerable to buffer overflows.

• (APP3590.3: CAT II) The Designer will ensure the application does not use signed values
for memory allocation where permitted by the programming language.

• (APP3600: CAT II) The Designer will ensure the application has no canonical representation
vulnerabilities.

• (APP3630.1: CAT II) The Designer will ensure the application is not vulnerable to race con-
ditions.

• (APP3630.2: CAT III) The Designer will ensure the application does not use global varia-
bles when local variables could be used.

Training programmers and software testers on the standard will satisfy the following require-
ments:
• (APP2120.3: CAT II) The Program Manager will ensure developers are provided with train-

ing on secure design and coding practices on at least an annual basis.
• (APP2120.4: CAT II) The Program Manager will ensure testers are provided training on at

least an annual basis.
• (APP2060.3: CAT II) The Designer will follow the established coding standards established

for the project.
• (APP2060.4: CAT II) The Designer will not use unsafe functions documented in the project

coding standards.
• (APP5010: CAT III) The Test Manager will ensure at least one tester is designated to test for

security flaws in addition to functional testing.

1.16 Acknowledgments

This standard was made possible through a broad community effort. We thank all those who con-
tributed and provided reviews on the CERT Secure Coding wiki that helped to make the standards

https://www.securecoding.cert.org/

Introduction - Acknowledgments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 21
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

a success. If you are interested in contributing to the rules, create an account on the wiki and then
request contributor privileges by sending email to info@sei.cmu.edu.

1.16.1 Contributors to this Edition of the Standard
Eric Azebu, Aaron Ballman, Jill Britton, Vaclav Bubnik, G. Ann Campbell, Geoff Clare, Lori
Flynn, Amy Gale, Arthur Hicken, David Keaton, Will Klieber, Masaki Kubo, Carol Lallier, Fred
Long, Daniel Marjamäki, Robert Seacord, Martin Sebor, Sandy Shrum, Will Snavely, David Svo-
boda, Yozo Toda, Barbara White, and Liz Whiting

1.16.2 Contributors and Reviewers of Previous Editions of the Standard

Arbob Ahmad, Juan Alvarado, Dave Aronson, Abhishek Arya, Berin Babcock-McConnell, Rob-
erto Bagnara, Aaron Ballman, BJ Bayha, John Benito, Joe Black, Jodi Blake, Jill Britton, Levi
Broderick, Hal Burch, J. L. Charton, Steven Christey, Ciera Christopher, Geoff Clare, Frank Cos-
tello, Joe Damato, Stephen C. Dewhurst, Susan Ditmore, Chad Dougherty, Mark Dowd, Apoorv
Dutta, Emily Evans, Xiaoyi Fei, William Fithen, Hallvard Furuseth, Jeffrey Gennari, Andrew
Gidwani, Ankur Goyal, Douglas A. Gwyn, Shaun Hedrick, Michael Howard, Sujay Jain, Chris-
tina Johns, Pranjal Jumde, David Keaton, Andrew Keeton, David Kohlbrenner, Takuya Kondo,
Masaki Kubo, Pranav Kukreja, Richard Lane, Stephanie Wan-Ruey Lee, Jonathan Leffler,
Pengfei Li, Fred Long, Justin Loo, Gregory K. Look, Nat Lyle, Larry Maccherone, Aditya Ma-
hendrakar, Lee Mancuso, John McDonald, James McNellis, Randy Meyers, Dhruv Mohindra,
Bhaswanth Nalabothula, Todd Nowacki, Adrian Trejo Nuñez, Bhadrinath Pani, Vishal Patel, Da-
vid M. Pickett, Justin Pincar, Dan Plakosh, Thomas Plum, Abhijit Rao, Raunak Rungta, Dan
Saks, Alexandre Santos, Brendan Saulsbury, Robert C. Seacord, Martin Sebor, Jason Michael
Sharp, Astha Singhal, Will Snavely, Nick Stoughton, Alexander E. Strommen, Glenn Stroz, Da-
vid Svoboda, Dean Sutherland, Kazunori Takeuchi, Chris Tapp, Chris Taschner, Mira Sri Divya
Thambireddy, Melanie Thompson, Elpiniki Tsakalaki, Ben Tucker, Fred J. Tydeman, Abhishek
Veldurthy, Wietse Venema, Alex Volkovitsky, Michael Shaye-Wen Wang, Grant Watters, Tim
Wilson, Eric Wong, Lutz Wrage, Shishir Kumar Yadav, Gary Yuan, Ricky Zhou, and Alen Zu-
kich

Stefan Achatz, Arbob Ahmad, Laurent Alebarde, Kevin Bagust, Greg Beeley, Arjun Bijanki, John
Bode, Konrad Borowski, Stewart Brodie, Jordan Brown, Andrew Browne, G Bulmer, Kyle
Comer, Sean Connelly, Ale Contenti, Tom Danielsen, Eric Decker, Mark Dowd, T. Edwin, Brian
Ewins, Justin Ferguson, William L. Fithen, Stephen Friedl, Hallvard Furuseth, Shay Green, Sa-
mium Gromoff, Kowsik Guruswamy, Jens Gustedt, Peter Gutmann, Douglas A. Gwyn, Richard
Heathfield, Darryl Hill, Paul Hsieh, Ivan Jager, Steven G. Johnson, Anders Kaseorg, Matt Kraai,
Piotr Krukowiecki, Jerry Leichter, Nicholas Marriott, Frank Martinez, Scott Meyers, Eric Miller,
Charles-Francois Natali, Ron Natalie, Adam O’Brien, Heikki Orsila, Balog Pal, Jonathan Paulson,
P.J. Plauger, Leslie Satenstein, Kirk Sayre, Neil Schellenberger, Michel Schinz, Eric Sosman,
Chris Tapp, Andrey Tarasevich, Yozo Toda, Josh Triplett, Pavel Vasilyev, Ivan Vecerina, Zeljko
Vrba, David Wagner, Henry S. Warren, Colin Watson, Zhenyu Wu, Drew Yao, Christopher Ye-
leighton, and Robin Zhu

mailto:info@sei.cmu.edu

Introduction - Acknowledgments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 22
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.16.3 The SEI CERT Secure Coding Team
Aaron Ballman, Lori Flynn, David Keaton, William Klieber, Robert Schiela, William Snavely,
and David Svoboda

Preprocessor (PRE) - PRE30-C. Do not create a universal character name through concatenation

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 23
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 Preprocessor (PRE)

2.1 PRE30-C. Do not create a universal character name through
concatenation

The C Standard supports universal character names that may be used in identifiers, character con-
stants, and string literals to designate characters that are not in the basic character set. The univer-
sal character name \Unnnnnnnn designates the character whose 8-digit short identifier (as speci-
fied by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name \unnnn designates
the character whose 4-digit short identifier is nnnn (and whose 8-digit short identifier is
0000nnnn).

The C Standard, 5.1.1.2, paragraph 4 [ISO/IEC 9899:2011], says

If a character sequence that matches the syntax of a universal character name is pro-
duced by token concatenation (6.10.3.3), the behavior is undefined.

See also undefined behavior 3.

In general, avoid universal character names in identifiers unless absolutely necessary.

2.1.1 Noncompliant Code Example
This code example is noncompliant because it produces a universal character name by token con-
catenation:

#define assign(uc1, uc2, val) uc1##uc2 = val

void func(void) {
 int \u0401;
 /* ... */
 assign(\u04, 01, 4);
 /* ... */
}

2.1.1.1 Implementation Details
This code compiles and runs with Microsoft Visual Studio 2013, assigning 4 to the variable as ex-
pected.

GCC 4.8.1 on Linux refuses to compile this code; it emits a diagnostic reading, “stray '\' in pro-
gram,” referring to the universal character fragment in the invocation of the assign macro.

Preprocessor (PRE) - PRE30-C. Do not create a universal character name through concatenation

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 24
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.1.2 Compliant Solution
This compliant solution uses a universal character name but does not create it by using token con-
catenation:

#define assign(ucn, val) ucn = val

void func(void) {
 int \u0401;
 /* ... */
 assign(\u0401, 4);
 /* ... */
}

2.1.3 Risk Assessment
Creating a universal character name through token concatenation results in undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

PRE30-C Low Unlikely Medium P2 L3

2.1.4 Bibliography

[ISO/IEC 10646-2003]
[ISO/IEC 9899:2011] Subclause 5.1.1.2, “Translation Phases”

Preprocessor (PRE) - PRE31-C. Avoid side effects in arguments to unsafe macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 25
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.2 PRE31-C. Avoid side effects in arguments to unsafe macros

An unsafe function-like macro is one whose expansion results in evaluating one of its parameters
more than once or not at all. Never invoke an unsafe macro with arguments containing an assign-
ment, increment, decrement, volatile access, input/output, or other expressions with side effects
(including function calls, which may cause side effects).

The documentation for unsafe macros should warn against invoking them with arguments with
side effects, but the responsibility is on the programmer using the macro. Because of the risks as-
sociated with their use, it is recommended that the creation of unsafe function-like macros be
avoided. (See PRE00-C. Prefer inline or static functions to function-like macros.)

This rule is similar to EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or
_Generic.

2.2.1 Noncompliant Code Example
One problem with unsafe macros is side effects on macro arguments, as shown by this noncompli-
ant code example:

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 /* ... */
}

The invocation of the ABS() macro in this example expands to

m = (((++n) < 0) ? -(++n) : (++n));

The resulting code is well defined but causes n to be incremented twice rather than once.

2.2.2 Compliant Solution
In this compliant solution, the increment operation ++n is performed before the call to the unsafe
macro.

#define ABS(x) (((x) < 0) ? -(x) : (x)) /* UNSAFE */

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956

Preprocessor (PRE) - PRE31-C. Avoid side effects in arguments to unsafe macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 26
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* ... */
}

Note the comment warning programmers that the macro is unsafe. The macro can also be re-
named ABS_UNSAFE() to make it clear that the macro is unsafe. This compliant solution, like all
the compliant solutions for this rule, has undefined behavior if the argument to ABS() is equal to
the minimum (most negative) value for the signed integer type. (See INT32-C. Ensure that opera-
tions on signed integers do not result in overflow for more information.)

2.2.3 Compliant Solution
This compliant solution follows the guidance of PRE00-C. Prefer inline or static functions to
function-like macros by defining an inline function iabs() to replace the ABS() macro. Unlike
the ABS() macro, which operates on operands of any type, the iabs() function will truncate ar-
guments of types wider than int whose value is not in range of the latter type.

#include <complex.h>
#include <math.h>

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

2.2.4 Compliant Solution
A more flexible compliant solution is to declare the ABS() macro using a _Generic selection.
To support all arithmetic data types, this solution also makes use of inline functions to compute
integer absolute values. (See PRE00-C. Prefer inline or static functions to function-like macros
and PRE12-C. Do not define unsafe macros.)

According to the C Standard, 6.5.1.1, paragraph 3 [ISO/IEC 9899:2011]:

The controlling expression of a generic selection is not evaluated. If a generic selection
has a generic association with a type name that is compatible with the type of the con-
trolling expression, then the result expression of the generic selection is the expression
in that generic association. Otherwise, the result expression of the generic selection is
the expression in the default generic association. None of the expressions from any
other generic association of the generic selection is evaluated.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=41386316

Preprocessor (PRE) - PRE31-C. Avoid side effects in arguments to unsafe macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 27
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Because the expression is not evaluated as part of the generic selection, the use of a macro in this
solution is guaranteed to evaluate the macro parameter v only once.

#include <complex.h>
#include <math.h>

static inline long llabs(long long v) {
 return v < 0 ? -v : v;
}
static inline long labs(long v) {
 return v < 0 ? -v : v;
}
static inline int iabs(int v) {
 return v < 0 ? -v : v;
}
static inline int sabs(short v) {
 return v < 0 ? -v : v;
}
static inline int scabs(signed char v) {
 return v < 0 ? -v : v;
}

#define ABS(v) _Generic(v, signed char : scabs, \
 short : sabs, \
 int : iabs, \
 long : labs, \
 long : llabs, \
 float : fabsf, \
 double : fabs, \
 long double : fabsl, \
 double complex : cabs, \
 float complex : cabsf, \
 long double complex : cabsl)(v)

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);
 /* ... */
}

Generic selections were introduced in C11 and are not available in C99 and earlier editions of the
C Standard.

2.2.5 Compliant Solution (GCC)

GCC’s __typeof extension makes it possible to declare and assign the value of the macro oper-
and to a temporary of the same type and perform the computation on the temporary, consequently
guaranteeing that the operand will be evaluated exactly once. Another GCC extension, known as

http://gcc.gnu.org/onlinedocs/gcc/Typeof.html

Preprocessor (PRE) - PRE31-C. Avoid side effects in arguments to unsafe macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 28
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

statement expression, makes it possible for the block statement to appear where an expression is
expected:

#define ABS(x) __extension__ ({ __typeof (x) tmp = x; \
 tmp < 0 ? -tmp : tmp; })

Relying on such extensions makes code nonportable and violates MSC14-C. Do not introduce un-
necessary platform dependencies.

2.2.6 Noncompliant Code Example (assert())
The assert() macro is a convenient mechanism for incorporating diagnostic tests in code. (See
MSC11-C. Incorporate diagnostic tests using assertions.) Expressions used as arguments to the
standard assert() macro should not have side effects. The behavior of the assert() macro de-
pends on the definition of the object-like macro NDEBUG. If the macro NDEBUG is undefined, the
assert() macro is defined to evaluate its expression argument and, if the result of the expres-
sion compares equal to 0, call the abort() function. If NDEBUG is defined, assert is defined to
expand to ((void)0). Consequently, the expression in the assertion is not evaluated, and no side
effects it may have had otherwise take place in non-debugging executions of the code.

This noncompliant code example includes an assert() macro containing an expression (in-
dex++) that has a side effect:

#include <assert.h>
#include <stddef.h>

void process(size_t index) {
 assert(index++ > 0); /* Side effect */
 /* ... */
}

2.2.7 Compliant Solution (assert())
This compliant solution avoids the possibility of side effects in assertions by moving the expres-
sion containing the side effect outside of the assert() macro.

#include <assert.h>
#include <stddef.h>

void process(size_t index) {
 assert(index > 0); /* No side effect */
 ++index;

http://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630338
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630338
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=9863184

Preprocessor (PRE) - PRE31-C. Avoid side effects in arguments to unsafe macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 29
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* ... */
}

2.2.8 Exceptions
PRE31-C-EX1: An exception can be made for invoking an unsafe macro with a function call ar-
gument provided that the function has no side effects. However, it is easy to forget about obscure
side effects that a function might have, especially library functions for which source code is not
available; even changing errno is a side effect. Unless the function is user-written and does noth-
ing but perform a computation and return its result without calling any other functions, it is likely
that many developers will forget about some side effect. Consequently, this exception must be
used with great care.

2.2.9 Risk Assessment
Invoking an unsafe macro with an argument that has side effects may cause those side effects to
occur more than once. This practice can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

PRE31-C Low Unlikely Low P3 L3

2.2.10 Related Guidelines
SEI CERT C Coding Standard PRE00-C. Prefer inline or static functions to

function-like macros
PRE12-C. Do not define unsafe macros
MSC14-C. Do not introduce unnecessary plat-
form dependencies
DCL37-C. Do not declare or define a reserved
identifier

SEI CERT C++ Coding Standard PRE31-CPP. Avoid side-effects in arguments
to unsafe macros

CERT Oracle Secure Coding Standard for Java EXP06-J. Expressions used in assertions must
not produce side effects

ISO/IEC TR 24772:2013 Pre-processor Directives [NMP]
MISRA C:2012 Rule 20.5 (advisory)

2.2.11 Bibliography

[Dewhurst 2002] Gotcha #28, “Side Effects in Assertions”
[ISO/IEC 9899:2011] Subclause 6.5.1.1, “Generic Selection”
[Plum 1985] Rule 1-11

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=41386316
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630338
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630338
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18939959
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18939959
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032895
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032895

Preprocessor (PRE) - PRE32-C. Do not use preprocessor directives in invocations of function-like macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 30
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3 PRE32-C. Do not use preprocessor directives in invocations of
function-like macros

The arguments to a macro must not include preprocessor directives, such as #define, #ifdef,
and #include. Doing so results in undefined behavior, according to the C Standard, 6.10.3, para-
graph 11 [ISO/IEC 9899:2011]:

The sequence of preprocessing tokens bounded by the outside-most matching paren-
theses forms the list of arguments for the function-like macro. The individual arguments
within the list are separated by comma preprocessing tokens, but comma preprocessing
tokens between matching inner parentheses do not separate arguments. If there are
sequences of preprocessing tokens within the list of arguments that would other-
wise act as preprocessing directives, the behavior is undefined.

See also undefined behavior 93.

This rule also applies to the use of preprocessor directives in arguments to a function where it is
unknown whether or not the function is implemented using a macro. For example, standard li-
brary functions, such as memcpy(), printf(), and assert(), may be implemented as macros.

2.3.1 Noncompliant Code Example
In this noncompliant code example [GCC Bugs], the programmer uses preprocessor directives to
specify platform-specific arguments to memcpy(). However, if memcpy() is implemented using a
macro, the code results in undefined behavior.

#include <string.h>

void func(const char *src) {
 /* Validate the source string; calculate size */
 char *dest;
 /* malloc() destination string */
 memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);
 /* ... */
);

http://gcc.gnu.org/bugs.html#nonbugs_c

Preprocessor (PRE) - PRE32-C. Do not use preprocessor directives in invocations of function-like macros

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 31
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.3.2 Compliant Solution
In this compliant solution [GCC Bugs], the appropriate call to memcpy() is determined outside
the function call:

#include <string.h>

void func(const char *src) {
 /* Validate the source string; calculate size */
 char *dest;
 /* malloc() destination string */
 #ifdef PLATFORM1
 memcpy(dest, src, 12);
 #else
 memcpy(dest, src, 24);
 #endif
 /* ... */
}

2.3.3 Risk Assessment
Including preprocessor directives in macro arguments is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

PRE32-C Low Unlikely Medium P2 L3

2.3.4 Bibliography
[GCC Bugs] “Non-bugs”
[ISO/IEC 9899:2011] 6.10.3, “Macro Replacement”

http://gcc.gnu.org/bugs.html#nonbugs_c
http://gcc.gnu.org/bugs.html#nonbugs_c

Declarations and Initialization (DCL) - DCL30-C. Declare objects with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 32
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 Declarations and Initialization (DCL)

3.1 DCL30-C. Declare objects with appropriate storage durations

Every object has a storage duration that determines its lifetime: static, thread, automatic, or allo-
cated.

According to the C Standard, 6.2.4, paragraph 2 [ISO/IEC 9899:2011],

The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, has a constant address, and retains its
last-stored value throughout its lifetime. If an object is referred to outside of its lifetime,
the behavior is undefined. The value of a pointer becomes indeterminate when the ob-
ject it points to reaches the end of its lifetime.

Do not attempt to access an object outside of its lifetime. Attempting to do so is undefined behav-
ior and can lead to an exploitable vulnerability. (See also undefined behavior 9 in the C Standard,
Annex J.)

3.1.1 Noncompliant Code Example (Differing Storage Durations)
In this noncompliant code example, the address of the variable c_str with automatic storage du-
ration is assigned to the variable p, which has static storage duration. The assignment itself is
valid, but it is invalid for c_str to go out of scope while p holds its address, as happens at the
end of dont_do_this().

#include <stdio.h>

const char *p;
void dont_do_this(void) {
 const char c_str[] = "This will change";
 p = c_str; /* Dangerous */
}

void innocuous(void) {
 printf("%s\n", p);
}

int main(void) {
 dont_do_this();
 innocuous();
 return 0;
}

Declarations and Initialization (DCL) - DCL30-C. Declare objects with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 33
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.2 Compliant Solution (Same Storage Durations)
In this compliant solution, p is declared with the same storage duration as c_str, preventing p
from taking on an indeterminate value outside of this_is_OK():

void this_is_OK(void) {
 const char c_str[] = "Everything OK";
 const char *p = c_str;
 /* ... */
}
/* p is inaccessible outside the scope of string c_str */

Alternatively, both p and c_str could be declared with static storage duration.

3.1.3 Compliant Solution (Differing Storage Durations)
If it is necessary for p to be defined with static storage duration but c_str with a more limited
duration, then p can be set to NULL before c_str is destroyed. This practice prevents p from tak-
ing on an indeterminate value, although any references to p must check for NULL.

const char *p;
void is_this_OK(void) {
 const char c_str[] = "Everything OK?";
 p = c_str;
 /* ... */
 p = NULL;
}

3.1.4 Noncompliant Code Example (Return Values)
In this noncompliant code sample, the function init_array() returns a pointer to a character
array with automatic storage duration, which is accessible to the caller:

char *init_array(void) {
 char array[10];
 /* Initialize array */
 return array;
}

Some compilers generate a diagnostic message when a pointer to an object with automatic storage
duration is returned from a function, as in this example. Programmers should compile code at high
warning levels and resolve any diagnostic messages. (See MSC00-C. Compile cleanly at high
warning levels.)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Declarations and Initialization (DCL) - DCL30-C. Declare objects with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 34
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1.5 Compliant Solution (Return Values)
The solution, in this case, depends on the intent of the programmer. If the intent is to modify the
value of array and have that modification persist outside the scope of init_array(), the de-
sired behavior can be achieved by declaring array elsewhere and passing it as an argument to
init_array():

#include <stddef.h>
void init_array(char *array, size_t len) {
 /* Initialize array */
 return;
}

int main(void) {
 char array[10];
 init_array(array, sizeof(array) / sizeof(array[0]));
 /* ... */
 return 0;
}

3.1.6 Noncompliant Code Example (Output Parameter)
In this noncompliant code example, the function squirrel_away() stores a pointer to local var-
iable local into a location pointed to by function parameter ptr_param. Upon the return of
squirrel_away(), the pointer ptr_param points to a variable that has an expired lifetime.

void squirrel_away(char **ptr_param) {
 char local[10];
 /* Initialize array */
 *ptr_param = local;
}

void rodent(void) {
 char *ptr;
 squirrel_away(&ptr);
 /* ptr is live but invalid here */
}

3.1.7 Compliant Solution (Output Parameter)
In this compliant solution, the variable local has static storage duration; consequently, ptr can
be used to reference the local array within the rodent() function:

char local[10];

void squirrel_away(char **ptr_param) {
 /* Initialize array */
 *ptr_param = local;
}

Declarations and Initialization (DCL) - DCL30-C. Declare objects with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 35
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void rodent(void) {
 char *ptr;
 squirrel_away(&ptr);
 /* ptr is valid in this scope */
}

3.1.8 Risk Assessment
Referencing an object outside of its lifetime can result in an attacker being able to execute arbi-
trary code.

Rule Severity Likelihood Remediation Cost Priority Level

DCL30-C High Probable High P6 L2

3.1.9 Related Guidelines

CERT C Secure Coding Standard MSC00-C. Compile cleanly at high warning
levels

SEI CERT C++ Coding Standard EXP54-CPP. Do not access an object outside of
its lifetime

ISO/IEC TR 24772:2013 Dangling References to Stack Frames [DCM]
ISO/IEC TS 17961 Escaping of the address of an automatic object

[addrescape]
MISRA C:2012 Rule 18.6 (required)

3.1.10 Bibliography
[Coverity 2007]
[ISO/IEC 9899:2011] 6.2.4, “Storage Durations of Objects”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940064
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940064

Declarations and Initialization (DCL) - DCL31-C. Declare identifiers before using them

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 36
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2 DCL31-C. Declare identifiers before using them

The C11 Standard requires type specifiers and forbids implicit function declarations. The C90
Standard allows implicit typing of variables and functions. Consequently, some existing legacy
code uses implicit typing. Some C compilers still support legacy code by allowing implicit typing,
but it should not be used for new code. Such an implementation may choose to assume an implicit
declaration and continue translation to support existing programs that used this feature.

3.2.1 Noncompliant Code Example (Implicit int)
C no longer allows the absence of type specifiers in a declaration. The C Standard, 6.7.2 [ISO/IEC
9899:2011], states

At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name.

This noncompliant code example omits the type specifier:

extern foo;

Some C implementations do not issue a diagnostic for the violation of this constraint. These non-
conforming C translators continue to treat such declarations as implying the type int.

3.2.2 Compliant Solution (Implicit int)
This compliant solution explicitly includes a type specifier:

extern int foo;

3.2.3 Noncompliant Code Example (Implicit Function Declaration)
Implicit declaration of functions is not allowed; every function must be explicitly declared before
it can be called. In C90, if a function is called without an explicit prototype, the compiler provides
an implicit declaration.

The C90 Standard [ISO/IEC 9899:1990] includes this requirement:

If the expression that precedes the parenthesized argument list in a function call con-
sists solely of an identifier, and if no declaration is visible for this identifier, the identifier
is implicitly declared exactly as if, in the innermost block containing the function call, the
declaration extern int identifier(); appeared.

If a function declaration is not visible at the point at which a call to the function is made, C90-
compliant platforms assume an implicit declaration of extern int identifier();.

Declarations and Initialization (DCL) - DCL31-C. Declare identifiers before using them

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 37
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This declaration implies that the function may take any number and type of arguments and return
an int. However, to conform to the current C Standard, programmers must explicitly prototype
every function before invoking it. An implementation that conforms to the C Standard may or
may not perform implicit function declarations, but C does require a conforming implementation
to issue a diagnostic if it encounters an undeclared function being used.

In this noncompliant code example, if malloc() is not declared, either explicitly or by including
stdlib.h, a compiler that conforms only to C90 may implicitly declare malloc() as int mal-
loc(). If the platform’s size of int is 32 bits, but the size of pointers is 64 bits, the resulting
pointer would likely be truncated as a result of the implicit declaration of malloc(), returning a
32-bit integer.

#include <stddef.h>
/* #include <stdlib.h> is missing */

int main(void) {
 for (size_t i = 0; i < 100; ++i) {
 /* int malloc() assumed */
 char *ptr = (char *)malloc(0x10000000);
 *ptr = 'a';
 }
 return 0;
}

3.2.3.1 Implementation Details
When compiled with Microsoft Visual Studio 2013 for a 64-bit platform, this noncompliant code
example will eventually cause an access violation when dereferencing ptr in the loop.

3.2.4 Compliant Solution (Implicit Function Declaration)
This compliant solution declares malloc() by including the appropriate header file:

#include <stdlib.h>

int main(void) {
 for (size_t i = 0; i < 100; ++i) {
 char *ptr = (char *)malloc(0x10000000);
 *ptr = 'a';
 }
 return 0;
}

For more information on function declarations, see DCL07-C. Include the appropriate type infor-
mation in function declarators.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2129966
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2129966

Declarations and Initialization (DCL) - DCL31-C. Declare identifiers before using them

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 38
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2.5 Noncompliant Code Example (Implicit Return Type)
Do not declare a function with an implicit return type. For example, if a function returns a mean-
ingful integer value, declare it as returning int. If it returns no meaningful value, declare it as re-
turning void.

#include <limits.h>
#include <stdio.h>

foo(void) {
 return UINT_MAX;
}

int main(void) {
 long long int c = foo();
 printf("%lld\n", c);
 return 0;
}

Because the compiler assumes that foo() returns a value of type int for this noncompliant code
example, UINT_MAX is incorrectly converted to −1.

3.2.6 Compliant Solution (Implicit Return Type)
This compliant solution explicitly defines the return type of foo() as unsigned int. As a re-
sult, the function correctly returns UINT_MAX.

#include <limits.h>
#include <stdio.h>

unsigned int foo(void) {
 return UINT_MAX;
}

int main(void) {
 long long int c = foo();
 printf("%lld\n", c);
 return 0;
}

Declarations and Initialization (DCL) - DCL31-C. Declare identifiers before using them

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 39
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.2.7 Risk Assessment
Because implicit declarations lead to less stringent type checking, they can introduce unexpected
and erroneous behavior. Occurrences of an omitted type specifier in existing code are rare, and the
consequences are generally minor, perhaps resulting in abnormal program termination.

Rule Severity Likelihood Remediation Cost Priority Level

DCL31-C Low Unlikely Low P3 L3

3.2.8 Related Guidelines

CERT C Secure Coding Standard DCL07-C. Include the appropriate type infor-
mation in function declarators

ISO/IEC TR 24772:2013 Subprogram Signature Mismatch [OTR]
MISRA C:2012 Rule 8.1 (required)

3.2.9 Bibliography

[ISO/IEC 9899:1990]
[ISO/IEC 9899:2011] Subclause 6.7.2, “Type Specifiers”
[Jones 2008]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2129966
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2129966

Declarations and Initialization (DCL) - DCL36-C. Do not declare an identifier with conflicting linkage classifications

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 40
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3 DCL36-C. Do not declare an identifier with conflicting linkage
classifications

Linkage can make an identifier declared in different scopes or declared multiple times within the
same scope refer to the same object or function. Identifiers are classified as externally linked, in-
ternally linked, or not linked. These three kinds of linkage have the following characteristics
[Kirch-Prinz 2002]:
• External linkage: An identifier with external linkage represents the same object or function

throughout the entire program, that is, in all compilation units and libraries belonging to the
program. The identifier is available to the linker. When a second declaration of the same iden-
tifier with external linkage occurs, the linker associates the identifier with the same object or
function.

• Internal linkage: An identifier with internal linkage represents the same object or function
within a given translation unit. The linker has no information about identifiers with internal
linkage. Consequently, these identifiers are internal to the translation unit.

• No linkage: If an identifier has no linkage, then any further declaration using the identifier
declares something new, such as a new variable or a new type.

According to the C Standard, 6.2.2 [ISO/IEC 9899:2011], linkage is determined as follows:

If the declaration of a file scope identifier for an object or a function contains the storage
class specifier static, the identifier has internal linkage.

For an identifier declared with the storage-class specifier extern in a scope in which a
prior declaration of that identifier is visible, if the prior declaration specifies internal or ex-
ternal linkage, the linkage of the identifier at the later declaration is the same as the link-
age specified at the prior declaration. If no prior declaration is visible, or if the prior dec-
laration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class specifier extern. If
the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class specifier extern.

Use of an identifier (within one translation unit) classified as both internally and externally linked
is undefined behavior. (See also undefined behavior 8.) A translation unit includes the source file
together with its headers and all source files included via the preprocessing directive #include.

Declarations and Initialization (DCL) - DCL36-C. Do not declare an identifier with conflicting linkage classifications

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 41
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The following table identifies the linkage assigned to an object that is declared twice in a single
translation unit. The column designates the first declaration, and the row designates the redeclara-
tion.

3.3.1 Noncompliant Code Example
In this noncompliant code example, i2 and i5 are defined as having both internal and external
linkage. Future use of either identifier results in undefined behavior.

int i1 = 10; /* Definition, external linkage */
static int i2 = 20; /* Definition, internal linkage */
extern int i3 = 30; /* Definition, external linkage */
int i4; /* Tentative definition, external linkage */
static int i5; /* Tentative definition, internal linkage */

int i1; /* Valid tentative definition */
int i2; /* Undefined, linkage disagreement with previous */
int i3; /* Valid tentative definition */
int i4; /* Valid tentative definition */
int i5; /* Undefined, linkage disagreement with previous */

int main(void) {
 /* ... */
 return 0;
}

3.3.1.1 Implementation Details
Microsoft Visual Studio 2013 issues no warnings about this code, even at the highest diagnostic
levels.

The GCC compiler generates a fatal diagnostic for the conflicting definitions of i2 and i5.

Declarations and Initialization (DCL) - DCL36-C. Do not declare an identifier with conflicting linkage classifications

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 42
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3.2 Compliant Solution
This compliant solution does not include conflicting definitions:

int i1 = 10; /* Definition, external linkage */
static int i2 = 20; /* Definition, internal linkage */
extern int i3 = 30; /* Definition, external linkage */
int i4; /* Tentative definition, external linkage */
static int i5; /* Tentative definition, internal linkage */

int main(void) {
 /* ... */
 return 0;
}

3.3.3 Risk Assessment
Use of an identifier classified as both internally and externally linked is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

DCL36-C Medium Probable Medium P8 L2

3.3.4 Related Guidelines

MISRA C:2012 Rule 8.2 (required)
Rule 8.4 (required)
Rule 8.8 (required)
Rule 17.3 (mandatory)

3.3.5 Bibliography

[Banahan 2003] Section 8.2, “Declarations, Definitions and Ac-
cessibility”

[ISO/IEC 9899:2011] 6.2.2, “Linkages of Identifiers”
[Kirch-Prinz 2002]

http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html
http://publications.gbdirect.co.uk/c_book/chapter8/declarations_and_definitions.html

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 43
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4 DCL37-C. Do not declare or define a reserved identifier

According to the C Standard, 7.1.3 [ISO/IEC 9899:2011],

All identifiers that begin with an underscore and either an uppercase letter or another un-
derscore are always reserved for any use.

All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

Each macro name in any of the following subclauses (including the future library direc-
tions) is reserved for use as specified if any of its associated headers is included, unless
explicitly stated otherwise.

All identifiers with external linkage (including future library directions) and errno are al-
ways reserved for use as identifiers with external linkage.

Each identifier with file scope listed in any of the following subclauses (including the fu-
ture library directions) is reserved for use as a macro name and as an identifier with file
scope in the same name space if any of its associated headers is included.

Additionally, subclause 7.31 defines many other reserved identifiers for future library directions.

No other identifiers are reserved. (The POSIX standard extends the set of identifiers reserved by
the C Standard to include an open-ended set of its own. See Portable Operating System Interface
[POSIX®], Base Specifications, Issue 7, Section 2.2, “The Compilation Environment” [IEEE Std
1003.1-2013].) The behavior of a program that declares or defines an identifier in a context in
which it is reserved or that defines a reserved identifier as a macro name is undefined. (See unde-
fined behavior 106.)

3.4.1 Noncompliant Code Example (Header Guard)
A common, but noncompliant, practice is to choose a reserved name for a macro used in a prepro-
cessor conditional guarding against multiple inclusions of a header file. (See also PRE06-C. En-
close header files in an inclusion guard.) The name may clash with reserved names defined by the
implementation of the C standard library in its headers or with reserved names implicitly prede-
fined by the compiler even when no C standard library header is included.

#ifndef _MY_HEADER_H_
#define _MY_HEADER_H_

/* Contents of <my_header.h> */

#endif /* _MY_HEADER_H_ */

http://www.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_02
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422618
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422618

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 44
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.2 Compliant Solution (Header Guard)
This compliant solution avoids using leading underscores in the name of the header guard:

#ifndef MY_HEADER_H
#define MY_HEADER_H

/* Contents of <my_header.h> */

#endif /* MY_HEADER_H */

3.4.3 Noncompliant Code Example (File Scope Objects)
In this noncompliant code example, the names of the file scope objects _max_limit and _limit
both begin with an underscore. Because _max_limit is static, this declaration might seem to be
impervious to clashes with names defined by the implementation. However, because the header
<stddef.h> is included to define size_t, a potential for a name clash exists. (Note, however,
that a conforming compiler may implicitly declare reserved names regardless of whether any C
standard library header is explicitly included.)

In addition, because _limit has external linkage, it may clash with a symbol of the same name
defined in the language runtime library even if such a symbol is not declared in any header. Con-
sequently, it is not safe to start the name of any file scope identifier with an underscore even if its
linkage limits its visibility to a single translation unit.

#include <stddef.h>

static const size_t _max_limit = 1024;
size_t _limit = 100;

unsigned int getValue(unsigned int count) {
 return count < _limit ? count : _limit;
}

3.4.4 Compliant Solution (File Scope Objects)
In this compliant solution, names of file scope objects do not begin with an underscore:

#include <stddef.h>

static const size_t max_limit = 1024;
size_t limit = 100;

unsigned int getValue(unsigned int count) {

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 45
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return count < limit ? count : limit;
}

3.4.5 Noncompliant Code Example (Reserved Macros)
In this noncompliant code example, because the C standard library header <inttypes.h> is
specified to include <stdint.h>, the name SIZE_MAX conflicts with a standard macro of the
same name, which is used to denote the upper limit of size_t. In addition, although the name
INTFAST16_LIMIT_MAX is not defined by the C standard library, it is a reserved identifier be-
cause it begins with the INT prefix and ends with the _MAX suffix. (See the C Standard, 7.31.10.)

#include <inttypes.h>
#include <stdio.h>

static const int_fast16_t INTFAST16_LIMIT_MAX = 12000;

void print_fast16(int_fast16_t val) {
 enum { SIZE_MAX = 80 };
 char buf[SIZE_MAX];
 if (INTFAST16_LIMIT_MAX < val) {
 sprintf(buf, "The value is too large");
 } else {
 snprintf(buf, SIZE_MAX, "The value is %" PRIdFAST16, val);
 }
}

3.4.6 Compliant Solution (Reserved Macros)
This compliant solution avoids redefining reserved names or using reserved prefixes and suffixes:

#include <inttypes.h>
#include <stdio.h>

static const int_fast16_t MY_INTFAST16_UPPER_LIMIT = 12000;

void print_fast16(int_fast16_t val) {
 enum { BUFSIZE = 80 };
 char buf[BUFSIZE];
 if (MY_INTFAST16_UPPER_LIMIT < val) {
 sprintf(buf, "The value is too large");
 } else {
 snprintf(buf, BUFSIZE, "The value is %" PRIdFAST16, val);
 }
}

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 46
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.7 Noncompliant Code Example (Identifiers with External Linkage)
In addition to symbols defined as functions in each C standard library header, identifiers with ex-
ternal linkage include errno and math_errhandling, among others, regardless of whether any
of them are masked by a macro of the same name.

This noncompliant example provides definitions for the C standard library functions malloc()
and free(). Although this practice is permitted by many traditional implementations of UNIX
(for example, the Dmalloc library), it is undefined behavior according to the C Standard. Even on
systems that allow replacing malloc(), doing so without also replacing aligned_alloc(),
calloc(), and realloc() is likely to cause problems.

#include <stddef.h>

void *malloc(size_t nbytes) {
 void *ptr;
 /* Allocate storage from own pool and set ptr */
 return ptr;
}

void free(void *ptr) {
 /* Return storage to own pool */
}

3.4.8 Compliant Solution (Identifiers with External Linkage)
The compliant, portable solution avoids redefining any C standard library identifiers with external
linkage. In addition, it provides definitions for all memory allocation functions:

#include <stddef.h>

void *my_malloc(size_t nbytes) {
 void *ptr;
 /* Allocate storage from own pool and set ptr */
 return ptr;
}

void *my_aligned_alloc(size_t alignment, size_t size) {
 void *ptr;
 /* Allocate storage from own pool, align properly, set ptr */
 return ptr;
}

void *my_calloc(size_t nelems, size_t elsize) {
 void *ptr;
 /* Allocate storage from own pool, zero memory, and set ptr */
 return ptr;
}

http://dmalloc.com/

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 47
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void *my_realloc(void *ptr, size_t nbytes) {
 /* Reallocate storage from own pool and set ptr */
 return ptr;
}

void my_free(void *ptr) {
 /* Return storage to own pool */
}

3.4.9 Noncompliant Code Example (errno)
According to the C Standard, 7.5, paragraph 2 [ISO/IEC 9899:2011], the behavior of a program is
undefined when

A macro definition of errno is suppressed in order to access an actual object, or the
program defines an identifier with the name errno.

See undefined behavior 114.

The errno identifier expands to a modifiable lvalue that has type int but is not necessarily the
identifier of an object. It might expand to a modifiable lvalue resulting from a function call, such
as *errno(). It is unspecified whether errno is a macro or an identifier declared with external
linkage. If a macro definition is suppressed to access an actual object, or if a program defines an
identifier with the name errno, the behavior is undefined.

Legacy code is apt to include an incorrect declaration, such as the following:

extern int errno;

3.4.10 Compliant Solution (errno)
The correct way to declare errno is to include the header <errno.h>:

#include <errno.h>

Implementations conforming to C are required to declare errno in <errno.h>, although some
historic implementations failed to do so.

3.4.11 Exceptions
DCL37-C-EX1: Provided that a library function can be declared without reference to any type
defined in a header, it is permissible to declare that function without including its header provided
that declaration is compatible with the standard declaration.

/* Not including stdlib.h */
void free(void *);

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 48
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void func(void *ptr) {
 free(ptr);
}

Such code is compliant because the declaration matches what stdlib.h would provide and does
not redefine the reserved identifier. However, it would not be acceptable to provide a definition
for the free() function in this example.

DCL37-C-EX2: For compatibility with other compiler vendors or language standard modes, it is
acceptable to create a macro identifier that is the same as a reserved identifier so long as the be-
havior is idempotent, as in this example:

/* Sometimes generated by configuration tools such as autoconf */
#define const

/* Allowed compilers with semantically equivalent extension behav-
ior */
#define inline __inline

DCL37-C-EX3: As a compiler vendor or standard library developer, it is acceptable to use identi-
fiers reserved for your implementation. Reserved identifiers may be defined by the compiler, in
standard library headers or headers included by a standard library header, as in this example dec-
laration from the glibc standard C library implementation:

/*
 The following declarations of reserved identifiers exist in the
glibc implementation of
 <stdio.h>. The original source code may be found at:
 https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=in-
clude/stdio.h;hb=HEAD
*/

define __need_size_t
include <stddef.h>
/* Generate a unique file name (and possibly open it). */
extern int __path_search (char *__tmpl, size_t __tmpl_len,
 const char *__dir, const char *__pfx,
 int __try_tempdir);

3.4.12 Risk Assessment
Using reserved identifiers can lead to incorrect program operation.

Rule Severity Likelihood Remediation Cost Priority Level

DCL37-C Low Unlikely Low P3 L3

Declarations and Initialization (DCL) - DCL37-C. Do not declare or define a reserved identifier

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 49
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.4.13 Related Guidelines

CERT C Secure Coding Standard PRE00-C. Prefer inline or static functions to
function-like macros
PRE06-C. Enclose header files in an inclusion
guard
PRE31-C. Avoid side effects in arguments to
unsafe macros

SEI CERT C++ Coding Standard DCL51-CPP. Do not declare or define a re-
served identifier

ISO/IEC TS 17961 Using identifiers that are reserved for the im-
plementation [resident]

MISRA C:2012 Rule 21.1 (required)
Rule 21.2 (required)

3.4.14 Bibliography

[IEEE Std 1003.1-2013] Section 2.2, “The Compilation Environment”
[ISO/IEC 9899:2011] 7.1.3, “Reserved Identifiers”

7.31.10, “Integer Types <stdint.h>“

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631956
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422618
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422618
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3906
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3906

Declarations and Initialization (DCL) - DCL38-C. Use the correct syntax when declaring a flexible array member

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 50
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.5 DCL38-C. Use the correct syntax when declaring a flexible array
member

Flexible array members are a special type of array in which the last element of a structure with
more than one named member has an incomplete array type; that is, the size of the array is not
specified explicitly within the structure. This “struct hack” was widely used in practice and sup-
ported by a variety of compilers. Consequently, a variety of different syntaxes have been used for
declaring flexible array members. For conforming C implementations, use the syntax guaranteed
to be valid by the C Standard.

Flexible array members are defined in the C Standard, 6.7.2.1, paragraph 18 [ISO/IEC
9899:2011], as follows:

As a special case, the last element of a structure with more than one named member
may have an incomplete array type; this is called a flexible array member. In most situa-
tions, the flexible array member is ignored. In particular, the size of the structure is as if
the flexible array member were omitted except that it may have more trailing padding
than the omission would imply. However, when a . (or ->) operator has a left operand
that is (a pointer to) a structure with a flexible array member and the right operand
names that member, it behaves as if that member were replaced with the longest array
(with the same element type) that would not make the structure larger than the object
being accessed; the offset of the array shall remain that of the flexible array member,
even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt
is made to access that element or to generate a pointer one past it.

Structures with a flexible array member can be used to produce code with defined behavior. How-
ever, some restrictions apply:
1. The incomplete array type must be the last element within the structure.
2. There cannot be an array of structures that contain a flexible array member.
3. Structures that contain a flexible array member cannot be used as a member of another struc-

ture except as the last element of that structure.
4. The structure must contain at least one named member in addition to the flexible array mem-

ber.
MEM33-C. Allocate and copy structures containing a flexible array member dynamically de-
scribes how to allocate and copy structures containing flexible array members.

3.5.1 Noncompliant Code Example
Before the introduction of flexible array members in the C Standard, structures with a one-ele-
ment array as the final member were used to achieve similar functionality. This noncompliant
code example illustrates how struct flexArrayStruct is declared in this case.

Declarations and Initialization (DCL) - DCL38-C. Use the correct syntax when declaring a flexible array member

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 51
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This noncompliant code example attempts to allocate a flexible array-like member with a one-ele-
ment array as the final member. When the structure is instantiated, the size computed for mal-
loc() is modified to account for the actual size of the dynamic array.

#include <stdlib.h>

struct flexArrayStruct {
 int num;
 int data[1];
};

void func(size_t array_size) {
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * (array_size - 1));
 if (structP == NULL) {
 /* Handle malloc failure */
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (size_t i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }
}

This example has undefined behavior when accessing any element other than the first element of
the data array. (See the C Standard, 6.5.6.) Consequently, the compiler can generate code that
does not return the expected value when accessing the second element of data.

This approach may be the only alternative for compilers that do not yet implement the standard C
syntax.

3.5.2 Compliant Solution
This compliant solution uses a flexible array member to achieve a dynamically sized structure:

#include <stdlib.h>

struct flexArrayStruct{
 int num;
 int data[];

Declarations and Initialization (DCL) - DCL38-C. Use the correct syntax when declaring a flexible array member

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 52
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

};

void func(size_t array_size) {
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * array_size);
 if (structP == NULL) {
 /* Handle malloc failure */
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (size_t i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }
}

This compliant solution allows the structure to be treated as if its member data[] was declared to
be data[array_size] in a manner that conforms to the C Standard.

3.5.3 Risk Assessment
Failing to use the correct syntax when declaring a flexible array member can result in undefined
behavior, although the incorrect syntax will work on most implementations.

Rule Severity Likelihood Remediation Cost Priority Level

DCL38-C Low Unlikely Low P3 L3

3.5.4 Related Guidelines
CERT C Secure Coding Standard MEM33-C. Allocate and copy structures con-

taining flexible array members dynamically

3.5.5 Bibliography
[ISO/IEC 9899:2011] 6.5.6, “Additive Operators”

6.7.2.1, “Structure and Union Specifiers”
[McCluskey 2001] “Flexible Array Members and Designators in

C9X”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
http://www.usenix.org/publications/login/2001-07/pdfs/mccluskey.pdf
http://www.usenix.org/publications/login/2001-07/pdfs/mccluskey.pdf

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 53
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6 DCL39-C. Avoid information leakage when passing a structure
across a trust boundary

The C Standard, 6.7.2.1, discusses the layout of structure fields. It specifies that non-bit-field
members are aligned in an implementation-defined manner and that there may be padding within
or at the end of a structure. Furthermore, initializing the members of the structure does not guar-
antee initialization of the padding bytes. The C Standard, 6.2.6.1, paragraph 6 [ISO/IEC
9899:2011], states

When a value is stored in an object of structure or union type, including in a member ob-
ject, the bytes of the object representation that correspond to any padding bytes take un-
specified values.

Additionally, the storage units in which a bit-field resides may also have padding bits. For an ob-
ject with automatic storage duration, these padding bits do not take on specific values and can
contribute to leaking sensitive information.

When passing a pointer to a structure across a trust boundary to a different trusted domain, the
programmer must ensure that the padding bytes and bit-field storage unit padding bits of such a
structure do not contain sensitive information.

3.6.1 Noncompliant Code Example
This noncompliant code example runs in kernel space and copies data from struct test to user
space. However, padding bytes may be used within the structure, for example, to ensure the
proper alignment of the structure members. These padding bytes may contain sensitive infor-
mation, which may then be leaked when the data is copied to user space.

#include <stddef.h>

struct test {
 int a;
 char b;
 int c;
};

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg = {.a = 1, .b = 2, .c = 3};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 54
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.2 Noncompliant Code Example (memset())
The padding bytes can be explicitly initialized by calling memset():

#include <string.h>

struct test {
 int a;
 char b;
 int c;
};

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg;

 /* Set all bytes (including padding bytes) to zero */
 memset(&arg, 0, sizeof(arg));

 arg.a = 1;
 arg.b = 2;
 arg.c = 3;

 copy_to_user(usr_buf, &arg, sizeof(arg));
}

However, compilers are free to implement arg.b = 2 by setting the low byte of a 32-bit register
to 2, leaving the high bytes unchanged and storing all 32 bits of the register into memory. This
implementation could leak the high-order bytes resident in the register to a user.

3.6.3 Compliant Solution
This compliant solution serializes the structure data before copying it to an untrusted context:

#include <stddef.h>
#include <string.h>

struct test {
 int a;
 char b;
 int c;
};

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg = {.a = 1, .b = 2, .c = 3};

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 55
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* May be larger than strictly needed */
 unsigned char buf[sizeof(arg)];
 size_t offset = 0;

 memcpy(buf + offset, &arg.a, sizeof(arg.a));
 offset += sizeof(arg.a);
 memcpy(buf + offset, &arg.b, sizeof(arg.b));
 offset += sizeof(arg.b);
 memcpy(buf + offset, &arg.c, sizeof(arg.c));
 offset += sizeof(arg.c);

 copy_to_user(usr_buf, buf, offset /* size of info copied */);
}

This code ensures that no uninitialized padding bytes are copied to unprivileged users. The struc-
ture copied to user space is now a packed structure and the copy_to_user() function would
need to unpack it to recreate the original padded structure.

3.6.4 Compliant Solution (Padding Bytes)
Padding bytes can be explicitly declared as fields within the structure. This solution is not porta-
ble, however, because it depends on the implementation and target memory architecture. The fol-
lowing solution is specific to the x86-32 architecture:

#include <assert.h>
#include <stddef.h>

struct test {
 int a;
 char b;
 char padding_1, padding_2, padding_3;
 int c;
};

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 /* Ensure c is the next byte after the last padding byte */
 static_assert(offsetof(struct test, c) ==
 offsetof(struct test, padding_3) + 1,
 "Structure contains intermediate padding");
 /* Ensure there is no trailing padding */
 static_assert(sizeof(struct test) ==
 offsetof(struct test, c) + sizeof(int),
 "Structure contains trailing padding");
 struct test arg = {.a = 1, .b = 2, .c = 3};
 arg.padding_1 = 0;

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 56
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 arg.padding_2 = 0;
 arg.padding_3 = 0;
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

The C Standard static_assert() macro accepts a constant expression and an error message.
The expression is evaluated at compile time and, if false, the compilation is terminated and the er-
ror message is output. (See DCL03-C. Use a static assertion to test the value of a constant expres-
sion for more details.) The explicit insertion of the padding bytes into the struct should ensure
that no additional padding bytes are added by the compiler and consequently both static assertions
should be true. However, it is necessary to validate these assumptions to ensure that the solution is
correct for a particular implementation.

3.6.5 Compliant Solution (Structure Packing—GCC)
GCC allows specifying declaration attributes using the keyword __attrib-
ute__((__packed__)). When this attribute is present, the compiler will not add padding bytes
for memory alignment unless otherwise required by the _Alignas alignment specifier, and it will
attempt to place fields at adjacent memory offsets when possible.

#include <stddef.h>

struct test {
 int a;
 char b;
 int c;
} __attribute__((__packed__));

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg = {.a = 1, .b = 2, .c = 3};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

3.6.6 Compliant Solution (Structure Packing—Microsoft Visual Studio)
Microsoft Visual Studio supports #pragma pack() to suppress padding bytes [MSDN]. The
compiler adds padding bytes for memory alignment, depending on the current packing mode, but
still honors the alignment specified by __declspec(align()). In this compliant solution, the
packing mode is set to 1 in an attempt to ensure all fields are given adjacent offsets:

#include <stddef.h>

#pragma pack(push, 1) /* 1 byte */

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
http://msdn.microsoft.com/en-us/library/2e70t5y1(v=vs.110).aspx

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 57
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

struct test {
 int a;
 char b;
 int c;
};
#pragma pack(pop)

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg = {1, 2, 3};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

The pack pragma takes effect at the first struct declaration after the pragma is seen.

3.6.7 Noncompliant Code Example
This noncompliant code example also runs in kernel space and copies data from struct test to
user space. However, padding bits will be used within the structure due to the bit-field member
lengths not adding up to the number of bits in an unsigned object. Further, there is an unnamed
bit-field that causes no further bit-fields to be packed into the same storage unit. These padding
bits may contain sensitive information, which may then be leaked when the data is copied to user
space. For instance, the uninitialized bits may contain a sensitive kernel space pointer value that
can be trivially reconstructed by an attacker in user space.

#include <stddef.h>

struct test {
 unsigned a : 1;
 unsigned : 0;
 unsigned b : 4;
};

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg = { .a = 1, .b = 10 };
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

However, compilers are free to implement the initialization of arg.a and arg.b by setting the
low byte of a 32-bit register to the value specified, leaving the high bytes unchanged and storing
all 32 bits of the register into memory. This implementation could leak the high-order bytes resi-
dent in the register to a user.

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 58
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.8 Compliant Solution
Padding bits can be explicitly declared, allowing the programmer to specify the value of those
bits. When explicitly declaring all of the padding bits, any unnamed bit-fields of length 0 must be
removed from the structure because the explicit padding bits ensure that no further bit-fields will
be packed into the same storage unit.

#include <assert.h>
#include <limits.h>
#include <stddef.h>

struct test {
 unsigned a : 1;
 unsigned padding1 : sizeof(unsigned) * CHAR_BIT - 1;
 unsigned b : 4;
 unsigned padding2 : sizeof(unsigned) * CHAR_BIT - 4;
};
/* Ensure that we have added the correct number of padding bits. */
static_assert(sizeof(struct test) == sizeof(unsigned) * 2,
 "Incorrect number of padding bits for type: un-
signed");

/* Safely copy bytes to user space */
extern int copy_to_user(void *dest, void *src, size_t size);

void do_stuff(void *usr_buf) {
 struct test arg = { .a = 1, .padding1 = 0, .b = 10, .padding2 = 0
};
 copy_to_user(usr_buf, &arg, sizeof(arg));
}

This solution is not portable, however, because it depends on the implementation and target
memory architecture. The explicit insertion of padding bits into the struct should ensure that no
additional padding bits are added by the compiler. However, it is still necessary to validate these
assumptions to ensure that the solution is correct for a particular implementation. For instance, the
DEC Alpha is an example of a 64-bit architecture with 32-bit integers that allocates 64 bits to a
storage unit.

In addition, this solution assumes that there are no integer padding bits in an unsigned int.
The portable version of the width calculation from INT35-C. Use correct integer precisions can-
not be used because the bit-field width must be an integer constant expression.

From this situation, it can be seen that special care must be taken because no solution to the bit-
field padding issue will be 100% portable.

Declarations and Initialization (DCL) - DCL39-C. Avoid information leakage when passing a structure across a trust boundary

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 59
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.6.9 Risk Assessment
Padding units might contain sensitive data because the C Standard allows any padding to take un-
specified values. A pointer to such a structure could be passed to other functions, causing infor-
mation leakage.

Rule Severity Likelihood Remediation Cost Priority Level

DCL39-C Low Unlikely High P1 L3

3.6.9.1 Related Vulnerabilities
Numerous vulnerabilities in the Linux Kernel have resulted from violations of this rule. CVE-
2010-4083 describes a vulnerability in which the semctl() system call allows unprivileged users
to read uninitialized kernel stack memory because various fields of a semid_ds struct de-
clared on the stack are not altered or zeroed before being copied back to the user.

CVE-2010-3881 describes a vulnerability in which structure padding and reserved fields in cer-
tain data structures in QEMU-KVM were not initialized properly before being copied to user space.
A privileged host user with access to /dev/kvm could use this flaw to leak kernel stack memory
to user space. CVE-2010-3477 describes a kernel information leak in act_police where incor-
rectly initialized structures in the traffic-control dump code may allow the disclosure of kernel
memory to user space applications.

3.6.10 Related Guidelines

CERT C Secure Coding Standard DCL03-C. Use a static assertion to test the
value of a constant expression

3.6.11 Bibliography

[ISO/IEC 9899:2011] 6.2.6.1, “General”
6.7.2.1, “Structure and Union Specifiers”

[Graff 2003]
[Sun 1993]

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3881
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3477
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374

Declarations and Initialization (DCL) - DCL40-C. Do not create incompatible declarations of the same function or object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 60
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.7 DCL40-C. Do not create incompatible declarations of the same
function or object

Two or more incompatible declarations of the same function or object must not appear in the
same program because they result in undefined behavior. The C Standard, 6.2.7, mentions that
two types may be distinct yet compatible and addresses precisely when two distinct types are
compatible.

The C Standard identifies four situations in which undefined behavior (UB) may arise as a result
of incompatible declarations of the same function or object:

UB Description Code

15 Two declarations of the same
object or function specify types
that are not compatible (6.2.7).

All noncompliant code in this
guideline

31 Two identifiers differ only in non-
significant characters (6.4.2.1).

Excessively Long Identifiers

37 An object has its stored value
accessed other than by an lvalue
of an allowable type (6.5).

Incompatible Object Declarations
Incompatible Array Declarations

41 A function is defined with a type
that is not compatible with the
type (of the expression) pointed
to by the expression that de-
notes the called function
(6.5.2.2).

Incompatible Function Declara-
tions
Excessively Long Identifiers

Although the effect of two incompatible declarations simply appearing in the same program may
be benign on most implementations, the effects of invoking a function through an expression
whose type is incompatible with the function definition are typically catastrophic. Similarly, the
effects of accessing an object using an lvalue of a type that is incompatible with the object defini-
tion may range from unintended information exposure to memory overwrite to a hardware trap.

3.7.1 Noncompliant Code Example (Incompatible Object Declarations)
In this noncompliant code example, the variable i is declared to have type int in file a.c but de-
fined to be of type short in file b.c. The declarations are incompatible, resulting in undefined
behavior 15. Furthermore, accessing the object using an lvalue of an incompatible type, as shown
in function f(), is undefined behavior 37 with possible observable results ranging from unin-
tended information exposure to memory overwrite to a hardware trap.

/* In a.c */
extern int i; /* UB 15 */

int f(void) {
 return ++i; /* UB 37 */
}

Declarations and Initialization (DCL) - DCL40-C. Do not create incompatible declarations of the same function or object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 61
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

/* In b.c */
short i; /* UB 15 */

3.7.2 Compliant Solution (Incompatible Object Declarations)
This compliant solution has compatible declarations of the variable i:

/* In a.c */
extern int i;

int f(void) {
 return ++i;
}

/* In b.c */
int i;

3.7.3 Noncompliant Code Example (Incompatible Array Declarations)
In this noncompliant code example, the variable a is declared to have a pointer type in file a.c
but defined to have an array type in file b.c. The two declarations are incompatible, resulting in
undefined behavior 15. As before, accessing the object in function f() is undefined behavior 37
with the typical effect of triggering a hardware trap.

/* In a.c */
extern int *a; /* UB 15 */

int f(unsigned int i, int x) {
 int tmp = a[i]; /* UB 37: read access */
 a[i] = x; /* UB 37: write access */
 return tmp;
}

/* In b.c */
int a[] = { 1, 2, 3, 4 }; /* UB 15 */

3.7.4 Compliant Solution (Incompatible Array Declarations)
This compliant solution declares a as an array in a.c and b.c:

/* In a.c */
extern int a[];

int f(unsigned int i, int x) {
 int tmp = a[i];
 a[i] = x;
 return tmp;
}

Declarations and Initialization (DCL) - DCL40-C. Do not create incompatible declarations of the same function or object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 62
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

/* In b.c */
int a[] = { 1, 2, 3, 4 };

3.7.5 Noncompliant Code Example (Incompatible Function Declarations)
In this noncompliant code example, the function f() is declared in file a.c with one prototype
but defined in file b.c with another. The two prototypes are incompatible, resulting in undefined
behavior 15. Furthermore, invoking the function is undefined behavior 41 and typically has cata-
strophic consequences.

/* In a.c */
extern int f(int a); /* UB 15 */

int g(int a) {
 return f(a); /* UB 41 */
}

/* In b.c */
long f(long a) { /* UB 15 */
 return a * 2;
}

3.7.6 Compliant Solution (Incompatible Function Declarations)
This compliant solution has compatible prototypes for the function f():

/* In a.c */
extern int f(int a);

int g(int a) {
 return f(a);
}

/* In b.c */
int f(int a) {
 return a * 2;
}

3.7.7 Noncompliant Code Example (Incompatible Variadic Function
Declarations)

In this noncompliant code example, the function buginf() is defined to take a variable number
of arguments and expects them all to be signed integers with a sentinel value of -1:

/* In a.c */
void buginf(const char *fmt, ...) {
 /* ... */

Declarations and Initialization (DCL) - DCL40-C. Do not create incompatible declarations of the same function or object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 63
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

}

/* In b.c */
void buginf();

Although this code appears to be well defined because of the prototype-less declaration of
buginf(), it exhibits undefined behavior in accordance with the C Standard, 6.7.6.3, paragraph
15 [ISO/IEC 9899:2011],

For two function types to be compatible, both shall specify compatible return types.
Moreover, the parameter type lists, if both are present, shall agree in the number of pa-
rameters and in use of the ellipsis terminator; corresponding parameters shall have com-
patible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the de-
fault argument promotions.

3.7.8 Compliant Solution (Incompatible Variadic Function Declarations)
In this compliant solution, the prototype for the function buginf() is included in the scope in the
source file where it will be used:

/* In a.c */
void buginf(const char *fmt, ...) {
 /* ... */
}

/* In b.c */
void buginf(const char *fmt, ...);

3.7.9 Noncompliant Code Example (Excessively Long Identifiers)
In this noncompliant code example, the length of the identifier declaring the function pointer
bash_groupname_completion_function() in the file bashline.h exceeds by 3 the mini-
mum implementation limit of 31 significant initial characters in an external identifier. This intro-
duces the possibility of colliding with the bash_groupname_completion_funct integer varia-
ble defined in file b.c, which is exactly 31 characters long. On an implementation that exactly
meets this limit, this is undefined behavior 31. It results in two incompatible declarations of the
same function. (See undefined behavior 15.) In addition, invoking the function leads to undefined
behavior 41 with typically catastrophic effects.

/* In bashline.h */
/* UB 15, UB 31 */
extern char * bash_groupname_completion_function(const char *,
int);

Declarations and Initialization (DCL) - DCL40-C. Do not create incompatible declarations of the same function or object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 64
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

/* In a.c */
#include "bashline.h"

void f(const char *s, int i) {
 bash_groupname_completion_function(s, i); /* UB 41 */
}

/* In b.c */
int bash_groupname_completion_funct; /* UB 15, UB 31 */

NOTE: The identifier bash_groupname_completion_function referenced here was taken
from GNU Bash, version 3.2.

3.7.10 Compliant Solution (Excessively Long Identifiers)
In this compliant solution, the length of the identifier declaring the function pointer
bash_groupname_completion() in bashline.h is less than 32 characters. Consequently, it
cannot clash with bash_groupname_completion_funct on any compliant platform.

/* In bashline.h */
extern char * bash_groupname_completion(const char *, int);

/* In a.c */
#include "bashline.h"

void f(const char *s, int i) {
 bash_groupname_completion(s, i);
}

/* In b.c */
int bash_groupname_completion_funct;

3.7.11 Risk Assessment
Rule Severity Likelihood Remediation Cost Priority Level

DCL40-C Low Unlikely Medium P2 L3

3.7.12 Related Guidelines

ISO/IEC TS 17961 Declaring the same function or object in in-
compatible ways [funcdecl]

MISRA C:2012 Rule 8.4 (required)

http://www.gnu.org/software/bash/

Declarations and Initialization (DCL) - DCL40-C. Do not create incompatible declarations of the same function or object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 65
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.7.13 Bibliography

[Hatton 1995] Section 2.8.3
[ISO/IEC 9899:2011] 6.7.6.3, “Function Declarators (including Pro-

totypes)”
J.2, “Undefined Behavior”

Declarations and Initialization (DCL) - DCL41-C. Do not declare variables inside a switch statement before the first case
label

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 66
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8 DCL41-C. Do not declare variables inside a switch statement before
the first case label

According to the C Standard, 6.8.4.2, paragraph 4 [ISO/IEC 9899:2011],

A switch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence of
a default label and the values of any case labels on or in the switch body.

If a programmer declares variables, initializes them before the first case statement, and then tries
to use them inside any of the case statements, those variables will have scope inside the switch
block but will not be initialized and will consequently contain indeterminate values.

3.8.1 Noncompliant Code Example
This noncompliant code example declares variables and contains executable statements before the
first case label within the switch statement:

#include <stdio.h>

extern void f(int i);

void func(int expr) {
 switch (expr) {
 int i = 4;
 f(i);
 case 0:
 i = 17;
 /* Falls through into default code */
 default:
 printf("%d\n" ��, i);
 }
}

3.8.1.1 Implementation Details
When the preceding example is executed on GCC 4.8.1, the variable i is instantiated with auto-
matic storage duration within the block, but it is not initialized. Consequently, if the controlling
expression expr has a nonzero value, the call to printf() will access an indeterminate value of
i. Similarly, the call to f() is not executed.

Value of expr Output

0 17
Nonzero Indeterminate

Declarations and Initialization (DCL) - DCL41-C. Do not declare variables inside a switch statement before the first case
label

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 67
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.8.2 Compliant Solution
In this compliant solution, the statements before the first case label occur before the switch state-
ment:

#include <stdio.h>

extern void f(int i);

int func(int expr) {
 /*
 * Move the code outside the switch block; now the statements
 * will get executed.
 */
 int i = 4;
 f(i);

 switch (expr) {
 case 0:
 i = 17;
 /* Falls through into default code */
 default:
 printf(" �œ%d\n" ��, i);
 }
 return 0;
}

3.8.3 Risk Assessment
Using test conditions or initializing variables before the first case statement in a switch block
can result in unexpected behavior and undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

DCL41-C Medium Unlikely Medium P4 L3

3.8.4 Related Guidelines

MISRA C:2012 Rule 16.1 (required)

3.8.5 Bibliography
[ISO/IEC 9899:2011] 6.8.4.2, “The switch Statement”

Expressions (EXP) - EXP30-C. Do not depend on the order of evaluation for side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 68
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 Expressions (EXP)

4.1 EXP30-C. Do not depend on the order of evaluation for side effects

Evaluation of an expression may produce side effects. At specific points during execution, known
as sequence points, all side effects of previous evaluations are complete, and no side effects of
subsequent evaluations have yet taken place. Do not depend on the order of evaluation for side ef-
fects unless there is an intervening sequence point.

The C Standard, 6.5, paragraph 2 [ISO/IEC 9899:2011], states

If a side effect on a scalar object is unsequenced relative to either a different side effect
on the same scalar object or a value computation using the value of the same scalar ob-
ject, the behavior is undefined. If there are multiple allowable orderings of the subex-
pressions of an expression, the behavior is undefined if such an unsequenced side ef-
fect occurs in any of the orderings.

This requirement must be met for each allowable ordering of the subexpressions of a full expres-
sion; otherwise, the behavior is undefined. (See undefined behavior 35.)

The following sequence points are defined in the C Standard, Annex C [ISO/IEC 9899:2011]:
• Between the evaluations of the function designator and actual arguments in a function call

and the actual call
• Between the evaluations of the first and second operands of the following operators:

− Logical AND: &&
− Logical OR: ||
− Comma: ,

• Between the evaluations of the first operand of the conditional ?: operator and whichever of
the second and third operands is evaluated

• The end of a full declarator
• Between the evaluation of a full expression and the next full expression to be evaluated; the

following are full expressions:
− An initializer that is not part of a compound literal
− The expression in an expression statement
− The controlling expression of a selection statement (if or switch)
− The controlling expression of a while or do statement
− Each of the (optional) expressions of a for statement
− The (optional) expression in a return statement

• Immediately before a library function returns

Expressions (EXP) - EXP30-C. Do not depend on the order of evaluation for side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 69
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• After the actions associated with each formatted input/output function conversion specifier
• Immediately before and immediately after each call to a comparison function, and also be-

tween any call to a comparison function and any movement of the objects passed as argu-
ments to that call

This rule means that statements such as

i = i + 1;
a[i] = i;

have defined behavior, and statements such as the following do not:

/* i is modified twice between sequence points */
i = ++i + 1;

/* i is read other than to determine the value to be stored */
a[i++] = i;

Not all instances of a comma in C code denote a usage of the comma operator. For example, the
comma between arguments in a function call is not a sequence point. However, according to the C
Standard, 6.5.2.2, paragraph 10 [ISO/IEC 9899:2011]

Every evaluation in the calling function (including other function calls) that is not other-
wise specifically sequenced before or after the execution of the body of the called func-
tion is indeterminately sequenced with respect to the execution of the called function.

This rule means that the order of evaluation for function call arguments is unspecified and can
happen in any order.

4.1.1 Noncompliant Code Example
Programs cannot safely rely on the order of evaluation of operands between sequence points. In
this noncompliant code example, i is evaluated twice without an intervening sequence point so
the behavior of the expression is undefined:

#include <stdio.h>

void func(int i, int *b) {
 int a = i + b[++i];
 printf("%d, %d", a, i);
}

Expressions (EXP) - EXP30-C. Do not depend on the order of evaluation for side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 70
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.2 Compliant Solution
These examples are independent of the order of evaluation of the operands and can be interpreted
in only one way:

#include <stdio.h>

void func(int i, int *b) {
 int a;
 ++i;
 a = i + b[i];
 printf("%d, %d", a, i);
}

Alternatively:

#include <stdio.h>

void func(int i, int *b) {
 int a = i + b[i + 1];
 ++i;
 printf("%d, %d", a, i);
}

4.1.3 Noncompliant Code Example
The call to func() in this noncompliant code example has undefined behavior because there is
no sequence point between the argument expressions:

extern void func(int i, int j);

void f(int i) {
 func(i++, i);
}

The first (left) argument expression reads the value of i (to determine the value to be stored) and
then modifies i. The second (right) argument expression reads the value of i between the same
pair of sequence points as the first argument, but not to determine the value to be stored in i. This
additional attempt to read the value of i has undefined behavior.

4.1.4 Compliant Solution
This compliant solution is appropriate when the programmer intends for both arguments to
func() to be equivalent:

extern void func(int i, int j);

Expressions (EXP) - EXP30-C. Do not depend on the order of evaluation for side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 71
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void f(int i) {
 i++;
 func(i, i);
}

This compliant solution is appropriate when the programmer intends the second argument to be 1
greater than the first:

extern void func(int i, int j);

void f(int i) {
 int j = i++;
 func(j, i);
}

4.1.5 Noncompliant Code Example
The order of evaluation for function arguments is unspecified. This noncompliant code example
exhibits unspecified behavior but not undefined behavior:

extern void c(int i, int j);
int glob;

int a(void) {
 return glob + 10;
}

int b(void) {
 glob = 42;
 return glob;
}

void func(void) {
 c(a(), b());
}

It is unspecified what order a() and b() are called in; the only guarantee is that both a() and
b() will be called before c() is called. If a() or b() rely on shared state when calculating their
return value, as they do in this example, the resulting arguments passed to c() may differ be-
tween compilers or architectures.

Expressions (EXP) - EXP30-C. Do not depend on the order of evaluation for side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 72
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.6 Compliant Solution
In this compliant solution, the order of evaluation for a() and b() is fixed, and so no unspecified
behavior occurs:

extern void c(int i, int j);
int glob;

int a(void) {
 return glob + 10;
}
int b(void) {
 glob = 42;
 return glob;
}

void func(void) {
 int a_val, b_val;

 a_val = a();
 b_val = b();

 c(a_val, b_val);
}

4.1.7 Risk Assessment
Attempting to modify an object multiple times between sequence points may cause that object to
take on an unexpected value, which can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP30-C Medium Probable Medium P8 L2

4.1.8 Related Guidelines

SEI CERT C++ Coding Standard EXP50-CPP. Do not depend on the order of
evaluation for side effects

CERT Oracle Secure Coding Standard for Java EXP05-J. Do not follow a write by a subse-
quent write or read of the same object within an
expression

ISO/IEC TR 24772:2013 Operator Precedence/Order of Evaluation
[JCW]
Side-effects and Order of Evaluation [SAM]

MISRA C:2012 Rule 12.1 (advisory)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086909
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086909
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032649
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032649
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032649

Expressions (EXP) - EXP30-C. Do not depend on the order of evaluation for side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 73
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.9 Bibliography

[ISO/IEC 9899:2011] 6.5, “Expressions”
6.5.2.2, “Function Calls”
Annex C, “Sequence Points”

[Saks 2007]
[Summit 2005] Questions 3.1, 3.2, 3.3, 3.3b, 3.7, 3.8, 3.9,

3.10a, 3.10b, and 3.11

Expressions (EXP) - EXP32-C. Do not access a volatile object through a nonvolatile reference

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 74
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2 EXP32-C. Do not access a volatile object through a nonvolatile
reference

An object that has volatile-qualified type may be modified in ways unknown to the implementa-
tion or have other unknown side effects. Referencing a volatile object by using a non-volatile
lvalue is undefined behavior. The C Standard, 6.7.3 [ISO/IEC 9899:2011], states

If an attempt is made to refer to an object defined with a volatile-qualified type through
use of an lvalue with non-volatile-qualified type, the behavior is undefined.

See undefined behavior 65.

4.2.1 Noncompliant Code Example
In this noncompliant code example, a volatile object is accessed through a non-volatile-qualified
reference, resulting in undefined behavior:

#include <stdio.h>

void func(void) {
 static volatile int **ipp;
 static int *ip;
 static volatile int i = 0;

 printf("i = %d.\n", i);

 ipp = &ip; /* May produce a warning diagnostic */
 ipp = (int**) &ip; /* Constraint violation; may produce a warning
diagnostic */
 ipp = &i; / Valid */
 if (*ip != 0) { /* Valid */
 /* ... */
 }
}

The assignment ipp = &ip is not safe because it allows the valid code that follows to reference
the value of the volatile object i through the non-volatile-qualified reference ip. In this example,
the compiler may optimize out the entire if block because *ip != 0 must be false if the object
to which ip points is not volatile.

4.2.1.1 Implementation Details
This example compiles without warning on Microsoft Visual Studio 2013 when compiled in C
mode (/TC) but causes errors when compiled in C++ mode (/TP).

GCC 4.8.1 generates a warning but compiles successfully.

Expressions (EXP) - EXP32-C. Do not access a volatile object through a nonvolatile reference

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 75
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2.2 Compliant Solution
In this compliant solution, ip is declared volatile:

#include <stdio.h>

void func(void) {
 static volatile int **ipp;
 static volatile int *ip;
 static volatile int i = 0;

 printf("i = %d.\n", i);

 ipp = &ip;
 *ipp = &i;
 if (*ip != 0) {
 /* ... */
 }

}

4.2.3 Risk Assessment
Accessing an object with a volatile-qualified type through a reference with a non-volatile-quali-
fied type is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP32-C Low Likely Medium P6 L2

4.2.4 Related Guidelines
ISO/IEC TR 24772:2013 Pointer Casting and Pointer Type Changes

[HFC]
Type System [IHN]

MISRA C:2012 Rule 11.8 (required)
SEI CERT C++ Coding Standard EXP55-CPP. Do not access a cv-qualified ob-

ject through a cv-unqualified type

4.2.5 Bibliography

[ISO/IEC 9899:2011] 6.7.3, “Type Qualifiers”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086885
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086885

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 76
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3 EXP33-C. Do not read uninitialized memory

Local, automatic variables assume unexpected values if they are read before they are initialized.
The C Standard, 6.7.9, paragraph 10, specifies [ISO/IEC 9899:2011]

If an object that has automatic storage duration is not initialized explicitly, its value is in-
determinate.

See undefined behavior 11.

When local, automatic variables are stored on the program stack, for example, their values default
to whichever values are currently stored in stack memory.

Additionally, some dynamic memory allocation functions do not initialize the contents of the
memory they allocate.

Function Initialization

aligned_alloc() Does not perform initialization

calloc() Zero-initializes allocated memory

malloc() Does not perform initialization

realloc() Copies contents from original pointer; may not initial-
ize all memory

Uninitialized automatic variables or dynamically allocated memory has indeterminate values,
which, for objects of some types, can be a trap representation. Reading such trap representations
is undefined behavior (see undefined behavior 10 and undefined behavior 12); it can cause a pro-
gram to behave in an unexpected manner and provide an avenue for attack. In many cases, com-
pilers issue a warning diagnostic message when reading uninitialized variables. (See MSC00-C.
Compile cleanly at high warning levels for more information.)

4.3.1 Noncompliant Code Example (Return-by-Reference)
In this noncompliant code example, the set_flag() function is intended to set the parameter,
sign_flag, to the sign of number. However, the programmer neglected to account for the case
where number is equal to 0. Because the local variable sign is uninitialized when calling
set_flag() and is never written to by set_flag(), the comparison operation exhibits unde-
fined behavior when reading sign.

void set_flag(int number, int *sign_flag) {
 if (NULL == sign_flag) {
 return;
 }

 if (number > 0) {
 *sign_flag = 1;
 } else if (number < 0) {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 77
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 *sign_flag = -1;
 }
}

int is_negative(int number) {
 int sign;
 set_flag(number, &sign);
 return sign < 0;
}

Some compilers assume that when the address of an uninitialized variable is passed to a function,
the variable is initialized within that function. Because compilers frequently fail to diagnose any
resulting failure to initialize the variable, the programmer must apply additional scrutiny to ensure
the correctness of the code.

This defect results from a failure to consider all possible data states. (See MSC01-C. Strive for
logical completeness for more information.)

4.3.2 Compliant Solution (Return-by-Reference)
This compliant solution trivially repairs the problem by accounting for the possibility that number
can be equal to 0.

Although compilers and static analysis tools often detect uses of uninitialized variables when they
have access to the source code, diagnosing the problem is difficult or impossible when either the
initialization or the use takes place in object code for which the source code is inaccessible. Un-
less doing so is prohibitive for performance reasons, an additional defense-in-depth practice worth
considering is to initialize local variables immediately after declaration.

void set_flag(int number, int *sign_flag) {
 if (NULL == sign_flag) {
 return;
 }

 /* Account for number being 0 */
 if (number >= 0) {
 *sign_flag = 1;
 } else {
 *sign_flag = -1;
 }
}

int is_negative(int number) {
 int sign = 0; /* Initialize for defense-in-depth */
 set_flag(number, &sign);
 return sign < 0;
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=354
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=354

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 78
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.3 Noncompliant Code Example (Uninitialized Local)
In this noncompliant code example, the programmer mistakenly fails to set the local variable er-
ror_log to the msg argument in the report_error() function [Mercy 2006]. Because er-
ror_log has not been initialized, an indeterminate value is read. The sprintf() call copies data
from the arbitrary location pointed to by the indeterminate error_log variable until a null byte is
reached, which can result in a buffer overflow.

#include <stdio.h>

/* Get username and password from user, return -1 on error */
extern int do_auth(void);
enum { BUFFERSIZE = 24 };
void report_error(const char *msg) {
 const char *error_log;
 char buffer[BUFFERSIZE];

 sprintf(buffer, "Error: %s", error_log);
 printf("%s\n", buffer);
}

int main(void) {
 if (do_auth() == -1) {
 report_error("Unable to login");
 }
 return 0;
}

4.3.4 Noncompliant Code Example (Uninitialized Local)
In this noncompliant code example, the report_error() function has been modified so that
error_log is properly initialized:

#include <stdio.h>
enum { BUFFERSIZE = 24 };
void report_error(const char *msg) {
 const char *error_log = msg;
 char buffer[BUFFERSIZE];

 sprintf(buffer, "Error: %s", error_log);
 printf("%s\n", buffer);
}

This example remains problematic because a buffer overflow will occur if the null-terminated
byte string referenced by msg is greater than 17 characters, including the null terminator. (See
STR31-C. Guarantee that storage for strings has sufficient space for character data and the null
terminator for more information.)

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 79
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.5 Compliant Solution (Uninitialized Local)
In this compliant solution, the buffer overflow is eliminated by calling the snprintf() function:

#include <stdio.h>
enum { BUFFERSIZE = 24 };
void report_error(const char *msg) {
 char buffer[BUFFERSIZE];

 if (0 < snprintf(buffer, BUFFERSIZE, "Error: %s", msg))
 printf("%s\n", buffer);
 else
 puts("Unknown error");
}

4.3.6 Compliant Solution (Uninitialized Local)
A less error-prone compliant solution is to simply print the error message directly instead of using
an intermediate buffer:

#include <stdio.h>

void report_error(const char *msg) {
 printf("Error: %s\n", msg);
}

4.3.7 Noncompliant Code Example (mbstate_t)
In this noncompliant code example, the function mbrlen() is passed the address of an automatic
mbstate_t object that has not been properly initialized. This is undefined behavior 200 because
mbrlen() dereferences and reads its third argument.

#include <string.h>
#include <wchar.h>

void func(const char *mbs) {
 size_t len;
 mbstate_t state;

 len = mbrlen(mbs, strlen(mbs), &state);
}

4.3.8 Compliant Solution (mbstate_t)
Before being passed to a multibyte conversion function, an mbstate_t object must be either ini-
tialized to the initial conversion state or set to a value that corresponds to the most recent shift

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 80
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

state by a prior call to a multibyte conversion function. This compliant solution sets the
mbstate_t object to the initial conversion state by setting it to all zeros:

#include <string.h>
#include <wchar.h>

void func(const char *mbs) {
 size_t len;
 mbstate_t state;

 memset(&state, 0, sizeof(state));
 len = mbrlen(mbs, strlen(mbs), &state);
}

4.3.9 Noncompliant Code Example (POSIX, Entropy)
In this noncompliant code example described in “More Randomness or Less” [Wang 2012], the
process ID, time of day, and uninitialized memory junk is used to seed a random number genera-
tor. This behavior is characteristic of some distributions derived from Debian Linux that use unin-
itialized memory as a source of entropy because the value stored in junk is indeterminate. How-
ever, because accessing an indeterminate value is undefined behavior, compilers may optimize
out the uninitialized variable access completely, leaving only the time and process ID and result-
ing in a loss of desired entropy.

#include <time.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/time.h>

void func(void) {
 struct timeval tv;
 unsigned long junk;

 gettimeofday(&tv, NULL);
 srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
}

In security protocols that rely on unpredictability, such as RSA encryption, a loss in entropy re-
sults in a less secure system.

4.3.10 Compliant Solution (POSIX, Entropy)
This compliant solution seeds the random number generator by using the CPU clock and the real-
time clock instead of reading uninitialized memory:

#include <time.h>
#include <unistd.h>

http://kqueue.org/blog/2012/06/25/more-randomness-or-less/

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 81
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <stdlib.h>
#include <sys/time.h>

void func(void) {
 double cpu_time;
 struct timeval tv;

 cpu_time = ((double) clock()) / CLOCKS_PER_SEC;
 gettimeofday(&tv, NULL);
 srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ cpu_time);
}

4.3.11 Noncompliant Code Example (realloc())
The realloc() function changes the size of a dynamically allocated memory object. The initial
size bytes of the returned memory object are unchanged, but any newly added space is uninitial-
ized, and its value is indeterminate. As in the case of malloc(), accessing memory beyond the
size of the original object is undefined behavior 181.

It is the programmer’s responsibility to ensure that any memory allocated with malloc() and
realloc() is properly initialized before it is used.

In this noncompliant code example, an array is allocated with malloc() and properly initialized.
At a later point, the array is grown to a larger size but not initialized beyond what the original ar-
ray contained. Subsequently accessing the uninitialized bytes in the new array is undefined behav-
ior.

#include <stdlib.h>
#include <stdio.h>
enum { OLD_SIZE = 10, NEW_SIZE = 20 };

int *resize_array(int *array, size_t count) {
 if (0 == count) {
 return 0;
 }

 int *ret = (int *)realloc(array, count * sizeof(int));
 if (!ret) {
 free(array);
 return 0;
 }

 return ret;
}

void func(void) {

 int *array = (int *)malloc(OLD_SIZE * sizeof(int));

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 82
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (0 == array) {
 /* Handle error */
 }

 for (size_t i = 0; i < OLD_SIZE; ++i) {
 array[i] = i;
 }

 array = resize_array(array, NEW_SIZE);
 if (0 == array) {
 /* Handle error */
 }

 for (size_t i = 0; i < NEW_SIZE; ++i) {
 printf("%d ", array[i]);
 }
}

4.3.12 Compliant Solution (realloc())
In this compliant solution, the resize_array() helper function takes a second parameter for the
old size of the array so that it can initialize any newly allocated elements:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum { OLD_SIZE = 10, NEW_SIZE = 20 };

int *resize_array(int *array, size_t old_count, size_t new_count) {
 if (0 == new_count) {
 return 0;
 }

 int *ret = (int *)realloc(array, new_count * sizeof(int));
 if (!ret) {
 free(array);
 return 0;
 }

 if (new_count > old_count) {
 memset(ret + old_count, 0, (new_count – old_count) *
sizeof(int));
 }

 return ret;
}

void func(void) {

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 83
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 int *array = (int *)malloc(OLD_SIZE * sizeof(int));
 if (0 == array) {
 /* Handle error */
 }

 for (size_t i = 0; i < OLD_SIZE; ++i) {
 array[i] = i;
 }

 array = resize_array(array, OLD_SIZE, NEW_SIZE);
 if (0 == array) {
 /* Handle error */
 }

 for (size_t i = 0; i < NEW_SIZE; ++i) {
 printf("%d ", array[i]);
 }
}

4.3.13 Exceptions
EXP33-C-EX1: Reading uninitialized memory by an lvalue of type unsigned char does not
trigger undefined behavior. The unsigned char type is defined to not have a trap representation
(see the C Standard, 6.2.6.1, paragraph 3), which allows for moving bytes without knowing if they
are initialized. However, on some architectures, such as the Intel Itanium, registers have a bit to
indicate whether or not they have been initialized. The C Standard, 6.3.2.1, paragraph 2, allows
such implementations to cause a trap for an object that never had its address taken and is stored in
a register if such an object is referred to in any way.

4.3.14 Risk Assessment
Reading uninitialized variables is undefined behavior and can result in unexpected program be-
havior. In some cases, these security flaws may allow the execution of arbitrary code.

Reading uninitialized variables for creating entropy is problematic because these memory ac-
cesses can be removed by compiler optimization. VU#925211 is an example of a vulnerability
caused by this coding error.

Rule Severity Likelihood Remediation Cost Priority Level

EXP33-C High Probable Medium P12 L1

4.3.14.1 Related Vulnerabilities
CVE-2009-1888 results from a violation of this rule. Some versions of SAMBA (up to 3.3.5) call
a function that takes in two potentially uninitialized variables involving access rights. An attacker
can exploit these coding errors to bypass the access control list and gain access to protected files
[xorl 2009].

http://www.kb.cert.org/vuls/id/925211
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1888
http://xorl.wordpress.com/2009/06/26/cve-2009-1888-samba-acls-uninitialized-memory-read/

Expressions (EXP) - EXP33-C. Do not read uninitialized memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 84
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.15 Related Guidelines

CERT C Secure Coding Standard MSC00-C. Compile cleanly at high warning
levels
MSC01-C. Strive for logical completeness

SEI CERT C++ Coding Standard EXP53-CPP. Do not read uninitialized memory
ISO/IEC TR 24772:2013 Initialization of Variables [LAV]
ISO/IEC TS 17961 Referencing uninitialized memory [uninitref]
MITRE CWE CWE-119, Improper Restriction of Operations

within the Bounds of a Memory Buffer
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-665, Improper Initialization

4.3.16 Bibliography

[Flake 2006]
[ISO/IEC 9899:2011] Subclause 6.7.9, “Initialization”

Subclause 6.2.6.1, “General”
Subclause 6.3.2.1, “Lvalues, Arrays, and Func-
tion Designators”

[Mercy 2006]
[VU#925211]
[Wang 2012] “More Randomness or Less”
[xorl 2009] “CVE-2009-1888: SAMBA ACLs Uninitial-

ized Memory Read”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=354
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086918
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/665.html
http://kqueue.org/blog/2012/06/25/more-randomness-or-less/
http://xorl.wordpress.com/2009/06/26/cve-2009-1888-samba-acls-uninitialized-memory-read/
http://xorl.wordpress.com/2009/06/26/cve-2009-1888-samba-acls-uninitialized-memory-read/

Expressions (EXP) - EXP34-C. Do not dereference null pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 85
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.4 EXP34-C. Do not dereference null pointers

Dereferencing a null pointer is undefined behavior.

On many platforms, dereferencing a null pointer results in abnormal program termination, but this
is not required by the standard. See “Clever Attack Exploits Fully-Patched Linux Kernel”
[Goodin 2009] for an example of a code execution exploit that resulted from a null pointer deref-
erence.

4.4.1 Noncompliant Code Example
This noncompliant code example is derived from a real-world example taken from a vulnerable
version of the libpng library as deployed on a popular ARM-based cell phone [Jack 2007]. The
libpng library allows applications to read, create, and manipulate PNG (Portable Network
Graphics) raster image files. The libpng library implements its own wrapper to malloc() that
returns a null pointer on error or on being passed a 0-byte-length argument.

This code also violates ERR33-C. Detect and handle standard library errors.

#include <png.h> /* From libpng */
#include <string.h>

void func(png_structp png_ptr, int length, const void *user_data) {
 png_charp chunkdata;
 chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
 /* ... */
 memcpy(chunkdata, user_data, length);
 /* ... */
 }

If length has the value −1, the addition yields 0, and png_malloc() subsequently returns a null
pointer, which is assigned to chunkdata. The chunkdata pointer is later used as a destination
argument in a call to memcpy(), resulting in user-defined data overwriting memory starting at ad-
dress 0. In the case of the ARM and XScale architectures, the 0x0 address is mapped in memory
and serves as the exception vector table; consequently, dereferencing 0x0 did not cause an abnor-
mal program termination.

4.4.2 Compliant Solution
This compliant solution ensures that the pointer returned by png_malloc() is not null. It also
uses the unsigned type size_t to pass the length parameter, ensuring that negative values are
not passed to func().

#include <png.h> /* From libpng */
#include <string.h>

 void func(png_structp png_ptr, size_t length, const void

http://www.theregister.co.uk/2009/07/17/linux_kernel_exploit/

Expressions (EXP) - EXP34-C. Do not dereference null pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 86
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

*user_data) {
 png_charp chunkdata;
 if (length == SIZE_MAX) {
 /* Handle error */
 }
 chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
 if (NULL == chunkdata) {
 /* Handle error */
 }
 /* ... */
 memcpy(chunkdata, user_data, length);
 /* ... */

 }

4.4.3 Noncompliant Code Example
In this noncompliant code example, input_str is copied into dynamically allocated memory ref-
erenced by c_str. If malloc() fails, it returns a null pointer that is assigned to c_str. When
c_str is dereferenced in memcpy(), the program exhibits undefined behavior. Additionally, if
input_str is a null pointer, the call to strlen() dereferences a null pointer, also resulting in
undefined behavior. This code also violates ERR33-C. Detect and handle standard library errors.

#include <string.h>
#include <stdlib.h>

void f(const char *input_str) {
 size_t size = strlen(input_str) + 1;
 char *c_str = (char *)malloc(size);
 memcpy(c_str, input_str, size);
 /* ... */
 free(c_str);
 c_str = NULL;
 /* ... */
}

4.4.4 Compliant Solution
This compliant solution ensures that both input_str and the pointer returned by malloc() are
not null:

#include <string.h>
#include <stdlib.h>

void f(const char *input_str) {
 size_t size;
 char *c_str;

 if (NULL == input_str) {

Expressions (EXP) - EXP34-C. Do not dereference null pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 87
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }

 size = strlen(input_str) + 1;
 c_str = (char *)malloc(size);
 if (NULL == c_str) {
 /* Handle error */
 }
 memcpy(c_str, input_str, size);
 /* ... */
 free(c_str);
 c_str = NULL;
 /* ... */
}

4.4.5 Noncompliant Code Example
This noncompliant code example is from a version of drivers/net/tun.c and affects Linux
Kernel 2.6.30 [Goodin 2009]:

static unsigned int tun_chr_poll(struct file *file, poll_table
*wait) {
 struct tun_file *tfile = file->private_data;
 struct tun_struct *tun = __tun_get(tfile);
 struct sock *sk = tun->sk;
 unsigned int mask = 0;

 if (!tun)
 return POLLERR;

 DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

 poll_wait(file, &tun->socket.wait, wait);

 if (!skb_queue_empty(&tun->readq))
 mask |= POLLIN | POLLRDNORM;

 if (sock_writeable(sk) ||
 (!test_and_set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags)
&&
 sock_writeable(sk)))
 mask |= POLLOUT | POLLWRNORM;

 if (tun->dev->reg_state != NETREG_REGISTERED)
 mask = POLLERR;

 tun_put(tun);
 return mask;
}

Expressions (EXP) - EXP34-C. Do not dereference null pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 88
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The sk pointer is initialized to tun->sk before checking if tun is a null pointer. Because null
pointer dereferencing is undefined behavior, the compiler (GCC in this case) can optimize away
the if (!tun) check because it is performed after tun->sk is accessed, implying that tun is
non-null. As a result, this noncompliant code example is vulnerable to a null pointer dereference
exploit, because null pointer dereferencing can be permitted on several platforms, for example, by
using mmap(2) with the MAP_FIXED flag on Linux and Mac OS X, or by using the shmat()
POSIX function with the SHM_RND flag [Liu 2009].

4.4.6 Compliant Solution
This compliant solution eliminates the null pointer deference by initializing sk to tun->sk fol-
lowing the null pointer check:

static unsigned int tun_chr_poll(struct file *file, poll_table
*wait) {
 struct tun_file *tfile = file->private_data;
 struct tun_struct *tun = __tun_get(tfile);
 struct sock *sk;
 unsigned int mask = 0;

 if (!tun)
 return POLLERR;

 sk = tun->sk;

 /* The remaining code is omitted because it is unchanged... */

}

4.4.7 Risk Assessment
Dereferencing a null pointer is undefined behavior, typically abnormal program termination. In
some situations, however, dereferencing a null pointer can lead to the execution of arbitrary code
[Jack 2007, van Sprundel 2006]. The indicated severity is for this more severe case; on platforms
where it is not possible to exploit a null pointer dereference to execute arbitrary code, the actual
severity is low.

Rule Severity Likelihood Remediation Cost Priority Level

EXP34-C High Likely Medium P18 L1

4.4.8 Related Guidelines

CERT Oracle Secure Coding Standard for Java EXP01-J. Do not use a null in a case where an
object is required

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=30277735
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=30277735

Expressions (EXP) - EXP34-C. Do not dereference null pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 89
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

ISO/IEC TR 24772:2013 Pointer Casting and Pointer Type Changes
[HFC]
Null Pointer Dereference [XYH]

ISO/IEC TS 17961 Dereferencing an out-of-domain pointer
[nullref]

MITRE CWE CWE-476, NULL Pointer Dereference

4.4.9 Bibliography
[Goodin 2009]
[Jack 2007]
[Liu 2009]
[van Sprundel 2006]
[Viega 2005] Section 5.2.18, “Null-Pointer Dereference”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/476.html

Expressions (EXP) - EXP35-C. Do not modify objects with temporary lifetime

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 90
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.5 EXP35-C. Do not modify objects with temporary lifetime

The C11 Standard [ISO/IEC 9899:2011] introduced a new term: temporary lifetime. Modifying an
object with temporary lifetime is undefined behavior. According to subclause 6.2.4, paragraph 8

A non-lvalue expression with structure or union type, where the structure or union con-
tains a member with array type (including, recursively, members of all contained struc-
tures and unions) refers to an object with automatic storage duration and temporary life-
time. Its lifetime begins when the expression is evaluated and its initial value is the value
of the expression. Its lifetime ends when the evaluation of the containing full expression
or full declarator ends. Any attempt to modify an object with temporary lifetime results in
undefined behavior.

This definition differs from the C99 Standard (which defines modifying the result of a function
call or accessing it after the next sequence point as undefined behavior) because a temporary ob-
ject’s lifetime ends when the evaluation containing the full expression or full declarator ends, so
the result of a function call can be accessed. This extension to the lifetime of a temporary also re-
moves a quiet change to C90 and improves compatibility with C++.

C functions may not return arrays; however, functions can return a pointer to an array or a
struct or union that contains arrays. Consequently, if a function call returns by value a struct
or union containing an array, do not modify those arrays within the expression containing the
function call. Do not access an array returned by a function after the next sequence point or after
the evaluation of the containing full expression or full declarator ends.

4.5.1 Noncompliant Code Example (C99)
This noncompliant code example conforms to the C11 Standard; however, it fails to conform to
C99. If compiled with a C99-conforming implementation, this code has undefined behavior be-
cause the sequence point preceding the call to printf() comes between the call and the access
by printf() of the string in the returned object.

#include <stdio.h>

struct X { char a[8]; };

struct X salutation(void) {
 struct X result = { "Hello" };
 return result;
}

struct X addressee(void) {
 struct X result = { "world" };
 return result;
}

int main(void) {

Expressions (EXP) - EXP35-C. Do not modify objects with temporary lifetime

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 91
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 printf("%s, %s!\n", salutation().a, addressee().a);
 return 0;
}

4.5.2 Compliant Solution
This compliant solution stores the structures returned by the call to addressee() before calling
the printf() function. Consequently, this program conforms to both C99 and C11.

#include <stdio.h>

struct X { char a[8]; };

struct X salutation(void) {
 struct X result = { "Hello" };
 return result;
}

struct X addressee(void) {
 struct X result = { "world" };
 return result;
}

int main(void) {
 struct X my_salutation = salutation();
 struct X my_addressee = addressee();

 printf("%s, %s!\n", my_salutation.a, my_addressee.a);
 return 0;
}

4.5.3 Noncompliant Code Example
This noncompliant code example attempts to retrieve an array and increment the array’s first
value. The array is part of a struct that is returned by a function call. Consequently, the array
has temporary lifetime, and modifying the array is undefined behavior.

#include <stdio.h>

struct X { int a[6]; };

struct X addressee(void) {
 struct X result = { { 1, 2, 3, 4, 5, 6 } };
 return result;
}

int main(void) {
 printf("%x", ++(addressee().a[0]));

Expressions (EXP) - EXP35-C. Do not modify objects with temporary lifetime

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 92
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return 0;
}

4.5.4 Compliant Solution
This compliant solution stores the structure returned by the call to addressee() as my_x before
calling the printf() function. When the array is modified, its lifetime is no longer temporary
but matches the lifetime of the block in main().

#include <stdio.h>

struct X { int a[6]; };

struct X addressee(void) {
 struct X result = { { 1, 2, 3, 4, 5, 6 } };
 return result;
}

int main(void) {
 struct X my_x = addressee();
 printf("%x", ++(my_x.a[0]));
 return 0;
}

4.5.5 Risk Assessment
Attempting to modify an array or access it after its lifetime expires may result in erroneous pro-
gram behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP35-C Low Probable Medium P4 L3

4.5.6 Related Guidelines

ISO/IEC TR 24772:2013 Dangling References to Stack Frames [DCM]
Side-effects and Order of Evaluation [SAM]

4.5.7 Bibliography

[ISO/IEC 9899:2011] 6.2.4, “Storage Durations of Objects”

Expressions (EXP) - EXP36-C. Do not cast pointers into more strictly aligned pointer types

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 93
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.6 EXP36-C. Do not cast pointers into more strictly aligned pointer
types

Do not convert a pointer value to a pointer type that is more strictly aligned than the referenced
type. Different alignments are possible for different types of objects. If the type-checking system
is overridden by an explicit cast or the pointer is converted to a void pointer (void *) and then to
a different type, the alignment of an object may be changed.

The C Standard, 6.3.2.3, paragraph 7 [ISO/IEC 9899:2011], states

A pointer to an object or incomplete type may be converted to a pointer to a different ob-
ject or incomplete type. If the resulting pointer is not correctly aligned for the referenced
type, the behavior is undefined.

See undefined behavior 25.

If the misaligned pointer is dereferenced, the program may terminate abnormally. On some archi-
tectures, the cast alone may cause a loss of information even if the value is not dereferenced if the
types involved have differing alignment requirements.

4.6.1 Noncompliant Code Example
In this noncompliant example, the char pointer &c is converted to the more strictly aligned int
pointer ip. On some implementations, cp will not match &c. As a result, if a pointer to one object
type is converted to a pointer to a different object type, the second object type must not require
stricter alignment than the first.

#include <assert.h>

void func(void) {
 char c = 'x';
 int *ip = (int *)&c; /* This can lose information */
 char *cp = (char *)ip;

 /* Will fail on some conforming implementations */
 assert(cp == &c);
}

4.6.2 Compliant Solution (Intermediate Object)
In this compliant solution, the char value is stored into an object of type int so that the pointer's
value will be properly aligned:

#include <assert.h>

void func(void) {
 char c = 'x';

Expressions (EXP) - EXP36-C. Do not cast pointers into more strictly aligned pointer types

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 94
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 int i = c;
 int *ip = &i;

 assert(ip == &i);
}

4.6.3 Noncompliant Code Example
The C Standard allows any object pointer to be cast to and from void *. As a result, it is possible
to silently convert from one pointer type to another without the compiler diagnosing the problem
by storing or casting a pointer to void * and then storing or casting it to the final type. In this
noncompliant code example, loop_function() is passed the char pointer loop_ptr but re-
turns an object of type int pointer:

int *loop_function(void *v_pointer) {
 /* ... */
 return v_pointer;
}

void func(char *loop_ptr) {
 int *int_ptr = loop_function(loop_ptr);

 /* ... */
}

This example compiles without warning using GCC 4.8 on Ubuntu Linux 14.04. However,
v_pointer can be more strictly aligned than an object of type int *.

4.6.4 Compliant Solution
Because the input parameter directly influences the return value, and loop_function() returns
an object of type int *, the formal parameter v_pointer is redeclared to accept only an object
of type int *:

int *loop_function(int *v_pointer) {
 /* ... */
 return v_pointer;
}

void func(int *loop_ptr) {
 int *int_ptr = loop_function(loop_ptr);

 /* ... */
}

Expressions (EXP) - EXP36-C. Do not cast pointers into more strictly aligned pointer types

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 95
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.6.5 Noncompliant Code Example
Some architectures require that pointers are correctly aligned when accessing objects larger than a
byte. However, it is common in system code that unaligned data (for example, the network stacks)
must be copied to a properly aligned memory location, such as in this noncompliant code exam-
ple:

#include <string.h>

struct foo_header {
 int len;
 /* ... */
};

void func(char *data, size_t offset) {
 struct foo_header *tmp;
 struct foo_header header;

 tmp = (struct foo_header *)(data + offset);
 memcpy(&header, tmp, sizeof(header));

 /* ... */
}

Assigning an unaligned value to a pointer that references a type that needs to be aligned is unde-
fined behavior. An implementation may notice, for example, that tmp and header must be
aligned and use an inline memcpy() that uses instructions that assume aligned data.

4.6.6 Compliant Solution
This compliant solution avoids the use of the foo_header pointer:

#include <string.h>

struct foo_header {
 int len;
 /* ... */
};

void func(char *data, size_t offset) {
 struct foo_header header;
 memcpy(&header, data + offset, sizeof(header));

 /* ... */
}

Expressions (EXP) - EXP36-C. Do not cast pointers into more strictly aligned pointer types

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 96
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.6.7 Exceptions
EXP36-C-EX1: Some hardware architectures have relaxed requirements with regard to pointer
alignment. Using a pointer that is not properly aligned is correctly handled by the architecture, alt-
hough there might be a performance penalty. On such an architecture, improper pointer alignment
is permitted but remains an efficiency problem.

EXP36-C-EX2: If a pointer is known to be correctly aligned to the target type, then a cast to that
type is permitted. There are several cases where a pointer is known to be correctly aligned to the
target type. The pointer could point to an object declared with a suitable alignment specifier. It
could point to an object returned by aligned_alloc(), calloc(), malloc(), or realloc(),
as per the C standard, section 7.22.3, paragraph 1 [ISO/IEC 9899:2011].

This compliant solution uses the alignment specifier, which is new to C11, to declare the char
object c with the same alignment as that of an object of type int. As a result, the two pointers
reference equally aligned pointer types:

#include <stdalign.h>
#include <assert.h>

void func(void) {
 /* Align c to the alignment of an int */
 alignas(int) char c = 'x';
 int *ip = (int *)&c;
 char *cp = (char *)ip;
 /* Both cp and &c point to equally aligned objects */
 assert(cp == &c);
}

4.6.8 Risk Assessment
Accessing a pointer or an object that is not properly aligned can cause a program to crash or give
erroneous information, or it can cause slow pointer accesses (if the architecture allows misaligned
accesses).

Rule Severity Likelihood Remediation Cost Priority Level

EXP36-C Low Probable Medium P4 L3

4.6.9 Related Guidelines
SEI CERT C++ Coding Standard EXP56-CPP. Do not cast pointers into more

strictly aligned pointer types
ISO/IEC TR 24772:2013 Pointer Casting and Pointer Type Changes

[HFC]
ISO/IEC TS 17961 Converting pointer values to more strictly

aligned pointer types [alignconv]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086927
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086927

Expressions (EXP) - EXP36-C. Do not cast pointers into more strictly aligned pointer types

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 97
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

MISRA C:2012 Rule 11.1 (required)
Rule 11.2 (required)
Rule 11.5 (advisory)
Rule 11.7 (required)

4.6.10 Bibliography
[Bryant 2003]
[ISO/IEC 9899:2011] 6.3.2.3, “Pointers”
[Walfridsson 2003] Aliasing, Pointer Casts and GCC 3.3

http://mail-index.netbsd.org/tech-kern/2003/08/11/0001.html

Expressions (EXP) - EXP37-C. Call functions with the correct number and type of arguments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 98
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.7 EXP37-C. Call functions with the correct number and type of
arguments

Do not call a function with the wrong number or type of arguments.

The C Standard identifies five distinct situations in which undefined behavior (UB) may arise as a
result of invoking a function using a declaration that is incompatible with its definition or by sup-
plying incorrect types or numbers of arguments:

UB Description

26 A pointer is used to call a function whose type is not compatible with the referenced type
(6.3.2.3).

38 For a call to a function without a function prototype in scope, the number of arguments does
not equal the number of parameters (6.5.2.2).

39 For a call to a function without a function prototype in scope where the function is defined
with a function prototype, either the prototype ends with an ellipsis or the types of the argu-
ments after promotion are not compatible with the types of the parameters (6.5.2.2).

40 For a call to a function without a function prototype in scope where the function is not de-
fined with a function prototype, the types of the arguments after promotion are not compati-
ble with those of the parameters after promotion (with certain exceptions) (6.5.2.2).

41 A function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called function (6.5.2.2).

Functions that are appropriately declared (as in DCL40-C. Do not create incompatible declara-
tions of the same function or object) will typically generate a compiler diagnostic message if they
are supplied with the wrong number or types of arguments. However, there are cases in which
supplying the incorrect arguments to a function will, at best, generate compiler warnings. Alt-
hough such warnings should be resolved, they do not prevent program compilation. (See MSC00-
C. Compile cleanly at high warning levels.)

4.7.1 Noncompliant Code Example
The header <tgmath.h> provides type-generic macros for math functions. Although most func-
tions from the <math.h> header have a complex counterpart in <complex.h>, several functions
do not. Calling any of the following type-generic functions with complex values is undefined be-
havior.

Functions That Should Not Be Called with Complex Values
atan2() erf() fdim() fmin() ilogb()
llround() logb() nextafter() rint() tgamma()
cbrt() erfc() floor() fmod() ldexp()
log10() lrint() nexttoward() round() trunc()
ceil() exp2() fma() frexp() lgamma()
log1p() lround() remainder() scalbn() copysign()
expm1() fmax() hypot() llrint() log2()
nearbyint() remquo() scalbln()

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Expressions (EXP) - EXP37-C. Call functions with the correct number and type of arguments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 99
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This noncompliant code example attempts to take the base-2 logarithm of a complex number, re-
sulting in undefined behavior:

#include <tgmath.h>

void func(void) {
 double complex c = 2.0 + 4.0 * I;
 double complex result = log2(c);
}

4.7.2 Compliant Solution (Complex Number)
If the clog2() function is not available for an implementation as an extension, the programmer
can take the base-2 logarithm of a complex number, using log() instead of log2(), because
log() can be used on complex arguments, as shown in this compliant solution:

#include <tgmath.h>

void func(void) {
 double complex c = 2.0 + 4.0 * I;
 double complex result = log(c)/log(2);
}

4.7.3 Compliant Solution (Real Number)
The programmer can use this compliant solution if the intent is to take the base-2 logarithm of the
real part of the complex number:

#include <tgmath.h>

void func(void) {
 double complex c = 2.0 + 4.0 * I;
 double complex result = log2(creal(c));
}

4.7.4 Noncompliant Code Example
In this noncompliant example, the C standard library function strchr() is called through the
function pointer fp declared with a prototype with incorrectly typed arguments. According to the
C Standard, 6.3.2.3, paragraph 8 [ISO/IEC 9899:2011],

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the referenced type,
the behavior is undefined.

See undefined behavior 26.

Expressions (EXP) - EXP37-C. Call functions with the correct number and type of arguments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 100
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <stdio.h>
#include <string.h>

char *(*fp)();

int main(void) {
 const char *c;
 fp = strchr;
 c = fp('e', "Hello");
 printf("%s\n", c);
 return 0;
}

4.7.5 Compliant Solution
In this compliant solution, the function pointer fp, which points to the C standard library function
strchr(), is declared with the correct parameters and is invoked with the correct number and
type of arguments:

#include <stdio.h>
#include <string.h>

char *(*fp)(const char *, int);

int main(void) {
 const char *c;
 fp = strchr;
 c = fp("Hello",'e');
 printf("%s\n", c);
 return 0;
}

4.7.6 Noncompliant Code Example
In this noncompliant example, the function f() is defined to take an argument of type long but
f() is called from another file with an argument of type int:

/* In another source file */
long f(long x) {
 return x < 0 ? -x : x;
}

/* In this source file, no f prototype in scope */
long f();

long g(int x) {
 return f(x);
}

Expressions (EXP) - EXP37-C. Call functions with the correct number and type of arguments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 101
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.7.7 Compliant Solution
In this compliant solution, the prototype for the function f() is included in the source file in the
scope of where it is called, and the function f() is correctly called with an argument of type
long:

/* In another source file */

long f(long x) {
 return x < 0 ? -x : x;
}

/* f prototype in scope in this source file */

long f(long x);

long g(int x) {
 return f((long)x);
}

4.7.8 Noncompliant Code Example (POSIX)
The POSIX function open() [IEEE Std 1003.1:2013] is a variadic function with the following
prototype:

int open(const char *path, int oflag, ...);

The open() function accepts a third argument to determine a newly created file’s access mode. If
open() is used to create a new file and the third argument is omitted, the file may be created with
unintended access permissions. (See FIO06-C. Create files with appropriate access permissions.)

In this noncompliant code example from a vulnerability in the useradd() function of the
shadow-utils package CVE-2006-1174, the third argument to open() is accidentally omitted:

fd = open(ms, O_CREAT | O_EXCL | O_WRONLY | O_TRUNC);

Technically, it is incorrect to pass a third argument to open() when not creating a new file (that
is, with the O_CREAT flag not set).

4.7.9 Compliant Solution (POSIX)
In this compliant solution, a third argument is specified in the call to open():

#include <fcntl.h>

void func(const char *ms, mode_t perms) {
 /* ... */
 int fd;

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1321
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174

Expressions (EXP) - EXP37-C. Call functions with the correct number and type of arguments

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 102
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 fd = open(ms, O_CREAT | O_EXCL | O_WRONLY | O_TRUNC, perms);
 if (fd == -1) {
 /* Handle error */
 }
}

4.7.10 Risk Assessment
Calling a function with incorrect arguments can result in unexpected or unintended program be-
havior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP37-C Medium Probable High P4 L3

4.7.11 Related Guidelines

CERT C Secure Coding Standard DCL07-C. Include the appropriate type infor-
mation in function declarators
MSC00-C. Compile cleanly at high warning
levels
FIO06-C. Create files with appropriate access
permissions

ISO/IEC TR 24772:2013 Subprogram Signature Mismatch [OTR]
ISO/IEC TS 17961 Calling functions with incorrect arguments [ar-

gcomp]
MISRA C:2012 Rule 8.2 (required)

Rule 17.3 (mandatory)
MITRE CWE CWE-628, Function Call with Incorrectly

Specified Arguments
CWE-686, Function Call with Incorrect Argu-
ment Type

4.7.12 Bibliography

[CVE] CVE-2006-1174
[ISO/IEC 9899:2011] 6.3.2.3, “Pointers”

6.5.2.2, “Function Calls”
[IEEE Std 1003.1:2013] open()
[Spinellis 2006] Section 2.6.1, “Incorrect Routine or Argu-

ments”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2129966
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2129966
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1321
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1321
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/686.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174

Expressions (EXP) - EXP39-C. Do not access a variable through a pointer of an incompatible type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 103
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.8 EXP39-C. Do not access a variable through a pointer of an
incompatible type

Modifying a variable through a pointer of an incompatible type (other than unsigned char) can
lead to unpredictable results. Subclause 6.2.7 of the C Standard states that two types may be dis-
tinct yet compatible and addresses precisely when two distinct types are compatible.

This problem is often caused by a violation of aliasing rules. The C Standard, 6.5, paragraph 7
[ISO/IEC 9899:2011], specifies those circumstances in which an object may or may not be ali-
ased.

An object shall have its stored value accessed only by an lvalue expression that has
one of the following types:

• a type compatible with the effective type of the object,
• a qualified version of a type compatible with the effective type of the object,
• a type that is the signed or unsigned type corresponding to the effective type of the

object,
• a type that is the signed or unsigned type corresponding to a qualified version of

the effective type of the object,
• an aggregate or union type that includes one of the aforementioned types among

its members (including, recursively, a member of a subaggregate or contained un-
ion), or

• a character type.

Accessing an object by means of any other lvalue expression (other than unsigned char) is un-
defined behavior 37.

4.8.1 Noncompliant Code Example
In this noncompliant example, an object of type float is incremented through an int *. The
programmer can use the unit in the last place to get the next representable value for a floating-
point type. However, accessing an object through a pointer of an incompatible type is undefined
behavior.

#include <stdio.h>

void f(void) {
 if (sizeof(int) == sizeof(float)) {
 float f = 0.0f;
 int *ip = (int *)&f;
 (*ip)++;
 printf("float is %f\n", f);
 }
}

Expressions (EXP) - EXP39-C. Do not access a variable through a pointer of an incompatible type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 104
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.8.2 Compliant Solution
In this compliant solution, the standard C function nextafterf() is used to round toward the
highest representable floating-point value:

#include <float.h>
#include <math.h>
#include <stdio.h>

void f(void) {
 float f = 0.0f;
 f = nextafterf(f, FLT_MAX);
 printf("float is %f\n", f);
}

4.8.3 Noncompliant Code Example
In this noncompliant code example, an array of two values of type short is treated as an integer
and assigned an integer value. The resulting values are indeterminate.

#include <stdio.h>

void func(void) {
 short a[2];
 a[0]=0x1111;
 a[1]=0x1111;

 *(int *)a = 0x22222222;

 printf("%x %x\n", a[0], a[1]);
}

When translating this code, an implementation can assume that no access through an integer
pointer can change the array a, consisting of shorts. Consequently, printf() may be called with
the original values of a[0] and a[1].

4.8.3.1 Implementation Details
Recent versions of GCC turn on the option -fstrict-aliasing (which allows alias-based opti-
mizations) by default with -O2. Some architectures then print “1111 1111” as a result. Without
optimization, the executable generates the expected output “2222 2222.”

To disable optimizations based on alias analysis for faulty legacy code, the option -fno-
strict-aliasing can be used as a workaround. The option -Wstrict-aliasing (which is
included in -Wall) warns about some, but not all, violations of aliasing rules when -fstrict-
aliasing is active.

Expressions (EXP) - EXP39-C. Do not access a variable through a pointer of an incompatible type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 105
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

When GCC 3.4.6 compiles this code with optimization, the assignment through the aliased pointer
is effectively eliminated.

4.8.4 Compliant Solution
This compliant solution uses a union type that includes a type compatible with the effective type
of the object:

#include <stdio.h>

void func(void) {
 union {
 short a[2];
 int i;
 } u;

 u.a[0]=0x1111;
 u.a[1]=0x1111;
 u.i = 0x22222222;

 printf("%x %x\n", u.a[0], u.a[1]);

 /* ... */
}

The printf() behavior in this compliant solution is unspecified, but it is commonly accepted as
an implementation extension. (See unspecified behavior 11.)

This function typically outputs “2222 2222.” However, there is no guarantee that this will be true,
even on implementations that defined the unspecified behavior; values of type short need not
have the same representation as values of type int.

4.8.5 Noncompliant Code Example
In this noncompliant code example, a gadget object is allocated, then realloc() is called to
create a widget object using the memory from the gadget object. Although reusing memory to
change types is acceptable, accessing the memory copied from the original object is undefined be-
havior.

#include <stdlib.h>

struct gadget {
 int i;
 double d;
 char *p;
};

struct widget {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=46498136

Expressions (EXP) - EXP39-C. Do not access a variable through a pointer of an incompatible type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 106
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 char *q;
 int j;
 double e;
};

void func(void) {
 struct gadget *gp;
 struct widget *wp;

 gp = (struct gadget *)malloc(sizeof(struct gadget));
 if (!gp) {
 /* Handle error */
 }
 /* ... Initialize gadget ... */
 wp = (struct widget *)realloc(gp, sizeof(struct widget));
 if (!wp) {
 free(gp);
 /* Handle error */
 }
 if (wp->j == 12) {
 /* ... */
 }
}

4.8.6 Compliant Solution
This compliant solution reuses the memory from the gadget object but reinitializes the memory
to a consistent state before reading from it:

#include <stdlib.h>
#include <string.h>

struct gadget {
 int i;
 double d;
 char *p;
};

struct widget {
 char *q;
 int j;
 double e;
};

void func(void) {
 struct gadget *gp;
 struct widget *wp;

 gp = (struct gadget *)malloc(sizeof (struct gadget));
 if (!gp) {

Expressions (EXP) - EXP39-C. Do not access a variable through a pointer of an incompatible type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 107
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }
 /* ... */
 wp = (struct widget *)realloc(gp, sizeof(struct widget));
 if (!wp) {
 free(gp);
 /* Handle error */
 }
 memset(wp, 0, sizeof(struct widget));
 /* ... Initialize widget ... */

 if (wp->j == 12) {
 /* ... */
 }
}

4.8.7 Noncompliant Code Example
According to the C Standard, 6.7.6.2 [ISO/IEC 9899:2011], using two or more incompatible ar-
rays in an expression is undefined behavior. (See also undefined behavior 76.)

For two array types to be compatible, both should have compatible underlying element types, and
both size specifiers should have the same constant value. If either of these properties is violated,
the resulting behavior is undefined.

In this noncompliant code example, the two arrays a and b fail to satisfy the equal size specifier
criterion for array compatibility. Because a and b are not equal, writing to what is believed to be a
valid member of a might exceed its defined memory boundary, resulting in an arbitrary memory
overwrite.

enum { ROWS = 10, COLS = 15 };

void func(void) {
 int a[ROWS][COLS];
 int (*b)[ROWS] = a;
}

Most compilers will produce a warning diagnostic if the two array types used in an expression are
incompatible.

4.8.8 Compliant Solution
In this compliant solution, b is declared to point to an array with the same number of elements as
a, satisfying the size specifier criterion for array compatibility:

enum { ROWS = 10, COLS = 15 };

void func(void) {

Expressions (EXP) - EXP39-C. Do not access a variable through a pointer of an incompatible type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 108
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 int a[ROWS][COLS];
 int (*b)[COLS] = a;
}

4.8.9 Risk Assessment
Optimizing for performance can lead to aliasing errors that can be quite difficult to detect. Fur-
thermore, as in the preceding example, unexpected results can lead to buffer overflow attacks, by-
passing security checks, or unexpected execution.

Recommendation Severity Likelihood Remediation Cost Priority Level

EXP39-C Medium Unlikely High P2 L3

4.8.10 Related Guidelines

ISO/IEC TS 17961 Accessing an object through a pointer to an in-
compatible type [ptrcomp]

MITRE CWE CWE-119, Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read

4.8.11 Bibliography

[Acton 2006] “Understanding Strict Aliasing”
GCC Known Bugs “C Bugs, Aliasing Issues while Casting to In-

compatible Types”
[ISO/IEC 9899:2011] 6.5, “Expressions”

6.7.6.2, “Array Declarators”
[Walfridsson 2003] Aliasing, Pointer Casts and GCC 3.3

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
http://gcc.gnu.org/bugs.html#known
http://mail-index.netbsd.org/tech-kern/2003/08/11/0001.html

Expressions (EXP) - EXP40-C. Do not modify constant objects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 109
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.9 EXP40-C. Do not modify constant objects

The C Standard, 6.7.3, paragraph 6 [ISO/IEC 9899:2011], states

If an attempt is made to modify an object defined with a const-qualified type through
use of an lvalue with non-const-qualified type, the behavior is undefined.

See also undefined behavior 64.

There are existing compiler implementations that allow const-qualified objects to be modified
without generating a warning message.

Avoid casting away const qualification because doing so makes it possible to modify const-
qualified objects without issuing diagnostics. (See EXP05-C. Do not cast away a const qualifica-
tion and STR30-C. Do not attempt to modify string literals for more details.)

4.9.1 Noncompliant Code Example
This noncompliant code example allows a constant object to be modified:

const int **ipp;
int *ip;
const int i = 42;

void func(void) {
 ipp = &ip; /* Constraint violation */
 ipp = &i; / Valid */
 ip = 0; / Modifies constant i (was 42) */
}

The first assignment is unsafe because it allows the code that follows it to attempt to change the
value of the const object i.

4.9.1.1 Implementation Details
If ipp, ip, and i are declared as automatic variables, this example compiles without warning with
Microsoft Visual Studio 2013 when compiled in C mode (/TC) and the resulting program changes
the value of i. GCC 4.8.1 generates a warning but compiles, and the resulting program changes
the value of i.

If ipp, ip, and i are declared with static storage duration, this program compiles without warning
and terminates abnormally with Microsoft Visual Studio 2013, and compiles with warning and
terminates abnormally with GCC 4.8.1.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340

Expressions (EXP) - EXP40-C. Do not modify constant objects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 110
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.9.2 Compliant Solution
The compliant solution depends on the intent of the programmer. If the intent is that the value of i
is modifiable, then it should not be declared as a constant, as in this compliant solution:

int **ipp;
int *ip;
int i = 42;

void func(void) {
 ipp = &ip; /* Valid */
 ipp = &i; / Valid */
 ip = 0; / Valid */
}

If the intent is that the value of i is not meant to change, then do not write noncompliant code that
attempts to modify it.

4.9.3 Risk Assessment
Modifying constant objects through nonconstant references is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP40-C Low Unlikely Medium P2 L3

4.9.4 Related Guidelines

CERT C Secure Coding Standard EXP05-C. Do not cast away a const qualifica-
tion
STR30-C. Do not attempt to modify string lit-
erals

4.9.5 Bibliography

[ISO/IEC 9899:2011] Subclause 6.7.3, “Type Qualifiers”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340

Expressions (EXP) - EXP42-C. Do not compare padding data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 111
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.10 EXP42-C. Do not compare padding data

The C Standard, 6.7.2.1 [ISO/IEC 9899:2011], states

There may be unnamed padding within a structure object, but not at its beginning. . . .
There may be unnamed padding at the end of a structure or union.

Subclause 6.7.9, paragraph 9, states that
unnamed members of objects of structure and union type do not participate in initializa-
tion. Unnamed members of structure objects have indeterminate value even after initiali-
zation.

The only exception is that padding bits are set to zero when a static or thread-local object is im-
plicitly initialized (paragraph10):

If an object that has automatic storage duration is not initialized explicitly, its value is inde-
terminate. If an object that has static or thread storage duration is not initialized explicitly,
then:

• if it is an aggregate, every member is initialized (recursively) according to these rules,
and any padding is initialized to zero bits;

• if it is a union, the first named member is initialized (recursively) according to these
rules, and any padding is initialized to zero bits;

Because these padding values are unspecified, attempting a byte-by-byte comparison between
structures can lead to incorrect results [Summit 1995].

4.10.1 Noncompliant Code Example
In this noncompliant code example, memcmp() is used to compare the contents of two structures,
including any padding bytes:

#include <string.h>

struct s {
 char c;
 int i;
 char buffer[13];
};

void compare(const struct s *left, const struct s *right) {
 if (0 == memcmp(left, right, sizeof(struct s))) {
 /* ... */
 }
}

Expressions (EXP) - EXP42-C. Do not compare padding data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 112
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.10.2 Compliant Solution
In this compliant solution, all of the fields are compared manually to avoid comparing any pad-
ding bytes:

#include <string.h>

struct s {
 char c;
 int i;
 char buffer[13];
};

void compare(const struct s *left, const struct s *right) {
 if ((left && right) &&
 (left->c == right->c) &&
 (left->i == right->i) &&
 (0 == memcmp(left->buffer, right->buffer, 13))) {
 /* ... */
 }
}

4.10.3 Exceptions
EXP42-C-EX1: A structure can be defined such that the members are aligned properly or the
structure is packed using implementation-specific packing instructions. This is true only when the
members’ data types have no padding bits of their own and when their object representations are
the same as their value representations. This frequently is not true for the _Bool type or floating-
point types and need not be true for pointers. In such cases, the compiler does not insert padding,
and use of functions such as memcmp() is acceptable.

This compliant example uses the #pragma pack compiler extension from Microsoft Visual Stu-
dio to ensure the structure members are packed as tightly as possible:

#include <string.h>

#pragma pack(push, 1)
struct s {
 char c;
 int i;
 char buffer[13];
};
#pragma pack(pop)

void compare(const struct s *left, const struct s *right) {
 if (0 == memcmp(left, right, sizeof(struct s))) {
 /* ... */

http://msdn.microsoft.com/en-us/library/2e70t5y1.aspx

Expressions (EXP) - EXP42-C. Do not compare padding data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 113
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
}

4.10.4 Risk Assessment
Comparing padding bytes, when present, can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP42-C Medium Probable Medium P8 L2

4.10.5 Related Guidelines
ISO/IEC TS 17961 Comparison of padding data [padcomp]
SEI CERT C++ Coding Standard EXP62-CPP. Do not access the bits of an ob-

ject representation that are not part of the ob-
ject’s value representation

4.10.6 Bibliography

[ISO/IEC 9899:2011] 6.7.2.1, “Structure and Union Specifiers”
6.7.9, “Initialization”

[Summit 1995] Question 2.8
Question 2.12

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=166756362
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=166756362
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=166756362
http://c-faq.com/struct/compare.html
http://c-faq.com/struct/compare.html
http://c-faq.com/struct/padding.html

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 114
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.11 EXP43-C. Avoid undefined behavior when using restrict-qualified
pointers

An object that is accessed through a restrict-qualified pointer has a special association with
that pointer. This association requires that all accesses to that object use, directly or indirectly, the
value of that particular pointer. The intended use of the restrict qualifier is to promote optimiza-
tion, and deleting all instances of the qualifier from a program does not change its meaning (that
is, observable behavior). In the absence of this qualifier, other pointers can alias this object. Cach-
ing the value in an object designated through a restrict-qualified pointer is safe at the begin-
ning of the block in which the pointer is declared because no preexisting aliases may also be used
to reference that object. The cached value must be restored to the object by the end of the block,
where preexisting aliases again become available. New aliases may be formed within the block,
but these must all depend on the value of the restrict-qualified pointer so that they can be iden-
tified and adjusted to refer to the cached value. For a restrict-qualified pointer at file scope,
the block is the body of each function in the file [Walls 2006]. Developers should be aware that
C++ does not support the restrict qualifier, but some C++ compiler implementations support
an equivalent qualifier as an extension.

The C Standard [ISO/IEC 9899:2011] identifies the following undefined behavior:

A restrict-qualified pointer is assigned a value based on another restricted pointer whose
associated block neither began execution before the block associated with this pointer,
nor ended before the assignment (6.7.3.1).

This is an oversimplification, however, and it is important to review the formal definition of re-
strict in subclause 6.7.3.1 of the C Standard to properly understand undefined behaviors associ-
ated with the use of restrict-qualified pointers.

4.11.1 Overlapping Objects
The restrict qualifier requires that the pointers do not reference overlapping objects. If the ob-
jects referenced by arguments to functions overlap (meaning the objects share some common
memory addresses), the behavior is undefined.

4.11.1.1 Noncompliant Code Example
This code example is noncompliant because an assignment is made between two restrict-qual-
ified pointers in the same scope:

int *restrict a;
int *restrict b;

extern int c[];

int main(void) {
 c[0] = 17;
 c[1] = 18;

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 115
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 a = &c[0];
 b = &c[1];
 a = b; /* Undefined behavior */
 /* ... */
}

Note that undefined behavior occurs only when a is assigned to b. It is valid for a and b to point
into the same array object, provided the range of elements accessed through one of the pointers
does not overlap with the range of elements accessed through the other pointer.

4.11.1.2 Compliant Solution
One way to eliminate the undefined behavior is simply to remove the restrict-qualification
from the affected pointers:

int *a;
int *b;

extern int c[];

int main(void) {
 c[0] = 17;
 c[1] = 18;
 a = &c[0];
 b = &c[1];
 a = b; /* Defined behavior */
 /* ... */
}

4.11.2 restrict-Qualified Function Parameters
When calling functions that have restrict-qualified function parameters, it is important that the
pointer arguments do not reference overlapping objects if one or more of the pointers are used to
modify memory. Consequently, it is important to understand the semantics of the function being
called.

4.11.2.1 Noncompliant Code Example
In this noncompliant code example, the function f() accepts three parameters. The function cop-
ies n integers from the int array referenced by the restrict-qualified pointer p to the int array
referenced by the restrict-qualified pointer q. Because the destination array is modified during
each execution of the function (for which n is nonzero), if the array is accessed through one of the

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 116
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

pointer parameters, it cannot also be accessed through the other. Declaring these function parame-
ters as restrict-qualified pointers allows aggressive optimization by the compiler but can also
result in undefined behavior if these pointers refer to overlapping objects.

#include <stddef.h>
void f(size_t n, int *restrict p, const int *restrict q) {
 while (n-- > 0) {
 *p++ = *q++;
 }
}

void g(void) {
 extern int d[100];
 /* ... */
 f(50, d + 1, d); /* Undefined behavior */
}

The function g() declares an array d consisting of 100 int values and then invokes f() to copy
memory from one area of the array to another. This call has undefined behavior because each of
d[1]through d[49] is accessed through both p and q.

4.11.2.2 Compliant Solution
In this compliant solution, the function f() is unchanged but the programmer has ensured that
none of the calls to f() result in undefined behavior. The call to f() in g() is valid because the
storage allocated to d is effectively divided into two disjoint objects.

#include <stddef.h>
void f(size_t n, int *restrict p, const int *restrict q) {
 while (n-- > 0) {
 *p++ = *q++;
 }
}

void g(void) {
 extern int d[100];
 /* ... */
 f(50, d + 50, d); /* Defined behavior */
}

4.11.2.3 Noncompliant Code Example
In this noncompliant code example, the function add() adds the integer array referenced by the
restrict-qualified pointers lhs to the integer array referenced by the restrict-qualified
pointer rhs and stores the result in the restrict-qualified pointer referenced by res. The func-
tion f() declares an array a consisting of 100 int values and then invokes add() to copy

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 117
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

memory from one area of the array to another. The call add(100, a, a, a)has undefined be-
havior because the object modified by res is accessed by lhs and rhs.

#include <stddef.h>

void add(size_t n, int *restrict res, const int *restrict lhs,
 const int *restrict rhs) {
 for (size_t i = 0; i < n; ++i) {
 res[i] = lhs[i] + rhs[i];
 }
}

void f(void) {
 int a[100];
 add(100, a, a, a); /* Undefined behavior */
}

4.11.2.4 Compliant Solution
In this compliant solution, an unmodified object is aliased through two restricted pointers. Be-
cause a and b are disjoint arrays, a call of the form add(100, a, b, b) has defined behavior,
because array b is not modified within function add.

#include <stddef.h>
void add(size_t n, int *restrict res, const int *restrict lhs,
 const int *restrict rhs) {
 for (size_t i = 0; i < n; ++i) {
 res[i] = lhs[i] + rhs[i];
 }
}

void f(void) {
 int a[100];
 int b[100];
 add(100, a, b, b); /* Defined behavior */
}

4.11.3 Invoking Library Functions with restrict-Qualified Pointers
Ensure that restrict-qualified source and destination pointers do not reference overlapping ob-
jects when invoking library functions. For example, the following table lists C standard library
functions that copy memory from a source object referenced by a restrict-qualified pointer to a
destination object that is also referenced by a restrict-qualified pointer:

Standard C Annex K

strcpy() strcpy_s()
strncpy() strncpy_s()

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 118
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Standard C Annex K

strcat() strcat_s()
strncat() strncat_s()
memcpy() memcpy_s()
 strtok_s()

If the objects referenced by arguments to functions overlap (meaning the objects share some com-
mon memory addresses), the behavior is undefined. (See also undefined behavior 68.) The result
of the functions is unknown, and data may be corrupted. As a result, these functions must never
be passed pointers to overlapping objects. If data must be copied between objects that share com-
mon memory addresses, a copy function guaranteed to work on overlapping memory, such as
memmove(), should be used.

4.11.3.1 Noncompliant Code Example
In this noncompliant code example, the values of objects referenced by ptr1 and ptr2 become
unpredictable after the call to memcpy() because their memory areas overlap:

#include <string.h>

void func(void) {
 char c_str[]= "test string";
 char *ptr1 = c_str;
 char *ptr2;

 ptr2 = ptr1 + 3;
 /* Undefined behavior because of overlapping objects */
 memcpy(ptr2, ptr1, 6);
 /* ... */
}

4.11.3.2 Compliant Solution
In this compliant solution, the call to memcpy() is replaced with a call to memmove(). The
memmove() function performs the same operation as memcpy() when the memory regions do not
overlap. When the memory regions do overlap, the n characters from the object pointed to by the
source (ptr1) are first copied into a temporary array of n characters that does not overlap the ob-
jects pointed to by the destination (ptr2) or the source. The n characters from the temporary array
are then copied into the object pointed to by the destination.

#include <string.h>

void func(void) {
 char c_str[]= "test string";
 char *ptr1 = c_str;
 char *ptr2;

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 119
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 ptr2 = ptr1 + 3;
 memmove(ptr2, ptr1, 6); /* Replace call to memcpy() */
 /* ... */
}

Similar solutions using memmove() can replace the string functions as long as care is taken re-
garding the byte size of the characters and proper null-termination of the copied string.

4.11.4 Calling Functions with restrict-Qualified Pointer to a const-Qualified
Type

Ensure that functions that accept a restrict-qualified pointer to a const-qualified type do not
modify the object referenced by that pointer. Formatted input and output standard library func-
tions frequently fit this description. The following table lists of some of the common functions for
which the format argument is a restrict-qualified pointer to a const-qualified type.

Standard C Annex K

printf() printf_s()
scanf() scanf_s()
sprintf() sprintf_s()
snprintf() snprintf_s()

For formatted output functions such as printf(), it is unlikely that a programmer would modify
the format string. However, an attacker may attempt to do so if a program violates FIO30-C. Ex-
clude user input from format strings and passes tainted values as part of the format string.

4.11.4.1 Noncompliant Code Example
In this noncompliant code example, the programmer is attempting to overwrite the format string
with a string value read in from stdin such as “%d%f 1 3.3” and use the resulting modified
string of “%s%d%f” to input the subsequent values of 1 and 3.3:

#include <stdio.h>

void func(void) {
 int i;
 float x;
 char format[100] = "%s";
 /* Undefined behavior */
 int n = scanf(format, format + 2, &i, &x);
 /* ... */
}

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 120
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.11.4.2 Compliant Solution
The intended results are achieved by this compliant solution:

#include <stdio.h>

void func(void) {
 int i;
 float x
 int n = scanf("%d%f", &i, &x); /* Defined behavior */
 /* ... */
}

4.11.5 Outer-to-Inner Assignments between Restricted Pointers
The assignment between restrict-qualified pointers declared in an inner nested block from an
outer block has defined behavior.

4.11.5.1 Noncompliant Code Example
The assignment of restrict-qualified pointers to other restrict-qualified pointers within the
same block has undefined behavior:

void func(void) {
 int *restrict p1;
 int *restrict q1;

 int *restrict p2 = p1; /* Undefined behavior */
 int *restrict q2 = q1; /* Undefined behavior */
 }

4.11.5.2 Compliant Solution
The intended results can be achieved using an inner nested block, as shown in this compliant solu-
tion:

void func(void) {
 int *restrict p1;
 int *restrict q1;
 { /* Added inner block */
 int *restrict p2 = p1; /* Valid, well-defined behavior */
 int *restrict q2 = q1; /* Valid, well-defined behavior */
 }
}

4.11.6 Risk Assessment
The incorrect use of restrict-qualified pointers can result in undefined behavior that might be
exploited to cause data integrity violations.

Expressions (EXP) - EXP43-C. Avoid undefined behavior when using restrict-qualified pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 121
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Rule Severity Likelihood Remediation Cost Priority Level

EXP43-C Medium Probable High P4 L3

4.11.7 Related Guidelines

CERT C Secure Coding Standard FIO30-C. Exclude user input from format
strings

ISO/IEC TR 24772:2013 Passing Parameters and Return Values [CSJ]
ISO/IEC TS 17961 Passing pointers into the same object as argu-

ments to different restrict-qualified parameters
[restrict]

MISRA C:2012 Rule 8.14 (required)1

4.11.8 Bibliography

[ISO/IEC 9899:2011] 6.7.3.1, “Formal Definition of restrict”
[Walls 2006]

1. MISRA Rule 8.14 prohibits the use of the restrict keyword except in C standard library func-
tions.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285

Expressions (EXP) - EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 122
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.12 EXP44-C. Do not rely on side effects in operands to sizeof,
_Alignof, or _Generic

Some operators do not evaluate their operands beyond the type information the operands provide.
When using one of these operators, do not pass an operand that would otherwise yield a side ef-
fect since the side effect will not be generated.

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. In most cases, the operand is not evaluated. A possible exception
is when the type of the operand is a variable length array type (VLA); then the expression is eval-
uated. When part of the operand of the sizeof operator is a VLA type and when changing the
value of the VLA’s size expression would not affect the result of the operator, it is unspecified
whether or not the size expression is evaluated. (See unspecified behavior 22.)

The operand passed to_Alignof is never evaluated, despite not being an expression. For in-
stance, if the operand is a VLA type and the VLA’s size expression contains a side effect, that
side effect is never evaluated.

The operand used in the controlling expression of a _Generic selection expression is never eval-
uated.

Providing an expression that appears to produce side effects may be misleading to programmers
who are not aware that these expressions are not evaluated, and in the case of a VLA used in
sizeof, have unspecified results. As a result, programmers may make invalid assumptions about
program state, leading to errors and possible software vulnerabilities.

This rule is similar to PRE31-C. Avoid side effects in arguments to unsafe macros.

4.12.1 Noncompliant Code Example (sizeof)
In this noncompliant code example, the expression a++ is not evaluated:

#include <stdio.h>

void func(void) {
 int a = 14;
 int b = sizeof(a++);
 printf("%d, %d\n", a, b);
}

Consequently, the value of a after b has been initialized is 14.

Expressions (EXP) - EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 123
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.12.2 Compliant Solution (sizeof)
In this compliant solution, the variable a is incremented outside of the sizeof operation:

#include <stdio.h>

void func(void) {
 int a = 14;
 int b = sizeof(a);
 ++a;
 printf("%d, %d\n", a, b);
}

4.12.3 Noncompliant Code Example (sizeof, VLA)
In this noncompliant code example, the expression ++n in the initialization expression of a must
be evaluated because its value affects the size of the VLA operand of the sizeof operator. How-
ever, in the initialization expression of b, the expression ++n % 1 evaluates to 0. This means that
the value of n does not affect the result of the sizeof operator. Consequently, it is unspecified
whether or not n will be incremented when initializing b.

#include <stddef.h>
#include <stdio.h>

void f(size_t n) {
 /* n must be incremented */
 size_t a = sizeof(int[++n]);

 /* n need not be incremented */
 size_t b = sizeof(int[++n % 1 + 1]);

 printf("%zu, %zu, %zu\n", a, b, n);
 /* ... */
}

4.12.4 Compliant Solution (sizeof, VLA)
This compliant solution avoids changing the value of the variable n used in each sizeof expres-
sion and instead increments n safely afterwards:

#include <stddef.h>
#include <stdio.h>

void f(size_t n) {
 size_t a = sizeof(int[n + 1]);
 ++n;

 size_t b = sizeof(int[n % 1 + 1]);
 ++n;

Expressions (EXP) - EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 124
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 printf("%zu, %zu, %zu\n", a, b, n);
 /* ... */
}

4.12.5 Noncompliant Code Example (_Generic)
This noncompliant code example attempts to modify a variable’s value as part of the _Generic
selection control expression. The programmer may expect that a is incremented, but because
_Generic does not evaluate its control expression, the value of a is not modified.

#include <stdio.h>

#define S(val) _Generic(val, int : 2, \
 short : 3, \
 default : 1)
void func(void) {
 int a = 0;
 int b = S(a++);
 printf("%d, %d\n", a, b);
}

4.12.6 Compliant Solution (_Generic)
In this compliant solution, a is incremented outside of the _Generic selection expression:

#include <stdio.h>

#define S(val) _Generic(val, int : 2, \
 short : 3, \
 default : 1)
void func(void) {
 int a = 0;
 int b = S(a);
 ++a;
 printf("%d, %d\n", a, b);
}

4.12.7 Noncompliant Code Example (_Alignof)
This noncompliant code example attempts to modify a variable while getting its default alignment
value. The user may have expected val to be incremented as part of the _Alignof expression,
but because _Alignof does not evaluate its operand, val is unchanged.

#include <stdio.h>

void func(void) {
 int val = 0;
 /* ... */

Expressions (EXP) - EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 125
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 size_t align = _Alignof(int[++val]);
 printf("%zu, %d\n", align, val);
 /* ... */
}

4.12.8 Compliant Solution (_Alignof)
This compliant solution moves the expression out of the _Alignof operator:

#include <stdio.h>
void func(void) {
 int val = 0;
 /* ... */
 ++val;
 size_t align = _Alignof(int[val]);
 printf("%zu, %d\n, align, val);
 /* ... */
}

4.12.9 Exceptions
EXP44-C-EX1: Reading a volatile-qualified value is a side-effecting operation. However, ac-
cessing a value through a volatile-qualified type does not guarantee side effects will happen on
the read of the value unless the underlying object is also volatile-qualified. Idiomatic reads of a
volatile-qualified object are permissible as an operand to a sizeof(), _Alignof(), or _Ge-
neric expression, as in the following example:

void f(void) {
 int * volatile v;
 (void)sizeof(*v);
}

4.12.10 Risk Assessment
If expressions that appear to produce side effects are supplied to an operator that does not evaluate
its operands, the results may be different than expected. Depending on how this result is used, it
can lead to unintended program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP44-C Low Unlikely Low P3 L3

4.12.11 Related Guidelines

SEI CERT C++ Coding Standard EXP52-CPP. Do not rely on side effects in une-
valuated operands

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=150044713
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=150044713

Expressions (EXP) - EXP45-C. Do not perform assignments in selection statements

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 126
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.13 EXP45-C. Do not perform assignments in selection statements

Do not use the assignment operator in the contexts listed in the following table because doing so
typically indicates programmer error and can result in unexpected behavior.

Operator Context

if Controlling expression

while Controlling expression

do ... while Controlling expression

for Second operand

?: First operand

?: Second or third operands, where the ternary expres-
sion is used in any of these contexts

&& Either operand

|| either operand

, Second operand, when the comma expression is
used in any of these contexts

4.13.1 Noncompliant Code Example
In this noncompliant code example, an assignment expression is the outermost expression in an
if statement:

if (a = b) {
 /* ... */
}

Although the intent of the code may be to assign b to a and test the value of the result for equality
to 0, it is frequently a case of the programmer mistakenly using the assignment operator = instead
of the equals operator ==. Consequently, many compilers will warn about this condition, making
this coding error detectable by adhering to MSC00-C. Compile cleanly at high warning levels.

4.13.2 Compliant Solution (Unintentional Assignment)
When the assignment of b to a is not intended, the conditional block is now executed when a is
equal to b:

if (a == b) {
 /* ... */
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Expressions (EXP) - EXP45-C. Do not perform assignments in selection statements

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 127
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.13.3 Compliant Solution (Intentional Assignment)
When the assignment is intended, this compliant solution explicitly uses inequality as the outer-
most expression while performing the assignment in the inner expression:

if ((a = b) != 0) {
 /* ... */
}

It is less desirable in general, depending on what was intended, because it mixes the assignment in
the condition, but it is clear that the programmer intended the assignment to occur.

4.13.4 Noncompliant Code Example
In this noncompliant code example, the expression x = y is used as the controlling expression of
the while statement:

do { /* ... */ } while (foo(), x = y);

The same result can be obtained using the for statement, which is specifically designed to evalu-
ate an expression on each iteration of the loop, just before performing the test in its controlling ex-
pression:

for (; x; foo(), x = y) { /* ... */ }

4.13.5 Compliant Solution (Unintentional Assignment)
When the assignment of y to x is not intended, the conditional block should be executed only
when x is equal to y, as in this compliant solution:

do { /* ... */ } while (foo(), x == y);

4.13.6 Compliant Solution (Intentional Assignment)
When the assignment is intended, this compliant solution can be used:

do { /* ... */ } while (foo(), (x = y) != 0);

4.13.7 Noncompliant Code Example
In this noncompliant example, the expression p = q is used as the controlling expression of the
while statement:

do { /* ... */ } while (x = y, p = q);

Expressions (EXP) - EXP45-C. Do not perform assignments in selection statements

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 128
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.13.8 Compliant Solution
In this compliant solution, the expression x = y is not used as the controlling expression of the
while statement:

do { /* ... */ } while (x = y, p == q);

4.13.9 Noncompliant Code Example
This noncompliant code example has a typo that results in an assignment rather than a compari-
son.

while (ch = '\t' && ch == ' ' && ch == '\n') {
 /* ... */
}

Many compilers will warn about this condition. This coding error would typically be eliminated
by adherence to MSC00-C. Compile cleanly at high warning levels. Although this code compiles,
it will cause unexpected behavior to an unsuspecting programmer. If the intent was to verify a
string such as a password, user name, or group user ID, the code may produce significant vulnera-
bilities and require significant debugging.

4.13.10 Compliant Solution (RHS Variable)
When comparisons are made between a variable and a literal or const-qualified variable, placing
the variable on the right of the comparison operation can prevent a spurious assignment.

In this code example, the literals are placed on the left-hand side of each comparison. If the pro-
grammer were to inadvertently use an assignment operator, the statement would assign ch to
'\t', which is invalid and produces a diagnostic message.

while ('\t' = ch && ' ' == ch && '\n' == ch) {
 /* ... */
}

Due to the diagnostic, the typo will be easily spotted and fixed.

while ('\t' == ch && ' ' == ch && '\n' == ch) {
 /* ... */
}

As a result, any mistaken use of the assignment operator that could otherwise create a vulnerabil-
ity for operations such as string verification will result in a compiler diagnostic regardless of com-
piler, warning level, or implementation.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Expressions (EXP) - EXP45-C. Do not perform assignments in selection statements

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 129
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.13.11 Exceptions
EXP45-C-EX1: Assignment can be used where the result of the assignment is itself an operand to
a comparison expression or relational expression. In this compliant example, the expression x =
y is itself an operand to a comparison operation:

if ((x = y) != 0) { /* ... */ }

EXP45-C-EX2: Assignment can be used where the expression consists of a single primary ex-
pression. The following code is compliant because the expression x = y is a single primary ex-
pression:

if ((x = y)) { /* ... */ }

The following controlling expression is noncompliant because && is not a comparison or rela-
tional operator and the entire expression is not primary:

if ((v = w) && flag) { /* ... */ }

When the assignment of v to w is not intended, the following controlling expression can be used to
execute the conditional block when v is equal to w:

if ((v == w) && flag) { /* ... */ };

When the assignment is intended, the following controlling expression can be used:

if (((v = w) != 0) && flag) { /* ... */ };

EXP45-C-EX3: Assignment can be used in a function argument or array index. In this compliant
solution, the expression x = y is used in a function argument:

if (foo(x = y)) { /* ... */ }

4.13.12 Risk Assessment
Errors of omission can result in unintended program flow.

Recommendation Severity Likelihood Remediation Cost Priority Level

EXP45-C Low Likely Medium P6 L2

Expressions (EXP) - EXP45-C. Do not perform assignments in selection statements

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 130
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.13.13 Related Guidelines

SEI CERT C++ Coding Standard EXP19-CPP. Do not perform assignments in
conditional expressions

CERT Oracle Secure Coding Standard for Java EXP51-J. Do not perform assignments in con-
ditional expressions

ISO/IEC TR 24772:2013 Likely Incorrect Expression [KOA]
ISO/IEC TS 17961 No assignment in conditional expressions

[boolasgn]
MITRE CWE CWE-480, Use of Incorrect Operator

4.13.14 Bibliography

[Dutta 03] “Best Practices for Programming in C”
[Hatton 1995] Section 2.7.2, “Errors of Omission and Addi-

tion”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=48302889
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=48302889
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=59965654
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=59965654
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/480.html

Expressions (EXP) - EXP46-C. Do not use a bitwise operator with a Boolean-like operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 131
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.14 EXP46-C. Do not use a bitwise operator with a Boolean-like
operand

Mixing bitwise and relational operators in the same full expression can be a sign of a logic error
in the expression where a logical operator is usually the intended operator. Do not use the bitwise
AND (&), bitwise OR (|), or bitwise XOR (^) operators with an operand of type _Bool, or the re-
sult of a relational-expression or equality-expression. If the bitwise operator is intended, it should
be indicated with use of a parenthesized expression.

4.14.1 Noncompliant Code Example
In this noncompliant code example, a bitwise & operator is used with the results of an equality-
expression:

if (!(getuid() & geteuid() == 0)) {
 /* ... */
}

4.14.2 Compliant Solution
This compliant solution uses the && operator for the logical operation within the conditional ex-
pression:

if (!(getuid() && geteuid() == 0)) {
 /* ... */
}

4.14.3 Risk Assessment
Rule Severity Likelihood Remediation Cost Priority Level

EXP46-C Low Likely Low P9 L2

4.14.4 Related Guidelines
ISO/IEC TR 24772:2013 Likely Incorrect Expression [KOA]
MITRE CWE CWE-480, Use of incorrect operator

4.14.5 Bibliography

[Hatton 1995] Section 2.7.2, “Errors of Omission and Addi-
tion”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/480.html

Integers (INT) - INT30-C. Ensure that unsigned integer operations do not wrap

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 132
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Integers (INT)

5.1 INT30-C. Ensure that unsigned integer operations do not wrap

The C Standard, 6.2.5, paragraph 9 [ISO/IEC 9899:2011], states

A computation involving unsigned operands can never overflow, because a result that
cannot be represented by the resulting unsigned integer type is reduced modulo the
number that is one greater than the largest value that can be represented by the result-
ing type.

This behavior is more informally called unsigned integer wrapping. Unsigned integer operations
can wrap if the resulting value cannot be represented by the underlying representation of the inte-
ger. The following table indicates which operators can result in wrapping:

Operator Wrap Operator Wrap Operator Wrap Operator Wrap

+ Yes -= Yes << Yes < No
- Yes *= Yes >> No > No
* Yes /= No & No >= No
/ No %= No | No <= No
% No <<= Yes ^ No == No
++ Yes >>= No ~ No != No
-- Yes &= No ! No && No
= No |= No un + No || No
+= Yes ^= No un - Yes ?: No

The following sections examine specific operations that are susceptible to unsigned integer wrap.
When operating on integer types with less precision than int, integer promotions are applied. The
usual arithmetic conversions may also be applied to (implicitly) convert operands to equivalent
types before arithmetic operations are performed. Programmers should understand integer conver-
sion rules before trying to implement secure arithmetic operations. (See INT02-C. Understand in-
teger conversion rules.)

Integer values must not be allowed to wrap, especially if they are used in any of the following
ways:
• Integer operands of any pointer arithmetic, including array indexing
• The assignment expression for the declaration of a variable length array
• The postfix expression preceding square brackets [] or the expression in square brackets []

of a subscripted designation of an element of an array object

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322

Integers (INT) - INT30-C. Ensure that unsigned integer operations do not wrap

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 133
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• Function arguments of type size_t or rsize_t (for example, an argument to a memory al-
location function)

• In security-critical code

The C Standard defines arithmetic on atomic integer types as read-modify-write operations with
the same representation as regular integer types. As a result, wrapping of atomic unsigned integers
is identical to regular unsigned integers and should also be prevented or detected.

5.1.1 Addition
Addition is between two operands of arithmetic type or between a pointer to an object type and an
integer type. This rule applies only to addition between two operands of arithmetic type. (See
ARR37-C. Do not add or subtract an integer to a pointer to a non-array object and ARR30-C. Do
not form or use out-of-bounds pointers or array subscripts.)

Incrementing is equivalent to adding 1.

5.1.1.1 Noncompliant Code Example
This noncompliant code example can result in an unsigned integer wrap during the addition of the
unsigned operands ui_a and ui_b. If this behavior is unexpected, the resulting value may be
used to allocate insufficient memory for a subsequent operation or in some other manner that can
lead to an exploitable vulnerability.

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int usum = ui_a + ui_b;
 /* ... */
}

5.1.1.2 Compliant Solution (Precondition Test)
This compliant solution performs a precondition test of the operands of the addition to guarantee
there is no possibility of unsigned wrap:

#include <limits.h>

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int usum;
 if (UINT_MAX - ui_a < ui_b) {
 /* Handle error */
 } else {
 usum = ui_a + ui_b;
 }
 /* ... */
}

Integers (INT) - INT30-C. Ensure that unsigned integer operations do not wrap

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 134
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.1.3 Compliant Solution (Postcondition Test)
This compliant solution performs a postcondition test to ensure that the result of the unsigned ad-
dition operation usum is not less than the first operand:

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int usum = ui_a + ui_b;
 if (usum < ui_a) {
 /* Handle error */
 }
 /* ... */
}

5.1.2 Subtraction
Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified
versions of compatible object types, or a pointer to an object type and an integer type. This rule
applies only to subtraction between two operands of arithmetic type. (See ARR36-C. Do not sub-
tract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or sub-
tract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out-of-
bounds pointers or array subscripts for information about pointer subtraction.)

Decrementing is equivalent to subtracting 1.

5.1.2.1 Noncompliant Code Example
This noncompliant code example can result in an unsigned integer wrap during the subtraction of
the unsigned operands ui_a and ui_b. If this behavior is unanticipated, it may lead to an exploit-
able vulnerability.

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int udiff = ui_a - ui_b;
 /* ... */
}

5.1.2.2 Compliant Solution (Precondition Test)
This compliant solution performs a precondition test of the unsigned operands of the subtraction
operation to guarantee there is no possibility of unsigned wrap:

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int udiff;
 if (ui_a < ui_b){
 /* Handle error */
 } else {
 udiff = ui_a - ui_b;
 }

Integers (INT) - INT30-C. Ensure that unsigned integer operations do not wrap

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 135
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* ... */
}

5.1.2.3 Compliant Solution (Postcondition Test)
This compliant solution performs a postcondition test that the result of the unsigned subtraction
operation udiff is not greater than the minuend:

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int udiff = ui_a - ui_b;
 if (udiff > ui_a) {
 /* Handle error */
 }
 /* ... */
}

5.1.3 Multiplication
Multiplication is between two operands of arithmetic type.

5.1.3.1 Noncompliant Code Example
The Mozilla Foundation Security Advisory 2007-01 describes a heap buffer overflow vulnerabil-
ity in the Mozilla Scalable Vector Graphics (SVG) viewer resulting from an unsigned integer
wrap during the multiplication of the signed int value pen->num_vertices and the size_t
value sizeof(cairo_pen_vertex_t) [VU#551436]. The signed int operand is converted
to size_t prior to the multiplication operation so that the multiplication takes place between two
size_t integers, which are unsigned. (See INT02-C. Understand integer conversion rules.)

pen->num_vertices = _cairo_pen_vertices_needed(
 gstate->tolerance, radius, &gstate->ctm
);
pen->vertices = malloc(
 pen->num_vertices * sizeof(cairo_pen_vertex_t)
);

The unsigned integer wrap can result in allocating memory of insufficient size.

5.1.3.2 Compliant Solution
This compliant solution tests the operands of the multiplication to guarantee that there is no un-
signed integer wrap:

pen->num_vertices = _cairo_pen_vertices_needed(
 gstate->tolerance, radius, &gstate->ctm
);

if (pen->num_vertices > SIZE_MAX / sizeof(cairo_pen_vertex_t)) {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322

Integers (INT) - INT30-C. Ensure that unsigned integer operations do not wrap

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 136
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
}
pen->vertices = malloc(
 pen->num_vertices * sizeof(cairo_pen_vertex_t)
);

5.1.4 Exceptions
INT30-C-EX1: Unsigned integers can exhibit modulo behavior (wrapping) when necessary for
the proper execution of the program. It is recommended that the variable declaration be clearly
commented as supporting modulo behavior and that each operation on that integer also be clearly
commented as supporting modulo behavior.

INT30-C-EX2: Checks for wraparound can be omitted when it can be determined at compile time
that wraparound will not occur. As such, the following operations on unsigned integers require no
validation:
• Operations on two compile-time constants
• Operations on a variable and 0 (except division or remainder by 0)
• Subtracting any variable from its type’s maximum; for example, any unsigned int may

safely be subtracted from UINT_MAX
• Multiplying any variable by 1
• Division or remainder, as long as the divisor is nonzero
• Right-shifting any type maximum by any number no larger than the type precision; for exam-

ple, UINT_MAX >> x is valid as long as 0 <= x < 32 (assuming that the precision of un-
signed int is 32 bits)

INT30-C-EX3. The left-shift operator takes two operands of integer type. Unsigned left shift <<
can exhibit modulo behavior (wrapping). This exception is provided because of common usage,
because this behavior is usually expected by the programmer, and because the behavior is well de-
fined. For examples of usage of the left-shift operator, see INT34-C. Do not shift an expression by
a negative number of bits or by greater than or equal to the number of bits that exist in the oper-
and.

5.1.5 Risk Assessment
Integer wrap can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule Severity Likelihood Remediation Cost Priority Level

INT30-C High Likely High P9 L2

Integers (INT) - INT30-C. Ensure that unsigned integer operations do not wrap

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 137
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.5.1 Related Vulnerabilities
CVE-2009-1385 results from a violation of this rule. The value performs an unchecked subtrac-
tion on the length of a buffer and then adds those many bytes of data to another buffer [xorl
2009]. This can cause a buffer overflow, which allows an attacker to execute arbitrary code.

A Linux Kernel vmsplice exploit, described by Rafal Wojtczuk [Wojtczuk 2008], documents a
vulnerability and exploit arising from a buffer overflow (caused by unsigned integer wrapping).

Don Bailey [Bailey 2014] describes an unsigned integer wrap vulnerability in the LZO compres-
sion algorithm, which can be exploited in some implementations.

CVE-2014-4377 describes a vulnerability in iOS 7.1 resulting from a multiplication operation that
wraps, producing an insufficiently small value to pass to a memory allocation routine, which is
subsequently overflowed.

5.1.6 Related Guidelines

SEI CERT C Coding Standard INT02-C. Understand integer conversion rules
ARR30-C. Do not form or use out-of-bounds
pointers or array subscripts
ARR36-C. Do not subtract or compare two
pointers that do not refer to the same array
ARR37-C. Do not add or subtract an integer to
a pointer to a non-array object
CON08-C. Do not assume that a group of calls
to independently atomic methods is atomic

ISO/IEC TR 24772:2013 Arithmetic Wrap-Around Error [FIF]
MITRE CWE CWE-190, Integer Overflow or Wraparound

5.1.7 Bibliography

[Bailey 2014] Raising Lazarus - The 20 Year Old Bug that
Went to Mars

[Dowd 2006] Chapter 6, “C Language Issues” (“Arithmetic
Boundary Conditions,” pp. 211–223)

[ISO/IEC 9899:2011] Subclause 6.2.5, “Types”
[Seacord 2013b] Chapter 5, “Integer Security”
[Viega 2005] Section 5.2.7, “Integer Overflow”
[VU#551436]
[Warren 2002] Chapter 2, “Basics”
[Wojtczuk 2008]
[xorl 2009] “CVE-2009-1385: Linux Kernel E1000 Integer

Underflow”

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1385
http://xorl.wordpress.com/2009/06/10/cve-2009-1385-linux-kernel-e1000-integer-underflow/
http://xorl.wordpress.com/2009/06/10/cve-2009-1385-linux-kernel-e1000-integer-underflow/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-4377
http://blog.binamuse.com/2014/09/coregraphics-memory-corruption.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=122356025
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=122356025
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/190.html
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://xorl.wordpress.com/2009/06/10/cve-2009-1385-linux-kernel-e1000-integer-underflow/
http://xorl.wordpress.com/2009/06/10/cve-2009-1385-linux-kernel-e1000-integer-underflow/

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 138
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2 INT31-C. Ensure that integer conversions do not result in lost or
misinterpreted data

Integer conversions, both implicit and explicit (using a cast), must be guaranteed not to result in
lost or misinterpreted data. This rule is particularly true for integer values that originate from un-
trusted sources and are used in any of the following ways:
• Integer operands of any pointer arithmetic, including array indexing
• The assignment expression for the declaration of a variable length array
• The postfix expression preceding square brackets [] or the expression in square brackets []

of a subscripted designation of an element of an array object
• Function arguments of type size_t or rsize_t (for example, an argument to a memory al-

location function)

This rule also applies to arguments passed to the following library functions that are converted to
unsigned char:
• memset()
• memset_s()
• fprintf() and related functions (For the length modifier c, if no l length modifier is pre-

sent, the int argument is converted to an unsigned char, and the resulting character is
written.)

• fputc()
• ungetc()
• memchr()

and to arguments to the following library functions that are converted to char:
• strchr()

• strrchr()

• All of the functions listed in <ctype.h>

The only integer type conversions that are guaranteed to be safe for all data values and all possible
conforming implementations are conversions of an integral value to a wider type of the same sign-
edness. The C Standard, subclause 6.3.1.3 [ISO/IEC 9899:2011], says

When a value with integer type is converted to another integer type other than _Bool, if
the value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.

Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 139
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typically, converting an integer to a smaller type results in truncation of the high-order bits.

5.2.1 Noncompliant Code Example (Unsigned to Signed)
Type range errors, including loss of data (truncation) and loss of sign (sign errors), can occur
when converting from a value of an unsigned integer type to a value of a signed integer type. This
noncompliant code example results in a truncation error on most implementations:

#include <limits.h>

void func(void) {
 unsigned long int u_a = ULONG_MAX;
 signed char sc;
 sc = (signed char)u_a; /* Cast eliminates warning */
 /* ... */
}

5.2.2 Compliant Solution (Unsigned to Signed)
Validate ranges when converting from an unsigned type to a signed type. This compliant solution
can be used to convert a value of unsigned long int type to a value of signed char type:

#include <limits.h>

void func(void) {
 unsigned long int u_a = ULONG_MAX;
 signed char sc;
 if (u_a <= SCHAR_MAX) {
 sc = (signed char)u_a; /* Cast eliminates warning */
 } else {
 /* Handle error */
 }
}

5.2.3 Noncompliant Code Example (Signed to Unsigned)
Type range errors, including loss of data (truncation) and loss of sign (sign errors), can occur
when converting from a value of a signed type to a value of an unsigned type. This noncompliant
code example results in a loss of sign:

#include <limits.h>

void func(void) {
 signed int si = INT_MIN;
 /* Cast eliminates warning */
 unsigned int ui = (unsigned int)si;

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 140
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* ... */
}

5.2.4 Compliant Solution (Signed to Unsigned)
Validate ranges when converting from a signed type to an unsigned type. This compliant solution
converts a value of a signed int type to a value of an unsigned int type:

#include <limits.h>

void func(void) {
 signed int si = INT_MIN;
 unsigned int ui;
 if (si < 0) {
 /* Handle error */
 } else {
 ui = (unsigned int)si; /* Cast eliminates warning */
 }
 /* ... */
}

Subclause 6.2.5, paragraph 9, of the C Standard [ISO/IEC 9899:2011] provides the necessary
guarantees to ensure this solution works on a conforming implementation:

The range of nonnegative values of a signed integer type is a subrange of the corre-
sponding unsigned integer type, and the representation of the same value in each type
is the same.

5.2.5 Noncompliant Code Example (Signed, Loss of Precision)
A loss of data (truncation) can occur when converting from a value of a signed integer type to a
value of a signed type with less precision. This noncompliant code example results in a truncation
error on most implementations:

#include <limits.h>

void func(void) {
 signed long int s_a = LONG_MAX;
 signed char sc = (signed char)s_a; /* Cast eliminates warning */
 /* ... */
}

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 141
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.6 Compliant Solution (Signed, Loss of Precision)
Validate ranges when converting from a signed type to a signed type with less precision. This
compliant solution converts a value of a signed long int type to a value of a signed char
type:

#include <limits.h>

void func(void) {
 signed long int s_a = LONG_MAX;
 signed char sc;
 if ((s_a < SCHAR_MIN) || (s_a > SCHAR_MAX)) {
 /* Handle error */
 } else {
 sc = (signed char)s_a; /* Use cast to eliminate warning */
 }
 /* ... */
}

Conversions from a value of a signed integer type to a value of a signed integer type with less pre-
cision requires that both the upper and lower bounds are checked.

5.2.7 Noncompliant Code Example (Unsigned, Loss of Precision)
A loss of data (truncation) can occur when converting from a value of an unsigned integer type to
a value of an unsigned type with less precision. This noncompliant code example results in a trun-
cation error on most implementations:

#include <limits.h>

void func(void) {
 unsigned long int u_a = ULONG_MAX;
 unsigned char uc = (unsigned char)u_a; /* Cast eliminates warning
*/
 /* ... */
}

5.2.8 Compliant Solution (Unsigned, Loss of Precision)
Validate ranges when converting a value of an unsigned integer type to a value of an unsigned in-
teger type with less precision. This compliant solution converts a value of an unsigned long
int type to a value of an unsigned char type:

#include <limits.h>

void func(void) {
 unsigned long int u_a = ULONG_MAX;
 unsigned char uc;

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 142
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (u_a > UCHAR_MAX) {
 /* Handle error */
 } else {
 uc = (unsigned char)u_a; /* Cast eliminates warning */
 }
 /* ... */
}

Conversions from unsigned types with greater precision to unsigned types with less precision re-
quire only the upper bounds to be checked.

5.2.9 Noncompliant Code Example (time_t Return Value)
The time() function returns the value (time_t)(-1) to indicate that the calendar time is not
available. The C Standard requires that the time_t type is only a real type capable of represent-
ing time. (The integer and real floating types are collectively called real types.) It is left to the im-
plementor to decide the best real type to use to represent time. If time_t is implemented as an
unsigned integer type with less precision than a signed int, the return value of time() will never
compare equal to the integer literal -1.

#include <time.h>

void func(void) {
 time_t now = time(NULL);
 if (now != -1) {
 /* Continue processing */
 }
}

5.2.10 Compliant Solution (time_t Return Value)
To ensure the comparison is properly performed, the return value of time() should be compared
against -1 cast to type time_t:

#include <time.h>

void func(void) {
 time_t now = time(NULL);
 if (now != (time_t)-1) {
 /* Continue processing */
 }
}

This solution is in accordance with INT18-C. Evaluate integer expressions in a larger size before
comparing or assigning to that size.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 143
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.11 Noncompliant Code Example (memset())
For historical reasons, certain C Standard functions accept an argument of type int and convert it
to either unsigned char or plain char. This conversion can result in unexpected behavior if the
value cannot be represented in the smaller type. This noncompliant solution unexpectedly clears
the array:

#include <string.h>
#include <stddef.h>

int *init_memory(int *array, size_t n) {
 return memset(array, 4096, n);
}

5.2.12 Compliant Solution (memset())
In general, the memset() function should not be used to initialize an integer array unless it is to
set or clear all the bits, as in this compliant solution:

#include <string.h>
#include <stddef.h>

int *init_memory(int *array, size_t n) {
 return memset(array, 0, n);
}

5.2.13 Exceptions
INT31-C-EX1: The C Standard defines minimum ranges for standard integer types. For example,
the minimum range for an object of type unsigned short int is 0 to 65,535, whereas the min-
imum range for int is −32,767 to +32,767. Consequently, it is not always possible to represent all
possible values of an unsigned short int as an int. However, on the IA-32 architecture, for
example, the actual integer range is from −2,147,483,648 to +2,147,483,647, meaning that it is
quite possible to represent all the values of an unsigned short int as an int for this architec-
ture. As a result, it is not necessary to provide a test for this conversion on IA-32. It is not possible
to make assumptions about conversions without knowing the precision of the underlying types. If
these tests are not provided, assumptions concerning precision must be clearly documented, as the
resulting code cannot be safely ported to a system where these assumptions are invalid. A good
way to document these assumptions is to use static assertions. (See DCL03-C. Use a static asser-
tion to test the value of a constant expression.)

INT31-C-EX2: Conversion from any integer type with a value between SCHAR_MIN and
UCHAR_MAX to a character type is permitted provided the value represents a character and not an
integer.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 144
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Conversions to unsigned character types are well defined by C to have modular behavior. A char-
acter’s value is not misinterpreted by the loss of sign or conversion to a negative number. For ex-
ample, the Euro symbol € is sometimes represented by bit pattern 0x80 which can have the nu-
merical value 128 or −127 depending on the signedness of the type.

Conversions to signed character types are more problematic. The C Standard, subclause 6.3.1.3,
paragraph 3 [ISO/IEC 9899:2011], says, regarding conversions

Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

Furthermore, subclause 6.2.6.2, paragraph 2, says, regarding integer modifications

If the sign bit is one, the value shall be modified in one of the following ways:

• the corresponding value with sign bit 0 is negated (sign and magnitude)

• the sign bit has the value −(2M) (two’s complement);

• the sign bit has the value −(2M − 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1
and all value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ com-
plement), is a trap representation or a normal value. [See note.]

NOTE: Two’s complement is shorthand for “radix complement in radix 2.” Ones’ complement is
shorthand for “diminished radix complement in radix 2.”

Consequently, the standard allows for this code to trap:

int i = 128; /* 1000 0000 in binary */
assert(SCHAR_MAX == 127);
signed char c = i; /* can trap */

However, platforms where this code traps or produces an unexpected value are rare. According to
The New C Standard: An Economic and Cultural Commentary by Derek Jones [Jones 2008]

Implementations with such trap representations are thought to have existed in the past.
Your author was unable to locate any documents describing such processors.

5.2.14 Risk Assessment
Integer truncation errors can lead to buffer overflows and the execution of arbitrary code by an
attacker.

Rule Severity Likelihood Remediation Cost Priority Level

INT31-C High Probable High P6 L2

http://www.knosof.co.uk/cbook/cbook.html

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 145
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.14.1 Related Vulnerabilities
CVE-2009-1376 results from a violation of this rule. In version 2.5.5 of Pidgin, a size_t offset is
set to the value of a 64-bit unsigned integer, which can lead to truncation [xorl 2009] on platforms
where a size_t is implemented as a 32-bit unsigned integer. An attacker can execute arbitrary
code by carefully choosing this value and causing a buffer overflow.

5.2.15 Related Guidelines

SEI CERT C Coding Standard DCL03-C. Use a static assertion to test the
value of a constant expression
INT18-C. Evaluate integer expressions in a
larger size before comparing or assigning to
that size
FIO34-C. Distinguish between characters read
from a file and EOF or WEOF

CERT Oracle Secure Coding Standard for Java NUM12-J. Ensure conversions of numeric
types to narrower types do not result in lost or
misinterpreted data

ISO/IEC TR 24772:2013 Numeric Conversion Errors [FLC]
MISRA C:2012 Rule 10.1 (required)

Rule 10.3 (required)
Rule 10.4 (required)
Rule 10.6 (required)
Rule 10.7 (required)

MITRE CWE CWE-192, Integer Coercion Error
CWE-197, Numeric Truncation Error
CWE-681, Incorrect Conversion between Nu-
meric Types

5.2.16 Bibliography

[Dowd 2006] Chapter 6, “C Language Issues” (“Type Con-
versions,” pp. 223–270)

[ISO/IEC 9899:2011] 6.3.1.3, “Signed and Unsigned Integers”
[Jones 2008] Section 6.2.6.2, “Integer Types”
[Seacord 2013b] Chapter 5, “Integer Security”
[Viega 2005] Section 5.2.9, “Truncation Error”

Section 5.2.10, “Sign Extension Error”
Section 5.2.11, “Signed to Unsigned Conver-
sion Error”
Section 5.2.12, “Unsigned to Signed Conver-
sion Error”

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1376
http://xorl.wordpress.com/2009/05/28/cve-2009-1376-pidgin-msn-slp-integer-truncation/
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=60751980
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=60751980
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=60751980
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/192.html
http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/681.html

Integers (INT) - INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 146
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Warren 2002] Chapter 2, “Basics”
[xorl 2009] “CVE-2009-1376: Pidgin MSN SLP Integer

Truncation”

http://xorl.wordpress.com/2009/05/28/cve-2009-1376-pidgin-msn-slp-integer-truncation/
http://xorl.wordpress.com/2009/05/28/cve-2009-1376-pidgin-msn-slp-integer-truncation/

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 147
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3 INT32-C. Ensure that operations on signed integers do not result in
overflow

Signed integer overflow is undefined behavior 36. Consequently, implementations have consider-
able latitude in how they deal with signed integer overflow. (See MSC15-C. Do not depend on
undefined behavior.) An implementation that defines signed integer types as being modulo, for
example, need not detect integer overflow. Implementations may also trap on signed arithmetic
overflows, or simply assume that overflows will never happen and generate object code accord-
ingly. It is also possible for the same conforming implementation to emit code that exhibits dif-
ferent behavior in different contexts. For example, an implementation may determine that a signed
integer loop control variable declared in a local scope cannot overflow and may emit efficient
code on the basis of that determination, while the same implementation may determine that a
global variable used in a similar context will wrap.

For these reasons, it is important to ensure that operations on signed integers do not result in over-
flow. Of particular importance are operations on signed integer values that originate from a
tainted source and are used as
• Integer operands of any pointer arithmetic, including array indexing
• The assignment expression for the declaration of a variable length array
• The postfix expression preceding square brackets [] or the expression in square brackets []

of a subscripted designation of an element of an array object
• Function arguments of type size_t or rsize_t (for example, an argument to a memory al-

location function)

Integer operations will overflow if the resulting value cannot be represented by the underlying
representation of the integer. The following table indicates which operations can result in over-
flow.

Operator Overflow Operator Overflow Operator Overflow Operator Overflow

+ Yes -= Yes << Yes < No
- Yes *= Yes >> No > No
* Yes /= Yes & No >= No
/ Yes %= Yes | No <= No
% Yes <<= Yes ^ No == No
++ Yes >>= No ~ No != No
-- Yes &= No ! No && No
= No |= No unary + No || No
+= Yes ^= No unary - Yes ?: No

The following sections examine specific operations that are susceptible to integer overflow. When
operating on integer types with less precision than int, integer promotions are applied. The usual
arithmetic conversions may also be applied to (implicitly) convert operands to equivalent types
before arithmetic operations are performed. Programmers should understand integer conversion

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630866
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630866

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 148
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

rules before trying to implement secure arithmetic operations. (See INT02-C. Understand integer
conversion rules.)

5.3.1 Implementation Details
GNU GCC invoked with the -fwrapv command-line option defines the same modulo arithmetic
for both unsigned and signed integers.

GNU GCC invoked with the -ftrapv command-line option causes a trap to be generated when a
signed integer overflows, which will most likely abnormally exit. On a UNIX system, the result of
such an event may be a signal sent to the process.

GNU GCC invoked without either the -fwrapv or the -ftrapv option may simply assume that
signed integers never overflow and may generate object code accordingly.

5.3.2 Atomic Integers
The C Standard defines the behavior of arithmetic on atomic signed integer types to use two’s
complement representation with silent wraparound on overflow; there are no undefined results.
Although defined, these results may be unexpected and therefore carry similar risks to unsigned
integer wrapping. (See INT30-C. Ensure that unsigned integer operations do not wrap.) Conse-
quently, signed integer overflow of atomic integer types should also be prevented or detected.

5.3.3 Addition
Addition is between two operands of arithmetic type or between a pointer to an object type and an
integer type. This rule applies only to addition between two operands of arithmetic type. (See
ARR37-C. Do not add or subtract an integer to a pointer to a non-array object and ARR30-C. Do
not form or use out-of-bounds pointers or array subscripts.)

Incrementing is equivalent to adding 1.

5.3.3.1 Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the addition of the
signed operands si_a and si_b:

void func(signed int si_a, signed int si_b) {
 signed int sum = si_a + si_b;
 /* ... */
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Code-Gen-Options.html#index-fwrapv-2088
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Code-Gen-Options.html#index-ftrapv-2088

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 149
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.3.2 Compliant Solution
This compliant solution ensures that the addition operation cannot overflow, regardless of repre-
sentation:

#include <limits.h>

void f(signed int si_a, signed int si_b) {
 signed int sum;
 if (((si_b > 0) && (si_a > (INT_MAX - si_b))) ||
 ((si_b < 0) && (si_a < (INT_MIN - si_b)))) {
 /* Handle error */
 } else {
 sum = si_a + si_b;
 }
 /* ... */
}

5.3.4 Subtraction
Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified
versions of compatible object types, or a pointer to an object type and an integer type. This rule
applies only to subtraction between two operands of arithmetic type. (See ARR36-C. Do not sub-
tract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or sub-
tract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out-of-
bounds pointers or array subscripts for information about pointer subtraction.)

Decrementing is equivalent to subtracting 1.

5.3.4.1 Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the subtraction of
the signed operands si_a and si_b:

void func(signed int si_a, signed int si_b) {
 signed int diff = si_a - si_b;
 /* ... */
}

5.3.4.2 Compliant Solution
This compliant solution tests the operands of the subtraction to guarantee there is no possibility of
signed overflow, regardless of representation:

#include <limits.h>

void func(signed int si_a, signed int si_b) {
 signed int diff;

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 150
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if ((si_b > 0 && si_a < INT_MIN + si_b) ||
 (si_b < 0 && si_a > INT_MAX + si_b)) {
 /* Handle error */
 } else {
 diff = si_a - si_b;
 }

 /* ... */
}

5.3.5 Multiplication
Multiplication is between two operands of arithmetic type.

5.3.5.1 Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the multiplication
of the signed operands si_a and si_b:

void func(signed int si_a, signed int si_b) {
 signed int result = si_a * si_b;
 /* ... */
}

5.3.5.2 Compliant Solution
The product of two operands can always be represented using twice the number of bits than exist
in the precision of the larger of the two operands. This compliant solution eliminates signed over-
flow on systems where long is at least twice the precision of int:

#include <stddef.h>
#include <assert.h>
#include <limits.h>
#include <inttypes.h>

extern size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

void func(signed int si_a, signed int si_b) {
 signed int result;
 signed long tmp;
 assert(PRECISION(ULLONG_MAX) >= 2 * PRECISION(UINT_MAX));
 tmp = (signed long long)si_a * (signed long long)si_b;

 /*
 * If the product cannot be represented as a 32-bit integer,
 * handle as an error condition.
 */
 if ((tmp > INT_MAX) || (tmp < INT_MIN)) {

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 151
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 } else {
 result = (int)tmp;
 }
 /* ... */
}

The assertion fails if long long has less than twice the precision of int. The PRECISION()
macro and popcount()function provide the correct precision for any integer type. (See INT35-
C. Use correct integer precisions.)

5.3.5.3 Compliant Solution
The following portable compliant solution can be used with any conforming implementation, in-
cluding those that do not have an integer type that is at least twice the precision of int:

#include <limits.h>

void func(signed int si_a, signed int si_b) {
 signed int result;
 if (si_a > 0) { /* si_a is positive */
 if (si_b > 0) { /* si_a and si_b are positive */
 if (si_a > (INT_MAX / si_b)) {
 /* Handle error */
 }
 } else { /* si_a positive, si_b nonpositive */
 if (si_b < (INT_MIN / si_a)) {
 /* Handle error */
 }
 } /* si_a positive, si_b nonpositive */
 } else { /* si_a is nonpositive */
 if (si_b > 0) { /* si_a is nonpositive, si_b is positive */
 if (si_a < (INT_MIN / si_b)) {
 /* Handle error */
 }
 } else { /* si_a and si_b are nonpositive */
 if ((si_a != 0) && (si_b < (INT_MAX / si_a))) {
 /* Handle error */
 }
 } /* End if si_a and si_b are nonpositive */
 } /* End if si_a is nonpositive */

 result = si_a * si_b;
}

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 152
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.6 Division
Division is between two operands of arithmetic type. Overflow can occur during two’s comple-
ment signed integer division when the dividend is equal to the minimum (negative) value for the
signed integer type and the divisor is equal to −1. Division operations are also susceptible to di-
vide-by-zero errors. (See INT33-C. Ensure that division and remainder operations do not result in
divide-by-zero errors.)

5.3.6.1 Noncompliant Code Example
This noncompliant code example prevents divide-by-zero errors in compliance with INT33-C.
Ensure that division and remainder operations do not result in divide-by-zero errors but does not
prevent a signed integer overflow error in two’s-complement.

void func(signed long s_a, signed long s_b) {
 signed long result;
 if (s_b == 0) {
 /* Handle error */
 } else {
 result = s_a / s_b;
 }
 /* ... */
}

5.3.6.2 Implementation Details
On the x86-32 architecture, overflow results in a fault, which can be exploited as a denial-of-ser-
vice attack.

5.3.6.3 Compliant Solution
This compliant solution eliminates the possibility of divide-by-zero errors or signed overflow:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) {
 /* Handle error */
 } else {
 result = s_a / s_b;
 }
 /* ... */
}

5.3.7 Remainder
The remainder operator provides the remainder when two operands of integer type are divided.
Because many platforms implement remainder and division in the same instruction, the remainder

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 153
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

operator is also susceptible to arithmetic overflow and division by zero. (See INT33-C. Ensure
that division and remainder operations do not result in divide-by-zero errors.)

5.3.7.1 Noncompliant Code Example
Many hardware architectures implement remainder as part of the division operator, which can
overflow. Overflow can occur during a remainder operation when the dividend is equal to the
minimum (negative) value for the signed integer type and the divisor is equal to −1. It occurs even
though the result of such a remainder operation is mathematically 0. This noncompliant code ex-
ample prevents divide-by-zero errors in compliance with INT33-C. Ensure that division and re-
mainder operations do not result in divide-by-zero errors but does not prevent integer overflow:

void func(signed long s_a, signed long s_b) {
 signed long result;
 if (s_b == 0) {
 /* Handle error */
 } else {
 result = s_a % s_b;
 }
 /* ... */
}

5.3.7.2 Implementation Details
On x86-32 platforms, the remainder operator for signed integers is implemented by the idiv in-
struction code, along with the divide operator. Because LONG_MIN / −1 overflows, it results in a
software exception with LONG_MIN % −1 as well.

5.3.7.3 Compliant Solution
This compliant solution also tests the remainder operands to guarantee there is no possibility of an
overflow:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) {
 /* Handle error */
 } else {
 result = s_a % s_b;
 }
 /* ... */
}

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 154
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.8 Left-Shift Operator
The left-shift operator takes two integer operands. The result of E1 << E2 is E1 left-shifted E2
bit positions; vacated bits are filled with zeros.

The C Standard, 6.5.7, paragraph 4 [ISO/IEC 9899:2011], states

If E1 has a signed type and nonnegative value, and E1 × 2E2 is representable in the re-
sult type, then that is the resulting value; otherwise, the behavior is undefined.

In almost every case, an attempt to shift by a negative number of bits or by more bits than exist in
the operand indicates a logic error. These issues are covered by INT34-C. Do not shift an expres-
sion by a negative number of bits or by greater than or equal to the number of bits that exist in the
operand.

5.3.8.1 Noncompliant Code Example
This noncompliant code example performs a left shift, after verifying that the number being
shifted is not negative, and the number of bits to shift is valid. The PRECISION() macro and
popcount() function provide the correct precision for any integer type. (See INT35-C. Use cor-
rect integer precisions.) However, because this code does no overflow check, it can result in an
unrepresentable value.

#include <limits.h>
#include <stddef.h>
#include <inttypes.h>

extern size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

void func(signed long si_a, signed long si_b) {
 signed long result;
 if ((si_a < 0) || (si_b < 0) ||
 (si_b >= PRECISION(ULONG_MAX)) {
 /* Handle error */
 } else {
 result = si_a << si_b;
 }
 /* ... */
}

5.3.8.2 Compliant Solution
This compliant solution eliminates the possibility of overflow resulting from a left-shift operation:

#include <limits.h>
#include <stddef.h>
#include <inttypes.h>

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 155
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

extern size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

void func(signed long si_a, signed long si_b) {
 signed long result;
 if ((si_a < 0) || (si_b < 0) ||
 (si_b >= PRECISION(ULONG_MAX)) ||
 (si_a > (LONG_MAX >> si_b))) {
 /* Handle error */
 } else {
 result = si_a << si_b;
 }
 /* ... */
}

5.3.9 Unary Negation
The unary negation operator takes an operand of arithmetic type. Overflow can occur during
two’s complement unary negation when the operand is equal to the minimum (negative) value for
the signed integer type.

5.3.9.1 Noncompliant Code Example
This noncompliant code example can result in a signed integer overflow during the unary nega-
tion of the signed operand s_a:

void func(signed long s_a) {
 signed long result = -s_a;
 /* ... */
}

5.3.9.2 Compliant Solution
This compliant solution tests the negation operation to guarantee there is no possibility of signed
overflow:

#include <limits.h>

void func(signed long s_a) {
 signed long result;
 if (s_a == LONG_MIN) {
 /* Handle error */
 } else {
 result = -s_a;
 }
 /* ... */
}

Integers (INT) - INT32-C. Ensure that operations on signed integers do not result in overflow

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 156
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.10 Risk Assessment
Integer overflow can lead to buffer overflows and the execution of arbitrary code by an attacker.

Rule Severity Likelihood Remediation Cost Priority Level

INT32-C High Likely High P9 L2

5.3.11 Related Guidelines

SEI CERT C Coding Standard INT02-C. Understand integer conversion rules
INT35-C. Use correct integer precisions
INT33-C. Ensure that division and remainder
operations do not result in divide-by-zero errors
INT34-C. Do not shift an expression by a nega-
tive number of bits or by greater than or equal
to the number of bits that exist in the operand
ARR30-C. Do not form or use out-of-bounds
pointers or array subscripts
ARR36-C. Do not subtract or compare two
pointers that do not refer to the same array
ARR37-C. Do not add or subtract an integer to
a pointer to a non-array object
MSC15-C. Do not depend on undefined behav-
ior
CON08-C. Do not assume that a group of calls
to independently atomic methods is atomic

CERT Oracle Secure Coding Standard for Java INT00-J. Perform explicit range checking to
avoid integer overflow

ISO/IEC TR 24772:2013 Arithmetic Wrap-Around Error [FIF]
ISO/IEC TS 17961 Overflowing signed integers [intoflow]
MITRE CWE CWE-129, Improper Validation of Array Index

CWE-190, Integer Overflow or Wraparound

5.3.12 Bibliography
[Dowd 2006] Chapter 6, “C Language Issues” (“Arithmetic

Boundary Conditions,” pp. 211–223)
[ISO/IEC 9899:2011] Subclause 6.5.5, “Multiplicative Operators”
[Seacord 2013b] Chapter 5, “Integer Security”
[Viega 2005] Section 5.2.7, “Integer Overflow”
[Warren 2002] Chapter 2, “Basics”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=322
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630866
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630866
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=122356025
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=122356025
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23134336
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23134336
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/190.html

Integers (INT) - INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 157
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.4 INT33-C. Ensure that division and remainder operations do not
result in divide-by-zero errors

The C Standard identifies the following condition under which division and remainder operations
result in undefined behavior (UB):

UB Description

45 The value of the second operand of the / or % opera-
tor is zero (6.5.5).

Ensure that division and remainder operations do not result in divide-by-zero errors.

5.4.1 Division
The result of the / operator is the quotient from the division of the first arithmetic operand by the
second arithmetic operand. Division operations are susceptible to divide-by-zero errors. Overflow
can also occur during two’s complement signed integer division when the dividend is equal to the
minimum (most negative) value for the signed integer type and the divisor is equal to −1. (See
INT32-C. Ensure that operations on signed integers do not result in overflow.)

5.4.1.1 Noncompliant Code Example
This noncompliant code example prevents signed integer overflow in compliance with INT32-C.
Ensure that operations on signed integers do not result in overflow but fails to prevent a divide-
by-zero error during the division of the signed operands s_a and s_b:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_a == LONG_MIN) && (s_b == -1)) {
 /* Handle error */
 } else {
 result = s_a / s_b;
 }
 /* ... */
}

5.4.1.2 Compliant Solution
This compliant solution tests the division operation to guarantee there is no possibility of divide-
by-zero errors or signed overflow:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) {
 /* Handle error */

Integers (INT) - INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 158
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 } else {
 result = s_a / s_b;
 }
 /* ... */
}

5.4.2 Remainder
The remainder operator provides the remainder when two operands of integer type are divided.

5.4.2.1 Noncompliant Code Example
This noncompliant code example prevents signed integer overflow in compliance with INT32-C.
Ensure that operations on signed integers do not result in overflow but fails to prevent a divide-
by-zero error during the remainder operation on the signed operands s_a and s_b:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_a == LONG_MIN) && (s_b == -1)) {
 /* Handle error */
 } else {
 result = s_a % s_b;
 }
 /* ... */
}

5.4.2.2 Compliant Solution
This compliant solution tests the remainder operand to guarantee there is no possibility of a di-
vide-by-zero error or an overflow error:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) {
 /* Handle error */
 } else {
 result = s_a % s_b;
 }
 /* ... */
}

Integers (INT) - INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 159
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.4.3 Risk Assessment
A divide-by-zero error can result in abnormal program termination and denial of service.

Rule Severity Likelihood Remediation Cost Priority Level

INT33-C Low Likely Medium P6 L2

5.4.4 Related Guidelines

SEI CERT C Coding Standard INT32-C. Ensure that operations on signed in-
tegers do not result in overflow

CERT Oracle Secure Coding Standard for Java NUM02-J. Ensure that division and remainder
operations do not result in divide-by-zero errors

ISO/IEC TS 17961 Integer division errors [diverr]
MITRE CWE CWE-369, Divide By Zero

5.4.5 Bibliography

[Seacord 2013b] Chapter 5, “Integer Security”
[Warren 2002] Chapter 2, “Basics”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=61997352
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=61997352
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/369.html

Integers (INT) - INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number
of bits that exist in the operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 160
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.5 INT34-C. Do not shift an expression by a negative number of bits or
by greater than or equal to the number of bits that exist in the
operand

Bitwise shifts include left-shift operations of the form shift-expression<<additive-expression and
right-shift operations of the form shift-expression>>additive-expression. The standard integer pro-
motions are first performed on the operands, each of which has an integer type. The type of the
result is that of the promoted left operand. If the value of the right operand is negative or is greater
than or equal to the width of the promoted left operand, the behavior is undefined. (See undefined
behavior 51.)

Do not shift an expression by a negative number of bits or by a number greater than or equal to
the precision of the promoted left operand. The precision of an integer type is the number of bits it
uses to represent values, excluding any sign and padding bits. For unsigned integer types, the
width and the precision are the same; whereas for signed integer types, the width is one greater
than the precision. This rule uses precision instead of width because, in almost every case, an at-
tempt to shift by a number of bits greater than or equal to the precision of the operand indicates a
bug (logic error). A logic error is different from overflow, in which there is simply a representa-
tional deficiency. In general, shifts should be performed only on unsigned operands. (See INT13-
C. Use bitwise operators only on unsigned operands.)

5.5.1 Noncompliant Code Example (Left Shift, Unsigned Type)
The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. The
following diagram illustrates the left-shift operation.

According to the C Standard, if E1 has an unsigned type, the value of the result is E1 * 2E2, re-
duced modulo 1 more than the maximum value representable in the result type.

This noncompliant code example fails to ensure that the right operand is less than the precision of
the promoted left operand:

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int uresult = ui_a << ui_b;

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229382
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229382

Integers (INT) - INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number
of bits that exist in the operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 161
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* ... */
}

5.5.2 Compliant Solution (Left Shift, Unsigned Type)
This compliant solution eliminates the possibility of shifting by greater than or equal to the num-
ber of bits that exist in the precision of the left operand:

#include <limits.h>
#include <stddef.h>
#include <inttypes.h>

extern size_t popcount(uintmax_t);
#define PRECISION(x) popcount(x)

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int uresult = 0;
 if (ui_b >= PRECISION(UINT_MAX)) {
 /* Handle error */
 } else {
 uresult = ui_a << ui_b;
 }
 /* ... */
}

The PRECISION() macro and popcount() function provide the correct precision for any integer
type. (See INT35-C. Use correct integer precisions.)

Modulo behavior resulting from left-shifting an unsigned integer type is permitted by exception
INT30-EX3 to INT30-C. Ensure that unsigned integer operations do not wrap.

5.5.3 Noncompliant Code Example (Left Shift, Signed Type)
The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1
has a signed type and nonnegative value, and E1 * 2E2 is representable in the result type, then that
is the resulting value; otherwise, the behavior is undefined.

This noncompliant code example fails to ensure that left and right operands have nonnegative val-
ues and that the right operand is less than the precision of the promoted left operand. This exam-
ple does check for signed integer overflow in compliance with INT32-C. Ensure that operations
on signed integers do not result in overflow.

#include <limits.h>
#include <stddef.h>
#include <inttypes.h>

void func(signed long si_a, signed long si_b) {
 signed long result;

Integers (INT) - INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number
of bits that exist in the operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 162
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (si_a > (LONG_MAX >> si_b)) {
 /* Handle error */
 } else {
 result = si_a << si_b;
 }
 /* ... */
}

Shift operators and other bitwise operators should be used only with unsigned integer operands in
accordance with INT13-C. Use bitwise operators only on unsigned operands.

5.5.4 Compliant Solution (Left Shift, Signed Type)
In addition to the check for overflow, this compliant solution ensures that both the left and right
operands have nonnegative values and that the right operand is less than the precision of the pro-
moted left operand:

#include <limits.h>
#include <stddef.h>
#include <inttypes.h>

extern size_t popcount(uintmax_t);
#define PRECISION(x) popcount(x)

void func(signed long si_a, signed long si_b) {
 signed long result;
 if ((si_a < 0) || (si_b < 0) ||
 (si_b >= PRECISION(ULONG_MAX)) ||
 (si_a > (LONG_MAX >> si_b))) {
 /* Handle error */
 } else {
 result = si_a << si_b;
 }
 /* ... */
}

5.5.5 Noncompliant Code Example (Right Shift)
The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1
has a signed type and a nonnegative value, the value of the result is the integral part of the quo-
tient of E1 / 2E2. If E1 has a signed type and a negative value, the resulting value is implementa-
tion-defined and can be either an arithmetic (signed) shift

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229382

Integers (INT) - INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number
of bits that exist in the operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 163
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

or a logical (unsigned) shift

This noncompliant code example fails to test whether the right operand is greater than or equal to
the precision of the promoted left operand, allowing undefined behavior:

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int uresult = ui_a >> ui_b;
 /* ... */
}

When working with signed operands, making assumptions about whether a right shift is imple-
mented as an arithmetic (signed) shift or a logical (unsigned) shift can also lead to vulnerabilities.
(See INT13-C. Use bitwise operators only on unsigned operands.)

5.5.6 Compliant Solution (Right Shift)
This compliant solution eliminates the possibility of shifting by greater than or equal to the num-
ber of bits that exist in the precision of the left operand:

#include <limits.h>
#include <stddef.h>
#include <inttypes.h>

extern size_t popcount(uintmax_t);
#define PRECISION(x) popcount(x)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229382

Integers (INT) - INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number
of bits that exist in the operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 164
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void func(unsigned int ui_a, unsigned int ui_b) {
 unsigned int uresult = 0;
 if (ui_b >= PRECISION(UINT_MAX)) {
 /* Handle error */
 } else {
 uresult = ui_a >> ui_b;
 }
 /* ... */
}

5.5.6.1 Implementation Details
GCC has no options to handle shifts by negative amounts or by amounts outside the width of the
type predictably or to trap on them; they are always treated as undefined. Processors may reduce
the shift amount modulo the width of the type. For example, 32-bit right shifts are implemented
using the following instruction on x86-32:

sarl %cl, %eax

The sarl instruction takes a bit mask of the least significant 5 bits from %cl to produce a value
in the range [0, 31] and then shift %eax that many bits:

// 64-bit right shifts on IA-32 platforms become
shrdl %edx, %eax
sarl %cl, %edx

where %eax stores the least significant bits in the doubleword to be shifted, and %edx stores the
most significant bits.

5.5.7 Risk Assessment
Although shifting a negative number of bits or shifting a number of bits greater than or equal to
the width of the promoted left operand is undefined behavior in C, the risk is generally low be-
cause processors frequently reduce the shift amount modulo the width of the type.

Rule Severity Likelihood Remediation Cost Priority Level

INT34-C Low Unlikely Medium P2 L3

5.5.8 Related Guidelines

SEI CERT C Coding Standard INT13-C. Use bitwise operators only on un-
signed operands
INT35-C. Use correct integer precisions
INT32-C. Ensure that operations on signed in-
tegers do not result in overflow

ISO/IEC TR 24772:2013 Arithmetic Wrap-Around Error [FIF]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229382
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229382

Integers (INT) - INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number
of bits that exist in the operand

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 165
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.5.9 Bibliography

[C99 Rationale 2003] 6.5.7, “Bitwise Shift Operators”
[Dowd 2006] Chapter 6, “C Language Issues”
[Seacord 2013b] Chapter 5, “Integer Security”
[Viega 2005] Section 5.2.7, “Integer Overflow”

Integers (INT) - INT35-C. Use correct integer precisions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 166
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.6 INT35-C. Use correct integer precisions

Integer types in C have both a size and a precision. The size indicates the number of bytes used by
an object and can be retrieved for any object or type using the sizeof operator. The precision of
an integer type is the number of bits it uses to represent values, excluding any sign and padding
bits.

Padding bits contribute to the integer’s size, but not to its precision. Consequently, inferring the
precision of an integer type from its size may result in too large a value, which can then lead to
incorrect assumptions about the numeric range of these types. Programmers should use correct
integer precisions in their code, and in particular, should not use the sizeof operator to compute
the precision of an integer type on architectures that use padding bits or in strictly conforming
(that is, portable) programs.

5.6.1 Noncompliant Code Example
This noncompliant code example illustrates a function that produces 2 raised to the power of the
function argument. To prevent undefined behavior in compliance with INT34-C. Do not shift an
expression by a negative number of bits or by greater than or equal to the number of bits that exist
in the operand, the function ensures that the argument is less than the number of bits used to store
a value of type unsigned int.

#include <limits.h>

unsigned int pow2(unsigned int exp) {
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1 << exp;
}

However, if this code runs on a platform where unsigned int has one or more padding bits, it
can still result in values for exp that are too large. For example, on a platform that stores un-
signed int in 64 bits, but uses only 48 bits to represent the value, a left shift of 56 bits would
result in undefined behavior.

5.6.2 Compliant Solution
This compliant solution uses a popcount() function, which counts the number of bits set on any
unsigned integer, allowing this code to determine the precision of any integer type, signed or un-
signed.

#include <stddef.h>
#include <stdint.h>

/* Returns the number of set bits */
size_t popcount(uintmax_t num) {

Integers (INT) - INT35-C. Use correct integer precisions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 167
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}
#define PRECISION(umax_value) popcount(umax_value)

Implementations can replace the PRECISION() macro with a type-generic macro that returns an
integer constant expression that is the precision of the specified type for that implementation. This
return value can then be used anywhere an integer constant expression can be used, such as in a
static assertion. (See DCL03-C. Use a static assertion to test the value of a constant expression.)
The following type generic macro, for example, might be used for a specific implementation tar-
geting the IA-32 architecture:

#define PRECISION(value) _Generic(value, \
 unsigned char : 8, \
 unsigned short: 16, \
 unsigned int : 32, \
 unsigned long : 32, \
 unsigned long long : 64, \
 signed char : 7, \
 signed short : 15, \
 signed int : 31, \
 signed long : 31, \
 signed long long : 63)

The revised version of the pow2() function uses the PRECISION() macro to determine the preci-
sion of the unsigned type:

#include <stddef.h>
#include <stdint.h>
#include <limits.h>
extern size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)
unsigned int pow2(unsigned int exp) {
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }
 return 1 << exp;
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374

Integers (INT) - INT35-C. Use correct integer precisions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 168
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.6.2.1 Implementation Details
Some platforms, such as the Cray Linux Environment (CLE; supported on Cray XT CNL com-
pute nodes), provide a _popcnt instruction that can substitute for the popcount() function.

#define PRECISION(umax_value) _popcnt(umax_value)

5.6.3 Risk Assessment
Mistaking an integer’s size for its precision can permit invalid precision arguments to operations
such as bitwise shifts, resulting in undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

INT35-C Low Unlikely Medium P2 L3

5.6.4 Related Guidelines

MITRE CWE CWE-190, Integer Overflow or Wraparound

5.6.5 Bibliography

[Dowd 2006] Chapter 6, “C Language Issues”
[C99 Rationale 2003] 6.5.7, “Bitwise Shift Operators”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/190.html

Integers (INT) - INT36-C. Converting a pointer to integer or integer to pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 169
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.7 INT36-C. Converting a pointer to integer or integer to pointer

Although programmers often use integers and pointers interchangeably in C, pointer-to-integer
and integer-to-pointer conversions are implementation-defined.

Conversions between integers and pointers can have undesired consequences depending on the
implementation. According to the C Standard, subclause 6.3.2.3 [ISO/IEC 9899:2011],

An integer may be converted to any pointer type. Except as previously specified, the re-
sult is implementation-defined, might not be correctly aligned, might not point to an entity
of the referenced type, and might be a trap representation.

Any pointer type may be converted to an integer type. Except as previously specified,
the result is implementation-defined. If the result cannot be represented in the integer
type, the behavior is undefined. The result need not be in the range of values of any in-
teger type.

Do not convert an integer type to a pointer type if the resulting pointer is incorrectly aligned, does
not point to an entity of the referenced type, or is a trap representation.

Do not convert a pointer type to an integer type if the result cannot be represented in the integer
type. (See undefined behavior 24.)

The mapping between pointers and integers must be consistent with the addressing structure of
the execution environment. Issues may arise, for example, on architectures that have a segmented
memory model.

5.7.1 Noncompliant Code Example
The size of a pointer can be greater than the size of an integer, such as in an implementation
where pointers are 64 bits and unsigned integers are 32 bits. This code example is noncompliant
on such implementations because the result of converting the 64-bit ptr cannot be represented in
the 32-bit integer type:

void f(void) {
 char *ptr;
 /* ... */
 unsigned int number = (unsigned int)ptr;
 /* ... */
}

5.7.2 Compliant Solution
Any valid pointer to void can be converted to intptr_t or uintptr_t and back with no
change in value. (See INT36-EX2.) The C Standard guarantees that a pointer to void may be
converted to or from a pointer to any object type and back again and that the result must compare

Integers (INT) - INT36-C. Converting a pointer to integer or integer to pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 170
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

equal to the original pointer. Consequently, converting directly from a char * pointer to a
uintptr_t, as in this compliant solution, is allowed on implementations that support the
uintptr_t type.

#include <stdint.h>

void f(void) {
 char *ptr;
 /* ... */
 uintptr_t number = (uintptr_t)ptr;
 /* ... */
}

5.7.3 Noncompliant Code Example
In this noncompliant code example, the pointer ptr is converted to an integer value. The high-
order 9 bits of the number are used to hold a flag value, and the result is converted back into a
pointer. This example is noncompliant on an implementation where pointers are 64 bits and un-
signed integers are 32 bits because the result of converting the 64-bit ptr cannot be represented in
the 32-bit integer type.

void func(unsigned int flag) {
 char *ptr;
 /* ... */
 unsigned int number = (unsigned int)ptr;
 number = (number & 0x7fffff) | (flag << 23);
 ptr = (char *)number;
}

A similar scheme was used in early versions of Emacs, limiting its portability and preventing the
ability to edit files larger than 8MB.

5.7.4 Compliant Solution
This compliant solution uses a struct to provide storage for both the pointer and the flag value.
This solution is portable to machines of different word sizes, both smaller and larger than 32 bits,
working even when pointers cannot be represented in any integer type.

struct ptrflag {
 char *pointer;
 unsigned int flag : 9;
} ptrflag;

void func(unsigned int flag) {
 char *ptr;
 /* ... */
 ptrflag.pointer = ptr;

Integers (INT) - INT36-C. Converting a pointer to integer or integer to pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 171
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 ptrflag.flag = flag;
}

5.7.5 Noncompliant Code Example
It is sometimes necessary to access memory at a specific location, requiring a literal integer to
pointer conversion. In this noncompliant code, a pointer is set directly to an integer constant,
where it is unknown whether the result will be as intended:

unsigned int *g(void) {
 unsigned int *ptr = 0xdeadbeef;
 /* ... */
 return ptr;
}

The result of this assignment is implementation-defined, might not be correctly aligned, might not
point to an entity of the referenced type, and might be a trap representation.

5.7.6 Compliant Solution
Adding an explicit cast may help the compiler convert the integer value into a valid pointer. A
common technique is to assign the integer to a volatile-qualified object of type intptr_t or
uintptr_t and then assign the integer value to the pointer:

unsigned int *g(void) {
 volatile uintptr_t iptr = 0xdeadbeef;
 unsigned int *ptr = (unsigned int *)iptr;
 /* ... */
 return ptr;
}

5.7.7 Exceptions
INT36-C-EX1: A null pointer can be converted to an integer; it takes on the value 0. Likewise,
the integer value 0 can be converted to a pointer; it becomes the null pointer.

INT36-C-EX2: Any valid pointer to void can be converted to intptr_t or uintptr_t or their
underlying types and back again with no change in value. Use of underlying types instead of
intptr_t or uintptr_t is discouraged, however, because it limits portability.

#include <assert.h>
#include <stdint.h>

void h(void) {
 intptr_t i = (intptr_t)(void *)&i;
 uintptr_t j = (uintptr_t)(void *)&j;

Integers (INT) - INT36-C. Converting a pointer to integer or integer to pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 172
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 void *ip = (void *)i;
 void *jp = (void *)j;

 assert(ip == &i);
 assert(jp == &j);
}

5.7.8 Risk Assessment
Converting from pointer to integer or vice versa results in code that is not portable and may create
unexpected pointers to invalid memory locations.

Rule Severity Likelihood Remediation Cost Priority Level

INT36-C Low Probable High P2 L3

5.7.9 Related Guidelines

SEI CERT C++ Coding Standard INT11-CPP. Take care when converting from
pointer to integer or integer to pointer

ISO/IEC TR 24772:2013 Pointer Casting and Pointer Type Changes
[HFC]

ISO/IEC TS 17961:2013 Converting a pointer to integer or integer to
pointer [intptrconv]

MITRE CWE CWE-466, Return of Pointer Value Outside of
Expected Range
CWE-587, Assignment of a Fixed Address to a
Pointer

5.7.10 Bibliography

[ISO/IEC 9899:2011] 6.3.2.3, “Pointers”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086966
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20086966
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/587.html

Floating Point (FLP) - FLP30-C. Do not use floating-point variables as loop counters

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 173
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Floating Point (FLP)

6.1 FLP30-C. Do not use floating-point variables as loop counters

Because floating-point numbers represent real numbers, it is often mistakenly assumed that they
can represent any simple fraction exactly. Floating-point numbers are subject to representational
limitations just as integers are, and binary floating-point numbers cannot represent all real num-
bers exactly, even if they can be represented in a small number of decimal digits.

In addition, because floating-point numbers can represent large values, it is often mistakenly as-
sumed that they can represent all significant digits of those values. To gain a large dynamic range,
floating-point numbers maintain a fixed number of precision bits (also called the significand) and
an exponent, which limit the number of significant digits they can represent.

Different implementations have different precision limitations, and to keep code portable, float-
ing-point variables must not be used as the loop induction variable.

6.1.1 Noncompliant Code Example
In this noncompliant code example, a floating-point variable is used as a loop counter. The deci-
mal number 0.1 is a repeating fraction in binary and cannot be exactly represented as a binary
floating-point number. Depending on the implementation, the loop may iterate 9 or 10 times.

void func(void) {
 for (float x = 0.1f; x <= 1.0f; x += 0.1f) {
 /* Loop may iterate 9 or 10 times */
 }
}

For example, when compiled with GCC or Microsoft Visual Studio 2013 and executed on an x86
processor, the loop is evaluated only nine times.

6.1.2 Compliant Solution
In this compliant solution, the loop counter is an integer from which the floating-point value is de-
rived:

#include <stddef.h>

void func(void) {
 for (size_t count = 1; count <= 10; ++count) {
 float x = count / 10.0f;
 /* Loop iterates exactly 10 times */

Floating Point (FLP) - FLP30-C. Do not use floating-point variables as loop counters

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 174
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
}

6.1.3 Noncompliant Code Example
In this noncompliant code example, a floating-point loop counter is incremented by an amount
that is too small to change its value given its precision:

void func(void) {
 for (float x = 100000001.0f; x <= 100000010.0f; x += 1.0f) {
 /* Loop may not terminate */
 }
}

On many implementations, this produces an infinite loop.

6.1.4 Compliant Solution
In this compliant solution, the loop counter is an integer from which the floating-point value is de-
rived. The variable x is incremented to maintain the same value it held at each iteration of the
loop in the noncompliant code example.

void func(void) {
 float x = 100000001.0f;
 for (size_t count = 1; count <= 10; ++count, x += 1.0f) {
 /* Loop iterates exactly 10 times */
 }
}

6.1.5 Risk Assessment
The use of floating-point variables as loop counters can result in unexpected behavior .

Rule Severity Likelihood Remediation Cost Priority Level

FLP30-C Low Probable Low P6 L2

6.1.6 Related Guidelines
SEI CERT C++ Coding Standard FLP30-CPP. Do not use floating-point varia-

bles as loop counters
CERT Oracle Secure Coding Standard for Java NUM09-J. Do not use floating-point variables

as loop counters
ISO/IEC TR 24772:2013 Floating-Point Arithmetic [PLF]
MISRA C:2012 Directive 1.1 (required)

Rule 14.1 (required)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087011
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087011
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087481
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087481

Floating Point (FLP) - FLP30-C. Do not use floating-point variables as loop counters

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 175
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.1.7 Bibliography

[Lockheed Martin 05] AV Rule 197

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 176
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2 FLP32-C. Prevent or detect domain and range errors in math
functions

The C Standard, 7.12.1 [ISO/IEC 9899:2011], defines three types of errors that relate specifically
to math functions in <math.h>. Paragraph 2 states

A domain error occurs if an input argument is outside the domain over which the mathe-
matical function is defined.

Paragraph 3 states
A pole error (also known as a singularity or infinitary) occurs if the mathematical function
has an exact infinite result as the finite input argument(s) are approached in the limit.

Paragraph 4 states
A range error occurs if the mathematical result of the function cannot be represented in
an object of the specified type, due to extreme magnitude.

An example of a domain error is the square root of a negative number, such as sqrt(-1.0),
which has no meaning in real arithmetic. Contrastingly, 10 raised to the 1-millionth power,
pow(10., 1e6), cannot be represented in many floating-point implementations because of the
limited range of the type double and consequently constitutes a range error. In both cases, the
function will return some value, but the value returned is not the correct result of the computation.
An example of a pole error is log(0.0), which results in negative infinity.

Programmers can prevent domain and pole errors by carefully bounds-checking the arguments be-
fore calling mathematical functions and taking alternative action if the bounds are violated.

Range errors usually cannot be prevented because they are dependent on the implementation of
floating-point numbers as well as on the function being applied. Instead of preventing range er-
rors, programmers should attempt to detect them and take alternative action if a range error oc-
curs.

The following table lists the double forms of standard mathematical functions, along with checks
that should be performed to ensure a proper input domain, and indicates whether they can also re-
sult in range or pole errors, as reported by the C Standard. Both float and long double forms
of these functions also exist but are omitted from the table for brevity. If a function has a specific
domain over which it is defined, the programmer must check its input values. The programmer
must also check for range errors where they might occur. The standard math functions not listed
in this table, such as fabs(), have no domain restrictions and cannot result in range or pole er-
rors.

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 177
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Domain Range Pole

acos(x) -1 <= x && x <= 1 No No

asin(x) -1 <= x && x <= 1 Yes No

atan(x) None Yes No

atan2(y, x) x != 0 && y != 0 No No

acosh(x) x >= 1 Yes No

asinh(x) None Yes No

atanh(x) -1 < x && x < 1 Yes Yes

cosh(x), sinh(x) None Yes No

exp(x), exp2(x),
expm1(x)

None Yes No

ldexp(x, exp) None Yes No

log(x), log10(x),
log2(x)

x >= 0 No Yes

log1p(x) x >= -1 No Yes

ilogb(x) x != 0 && !isinf(x) && !isnan(x) Yes No

logb(x) x != 0 Yes Yes

scalbn(x, n),
scalbln(x, n)

None Yes No

hypot(x, y) None Yes No

pow(x,y) x > 0 || (x == 0 && y > 0) ||
 (x < 0 && y is an integer)

Yes Yes

sqrt(x) x >= 0 No No

erf(x) None Yes No

erfc(x) None Yes No

lgamma(x),
tgamma(x)

x != 0 &&! (x < 0 && x is an integer) Yes Yes

lrint(x), lround(x) None Yes No

fmod(x, y),
remainder(x, y),
remquo(x, y, quo)

y != 0 Yes No

nextafter(x, y),
nexttoward(x, y)

None Yes No

fdim(x,y) None Yes No

fma(x,y,z) None Yes No

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 178
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.2.1 Domain and Pole Checking
The most reliable way to handle domain and pole errors is to prevent them by checking arguments
beforehand, as in the following exemplar:

double safe_sqrt(double x) {
 if (x < 0) {
 fprintf(stderr, "sqrt requires a nonnegative argument");
 /* Handle domain / pole error */
 }
 return sqrt (x);
}

6.2.2 Range Checking
Programmers usually cannot prevent range errors, so the most reliable way to handle them is to
detect when they have occurred and act accordingly.

The exact treatment of error conditions from math functions is tedious. The C Standard, 7.12.1
[ISO/IEC 9899:2011], defines the following behavior for floating-point overflow:

A floating result overflows if the magnitude of the mathematical result is finite but so
large that the mathematical result cannot be represented without extraordinary roundoff
error in an object of the specified type. If a floating result overflows and default rounding
is in effect, then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or
HUGE_VALL according to the return type, with the same sign as the correct value of the
function; if the integer expression math_errhandling & MATH_ERRNO is nonzero, the
integer expression errno acquires the value ERANGE; if the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero, the “overflow” floating-point ex-
ception is raised.

It is preferable not to check for errors by comparing the returned value against HUGE_VAL or 0 for
several reasons:

• These are, in general, valid (albeit unlikely) data values.
• Making such tests requires detailed knowledge of the various error returns for each math

function.
• Multiple results aside from HUGE_VAL and 0 are possible, and programmers must know

which are possible in each case.
• Different versions of the library have varied in their error-return behavior.

It can be unreliable to check for math errors using errno because an implementation might not
set errno. For real functions, the programmer determines if the implementation sets errno by
checking whether math_errhandling & MATH_ERRNO is nonzero. For complex functions, the

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 179
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

C Standard, 7.3.2, paragraph 1, simply states that “an implementation may set errno but is not
required to” [ISO/IEC 9899:2011].

The obsolete System V Interface Definition (SVID3) [UNIX 1992] provides more control over the
treatment of errors in the math library. The programmer can define a function named matherr()
that is invoked if errors occur in a math function. This function can print diagnostics, terminate
the execution, or specify the desired return value. The matherr() function has not been adopted
by C or POSIX, so it is not generally portable.

The following error-handing template uses C Standard functions for floating-point errors when
the C macro math_errhandling is defined and indicates that they should be used; otherwise, it
examines errno:

#include <math.h>
#include <fenv.h>
#include <errno.h>

/* ... */
/* Use to call a math function and check errors */
{
 #pragma STDC FENV_ACCESS ON

 if (math_errhandling & MATH_ERREXCEPT) {
 feclearexcept(FE_ALL_EXCEPT);
 }
 errno = 0;

 /* Call the math function */

 if ((math_errhandling & MATH_ERRNO) && errno != 0) {
 /* Handle range error */
 } else if ((math_errhandling & MATH_ERREXCEPT) &&
 fetestexcept(FE_INVALID | FE_DIVBYZERO |
 FE_OVERFLOW | FE_UNDERFLOW) != 0) {
 /* Handle range error */
 }
}

See FLP03-C. Detect and handle floating-point errors for more details on how to detect floating-
point errors.

6.2.3 Subnormal Numbers
A subnormal number is a nonzero number that does not use all of its precision bits [IEEE 754
2006]. These numbers can be used to represent values that are closer to 0 than the smallest normal
number (one that uses all of its precision bits). However, the asin(), asinh(), atan(),
atanh(), and erf() functions may produce range errors, specifically when passed a subnormal

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15303137

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 180
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

number. When evaluated with a subnormal number, these functions can produce an inexact, sub-
normal value, which is an underflow error. The C Standard, 7.12.1, paragraph 6 [ISO/IEC
9899:2011], defines the following behavior for floating-point underflow:

The result underflows if the magnitude of the mathematical result is so small that the
mathematical result cannot be represented, without extraordinary roundoff error, in an
object of the specified type. If the result underflows, the function returns an implementa-
tion-defined value whose magnitude is no greater than the smallest normalized positive
number in the specified type; if the integer expression math_errhandling &
MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is implementa-
tion-defined; if the integer expression math_errhandling & MATH_ERREXCEPT is non-
zero, whether the ‘‘underflow’’ floating-point exception is raised is implementation-de-
fined.

Implementations that support floating-point arithmetic but do not support subnormal numbers,
such as IBM S/360 hex floating-point or nonconforming IEEE-754 implementations that skip sub-
normals (or support them by flushing them to zero), can return a range error when calling one of
the following families of functions with the following arguments:

• fmod((min+subnorm), min)
• remainder((min+subnorm), min)
• remquo((min+subnorm), min, quo)

where min is the minimum value for the corresponding floating point type and subnorm is a sub-
normal value.

If Annex F is supported and subnormal results are supported, the returned value is exact and a
range error cannot occur. The C Standard, F.10.7.1 [ISO/IEC 9899:2011], specifies the following
for the fmod(), remainder(), and remquo() functions:

When subnormal results are supported, the returned value is exact and is independent
of the current rounding direction mode.

Annex F, subclause F.10.7.2, paragraph 2, and subclause F.10.7.3, paragraph 2, of the C Standard
identify when subnormal results are supported.

6.2.4 Noncompliant Code Example (sqrt())
This noncompliant code example determines the square root of x:

#include <math.h>

void func(double x) {
 double result;

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 181
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 result = sqrt(x);
}

However, this code may produce a domain error if x is negative.

6.2.5 Compliant Solution (sqrt())
Because this function has domain errors but no range errors, bounds checking can be used to pre-
vent domain errors:

#include <math.h>

void func(double x) {
 double result;

 if (isless(x, 0.0)) {
 /* Handle domain error */
 }

 result = sqrt(x);
}

6.2.6 Noncompliant Code Example (sinh(), Range Errors)
This noncompliant code example determines the hyperbolic sine of x:

#include <math.h>

void func(double x) {
 double result;
 result = sinh(x);
}

This code may produce a range error if x has a very large magnitude.

6.2.7 Compliant Solution (sinh(), Range Errors)
Because this function has no domain errors but may have range errors, the programmer must de-
tect a range error and act accordingly:

#include <math.h>
#include <fenv.h>
#include <errno.h>

void func(double x) {
 double result;
 {
 #pragma STDC FENV_ACCESS ON

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 182
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (math_errhandling & MATH_ERREXCEPT) {
 feclearexcept(FE_ALL_EXCEPT);
 }
 errno = 0;

 result = sinh(x);

 if ((math_errhandling & MATH_ERRNO) && errno != 0) {
 /* Handle range error */
 } else if ((math_errhandling & MATH_ERREXCEPT) &&
 fetestexcept(FE_INVALID | FE_DIVBYZERO |
 FE_OVERFLOW | FE_UNDERFLOW) != 0) {
 /* Handle range error */
 }
 }

 /* Use result... */
}

6.2.8 Noncompliant Code Example (pow())
This noncompliant code example raises x to the power of y:

#include <math.h>

void func(double x, double y) {
 double result;
 result = pow(x, y);
}

This code may produce a domain error if x is negative and y is not an integer value or if x is 0 and
y is 0. A domain error or pole error may occur if x is 0 and y is negative, and a range error may
occur if the result cannot be represented as a double.

6.2.9 Compliant Solution (pow())
Because the pow() function can produce domain errors, pole errors, and range errors, the pro-
grammer must first check that x and y lie within the proper domain and do not generate a pole er-
ror and then detect whether a range error occurs and act accordingly:

#include <math.h>
#include <fenv.h>
#include <errno.h>

void func(double x, double y) {
 double result;

 if (((x == 0.0f) && islessequal(y, 0.0)) || isless(x, 0.0)) {
 /* Handle domain or pole error */

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 183
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 {
 #pragma STDC FENV_ACCESS ON
 if (math_errhandling & MATH_ERREXCEPT) {
 feclearexcept(FE_ALL_EXCEPT);
 }
 errno = 0;

 result = pow(x, y);

 if ((math_errhandling & MATH_ERRNO) && errno != 0) {
 /* Handle range error */
 } else if ((math_errhandling & MATH_ERREXCEPT) &&
 fetestexcept(FE_INVALID | FE_DIVBYZERO |
 FE_OVERFLOW | FE_UNDERFLOW) != 0) {
 /* Handle range error */
 }
 }

 /* Use result... */
}

6.2.10 Noncompliant Code Example (asin(), Subnormal Number)
This noncompliant code example determines the inverse sine of x:

#include <math.h>

void func(float x) {
 float result = asin(x);
 /* ... */
}

6.2.11 Compliant Solution (asin(), Subnormal Number)
Because this function has no domain errors but may have range errors, the programmer must de-
tect a range error and act accordingly:

#include <math.h>
#include <fenv.h>
#include <errno.h>
void func(float x) {
 float result;

 {
 #pragma STDC FENV_ACCESS ON
 if (math_errhandling & MATH_ERREXCEPT) {
 feclearexcept(FE_ALL_EXCEPT);

Floating Point (FLP) - FLP32-C. Prevent or detect domain and range errors in math functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 184
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
 errno = 0;

 result = asin(x);

 if ((math_errhandling & MATH_ERRNO) && errno != 0) {
 /* Handle range error */
 } else if ((math_errhandling & MATH_ERREXCEPT) &&
 fetestexcept(FE_INVALID | FE_DIVBYZERO |
 FE_OVERFLOW | FE_UNDERFLOW) != 0) {
 /* Handle range error */
 }
 }

 /* Use result... */
}

6.2.12 Risk Assessment
Failure to prevent or detect domain and range errors in math functions may cause unexpected re-
sults.

Rule Severity Likelihood Remediation Cost Priority Level

FLP32-C Medium Probable Medium P8 L2

6.2.13 Related Guidelines

CERT C Secure Coding Standard FLP03-C. Detect and handle floating-point er-
rors

MITRE CWE CWE-682, Incorrect Calculation

6.2.14 Bibliography

[ISO/IEC 9899:2011] 7.3.2, “Conventions”
7.12.1, “Treatment of Error Conditions”
F.10.7, “Remainder Functions”

[IEEE 754 2006]
[Plum 1985] Rule 2-2
[Plum 1989] Topic 2.10, “conv—Conversions and Over-

flow”
[UNIX 1992] System V Interface Definition (SVID3)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15303137
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15303137
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/682.html

Floating Point (FLP) - FLP34-C. Ensure that floating-point conversions are within range of the new type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 185
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3 FLP34-C. Ensure that floating-point conversions are within range
of the new type

If a floating-point value is to be converted to a floating-point value of a smaller range and preci-
sion or to an integer type, or if an integer type is to be converted to a floating-point type, the value
must be representable in the destination type.

The C Standard, 6.3.1.4, paragraph 1 [ISO/IEC 9899:2011], says,

When a finite value of real floating type is converted to an integer type other than _Bool,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.

Paragraph 2 of the same subclause says,

When a value of integer type is converted to a real floating type, if the value being con-
verted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, cho-
sen in an implementation-defined manner. If the value being converted is outside the
range of values that can be represented, the behavior is undefined.

And subclause 6.3.1.5, paragraph 1, says,

When a value of real floating type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, cho-
sen in an implementation-defined manner. If the value being converted is outside the
range of values that can be represented, the behavior is undefined.

See undefined behaviors 17 and 18.
This rule does not apply to demotions of floating-point types on implementations that support
signed infinity, such as IEEE 754, as all values are within range.

6.3.1 Noncompliant Code Example (float to int)
This noncompliant code example leads to undefined behavior if the integral part of f_a cannot be
represented as an integer:

void func(float f_a) {
 int i_a;

 /* Undefined if the integral part of f_a cannot be represented.
*/

Floating Point (FLP) - FLP34-C. Ensure that floating-point conversions are within range of the new type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 186
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 i_a = f_a;
}

6.3.2 Compliant Solution (float to int)
This compliant solution tests to ensure that the float value will fit within the int variable before
performing the assignment.

#include <float.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>

extern size_t popcount(uintmax_t); /* See INT35-C */
#define PRECISION(umax_value) popcount(umax_value)

void func(float f_a) {
 int i_a;

 if (PRECISION(INT_MAX) < log2f(fabsf(f_a)) ||
 (f_a != 0.0F && fabsf(f_a) < FLT_MIN)) {
 /* Handle error */
 } else {
 i_a = f_a;
 }
}

6.3.3 Noncompliant Code Example (Narrowing Conversion)
This noncompliant code example attempts to perform conversions that may result in truncating
values outside the range of the destination types:

void func(double d_a, long double big_d) {
 double d_b = (float)big_d;
 float f_a = (float)d_a;
 float f_b = (float)big_d;
}

As a result of these conversions, it is possible that d_a is outside the range of values that can be
represented by a float or that big_d is outside the range of values that can be represented as either
a float or a double. If this is the case, the result is undefined on implementations that do not
support Annex F, “IEC 60559 Floating-Point Arithmetic.”

Floating Point (FLP) - FLP34-C. Ensure that floating-point conversions are within range of the new type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 187
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.4 Compliant Solution (Narrowing Conversion)
This compliant solution checks whether the values to be stored can be represented in the new
type:

#include <float.h>
#include <math.h>

void func(double d_a, long double big_d) {
 double d_b;
 float f_a;
 float f_b;

 if (isgreater(fabs(d_a), FLT_MAX) ||
 isless(fabs(d_a), FLT_MIN)) {
 /* Handle error */
 } else {
 f_a = (float)d_a;
 }
 if (isgreater(fabsl(big_d), FLT_MAX) ||
 isless(fabsl(big_d), FLT_MIN)) {
 /* Handle error */
 } else {
 f_b = (float)big_d;
 }
 if (isgreater(fabsl(big_d), DBL_MAX) ||
 isless(fabsl(big_d), DBL_MIN)) {
 /* Handle error */
 } else {
 d_b = (double)big_d;
 }
}

6.3.5 Risk Assessment
Converting a floating-point value to a floating-point value of a smaller range and precision or to
an integer type, or converting an integer type to a floating-point type, can result in a value that is
not representable in the destination type and is undefined behavior on implementations that do not
support Annex F.

Rule Severity Likelihood Remediation Cost Priority Level

FLP34-C Low Unlikely Low P3 L3

Floating Point (FLP) - FLP34-C. Ensure that floating-point conversions are within range of the new type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 188
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.3.6 Related Guidelines

CERT Oracle Secure Coding Standard for Java NUM12-J. Ensure conversions of numeric
types to narrower types do not result in lost or
misinterpreted data

ISO/IEC TR 24772:2013 Numeric Conversion Errors [FLC]
MITRE CWE CWE-681, Incorrect Conversion between Nu-

meric Types

6.3.7 Bibliography

[IEEE 754 2006]
[ISO/IEC 9899:2011] Subclause 6.3.1.4, “Real Floating and Integer”

Subclause 6.3.1.5, “Real Floating Types”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=60751980
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=60751980
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=60751980
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/681.html

Floating Point (FLP) - FLP36-C. Preserve precision when converting integral values to floating-point type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 189
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.4 FLP36-C. Preserve precision when converting integral values to
floating-point type

Narrower arithmetic types can be cast to wider types without any effect on the magnitude of nu-
meric values. However, whereas integer types represent exact values, floating-point types have
limited precision. The C Standard, 6.3.1.4 paragraph 2 [ISO/IEC 9899:2011], states

When a value of integer type is converted to a real floating type, if the value being con-
verted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, cho-
sen in an implementation-defined manner. If the value being converted is outside the
range of values that can be represented, the behavior is undefined. Results of some im-
plicit conversions may be represented in greater range and precision than that required
by the new type (see 6.3.1.8 and 6.8.6.4).

Conversion from integral types to floating-point types without sufficient precision can lead to loss
of precision (loss of least significant bits). No runtime exception occurs despite the loss.

6.4.1 Noncompliant Code Example
In this noncompliant example, a large value of type long int is converted to a value of type
float without ensuring it is representable in the type:

#include <stdio.h>

int main(void) {
 long int big = 1234567890;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

For most floating-point hardware, the value closest to 1234567890 that is representable in type
float is 1234567844; consequently, this program prints the value -46.

6.4.2 Compliant Solution
This compliant solution replaces the type float with a double. Furthermore, it uses an assertion
to guarantee that the double type can represent any long int without loss of precision. (See
INT35-C. Use correct integer precisions and MSC11-C. Incorporate diagnostic tests using asser-
tions.)

#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=9863184
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=9863184

Floating Point (FLP) - FLP36-C. Preserve precision when converting integral values to floating-point type

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 190
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <stdint.h>
#include <stdio.h>

extern size_t popcount(uintmax_t); /* See INT35-C */
#define PRECISION(umax_value) popcount(umax_value)

int main(void) {
 assert(PRECISION(LONG_MAX) <= DBL_MANT_DIG * log2(FLT_RADIX));
 long int big = 1234567890;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

On the same implementation, this program prints 0, implying that the integer value 1234567890
is representable in type double without change.

6.4.3 Risk Assessment
Conversion from integral types to floating-point types without sufficient precision can lead to loss
of precision (loss of least significant bits).

Rule Severity Likelihood Remediation Cost Priority Level

FLP36-C Low Unlikely Medium P2 L3

6.4.4 Related Guidelines

CERT C Secure Coding Standard DCL03-C. Use a static assertion to test the
value of a constant expression

CERT Oracle Secure Coding Standard for Java NUM13-J. Avoid loss of precision when con-
verting primitive integers to floating-point

6.4.5 Bibliography

[ISO/IEC 9899:2011] Subclause 6.3.1.4, “Real Floating and Integer”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11272374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18579638
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18579638

Floating Point (FLP) - FLP37-C. Do not use object representations to compare floating-point values

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 191
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.5 FLP37-C. Do not use object representations to compare floating-
point values

The object representation for floating-point values is implementation defined. However, an imple-
mentation that defines the __STDC_IEC_559__ macro shall conform to the IEC 60559 floating-
point standard and uses what is frequently referred to as IEEE 754 floating-point arithmetic
[ISO/IEC 9899:2011]. The floating-point object representation used by IEC 60559 is one of the
most common floating-point object representations in use today.

All floating-point object representations use specific bit patterns to encode the value of the float-
ing-point number being represented. However, equivalence of floating-point values is not encoded
solely by the bit pattern used to represent the value. For instance, if the floating-point format sup-
ports negative zero values (as IEC 60559 does), the values -0.0 and 0.0 are equivalent and will
compare as equal, but the bit patterns used in the object representation are not identical. Similarly,
if two floating-point values are both (the same) NaN, they will not compare as equal, despite the
bit patterns being identical, because they are not equivalent.

Do not compare floating-point object representations directly, such as by calling memcmp() or its
moral equivalents. Instead, the equality operators (== and !=) should be used to determine if two
floating-point values are equivalent.

6.5.1 Noncompliant Code Example
In this noncompliant code example, memcmp() is used to compare two structures for equality.
However, since the structure contains a floating-point object, this code may not behave as the pro-
grammer intended.

#include <stdbool.h>
#include <string.h>

struct S {
 int i;
 float f;
};

bool are_equal(const struct S *s1, const struct S *s2) {
 if (!s1 && !s2)
 return true;
 else if (!s1 || !s2)
 return false;
 return 0 == memcmp(s1, s2, sizeof(struct S));
}

Floating Point (FLP) - FLP37-C. Do not use object representations to compare floating-point values

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 192
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.5.2 Compliant Solution
In this compliant solution, the structure members are compared individually:

#include <stdbool.h>
#include <string.h>

struct S {
 int i;
 float f;
};

bool are_equal(const struct S *s1, const struct S *s2) {
 if (!s1 && !s2)
 return true;
 else if (!s1 || !s2)
 return false;
 return s1->i == s2->i &&
 s1->f == s2->f;
}

6.5.3 Risk Assessment
Using the object representation of a floating-point value for comparisons can lead to incorrect
equality results, which can lead to unexpected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

FLP37-C Low Unlikely Medium P2 L3

6.5.4 Related Guidelines

6.5.5 Bibliography

[ISO/IEC 9899:2011] Annex F, “IEC 60559 floating-point arithme-
tic”

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 193
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7 Array (ARR)

7.1 ARR30-C. Do not form or use out-of-bounds pointers or array
subscripts

The C Standard identifies the following distinct situations in which undefined behavior (UB) can
arise as a result of invalid pointer operations:

UB Description Example Code

46 Addition or subtraction of a pointer
into, or just beyond, an array ob-
ject and an integer type produces
a result that does not point into, or
just beyond, the same array ob-
ject.

Forming Out-of-Bounds Pointer,
Null Pointer Arithmetic

47 Addition or subtraction of a pointer
into, or just beyond, an array ob-
ject and an integer type produces
a result that points just beyond the
array object and is used as the op-
erand of a unary * operator that is
evaluated.

Dereferencing Past the End
Pointer, Using Past the End Index

49 An array subscript is out of range,
even if an object is apparently ac-
cessible with the given subscript,
for example, in the lvalue expres-
sion a [1] [7] given the declaration
int a [4] [5]).

Apparently Accessible Out-of-
Range Index

62 An attempt is made to access, or
generate a pointer to just past, a
flexible array member of a struc-
ture when the referenced object
provides no elements for that ar-
ray.

Pointer Past Flexible Array Mem-
ber

7.1.1 Noncompliant Code Example (Forming Out-of-Bounds Pointer)
In this noncompliant code example, the function f() attempts to validate the index before using
it as an offset to the statically allocated table of integers. However, the function fails to reject
negative index values. When index is less than zero, the behavior of the addition expression in
the return statement of the function is undefined behavior 46. On some implementations, the addi-
tion alone can trigger a hardware trap. On other implementations, the addition may produce a re-
sult that when dereferenced triggers a hardware trap. Other implementations still may produce a

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 194
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

dereferenceable pointer that points to an object distinct from table. Using such a pointer to ac-
cess the object may lead to information exposure or cause the wrong object to be modified.

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(int index) {
 if (index < TABLESIZE) {
 return table + index;
 }
 return NULL;
}

7.1.2 Compliant Solution
One compliant solution is to detect and reject invalid values of index if using them in pointer
arithmetic would result in an invalid pointer:

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(int index) {
 if (index >= 0 && index < TABLESIZE) {
 return table + index;
 }
 return NULL;
}

7.1.3 Compliant Solution
Another slightly simpler and potentially more efficient compliant solution is to use an unsigned
type to avoid having to check for negative values while still rejecting out-of-bounds positive val-
ues of index:

#include <stddef.h>

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(size_t index) {
 if (index < TABLESIZE) {
 return table + index;
 }
 return NULL;
}

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 195
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.4 Noncompliant Code Example (Dereferencing Past-the-End Pointer)
This noncompliant code example shows the flawed logic in the Windows Distributed Component
Object Model (DCOM) Remote Procedure Call (RPC) interface that was exploited by the
W32.Blaster.Worm. The error is that the while loop in the GetMachineName() function (used
to extract the host name from a longer string) is not sufficiently bounded. When the character ar-
ray pointed to by pwszTemp does not contain the backslash character among the first
MAX_COMPUTERNAME_LENGTH_FQDN + 1 elements, the final valid iteration of the loop will
dereference past the end pointer, resulting in exploitable undefined behavior 47. In this case, the
actual exploit allowed the attacker to inject executable code into a running program. Economic
damage from the Blaster worm has been estimated to be at least $525 million [Pethia 2003].

For a discussion of this programming error in the Common Weakness Enumeration database, see
CWE-119, “Improper Restriction of Operations within the Bounds of a Memory Buffer,” and
CWE-121, “Stack-based Buffer Overflow” [MITRE 2013].

error_status_t _RemoteActivation(
 /* ... */, WCHAR *pwszObjectName, ...) {
 *phr = GetServerPath(
 pwszObjectName, &pwszObjectName);
 /* ... */
}

HRESULT GetServerPath(
 WCHAR *pwszPath, WCHAR **pwszServerPath){
 WCHAR *pwszFinalPath = pwszPath;
 WCHAR wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1];
 hr = GetMachineName(pwszPath, wszMachineName);
 *pwszServerPath = pwszFinalPath;
}

HRESULT GetMachineName(
 WCHAR *pwszPath,
 WCHAR wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1])
{
 pwszServerName = wszMachineName;
 LPWSTR pwszTemp = pwszPath + 2;
 while (*pwszTemp != L'\\')
 *pwszServerName++ = *pwszTemp++;
 /* ... */
}

7.1.5 Compliant Solution
In this compliant solution, the while loop in the GetMachineName() function is bounded so
that the loop terminates when a backslash character is found, the null-termination character

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/121.html

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 196
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

(L'\0') is discovered, or the end of the buffer is reached. This code does not result in a buffer
overflow even if no backslash character is found in wszMachineName.

HRESULT GetMachineName(
 wchar_t *pwszPath,
 wchar_t wszMachineName[MAX_COMPUTERNAME_LENGTH_FQDN+1])
{
 wchar_t *pwszServerName = wszMachineName;
 wchar_t *pwszTemp = pwszPath + 2;
 wchar_t *end_addr
 = pwszServerName + MAX_COMPUTERNAME_LENGTH_FQDN;
 while ((*pwszTemp != L'\\')
 && ((*pwszTemp != L'\0'))
 && (pwszServerName < end_addr))
 {
 *pwszServerName++ = *pwszTemp++;
 }

 /* ... */
}

This compliant solution is for illustrative purposes and is not necessarily the solution implemented
by Microsoft. This particular solution may not be correct because there is no guarantee that a
backslash is found.

7.1.6 Noncompliant Code Example (Using Past-the-End Index)
Similar to the dereferencing-past-the-end-pointer error, the function insert_in_table() in this
noncompliant code example uses an otherwise valid index to attempt to store a value in an ele-
ment just past the end of an array.

First, the function incorrectly validates the index pos against the size of the buffer. When pos is
initially equal to size, the function attempts to store value in a memory location just past the
end of the buffer.

Second, when the index is greater than size, the function modifies size before growing the size
of the buffer. If the call to realloc() fails to increase the size of the buffer, the next call to the
function with a value of pos equal to or greater than the original value of size will again attempt
to store value in a memory location just past the end of the buffer or beyond.

Third, the function violates INT30-C. Ensure that unsigned integer operations do not wrap, which
could lead to wrapping when 1 is added to pos or when size is multiplied by the size of int.

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 197
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For a discussion of this programming error in the Common Weakness Enumeration database, see
CWE-122, “Heap-based Buffer Overflow,” and CWE-129, “Improper Validation of Array Index”
[MITRE 2013].

#include <stdlib.h>

static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
 if (size < pos) {
 int *tmp;
 size = pos + 1;
 tmp = (int *)realloc(table, sizeof(*table) * size);
 if (tmp == NULL) {
 return -1; /* Failure */
 }
 table = tmp;
 }

 table[pos] = value;
 return 0;
}

7.1.7 Compliant Solution
This compliant solution correctly validates the index pos by using the <= relational operator, en-
sures the multiplication will not overflow, and avoids modifying size until it has verified that the
call to realloc() was successful:

#include <stdint.h>
#include <stdlib.h>

static int *table = NULL;
static size_t size = 0;

int insert_in_table(size_t pos, int value) {
 if (size <= pos) {
 if ((SIZE_MAX - 1 < pos) ||
 ((pos + 1) > SIZE_MAX / sizeof(*table))) {
 return -1;
 }

 int *tmp = (int *)realloc(table, sizeof(*table) * (pos + 1));
 if (tmp == NULL) {
 return -1;
 }
 /* Modify size only after realloc() succeeds */
 size = pos + 1;

http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/129.html

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 198
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 table = tmp;
 }

 table[pos] = value;
 return 0;
}

7.1.8 Noncompliant Code Example (Apparently Accessible Out-of-Range Index)
This noncompliant code example declares matrix to consist of 7 rows and 5 columns in row-ma-
jor order. The function init_matrix iterates over all 35 elements in an attempt to initialize each
to the value given by the function argument x. However, because multidimensional arrays are de-
clared in C in row-major order, the function iterates over the elements in column-major order, and
when the value of j reaches the value COLS during the first iteration of the outer loop, the func-
tion attempts to access element matrix[0][5]. Because the type of matrix is int[7][5], the
j subscript is out of range, and the access has undefined behavior 49.

#include <stddef.h>
#define COLS 5
#define ROWS 7
static int matrix[ROWS][COLS];

void init_matrix(int x) {
 for (size_t i = 0; i < COLS; i++) {
 for (size_t j = 0; j < ROWS; j++) {
 matrix[i][j] = x;
 }
 }
}

7.1.9 Compliant Solution
This compliant solution avoids using out-of-range indices by initializing matrix elements in the
same row-major order as multidimensional objects are declared in C:

#include <stddef.h>
#define COLS 5
#define ROWS 7
static int matrix[ROWS][COLS];

void init_matrix(int x) {
 for (size_t i = 0; i < ROWS; i++) {
 for (size_t j = 0; j < COLS; j++) {
 matrix[i][j] = x;
 }
 }
}

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 199
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.10 Noncompliant Code Example (Pointer Past Flexible Array Member)
In this noncompliant code example, the function find() attempts to iterate over the elements of
the flexible array member buf, starting with the second element. However, because function g()
does not allocate any storage for the member, the expression first++ in find() attempts to
form a pointer just past the end of buf when there are no elements. This attempt is undefined be-
havior 62. (See MSC21-C. Use robust loop termination conditions for more information.)

#include <stdlib.h>

struct S {
 size_t len;
 char buf[]; /* Flexible array member */
};

const char *find(const struct S *s, int c) {
 const char *first = s->buf;
 const char *last = s->buf + s->len;

 while (first++ != last) { /* Undefined behavior */
 if (*first == (unsigned char)c) {
 return first;
 }
 }
 return NULL;
}

void g(void) {
 struct S *s = (struct S *)malloc(sizeof(struct S));
 if (s == NULL) {
 /* Handle error */
 }
 s->len = 0;
 find(s, 'a');
}

7.1.11 Compliant Solution
This compliant solution avoids incrementing the pointer unless a value past the pointer's current
value is known to exist:

#include <stdlib.h>

struct S {
 size_t len;
 char buf[]; /* Flexible array member */
};

const char *find(const struct S *s, int c) {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29949971

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 200
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 const char *first = s->buf;
 const char *last = s->buf + s->len;

 while (first != last) { /* Avoid incrementing here */
 if (*++first == (unsigned char)c) {
 return first;
 }
 }
 return NULL;
}

void g(void) {
 struct S *s = (struct S *)malloc(sizeof(struct S));
 if (s == NULL) {
 /* Handle error */
 }
 s->len = 0;
 find(s, 'a');
}

7.1.12 Noncompliant Code Example (Null Pointer Arithmetic)
This noncompliant code example is similar to an Adobe Flash Player vulnerability that was first
exploited in 2008. This code allocates a block of memory and initializes it with some data. The
data does not belong at the beginning of the block, which is left uninitialized. Instead, it is placed
offset bytes within the block. The function ensures that the data fits within the allocated block.

#include <string.h>
#include <stdlib.h>

char *init_block(size_t block_size, size_t offset,
 char *data, size_t data_size) {
 char *buffer = malloc(block_size);
 if (data_size > block_size || block_size - data_size < offset) {
 /* Data won't fit in buffer, handle error */
 }
 memcpy(buffer + offset, data, data_size);
 return buffer;
}

This function fails to check if the allocation succeeds, which is a violation of ERR33-C. Detect
and handle standard library errors. If the allocation fails, then malloc() returns a null pointer.
The null pointer is added to offset and passed as the destination argument to memcpy(). Be-
cause a null pointer does not point to a valid object, the result of the pointer arithmetic is unde-
fined behavior 46.

An attacker who can supply the arguments to this function can exploit it to execute arbitrary code.
This can be accomplished by providing an overly large value for block_size, which causes

http://www.iss.net/threats/289.html

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 201
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

malloc() to fail and return a null pointer. The offset argument will then serve as the destina-
tion address to the call to memcpy(). The attacker can specify the data and data_size argu-
ments to provide the address and length of the address, respectively, that the attacker wishes to
write into the memory referenced by offset. The overall result is that the call to memcpy() can
be exploited by an attacker to overwrite an arbitrary memory location with an attacker-supplied
address, typically resulting in arbitrary code execution.

7.1.13 Compliant Solution (Null Pointer Arithmetic)
This compliant solution ensures that the call to malloc() succeeds:

#include <string.h>
#include <stdlib.h>

char *init_block(size_t block_size, size_t offset,
 char *data, size_t data_size) {
 char *buffer = malloc(block_size);
 if (NULL == buffer) {
 /* Handle error */
 }
 if (data_size > block_size || block_size - data_size < offset) {
 /* Data won't fit in buffer, handle error */
 }
 memcpy(buffer + offset, data, data_size);
 return buffer;
}

7.1.14 Risk Assessment
Writing to out-of-range pointers or array subscripts can result in a buffer overflow and the execu-
tion of arbitrary code with the permissions of the vulnerable process. Reading from out-of-range
pointers or array subscripts can result in unintended information disclosure.

Rule Severity Likelihood Remediation Cost Priority Level

ARR30-C High Likely High P9 L2

7.1.14.1 Related Vulnerabilities
CVE-2008-1517 results from a violation of this rule. Before Mac OSX version 10.5.7, the XNU
kernel accessed an array at an unverified user-input index, allowing an attacker to execute arbi-
trary code by passing an index greater than the length of the array and therefore accessing outside
memory [xorl 2009].

7.1.15 Related Guidelines

ISO/IEC TR 24772:2013 Arithmetic Wrap-Around Error [FIF]
Unchecked Array Indexing [XYZ]

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1517
http://xorl.wordpress.com/2009/06/09/cve-2008-1517-apple-mac-os-x-xnu-missing-array-index-validation/

Array (ARR) - ARR30-C. Do not form or use out-of-bounds pointers or array subscripts

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 202
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

ISO/IEC TS 17961 Forming or using out-of-bounds pointers or ar-
ray subscripts [invptr]

MITRE CWE CWE-119, Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-122, Heap-based Buffer Overflow
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-129, Improper Validation of Array Index
CWE-788, Access of Memory Location after
End of Buffer

MISRA C:2012 Rule 18.1 (required)

7.1.16 Bibliography

[Finlay 2003]
[Microsoft 2003]
[Pethia 2003]
[Seacord 2013b] Chapter 1, “Running with Scissors”
[Viega 2005] Section 5.2.13, “Unchecked Array Indexing”
[xorl 2009] “CVE-2008-1517: Apple Mac OS X (XNU)

Missing Array Index Validation”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/788.html
http://xorl.wordpress.com/2009/06/09/cve-2008-1517-apple-mac-os-x-xnu-missing-array-index-validation/
http://xorl.wordpress.com/2009/06/09/cve-2008-1517-apple-mac-os-x-xnu-missing-array-index-validation/

Array (ARR) - ARR32-C. Ensure size arguments for variable length arrays are in a valid range

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 203
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2 ARR32-C. Ensure size arguments for variable length arrays are in a
valid range

Variable length arrays (VLAs), a conditionally supported language feature, are essentially the
same as traditional C arrays except that they are declared with a size that is not a constant integer
expression and can be declared only at block scope or function prototype scope and no linkage.
When supported, a variable length array can be declared

{ /* Block scope */
 char vla[size];
}

where the integer expression size and the declaration of vla are both evaluated at runtime. If the
size argument supplied to a variable length array is not a positive integer value, the behavior is
undefined. (See undefined behavior 75.) Additionally, if the magnitude of the argument is exces-
sive, the program may behave in an unexpected way. An attacker may be able to leverage this be-
havior to overwrite critical program data [Griffiths 2006]. The programmer must ensure that size
arguments to variable length arrays, especially those derived from untrusted data, are in a valid
range.

Because variable length arrays are a conditionally supported feature of C11, their use in portable
code should be guarded by testing the value of the macro __STDC_NO_VLA__. Implementations
that do not support variable length arrays indicate it by setting __STDC_NO_VLA__ to the integer
constant 1.

7.2.1 Noncompliant Code Example
In this noncompliant code example, a variable length array of size is declared. The size is de-
clared as size_t in compliance with INT01-C. Use rsize_t or size_t for all integer values repre-
senting the size of an object.

#include <stddef.h>

extern void do_work(int *array, size_t size);

void func(size_t size) {
 int vla[size];
 do_work(vla, size);
}

However, the value of size may be zero or excessive, potentially giving rise to a security vulner-
ability.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=319
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=319

Array (ARR) - ARR32-C. Ensure size arguments for variable length arrays are in a valid range

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 204
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.2 Compliant Solution
This compliant solution ensures the size argument used to allocate vla is in a valid range (be-
tween 1 and a programmer-defined maximum); otherwise, it uses an algorithm that relies on dy-
namic memory allocation. The solution also avoids unsigned integer wrapping that, given a suffi-
ciently large value of size, would cause malloc to allocate insufficient storage for the array.

#include <stdint.h>
#include <stdlib.h>

enum { MAX_ARRAY = 1024 };
extern void do_work(int *array, size_t size);

void func(size_t size) {
 if (0 == size || SIZE_MAX / sizeof(int) < size) {
 /* Handle error */
 return;
 }
 if (size < MAX_ARRAY) {
 int vla[size];
 do_work(vla, size);
 } else {
 int *array = (int *)malloc(size * sizeof(int));
 if (array == NULL) {
 /* Handle error */
 }
 do_work(array, size);
 free(array);
 }
}

7.2.3 Noncompliant Code Example (sizeof)
The following noncompliant code example defines A to be a variable length array and then uses
the sizeof operator to compute its size at runtime. When the function is called with an argument
greater than SIZE_MAX / (N1 * sizeof (int)), the runtime sizeof expression may wrap
around, yielding a result that is smaller than the mathematical product N1 * n2 * sizeof
(int). The call to malloc(), when successful, will then allocate storage for fewer than n2 ele-
ments of the array, causing one or more of the final memset() calls in the for loop to write past
the end of that storage.

#include <stdlib.h>
#include <string.h>

enum { N1 = 4096 };

void *func(size_t n2) {
 typedef int A[n2][N1];

Array (ARR) - ARR32-C. Ensure size arguments for variable length arrays are in a valid range

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 205
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 A *array = malloc(sizeof(A));
 if (!array) {
 /* Handle error */
 return NULL;
 }

 for (size_t i = 0; i != n2; ++i) {
 memset(array[i], 0, N1 * sizeof(int));
 }

 return array;
}

7.2.4 Compliant Solution (sizeof)
This compliant solution prevents sizeof wrapping by detecting the condition before it occurs
and avoiding the subsequent computation when the condition is detected.

#include <stdint.h>
#include <stdlib.h>
#include <string.h>

enum { N1 = 4096 };

void *func(size_t n2) {
 if (n2 > SIZE_MAX / (N1 * sizeof(int))) {
 /* Prevent sizeof wrapping */
 return NULL;
 }

 typedef int A[n2][N1];

 A *array = malloc(sizeof(A));
 if (!array) {
 /* Handle error */
 return NULL;
 }

 for (size_t i = 0; i != n2; ++i) {
 memset(array[i], 0, N1 * sizeof(int));
 }
 return array;
}

7.2.4.1 Implementation Details

7.2.4.1.1 Microsoft

Variable length arrays are not supported by Microsoft compilers.

Array (ARR) - ARR32-C. Ensure size arguments for variable length arrays are in a valid range

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 206
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.5 Risk Assessment
Failure to properly specify the size of a variable length array may allow arbitrary code execution
or result in stack exhaustion.

Rule Severity Likelihood Remediation Cost Priority Level

ARR32-C High Probable High P6 L2

7.2.6 Related Guidelines

CERT C Secure Coding Standard INT01-C. Use rsize_t or size_t for all integer
values representing the size of an object

ISO/IEC TR 24772:2013 Unchecked Array Indexing [XYZ]
ISO/IEC TS 17961:2013 Tainted, potentially mutilated, or out-of-do-

main integer values are used in a restricted sink
[taintsink]

7.2.7 Bibliography

[Griffiths 2006]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=319
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=319

Array (ARR) - ARR36-C. Do not subtract or compare two pointers that do not refer to the same array

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 207
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3 ARR36-C. Do not subtract or compare two pointers that do not
refer to the same array

When two pointers are subtracted, both must point to elements of the same array object or just one
past the last element of the array object (C Standard, 6.5.6 [ISO/IEC 9899:2011]); the result is the
difference of the subscripts of the two array elements. Otherwise, the operation is undefined be-
havior. (See undefined behavior 48.)

Similarly, comparing pointers using the relational operators <, <=, >=, and > gives the positions of
the pointers relative to each other. Subtracting or comparing pointers that do not refer to the same
array is undefined behavior. (See undefined behavior 48 and undefined behavior 53.)

Comparing pointers using the equality operators == and != has well-defined semantics regardless
of whether or not either of the pointers is null, points into the same object, or points one past the
last element of an array object or function.

7.3.1 Noncompliant Code Example
In this noncompliant code example, pointer subtraction is used to determine how many free ele-
ments are left in the nums array:

#include <stddef.h>

enum { SIZE = 32 };

void func(void) {
 int nums[SIZE];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;

 /* Increment next_num_ptr as array fills */

 free_elements = &end - next_num_ptr;
}

This program incorrectly assumes that the nums array is adjacent to the end variable in memory.
A compiler is permitted to insert padding bits between these two variables or even reorder them in
memory.

Array (ARR) - ARR36-C. Do not subtract or compare two pointers that do not refer to the same array

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 208
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.3.2 Compliant Solution
In this compliant solution, the number of free elements is computed by subtracting
next_num_ptr from the address of the pointer past the nums array. While this pointer may not
be dereferenced, it may be used in pointer arithmetic.

#include <stddef.h>
enum { SIZE = 32 };

void func(void) {
 int nums[SIZE];
 int *next_num_ptr = nums;
 size_t free_elements;

 /* Increment next_num_ptr as array fills */

 free_elements = &(nums[SIZE]) - next_num_ptr;
}

7.3.3 Exceptions
ARR36-C-EX1: Comparing two pointers to distinct members of the same struct object is al-
lowed. Pointers to structure members declared later in the structure compare greater-than pointers
to members declared earlier in the structure.

7.3.4 Risk Assessment
Rule Severity Likelihood Remediation Cost Priority Level

ARR36-C Medium Probable Medium P8 L2

7.3.5 Related Guidelines

SEI CERT C++ Coding Standard CTR54-CPP. Do not subtract iterators that do
not refer to the same container

ISO/IEC TS 17961 Subtracting or comparing two pointers that do
not refer to the same array [ptrobj]

MITRE CWE CWE-469, Use of Pointer Subtraction to Deter-
mine Size

7.3.6 Bibliography

[Banahan 2003] Section 5.3, “Pointers”
Section 5.7, “Expressions Involving Pointers”

[ISO/IEC 9899:2011] 6.5.6, “Additive Operators”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087053
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087053
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/469.html
http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html
http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html

Array (ARR) - ARR37-C. Do not add or subtract an integer to a pointer to a non-array object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 209
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.4 ARR37-C. Do not add or subtract an integer to a pointer to a non-
array object

Pointer arithmetic must be performed only on pointers that reference elements of array objects.

The C Standard, 6.5.6 [ISO/IEC 9899:2011], states the following about pointer arithmetic:

When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and origi-
nal array elements equals the integer expression.

7.4.1 Noncompliant Code Example
This noncompliant code example attempts to access structure members using pointer arithmetic.
This practice is dangerous because structure members are not guaranteed to be contiguous.

struct numbers {
 short num_a, num_b, num_c;
};

int sum_numbers(const struct numbers *numb){
 int total = 0;
 const short *numb_ptr;

 for (numb_ptr = &numb->num_a;
 numb_ptr <= &numb->num_c;
 numb_ptr++) {
 total += *(numb_ptr);
 }

 return total;
}

int main(void) {
 struct numbers my_numbers = { 1, 2, 3 };
 sum_numbers(&my_numbers);
 return 0;
}

7.4.2 Compliant Solution
It is possible to use the -> operator to dereference each structure member:

total = numb->num_a + numb->num_b + numb->num_c;

Array (ARR) - ARR37-C. Do not add or subtract an integer to a pointer to a non-array object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 210
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

However, this solution results in code that is hard to write and hard to maintain (especially if there
are many more structure members), which is exactly what the author of the noncompliant code
example was likely trying to avoid.

7.4.3 Compliant Solution
A better solution is to define the structure to contain an array member to store the numbers in an
array rather than a structure, as in this compliant solution:

#include <stddef.h>

struct numbers {
 short a[3];
};

int sum_numbers(const short *numb, size_t dim) {
 int total = 0;
 for (size_t i = 0; i < dim; ++i) {
 total += numb[i];
 }

 return total;
}

int main(void) {
 struct numbers my_numbers = { .a[0]= 1, .a[1]= 2, .a[2]= 3};
 sum_numbers(
 my_numbers.a,
 sizeof(my_numbers.a)/sizeof(my_numbers.a[0])
);
 return 0;
}

Array elements are guaranteed to be contiguous in memory, so this solution is completely porta-
ble.

7.4.4 Exceptions
ARR37-C-EX1: Any non-array object in memory can be considered an array consisting of one
element. Adding one to a pointer to such an object yields a pointer one element past the array, and
subtracting one from that pointer yields the original pointer. This allows for code such as the fol-
lowing:

#include <stdlib.h>
#include <string.h>

struct s {
 char *c_str;

Array (ARR) - ARR37-C. Do not add or subtract an integer to a pointer to a non-array object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 211
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Other members */
};

struct s *create_s(const char *c_str) {
 struct s *ret;
 size_t len = strlen(c_str) + 1;

 ret = (struct s *)malloc(sizeof(struct s) + len);
 if (ret != NULL) {
 ret->c_str = (char *)(ret + 1);
 memcpy(ret + 1, c_str, len);
 }
 return ret;
}

A more general and safer solution to this problem is to use a flexible array member that guaran-
tees the array that follows the structure is properly aligned by inserting padding, if necessary, be-
tween it and the member that immediately precedes it.

7.4.5 Risk Assessment
Rule Severity Likelihood Remediation Cost Priority Level

ARR37-C Medium Probable Medium P8 L2

7.4.6 Related Guidelines
MITRE CWE CWE-469, Use of Pointer Subtraction to Deter-

mine Size

7.4.7 Bibliography
[Banahan 2003] Section 5.3, “Pointers”

Section 5.7, “Expressions Involving Pointers”
[ISO/IEC 9899:2011] 6.5.6, “Additive Operators”
[VU#162289]

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/469.html
http://publications.gbdirect.co.uk/c_book/chapter5/pointers.html
http://publications.gbdirect.co.uk/c_book/chapter5/pointer_expressions.html

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 212
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5 ARR38-C. Guarantee that library functions do not form invalid
pointers

C library functions that make changes to arrays or objects take at least two arguments: a pointer to
the array or object and an integer indicating the number of elements or bytes to be manipulated.
For the purposes of this rule, the element count of a pointer is the size of the object to which it
points, expressed by the number of elements that are valid to access. Supplying arguments to such
a function might cause the function to form a pointer that does not point into or just past the end
of the object, resulting in undefined behavior.

Annex J of the C Standard [ISO/IEC 9899:2011] states that it is undefined behavior if the “pointer
passed to a library function array parameter does not have a value such that all address computa-
tions and object accesses are valid.” (See undefined behavior 109.)

In the following code,

int arr[5];
int *p = arr;

unsigned char *p2 = (unsigned char *)arr;
unsigned char *p3 = arr + 2;
void *p4 = arr;

the element count of the pointer p is sizeof(arr) / sizeof(arr[0]), that is, 5. The element
count of the pointer p2 is sizeof(arr), that is, 20, on implementations where sizeof(int)
== 4. The element count of the pointer p3 is 12 on implementations where sizeof(int) == 4,
because p3 points two elements past the start of the array arr. The element count of p4 is treated
as though it were unsigned char * instead of void *, so it is the same as p2.

7.5.1 Pointer + Integer
The following standard library functions take a pointer argument and a size argument, with the
constraint that the pointer must point to a valid memory object of at least the number of elements
indicated by the size argument.

fgets() fgetws() mbstowcs()2 wcstombs()2
mbrtoc16()3 mbrtoc32()3 mbsrtowcs()2 wcsrtombs()2
mbtowc()3 mbrtowc()2 mblen() mbrlen()
memchr() wmemchr() memset() wmemset()
strftime() wcsftime() strxfrm()2 wcsxfrm()2

2 Takes two pointers and an integer, but the integer specifies the element count only of the output buffer, not of

the input buffer.
3 Takes two pointers and an integer, but the integer specifies the element count only of the input buffer, not of the

output buffer.

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 213
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

strncat()3 wcsncat()3 snprintf() vsnprintf()
swprintf() vswprintf() setvbuf() tmpnam_s()
snprintf_s() sprintf_s() vsnprintf_s() vsprintf_s()
gets_s() getenv_s() wctomb_s() mbstowcs_s()4
wcstombs_s()4 memcpy_s()4 memmove_s()4 strncpy_s()4
strncat_s()4 strtok_s()3 strerror_s() strnlen_s()
asctime_s() ctime_s() snwprintf_s() swprintf_s()
vsnwprintf_s() vswprintf_s() wcsncpy_s()4 wmemcpy_s()4
wmemmove_s()4 wcsncat_s()4 wcstok_s()3 wcsnlen_s()
wcrtomb_s() mbsrtowcs_s()4 wcsrtombs_s()4 memset_s()5

For calls that take a pointer and an integer size, the given size should not be greater than the ele-
ment count of the pointer.

7.5.1.1 Noncompliant Code Example (Element Count)
In this noncompliant code example, the incorrect element count is used in a call to wmemcpy().
The sizeof operator returns the size expressed in bytes, but wmemcpy() uses an element count
based on wchar_t *.

#include <string.h>
#include <wchar.h>

static const char str[] = "Hello world";
static const wchar_t w_str[] = L"Hello world";
void func(void) {
 char buffer[32];
 wchar_t w_buffer[32];
 memcpy(buffer, str, sizeof(str)); /* Compliant */
 wmemcpy(w_buffer, w_str, sizeof(w_str)); /* Noncompliant */
}

7.5.1.2 Compliant Solution (Element Count)
When using functions that operate on pointed-to regions, programmers must always express the
integer size in terms of the element count expected by the function. For example, memcpy() ex-
pects the element count expressed in terms of void *, but wmemcpy() expects the element count
expressed in terms of wchar_t *. Instead of the sizeof operator, functions that return the num-
ber of elements in the string are called, which matches the expected element count for the copy

4 Takes two pointers and two integers; each integer corresponds to the element count of one of the pointers.
5 Takes a pointer and two size-related integers; the first size-related integer parameter specifies the number of

bytes available in the buffer; the second size-related integer parameter specifies the number of bytes to write
within the buffer.

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 214
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

functions. In the case of this compliant solution, where the argument is an array A of type T, the
expression sizeof(A) / sizeof(T), or equivalently sizeof(A) / sizeof(*A), can be
used to compute the number of elements in the array.

#include <string.h>
#include <wchar.h>

static const char str[] = "Hello world";
static const wchar_t w_str[] = L"Hello world";
void func(void) {
 char buffer[32];
 wchar_t w_buffer[32];
 memcpy(buffer, str, strlen(str) + 1);
 wmemcpy(w_buffer, w_str, wcslen(w_str) + 1);
}

7.5.1.3 Noncompliant Code Example (Pointer + Integer)
This noncompliant code example assigns a value greater than the number of bytes of available
memory to n, which is then passed to memset():

#include <stdlib.h>
#include <string.h>

void f1(size_t nchars) {
 char *p = (char *)malloc(nchars);
 /* ... */
 const size_t n = nchars + 1;
 /* ... */
 memset(p, 0, n);
}

7.5.1.4 Compliant Solution (Pointer + Integer)
This compliant solution ensures that the value of n is not greater than the number of bytes of the
dynamic memory pointed to by the pointer p:

#include <stdlib.h>
#include <string.h>

void f1(size_t nchars) {
 char *p = (char *)malloc(nchars);
 /* ... */
 const size_t n = nchars;
 /* ... */
 memset(p, 0, n);
}

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 215
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.1.5 Noncompliant Code Example (Pointer + Integer)
In this noncompliant code example, the element count of the array a is ARR_SIZE elements. Be-
cause memset() expects a byte count, the size of the array is scaled incorrectly by sizeof(int)
instead of sizeof(long), which can form an invalid pointer on architectures where
sizeof(int) != sizeof(long).

#include <string.h>

void f2(void) {
 const size_t ARR_SIZE = 4;
 long a[ARR_SIZE];
 const size_t n = sizeof(int) * ARR_SIZE;
 void *p = a;

 memset(p, 0, n);
}

7.5.1.6 Compliant Solution (Pointer + Integer)
In this compliant solution, the element count required by memset() is properly calculated with-
out resorting to scaling:

#include <string.h>

void f2(void) {
 const size_t ARR_SIZE = 4;
 long a[ARR_SIZE];
 const size_t n = sizeof(a);
 void *p = a;

 memset(p, 0, n);
}

7.5.2 Two Pointers + One Integer
The following standard library functions take two pointer arguments and a size argument, with the
constraint that both pointers must point to valid memory objects of at least the number of ele-
ments indicated by the size argument.

memcpy() wmemcpy() memmove() wmemmove()
strncpy() wcsncpy() memcmp() wmemcmp()
strncmp() wcsncmp() strcpy_s() wcscpy_s()
strcat_s() wcscat_s()

For calls that take two pointers and an integer size, the given size should not be greater than the
element count of either pointer.

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 216
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5.2.1 Noncompliant Code Example (Two Pointers + One Integer)
In this noncompliant code example, the value of n is incorrectly computed, allowing a read past
the end of the object referenced by q:

#include <string.h>

void f4() {
 char p[40];
 const char *q = "Too short";
 size_t n = sizeof(p);
 memcpy(p, q, n);
}

7.5.2.2 Compliant Solution (Two Pointers + One Integer)
This compliant solution ensures that n is equal to the size of the character array:

#include <string.h>

void f4() {
 char p[40];
 const char *q = "Too short";
 size_t n = sizeof(p) < strlen(q) + 1 ? sizeof(p) : strlen(q) + 1;
 memcpy(p, q, n);
}

7.5.3 One Pointer + Two Integers
The following standard library functions take a pointer argument and two size arguments, with the
constraint that the pointer must point to a valid memory object containing at least as many bytes
as the product of the two size arguments.

bsearch() bsearch_s() qsort() qsort_s()
fread() fwrite()

For calls that take a pointer and two integers, one integer represents the number of bytes required
for an individual object, and a second integer represents the number of elements in the array. The
resulting product of the two integers should not be greater than the element count of the pointer
were it expressed as an unsigned char *.

7.5.3.1 Noncompliant Code Example (One Pointer + Two Integers)
This noncompliant code example allocates a variable number of objects of type struct obj.
The function checks that num_objs is small enough to prevent wrapping, in compliance with
INT30-C. Ensure that unsigned integer operations do not wrap. The size of struct obj is as-
sumed to be 16 bytes to account for padding to achieve the assumed alignment of long long.

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 217
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

However, the padding typically depends on the target architecture, so this object size may be in-
correct, resulting in an incorrect element count.

#include <stdint.h>
#include <stdio.h>

struct obj {
 char c;
 long long i;
};

void func(FILE *f, struct obj *objs, size_t num_objs) {
 const size_t obj_size = 16;
 if (num_objs > (SIZE_MAX / obj_size) ||
 num_objs != fwrite(objs, obj_size, num_objs, f)) {
 /* Handle error */
 }
}

7.5.3.2 Compliant Solution (One Pointer + Two Integers)
This compliant solution uses the sizeof operator to correctly provide the object size and
num_objs to provide the element count:

#include <stdint.h>
#include <stdio.h>

struct obj {
 char c;
 long long i;
};

void func(FILE *f, struct obj *objs, size_t num_objs) {
 const size_t obj_size = sizeof *objs;
 if (num_objs > (SIZE_MAX / obj_size) ||
 num_objs != fwrite(objs, obj_size, num_objs, f)) {
 /* Handle error */
 }
}

7.5.3.3 Noncompliant Code Example (One Pointer + Two Integers)
In this noncompliant code example, the function f() calls fread() to read nitems of type
wchar_t, each size bytes in size, into an array of BUFFER_SIZE elements, wbuf. However, the
expression used to compute the value of nitems fails to account for the fact that, unlike the size
of char, the size of wchar_t may be greater than 1. Consequently, fread() could attempt to
form pointers past the end of wbuf and use them to assign values to nonexistent elements of the
array. Such an attempt is undefined behavior. (See undefined behavior 109.) A likely consequence

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 218
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

of this undefined behavior is a buffer overflow. For a discussion of this programming error in the
Common Weakness Enumeration database, see CWE-121, “Stack-based Buffer Overflow,” and
CWE-805, “Buffer Access with Incorrect Length Value.”

#include <stddef.h>
#include <stdio.h>

void f(FILE *file) {
 enum { BUFFER_SIZE = 1024 };
 wchar_t wbuf[BUFFER_SIZE];

 const size_t size = sizeof(*wbuf);
 const size_t nitems = sizeof(wbuf);

 size_t nread = fread(wbuf, size, nitems, file);
 /* ... */
}

7.5.3.4 Compliant Solution (One Pointer + Two Integers)
This compliant solution correctly computes the maximum number of items for fread() to read
from the file:

#include <stddef.h>
#include <stdio.h>

void f(FILE *file) {
 enum { BUFFER_SIZE = 1024 };
 wchar_t wbuf[BUFFER_SIZE];

 const size_t size = sizeof(*wbuf);
 const size_t nitems = sizeof(wbuf) / size;

 size_t nread = fread(wbuf, size, nitems, file);
 /* ... */
}

7.5.3.5 Noncompliant Code Example (Heartbleed)
CERT vulnerability 720951 describes a vulnerability in OpenSSL versions 1.0.1 through 1.0.1f,
popularly known as “Heartbleed.” This vulnerability allows an attacker to steal information that
under normal conditions would be protected by Secure Socket Layer/Transport Layer Security
(SSL/TLS) encryption.

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/805.html
http://www.kb.cert.org/vuls/id/720951

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 219
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Despite the seriousness of the vulnerability, Heartbleed is the result of a common programming
error and an apparent lack of awareness of secure coding principles. Following is the vulnerable
code:

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0], *pl;
 unsigned short hbtype;
 unsigned int payload;
 unsigned int padding = 16; /* Use minimum padding */

 /* Read type and payload length first */
 hbtype = *p++;
 n2s(p, payload);
 pl = p;

 /* ... More code ... */

 if (hbtype == TLS1_HB_REQUEST) {
 unsigned char *buffer, *bp;
 int r;

 /*
 * Allocate memory for the response; size is 1 byte
 * message type, plus 2 bytes payload length, plus
 * payload, plus padding.
 */
 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
 bp = buffer;

 /* Enter response type, length, and copy payload */
 *bp++ = TLS1_HB_RESPONSE;
 s2n(payload, bp);
 memcpy(bp, pl, payload);

 /* ... More code ... */
 }
 /* ... More code ... */
}

This code processes a “heartbeat” packet from a client. As specified in RFC 6520, when the pro-
gram receives a heartbeat packet, it must echo the packet’s data back to the client. In addition to
the data, the packet contains a length field that conventionally indicates the number of bytes in the
packet data, but there is nothing to prevent a malicious packet from lying about its data length.

The p pointer, along with payload and p1, contains data from a packet. The code allocates a
buffer sufficient to contain payload bytes, with some overhead, then copies payload bytes
starting at p1 into this buffer and sends it to the client. Notably absent from this code are any
checks that the payload integer variable extracted from the heartbeat packet corresponds to the

https://tools.ietf.org/html/rfc6520

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 220
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

size of the packet data. Because the client can specify an arbitrary value of payload, an attacker
can cause the server to read and return the contents of memory beyond the end of the packet data,
which violates INT04-C. Enforce limits on integer values originating from tainted sources. The
resulting call to memcpy() can then copy the contents of memory past the end of the packet data
and the packet itself, potentially exposing sensitive data to the attacker. This call to memcpy() vi-
olates cba927fd45b4. A version of ARR38-C also appears in ISO/IEC TS 17961:2013, “Forming
invalid pointers by library functions [libptr].” This rule would require a conforming analyzer to
diagnose the Heartbleed vulnerability.

7.5.3.6 Compliant Solution (Heartbleed)
OpenSSL version 1.0.1g contains the following patch, which guarantees that payload is within a
valid range. The range is limited by the size of the input record.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0], *pl;
 unsigned short hbtype;
 unsigned int payload;
 unsigned int padding = 16; /* Use minimum padding */

 /* ... More code ... */

 /* Read type and payload length first */
 if (1 + 2 + 16 > s->s3->rrec.length)
 return 0; /* Silently discard */
 hbtype = *p++;
 n2s(p, payload);
 if (1 + 2 + payload + 16 > s->s3->rrec.length)
 return 0; /* Silently discard per RFC 6520 */
 pl = p;

 /* ... More code ... */

 if (hbtype == TLS1_HB_REQUEST) {
 unsigned char *buffer, *bp;
 int r;

 /*
 * Allocate memory for the response; size is 1 byte
 * message type, plus 2 bytes payload length, plus
 * payload, plus padding.
 */
 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
 bp = buffer;
 /* Enter response type, length, and copy payload */
 *bp++ = TLS1_HB_RESPONSE;
 s2n(payload, bp);
 memcpy(bp, pl, payload);
 /* ... More code ... */

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=658

Array (ARR) - ARR38-C. Guarantee that library functions do not form invalid pointers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 221
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
 /* ... More code ... */
}

7.5.4 Risk Assessment
Depending on the library function called, an attacker may be able to use a heap or stack overflow
vulnerability to run arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

ARR38-C High Likely Medium P18 L1

7.5.5 Related Guidelines

C Secure Coding Standard API00-C. Functions should validate their pa-
rameters
ARR01-C. Do not apply the sizeof operator to
a pointer when taking the size of an array
INT30-C. Ensure that unsigned integer opera-
tions do not wrap

ISO/IEC TS 17961:2013 Forming invalid pointers by library functions
[libptr]

ISO/IEC TR 24772:2013 Buffer Boundary Violation (Buffer Overflow)
[HCB]
Unchecked Array Copying [XYW]

MITRE CWE CWE-119, Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-121, Stack-based Buffer Overflow
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-805, Buffer Access with Incorrect
Length Value

7.5.6 Bibliography

[Cassidy 2014] Existential Type Crisis : Diagnosis of the
OpenSSL Heartbleed Bug

[IETF: RFC 6520]
[ISO/IEC TS 17961:2013]
[VU#720951]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1376378
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1376378
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=491
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=491
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/805.html
http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-bug.html
http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-bug.html

Array (ARR) - ARR39-C. Do not add or subtract a scaled integer to a pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 222
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.6 ARR39-C. Do not add or subtract a scaled integer to a pointer

Pointer arithmetic is appropriate only when the pointer argument refers to an array, including an
array of bytes. (See ARR37-C. Do not add or subtract an integer to a pointer to a non-array ob-
ject.) When performing pointer arithmetic, the size of the value to add to or subtract from a
pointer is automatically scaled to the size of the type of the referenced array object. Adding or
subtracting a scaled integer value to or from a pointer is invalid because it may yield a pointer that
does not point to an element within or one past the end of the array. (See ARR30-C. Do not form
or use out-of-bounds pointers or array subscripts.)

Adding a pointer to an array of a type other than character to the result of the sizeof operator or
offsetof macro, which returns a size and an offset, respectively, violates this rule. However,
adding an array pointer to the number of array elements, for example, by using the
arr[sizeof(arr)/sizeof(arr[0])] idiom, is allowed provided that arr refers to an array
and not a pointer.

7.6.1 Noncompliant Code Example
In this noncompliant code example, sizeof(buf) is added to the array buf. This example is
noncompliant because sizeof(buf) is scaled by int and then scaled again when added to buf.

enum { INTBUFSIZE = 80 };

extern int getdata(void);
int buf[INTBUFSIZE];

void func(void) {
 int *buf_ptr = buf;

 while (buf_ptr < (buf + sizeof(buf))) {
 *buf_ptr++ = getdata();
 }
}

7.6.2 Compliant Solution
This compliant solution uses an unscaled integer to obtain a pointer to the end of the array:

enum { INTBUFSIZE = 80 };

extern int getdata(void);
int buf[INTBUFSIZE];

void func(void) {
 int *buf_ptr = buf;

 while (buf_ptr < (buf + INTBUFSIZE)) {
 *buf_ptr++ = getdata();

Array (ARR) - ARR39-C. Do not add or subtract a scaled integer to a pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 223
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
}

7.6.3 Noncompliant Code Example
In this noncompliant code example, skip is added to the pointer s. However, skip represents the
byte offset of ull_b in struct big. When added to s, skip is scaled by the size of struct
big.

#include <string.h>
#include <stdlib.h>
#include <stddef.h>

struct big {
 unsigned long long ull_a;
 unsigned long long ull_b;
 unsigned long long ull_c;
 int si_e;
 int si_f;
};

void func(void) {
 size_t skip = offsetof(struct big, ull_b);
 struct big *s = (struct big *)malloc(sizeof(struct big));
 if (s == NULL) {
 /* Handle malloc() error */
 }

 memset(s + skip, 0, sizeof(struct big) - skip);
 /* ... */
 free(s);
 s = NULL;
}

7.6.4 Compliant Solution
This compliant solution uses an unsigned char * to calculate the offset instead of using a
struct big *, which would result in scaled arithmetic:

#include <string.h>
#include <stdlib.h>
#include <stddef.h>

struct big {
 unsigned long long ull_a;
 unsigned long long ull_b;
 unsigned long long ull_c;
 int si_d;
 int si_e;

Array (ARR) - ARR39-C. Do not add or subtract a scaled integer to a pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 224
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

};

void func(void) {
 size_t skip = offsetof(struct big, ull_b);
 unsigned char *ptr = (unsigned char *)malloc(
 sizeof(struct big)
);
 if (ptr == NULL) {
 /* Handle malloc() error */
 }

 memset(ptr + skip, 0, sizeof(struct big) - skip);
 /* ... */
 free(ptr);
 ptr = NULL;
}

7.6.5 Noncompliant Code Example
In this noncompliant code example, wcslen(error_msg) * sizeof(wchar_t) bytes are
scaled by the size of wchar_t when added to error_msg:

#include <wchar.h>
#include <stdio.h>

enum { WCHAR_BUF = 128 };

void func(void) {
 wchar_t error_msg[WCHAR_BUF];

 wcscpy(error_msg, L"Error: ");
 fgetws(error_msg + wcslen(error_msg) * sizeof(wchar_t),
 WCHAR_BUF - 7, stdin);
 /* ... */
}

7.6.6 Compliant Solution
This compliant solution does not scale the length of the string; wcslen() returns the number of
characters and the addition to error_msg is scaled:

#include <wchar.h>
#include <stdio.h>

enum { WCHAR_BUF = 128 };
const wchar_t ERROR_PREFIX[7] = L"Error: ";

void func(void) {
 const size_t prefix_len = wcslen(ERROR_PREFIX);

Array (ARR) - ARR39-C. Do not add or subtract a scaled integer to a pointer

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 225
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 wchar_t error_msg[WCHAR_BUF];

 wcscpy(error_msg, ERROR_PREFIX);
 fgetws(error_msg + prefix_len,
 WCHAR_BUF - prefix_len, stdin);
 /* ... */
}

7.6.7 Risk Assessment
Failure to understand and properly use pointer arithmetic can allow an attacker to execute arbi-
trary code.

Rule Severity Likelihood Remediation Cost Priority Level

ARR39-C High Probable High P6 L2

7.6.8 Related Guidelines

CERT C Secure Coding Standard ARR30-C. Do not form or use out-of-bounds
pointers or array subscripts
ARR37-C. Do not add or subtract an integer to
a pointer to a non-array object

ISO/IEC TR 24772:2013 Pointer Casting and Pointer Type Changes
[HFC]
Pointer Arithmetic [RVG]

MISRA C:2012 Rule 18.1 (required)
Rule 18.2 (required)
Rule 18.3 (required)
Rule 18.4 (advisory)

MITRE CWE CWE 468, Incorrect Pointer Scaling

7.6.9 Bibliography

[Dowd 2006] Chapter 6, “C Language Issues”
[Murenin 07]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
http://cwe.mitre.org/data/definitions/468.html

Characters and Strings (STR) - STR30-C. Do not attempt to modify string literals

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 226
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8 Characters and Strings (STR)

8.1 STR30-C. Do not attempt to modify string literals

According to the C Standard, 6.4.5, paragraph 3 [ISO/IEC 9899:2011]:

A character string literal is a sequence of zero or more multibyte characters enclosed in
double-quotes, as in “xyz.” A UTF−8 string literal is the same, except prefixed by u8. A
wide string literal is the same, except prefixed by the letter L, u, or U.

At compile time, string literals are used to create an array of static storage duration of sufficient
length to contain the character sequence and a terminating null character. String literals are usu-
ally referred to by a pointer to (or array of) characters. Ideally, they should be assigned only to
pointers to (or arrays of) const char or const wchar_t. It is unspecified whether these arrays
of string literals are distinct from each other. The behavior is undefined if a program attempts to
modify any portion of a string literal. Modifying a string literal frequently results in an access vio-
lation because string literals are typically stored in read-only memory. (See undefined behavior
33.)

Avoid assigning a string literal to a pointer to non-const or casting a string literal to a pointer to
non-const. For the purposes of this rule, a pointer to (or array of) const characters must be
treated as a string literal. Similarly, the returned value of the following library functions must be
treated as a string literal if the first argument is a string literal:
• strpbrk(), strchr(), strrchr(), strstr()
• wcspbrk(), wcschr(), wcsrchr(), wcsstr()
• memchr(), wmemchr()

This rule is a specific instance of EXP40-C. Do not modify constant objects.

8.1.1 Noncompliant Code Example
In this noncompliant code example, the char pointer p is initialized to the address of a string lit-
eral. Attempting to modify the string literal is undefined behavior:

char *p = "string literal";
p[0] = 'S';

8.1.2 Compliant Solution
As an array initializer, a string literal specifies the initial values of characters in an array as well as
the size of the array. (See STR11-C. Do not specify the bound of a character array initialized with

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16810266

Characters and Strings (STR) - STR30-C. Do not attempt to modify string literals

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 227
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

a string literal.) This code creates a copy of the string literal in the space allocated to the character
array a. The string stored in a can be modified safely.

char a[] = "string literal";
a[0] = 'S';

8.1.3 Noncompliant Code Example (POSIX)
In this noncompliant code example, a string literal is passed to the (pointer to non-const) param-
eter of the POSIX function mkstemp(), which then modifies the characters of the string literal:

#include <stdlib.h>

void func(void) {
 mkstemp("/tmp/edXXXXXX");
}

The behavior of mkstemp() is described in more detail in FIO21-C. Do not create temporary
files in shared directories.

8.1.4 Compliant Solution (POSIX)
This compliant solution uses a named array instead of passing a string literal:

#include <stdlib.h>

void func(void) {
 static char fname[] = "/tmp/edXXXXXX";
 mkstemp(fname);
}

8.1.5 Noncompliant Code Example (Result of strrchr())
In this noncompliant example, the char * result of the strrchr() function is used to modify
the object pointed to by pathname. Because the argument to strrchr() points to a string literal,
the effects of the modification are undefined.

#include <stdio.h>
#include <string.h>

const char *get_dirname(const char *pathname) {
 char *slash;
 slash = strrchr(pathname, '/');
 if (slash) {
 slash = '\0'; / Undefined behavior */
 }
 return pathname;

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16810266
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkstemp.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4175
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4175

Characters and Strings (STR) - STR30-C. Do not attempt to modify string literals

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 228
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

}

int main(void) {
 puts(get_dirname(__FILE__));
 return 0;
}

8.1.6 Compliant Solution (Result of strrchr())
This compliant solution avoids modifying a const object, even if it is possible to obtain a non-
const pointer to such an object by calling a standard C library function, such as strrchr(). To
reduce the risk to callers of get_dirname(), a buffer and length for the directory name are
passed into the function. It is insufficient to change pathname to require a char * instead of a
const char * because conforming compilers are not required to diagnose passing a string lit-
eral to a function accepting a char *.

#include <stddef.h>
#include <stdio.h>
#include <string.h>

char *get_dirname(const char *pathname, char *dirname, size_t size)
{
 const char *slash;
 slash = strrchr(pathname, '/');
 if (slash) {
 ptrdiff_t slash_idx = slash - pathname;
 if ((size_t)slash_idx < size) {
 memcpy(dirname, pathname, slash_idx);
 dirname[slash_idx] = '\0';
 return dirname;
 }
 }
 return 0;
}

int main(void) {
 char dirname[260];
 if (get_dirname(__FILE__, dirname, sizeof(dirname))) {
 puts(dirname);
 }
 return 0;
}

Characters and Strings (STR) - STR30-C. Do not attempt to modify string literals

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 229
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.1.7 Risk Assessment
Modifying string literals can lead to abnormal program termination and possibly denial-of-service
attacks.

Rule Severity Likelihood Remediation Cost Priority Level

STR30-C Low Likely Low P9 L2

8.1.8 Related Guidelines

CERT C Secure Coding Standard EXP05-C. Do not cast away a const qualifica-
tion
STR11-C. Do not specify the bound of a char-
acter array initialized with a string literal

ISO/IEC TS 17961:2013 Modifying string literals [strmod]

8.1.9 Bibliography

[ISO/IEC 9899:2011] 6.4.5, “String Literals”
[Plum 1991] Topic 1.26, “Strings—String Literals”
[Summit 1995] comp.lang.c FAQ List, Question 1.32

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16810266
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16810266

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 230
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2 STR31-C. Guarantee that storage for strings has sufficient space
for character data and the null terminator

Copying data to a buffer that is not large enough to hold that data results in a buffer overflow.
Buffer overflows occur frequently when manipulating strings [Seacord 2013b]. To prevent such
errors, either limit copies through truncation or, preferably, ensure that the destination is of suffi-
cient size to hold the character data to be copied and the null-termination character. (See STR03-
C. Do not inadvertently truncate a string.)

When strings live on the heap, this rule is a specific instance of MEM35-C. Allocate sufficient
memory for an object. Because strings are represented as arrays of characters, this rule is related
to both ARR30-C. Do not form or use out-of-bounds pointers or array subscripts and ARR38-C.
Guarantee that library functions do not form invalid pointers.

8.2.1 Noncompliant Code Example (Off-by-One Error)
This noncompliant code example demonstrates an off-by-one error [Dowd 2006]. The loop copies
data from src to dest. However, because the loop does not account for the null-termination char-
acter, it may be incorrectly written 1 byte past the end of dest.

#include <stddef.h>

void copy(size_t n, char src[n], char dest[n]) {
 size_t i;

 for (i = 0; src[i] && (i < n); ++i) {
 dest[i] = src[i];
 }
 dest[i] = '\0';
}

8.2.2 Compliant Solution (Off-by-One Error)
In this compliant solution, the loop termination condition is modified to account for the null-ter-
mination character that is appended to dest:

#include <stddef.h>

void copy(size_t n, char src[n], char dest[n]) {
 size_t i;

 for (i = 0; src[i] && (i < n - 1); ++i) {
 dest[i] = src[i];
 }
 dest[i] = '\0';
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1581
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1581

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 231
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.3 Noncompliant Code Example (gets())
The gets() function, which was deprecated in the C99 Technical Corrigendum 3 and removed
from C11, is inherently unsafe and should never be used because it provides no way to control
how much data is read into a buffer from stdin. This noncompliant code example assumes that
gets() will not read more than BUFFER_SIZE - 1 characters from stdin. This is an invalid
assumption, and the resulting operation can result in a buffer overflow.

The gets() function reads characters from the stdin into a destination array until end-of-file is
encountered or a newline character is read. Any newline character is discarded, and a null charac-
ter is written immediately after the last character read into the array.

#include <stdio.h>

#define BUFFER_SIZE 1024

void func(void) {
 char buf[BUFFER_SIZE];
 if (gets(buf) == NULL) {
 /* Handle error */
 }
}

See also MSC24-C. Do not use deprecated or obsolescent functions.

8.2.4 Compliant Solution (fgets())
The fgets() function reads, at most, one less than the specified number of characters from a
stream into an array. This solution is compliant because the number of characters copied from
stdin to buf cannot exceed the allocated memory:

#include <stdio.h>
#include <string.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];
 int ch;

 if (fgets(buf, sizeof(buf), stdin)) {
 /* fgets() succeeded; scan for newline character */
 char *p = strchr(buf, '\n');
 if (p) {
 *p = '\0';
 } else {
 /* Newline not found; flush stdin to end of line */
 while ((ch = getchar()) != '\n' && ch != EOF)
 ;

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 232
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (ch == EOF && !feof(stdin) && !ferror(stdin)) {
 /* Character resembles EOF; handle error */
 }
 }
 } else {
 /* fgets() failed; handle error */
 }
}

The fgets() function is not a strict replacement for the gets() function because fgets() re-
tains the newline character (if read) and may also return a partial line. It is possible to use
fgets() to safely process input lines too long to store in the destination array, but this is not rec-
ommended for performance reasons. Consider using one of the following compliant solutions
when replacing gets().

8.2.5 Compliant Solution (gets_s())
The gets_s() function reads, at most, one less than the number of characters specified from the
stream pointed to by stdin into an array.

The C Standard, Annex K [ISO/IEC 9899:2011], states

No additional characters are read after a new-line character (which is discarded) or after
end-of-file. The discarded new-line character does not count towards number of charac-
ters read. A null character is written immediately after the last character read into the ar-
ray.

If end-of-file is encountered and no characters have been read into the destination array, or if a
read error occurs during the operation, then the first character in the destination array is set to the
null character and the other elements of the array take unspecified values:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];

 if (gets_s(buf, sizeof(buf)) == NULL) {
 /* Handle error */
 }
}

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 233
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.6 Compliant Solution (getline(), POSIX)
The getline() function is similar to the fgets() function but can dynamically allocate
memory for the input buffer. If passed a null pointer, getline() dynamically allocates a buffer
of sufficient size to hold the input. If passed a pointer to dynamically allocated storage that is too
small to hold the contents of the string, the getline() function resizes the buffer, using real-
loc(), rather than truncating the input. If successful, the getline() function returns the number
of characters read, which can be used to determine if the input has any null characters before the
newline. The getline() function works only with dynamically allocated buffers. Allocated
memory must be explicitly deallocated by the caller to avoid memory leaks. (See MEM31-C. Free
dynamically allocated memory when no longer needed.)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void func(void) {
 int ch;
 size_t buffer_size = 32;
 char *buffer = malloc(buffer_size);

 if (!buffer) {
 /* Handle error */
 return;
 }

 if ((ssize_t size = getline(&buffer, &buffer_size, stdin))
 == -1) {
 /* Handle error */
 } else {
 char *p = strchr(buffer, '\n');
 if (p) {
 *p = '\0';
 } else {
 /* Newline not found; flush stdin to end of line */
 while ((ch = getchar()) != '\n' && ch != EOF)
 ;
 if (ch == EOF && !feof(stdin) && !ferror(stdin)) {
 /* Character resembles EOF; handle error */
 }
 }
 }
 free (buffer);
}

The getline() function uses an in-band error indicator, in violation of ERR02-C. Avoid in-band
error indicators.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631528
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631528

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 234
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.7 Noncompliant Code Example (getchar())
Reading one character at a time provides more flexibility in controlling behavior, though with ad-
ditional performance overhead. This noncompliant code example uses the getchar() function to
read one character at a time from stdin instead of reading the entire line at once. The stdin
stream is read until end-of-file is encountered or a newline character is read. Any newline charac-
ter is discarded, and a null character is written immediately after the last character read into the
array. Similar to the noncompliant code example that invokes gets(), there are no guarantees
that this code will not result in a buffer overflow.

#include <stdio.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];
 char *p;
 int ch;
 p = buf;
 while ((ch = getchar()) != '\n' && ch != EOF) {
 *p++ = (char)ch;
 }
 *p++ = 0;
 if (ch == EOF) {
 /* Handle EOF or error */
 }
}

After the loop ends, if ch == EOF, the loop has read through to the end of the stream without en-
countering a newline character, or a read error occurred before the loop encountered a newline
character. To conform to FIO34-C. Distinguish between characters read from a file and EOF or
WEOF, the error-handling code must verify that an end-of-file or error has occurred by calling
feof() or ferror().

8.2.8 Compliant Solution (getchar())
In this compliant solution, characters are no longer copied to buf once index == BUFFERSIZE
- 1, leaving room to null-terminate the string. The loop continues to read characters until the end
of the line, the end of the file, or an error is encountered. When chars_read > index, the input
string has been truncated.

#include <stdio.h>

enum { BUFFERSIZE = 32 };

void func(void) {
 char buf[BUFFERSIZE];
 int ch;

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 235
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 size_t index = 0;
 size_t chars_read = 0;

 while ((ch = getchar()) != '\n' && ch != EOF) {
 if (index < sizeof(buf) - 1) {
 buf[index++] = (char)ch;
 }
 chars_read++;
 }
 buf[index] = '\0'; /* Terminate string */
 if (ch == EOF) {
 /* Handle EOF or error */
 }
 if (chars_read > index) {
 /* Handle truncation */
 }
}

8.2.9 Noncompliant Code Example (fscanf())
In this noncompliant example, the call to fscanf() can result in a write outside the character ar-
ray buf:

#include <stdio.h>

enum { BUF_LENGTH = 1024 };

void get_data(void) {
 char buf[BUF_LENGTH];
 if (1 != fscanf(stdin, "%s", buf)) {
 /* Handle error */
 }

 /* Rest of function */
}

8.2.10 Compliant Solution (fscanf())
In this compliant solution, the call to fscanf() is constrained not to overflow buf:

#include <stdio.h>

enum { BUF_LENGTH = 1024 };

void get_data(void) {
 char buf[BUF_LENGTH];
 if (1 != fscanf(stdin, "%1023s", buf)) {
 /* Handle error */
 }

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 236
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Rest of function */
}

8.2.11 Noncompliant Code Example (argv)
In a hosted environment, arguments read from the command line are stored in process memory.
The function main(), called at program startup, is typically declared as follows when the pro-
gram accepts command-line arguments:

int main(int argc, char *argv[]) { /* ... */ }

Command-line arguments are passed to main() as pointers to strings in the array members
argv[0] through argv[argc - 1]. If the value of argc is greater than 0, the string pointed to
by argv[0] is, by convention, the program name. If the value of argc is greater than 1, the
strings referenced by argv[1] through argv[argc - 1] are the program arguments.

Vulnerabilities can occur when inadequate space is allocated to copy a command-line argument or
other program input. In this noncompliant code example, an attacker can manipulate the contents
of argv[0] to cause a buffer overflow:

#include <string.h>

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char *const name = (argc && argv[0]) ? argv[0] : "";
 char prog_name[128];
 strcpy(prog_name, name);

 return 0;
}

8.2.12 Compliant Solution (argv)
The strlen() function can be used to determine the length of the strings referenced by argv[0]
through argv[argc - 1] so that adequate memory can be dynamically allocated.

#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char *const name = (argc && argv[0]) ? argv[0] : "";
 char *prog_name = (char *)malloc(strlen(name) + 1);
 if (prog_name != NULL) {
 strcpy(prog_name, name);
 } else {

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 237
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }
 free(prog_name);
 return 0;
}

Remember to add a byte to the destination string size to accommodate the null-termination char-
acter.

8.2.13 Compliant Solution (argv)
The strcpy_s() function provides additional safeguards, including accepting the size of the des-
tination buffer as an additional argument. (See STR07-C. Use the bounds-checking interfaces for
string manipulation.)

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char *const name = (argc && argv[0]) ? argv[0] : "";
 char *prog_name;
 size_t prog_size;

 prog_size = strlen(name) + 1;
 prog_name = (char *)malloc(prog_size);

 if (prog_name != NULL) {
 if (strcpy_s(prog_name, prog_size, name)) {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }
 /* ... */
 free(prog_name);
 return 0;
}

The strcpy_s() function can be used to copy data to or from dynamically allocated memory or
a statically allocated array. If insufficient space is available, strcpy_s() returns an error.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1603
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1603

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 238
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.14 Compliant Solution (argv)
If an argument will not be modified or concatenated, there is no reason to make a copy of the
string. Not copying a string is the best way to prevent a buffer overflow and is also the most effi-
cient solution. Care must be taken to avoid assuming that argv[0] is non-null.

int main(int argc, char *argv[]) {
 /* Ensure argv[0] is not null */
 const char * const prog_name = (argc && argv[0]) ? argv[0] : "";
 /* ... */
 return 0;
}

8.2.15 Noncompliant Code Example (getenv())
According to the C Standard, 7.22.4.6 [ISO/IEC 9899:2011]:

The getenv function searches an environment list, provided by the host environment,
for a string that matches the string pointed to by name. The set of environment names
and the method for altering the environment list are implementation defined.

Environment variables can be arbitrarily large, and copying them into fixed-length arrays without
first determining the size and allocating adequate storage can result in a buffer overflow.

#include <stdlib.h>
#include <string.h>

void func(void) {
 char buff[256];
 char *editor = getenv("EDITOR");
 if (editor == NULL) {
 /* EDITOR environment variable not set */
 } else {
 strcpy(buff, editor);
 }
}

8.2.16 Compliant Solution (getenv())
Environmental variables are loaded into process memory when the program is loaded. As a result,
the length of these strings can be determined by calling the strlen() function, and the resulting
length can be used to allocate adequate dynamic memory:

#include <stdlib.h>
#include <string.h>

void func(void) {
 char *buff;

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 239
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 char *editor = getenv("EDITOR");
 if (editor == NULL) {
 /* EDITOR environment variable not set */
 } else {
 size_t len = strlen(editor) + 1;
 buff = (char *)malloc(len);
 if (buff == NULL) {
 /* Handle error */
 }
 memcpy(buff, editor, len);
 free(buff);
 }
}

8.2.17 Noncompliant Code Example (sprintf())
In this noncompliant code example, name refers to an external string; it could have originated
from user input, the file system, or the network. The program constructs a file name from the
string in preparation for opening the file.

#include <stdio.h>

void func(const char *name) {
 char filename[128];
 sprintf(filename, "%s.txt", name);
}

Because the sprintf() function makes no guarantees regarding the length of the generated
string, a sufficiently long string in name could generate a buffer overflow.

8.2.18 Compliant Solution (sprintf())
The buffer overflow in the preceding noncompliant example can be prevented by adding a preci-
sion to the %s conversion specification. If the precision is specified, no more than that many bytes
are written. The precision 123 in this compliant solution ensures that filename can contain the
first 123 characters of name, the .txt extension, and the null terminator.

#include <stdio.h>

void func(const char *name) {
 char filename[128];
 sprintf(filename, "%.123s.txt", name);
}

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 240
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.2.19 Compliant Solution (snprintf())
A more general solution is to use the snprintf() function:

#include <stdio.h>

void func(const char *name) {
 char filename[128];
 snprintf(filename, sizeof(filename), "%s.txt", name);
}

8.2.20 Risk Assessment
Copying string data to a buffer that is too small to hold that data results in a buffer overflow. At-
tackers can exploit this condition to execute arbitrary code with the permissions of the vulnerable
process.

Rule Severity Likelihood Remediation Cost Priority Level

STR31-C High Likely Medium P18 L1

8.2.20.1 Related Vulnerabilities
CVE-2009-1252 results from a violation of this rule. The Network Time Protocol daemon
(NTPd), before versions 4.2.4p7 and 4.2.5p74, contained calls to sprintf that allow an attacker
to execute arbitrary code by overflowing a character array [xorl 2009].

CVE-2009-0587 results from a violation of this rule. Before version 2.24.5, Evolution Data Server
performed unchecked arithmetic operations on the length of a user-input string and used the value
to allocate space for a new buffer. An attacker could thereby execute arbitrary code by inputting a
long string, resulting in incorrect allocation and buffer overflow [xorl 2009].

8.2.21 Related Guidelines

CERT C Secure Coding Standard STR03-C. Do not inadvertently truncate a
string
STR07-C. Use the bounds-checking interfaces
for remediation of existing string manipulation
code
MSC24-C. Do not use deprecated or obsoles-
cent functions
MEM00-C. Allocate and free memory in the
same module, at the same level of abstraction
FIO34-C. Distinguish between characters read
from a file and EOF or WEOF

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1252
http://xorl.wordpress.com/2009/06/10/freebsd-sa-0911-ntpd-remote-stack-based-buffer-overflows/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0587
http://xorl.wordpress.com/2009/06/10/cve-2009-0587-evolution-data-server-base64-integer-overflows/
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1581
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1581
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1603
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1603
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1603
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=439
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=439

Characters and Strings (STR) - STR31-C. Guarantee that storage for strings has sufficient space for character data and the
null terminator

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 241
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

ISO/IEC TR 24772:2013 String Termination [CJM]
Buffer Boundary Violation (Buffer Overflow)
[HCB]
Unchecked Array Copying [XYW]

ISO/IEC TS 17961:2013 Using a tainted value to write to an object using
a formatted input or output function [taintfor-
matio]
Tainted strings are passed to a string copying
function [taintstrcpy]

MITRE CWE CWE-119, Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-120, Buffer Copy without Checking Size
of Input (“Classic Buffer Overflow”)
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-193, Off-by-one Error

8.2.22 Bibliography

[Dowd 2006] Chapter 7, “Program Building Blocks” (“Loop
Constructs,” pp. 327–336)

[Drepper 2006] Section 2.1.1, “Respecting Memory Bounds”
[ISO/IEC 9899:2011] K.3.5.4.1, “The gets_s Function”
[Lai 2006]
[NIST 2006] SAMATE Reference Dataset Test Case ID

000-000-088
[Seacord 2013b] Chapter 2, “Strings”
[xorl 2009] FreeBSD-SA-09:11: NTPd Remote Stack

Based Buffer Overflows

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/193.html
http://xorl.wordpress.com/2009/06/10/freebsd-sa-0911-ntpd-remote-stack-based-buffer-overflows/
http://xorl.wordpress.com/2009/06/10/freebsd-sa-0911-ntpd-remote-stack-based-buffer-overflows/

Characters and Strings (STR) - STR32-C. Do not pass a non-null-terminated character sequence to a library function that
expects a string

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 242
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.3 STR32-C. Do not pass a non-null-terminated character sequence to
a library function that expects a string

Many library functions accept a string or wide string argument with the constraint that the string
they receive is properly null-terminated. Passing a character sequence or wide character sequence
that is not null-terminated to such a function can result in accessing memory that is outside the
bounds of the object. Do not pass a character sequence or wide character sequence that is not null-
terminated to a library function that expects a string or wide string argument.

8.3.1 Noncompliant Code Example
This code example is noncompliant because the character sequence c_str will not be null-termi-
nated when passed as an argument to printf(). (See STR11-C. Do not specify the bound of a
character array initialized with a string literal on how to properly initialize character arrays.)

#include <stdio.h>

void func(void) {
 char c_str[3] = "abc";
 printf("%s\n", c_str);
}

8.3.2 Compliant Solution
This compliant solution does not specify the bound of the character array in the array declaration.
If the array bound is omitted, the compiler allocates sufficient storage to store the entire string lit-
eral, including the terminating null character.

#include <stdio.h>

void func(void) {
 char c_str[] = "abc";
 printf("%s\n", c_str);
}

8.3.3 Noncompliant Code Example
This code example is noncompliant because the wide character sequence cur_msg will not be
null-terminated when passed to wcslen(). This will occur if lessen_memory_usage() is in-
voked while cur_msg_size still has its initial value of 1024.

#include <stdlib.h>
#include <wchar.h>

wchar_t *cur_msg = NULL;
size_t cur_msg_size = 1024;
size_t cur_msg_len = 0;

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16810266
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16810266

Characters and Strings (STR) - STR32-C. Do not pass a non-null-terminated character sequence to a library function that
expects a string

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 243
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void lessen_memory_usage(void) {
 wchar_t *temp;
 size_t temp_size;

 /* ... */

 if (cur_msg != NULL) {
 temp_size = cur_msg_size / 2 + 1;
 temp = realloc(cur_msg, temp_size * sizeof(wchar_t));
 /* temp &and cur_msg may no longer be null-terminated */
 if (temp == NULL) {
 /* Handle error */
 }

 cur_msg = temp;
 cur_msg_size = temp_size;
 cur_msg_len = wcslen(cur_msg);
 }
}

8.3.4 Compliant Solution
In this compliant solution, cur_msg will always be null-terminated when passed to wcslen():

#include <stdlib.h>
#include <wchar.h>

wchar_t *cur_msg = NULL;
size_t cur_msg_size = 1024;
size_t cur_msg_len = 0;

void lessen_memory_usage(void) {
 wchar_t *temp;
 size_t temp_size;

 /* ... */

 if (cur_msg != NULL) {
 temp_size = cur_msg_size / 2 + 1;
 temp = realloc(cur_msg, temp_size * sizeof(wchar_t));
 /* temp and cur_msg may no longer be null-terminated */
 if (temp == NULL) {
 /* Handle error */
 }

 cur_msg = temp;
 /* Properly null-terminate cur_msg */
 cur_msg[temp_size - 1] = L'\0';
 cur_msg_size = temp_size;

Characters and Strings (STR) - STR32-C. Do not pass a non-null-terminated character sequence to a library function that
expects a string

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 244
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 cur_msg_len = wcslen(cur_msg);
 }
}

8.3.5 Noncompliant Code Example (strncpy())
Although the strncpy() function takes a string as input, it does not guarantee that the resulting
value is still null-terminated. In the following noncompliant code example, if no null character is
contained in the first n characters of the source array, the result will not be null-terminated.
Passing a non-null-terminated character sequence to strlen() is undefined behavior.

#include <string.h>

enum { STR_SIZE = 32 };

size_t func(const char *source) {
 char c_str[STR_SIZE];
 size_t ret = 0;

 if (source) {
 c_str[sizeof(c_str) - 1] = '\0';
 strncpy(c_str, source, sizeof(c_str));
 ret = strlen(c_str);
 } else {
 /* Handle null pointer */
 }
 return ret;
}

8.3.6 Compliant Solution (Truncation)
This compliant solution is correct if the programmer’s intent is to truncate the string:

#include <string.h>

enum { STR_SIZE = 32 };

size_t func(const char *source) {
 char c_str[STR_SIZE];
 size_t ret = 0;

 if (source) {
 strncpy(c_str, source, sizeof(c_str) - 1);
 c_str[sizeof(c_str) - 1] = '\0';
 ret = strlen(c_str);
 } else {
 /* Handle null pointer */
 }

Characters and Strings (STR) - STR32-C. Do not pass a non-null-terminated character sequence to a library function that
expects a string

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 245
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return ret;
}

8.3.7 Compliant Solution (Truncation, strncpy_s())
The C Standard, Annex K strncpy_s() function can also be used to copy with truncation. The
strncpy_s() function copies up to n characters from the source array to a destination array. If
no null character was copied from the source array, then the nth position in the destination array is
set to a null character, guaranteeing that the resulting string is null-terminated.

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>

enum { STR_SIZE = 32 };

size_t func(const char *source) {
 char a[STR_SIZE];
 size_t ret = 0;

 if (source) {
 errno_t err = strncpy_s(
 a, sizeof(a), source, strlen(source)
);
 if (err != 0) {
 /* Handle error */
 } else {
 ret = strnlen_s(a, sizeof(a));
 }
 } else {
 /* Handle null pointer */
 }
 return ret;
}

8.3.8 Compliant Solution (Copy without Truncation)
If the programmer’s intent is to copy without truncation, this compliant solution copies the data
and guarantees that the resulting array is null-terminated. If the string cannot be copied, it is han-
dled as an error condition.

#include <string.h>

enum { STR_SIZE = 32 };

size_t func(const char *source) {
 char c_str[STR_SIZE];
 size_t ret = 0;

 if (source) {

Characters and Strings (STR) - STR32-C. Do not pass a non-null-terminated character sequence to a library function that
expects a string

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 246
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (strlen(source) < sizeof(c_str)) {
 strcpy(c_str, source);
 ret = strlen(c_str);
 } else {
 /* Handle string-too-large */
 }
 } else {
 /* Handle null pointer */
 }
 return ret;
}

8.3.9 Risk Assessment
Failure to properly null-terminate a character sequence that is passed to a library function that ex-
pects a string can result in buffer overflows and the execution of arbitrary code with the permis-
sions of the vulnerable process. Null-termination errors can also result in unintended information
disclosure.

Rule Severity Likelihood Remediation Cost Priority Level

STR32-C High Probable Medium P12 L1

8.3.10 Related Guidelines

ISO/IEC TR 24772:2013 String Termination [CMJ]
ISO/IEC TS 17961:2013 Passing a non-null-terminated character se-

quence to a library function that expects a
string [strmod]

MITRE CWE CWE-119, Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-170, Improper Null Termination

8.3.11 Bibliography
[Seacord 2013] Chapter 2, “Strings”
[Viega 2005] Section 5.2.14, “Miscalculated NULL Termina-

tion”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/170.html

Characters and Strings (STR) - STR34-C. Cast characters to unsigned char before converting to larger integer sizes

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 247
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.4 STR34-C. Cast characters to unsigned char before converting to
larger integer sizes

Signed character data must be converted to unsigned char before being assigned or converted
to a larger signed type. This rule applies to both signed char and (plain) char characters on
implementations where char is defined to have the same range, representation, and behaviors as
signed char.

However, this rule is applicable only in cases where the character data may contain values that
can be interpreted as negative numbers. For example, if the char type is represented by a two’s
complement 8-bit value, any character value greater than +127 is interpreted as a negative value.

This rule is a generalization of STR37-C. Arguments to character-handling functions must be rep-
resentable as an unsigned char.

8.4.1 Noncompliant Code Example
This noncompliant code example is taken from a vulnerability in bash versions 1.14.6 and earlier
that led to the release of CERT Advisory CA-1996-22. This vulnerability resulted from the sign
extension of character data referenced by the c_str pointer in the yy_string_get() function
in the parse.y module of the bash source code:

static int yy_string_get(void) {
 register char *c_str;
 register int c;

 c_str = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist or is empty, EOF found */
 if (c_str && *c_str) {
 c = *c_str++;
 bash_input.location.string = c_str;
 }
 return (c);
}

The c_str variable is used to traverse the character string containing the command line to be
parsed. As characters are retrieved from this pointer, they are stored in a variable of type int. For
implementations in which the char type is defined to have the same range, representation, and
behavior as signed char, this value is sign-extended when assigned to the int variable. For
character code 255 decimal (−1 in two’s complement form), this sign extension results in the
value −1 being assigned to the integer, which is indistinguishable from EOF.

http://www.cert.org/advisories/CA-1996-22.html

Characters and Strings (STR) - STR34-C. Cast characters to unsigned char before converting to larger integer sizes

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 248
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.4.2 Noncompliant Code Example
This problem can be repaired by explicitly declaring the c_str variable as unsigned char:

static int yy_string_get(void) {
 register unsigned char *c_str;
 register int c;

 c_str = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist or is empty, EOF found */
 if (c_str && *c_str) {
 c = *c_str++;
 bash_input.location.string = c_str;
 }
 return (c);
}

This example, however, violates STR04-C. Use plain char for characters in the basic character set.

8.4.3 Compliant Solution
In this compliant solution, the result of the expression *c_str++ is cast to unsigned char be-
fore assignment to the int variable c:

static int yy_string_get(void) {
 register char *c_str;
 register int c;

 c_str = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist or is empty, EOF found */
 if (c_str && *c_str) {
 /* Cast to unsigned type */
 c = (unsigned char)*c_str++;

 bash_input.location.string = c_str;
 }
 return (c);
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422564

Characters and Strings (STR) - STR34-C. Cast characters to unsigned char before converting to larger integer sizes

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 249
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.4.4 Noncompliant Code Example
In this noncompliant code example, the cast of *s to unsigned int can result in a value in ex-
cess of UCHAR_MAX because of integer promotions, a violation of ARR30-C. Do not form or use
out-of-bounds pointers or array subscripts:

#include <limits.h>
#include <stddef.h>

static const char table[UCHAR_MAX] = { 'a' /* ... */ };

ptrdiff_t first_not_in_table(const char *c_str) {
 for (const char *s = c_str; *s; ++s) {
 if (table[(unsigned int)*s] != *s) {
 return s - c_str;
 }
 }
 return -1;
}

8.4.5 Compliant Solution
This compliant solution casts the value of type char to unsigned char before the implicit pro-
motion to a larger type:

#include <limits.h>
#include <stddef.h>

static const char table[UCHAR_MAX] = { 'a' /* ... */ };

ptrdiff_t first_not_in_table(const char *c_str) {
 for (const char *s = c_str; *s; ++s) {
 if (table[(unsigned char)*s] != *s) {
 return s - c_str;
 }
 }
 return -1;
}

8.4.6 Risk Assessment
Conversion of character data resulting in a value in excess of UCHAR_MAX is an often-missed error
that can result in a disturbingly broad range of potentially severe vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

STR34-C Medium Probable Medium P8 L2

Characters and Strings (STR) - STR34-C. Cast characters to unsigned char before converting to larger integer sizes

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 250
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.4.6.1 Related Vulnerabilities
CVE-2009-0887 results from a violation of this rule. In Linux PAM (up to version 1.0.3), the
libpam implementation of strtok() casts a (potentially signed) character to an integer for use
as an index to an array. An attacker can exploit this vulnerability by inputting a string with non-
ASCII characters, causing the cast to result in a negative index and accessing memory outside of
the array [xorl 2009].

8.4.6.2 Related Guidelines

CERT C Secure Coding Standard STR37-C. Arguments to character-handling
functions must be representable as an unsigned
char
STR04-C. Use plain char for characters in the
basic character set
ARR30-C. Do not form or use out-of-bounds
pointers or array subscripts

ISO/IEC TS 17961:2013 Conversion of signed characters to wider inte-
ger types before a check for EOF [signconv]

MISRA-C Rule 10.1 through Rule 10.4 (required)
MITRE CWE CWE-704, Incorrect Type Conversion or Cast

8.4.7 Bibliography
[xorl 2009] CVE-2009-0887: Linux-PAM Signedness Issue

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0887
http://xorl.wordpress.com/2009/03/26/cve-2009-0887-linux-pam-singedness-issue/
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422564
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422564
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/704.html
http://xorl.wordpress.com/2009/03/26/cve-2009-0887-linux-pam-singedness-issue/

Characters and Strings (STR) - STR37-C. Arguments to character-handling functions must be representable as an unsigned
char

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 251
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.5 STR37-C. Arguments to character-handling functions must be
representable as an unsigned char

According to the C Standard, 7.4 [ISO/IEC 9899:2011],

The header <ctype.h> declares several functions useful for classifying and mapping
characters. In all cases the argument is an int, the value of which shall be representa-
ble as an unsigned char or shall equal the value of the macro EOF. If the argument
has any other value, the behavior is undefined.

See also undefined behavior 113.

This rule is applicable only to code that runs on platforms where the char data type is defined to
have the same range, representation, and behavior as signed char.

Following are the character classification functions that this rule addresses:

isalnum() isalpha() isascii()XSI isblank()
iscntrl() isdigit() isgraph() islower()
isprint() ispunct() isspace() isupper()
isxdigit() toascii()XSI toupper() tolower()

XSI denotes an X/Open System Interfaces Extension to ISO/IEC 9945—POSIX. These functions
are not defined by the C Standard.

This rule is a specific instance of STR34-C. Cast characters to unsigned char before converting to
larger integer sizes.

8.5.1 Noncompliant Code Example
On implementations where plain char is signed, this code example is noncompliant because the
parameter to isspace(), *t, is defined as a const char *, and this value might not be repre-
sentable as an unsigned char:

#include <ctype.h>
#include <string.h>

size_t count_preceding_whitespace(const char *s) {
 const char *t = s;
 size_t length = strlen(s) + 1;
 while (isspace(*t) && (t - s < length)) {
 ++t;
 }
 return t - s;
}

Characters and Strings (STR) - STR37-C. Arguments to character-handling functions must be representable as an unsigned
char

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 252
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The argument to isspace() must be EOF or representable as an unsigned char; otherwise, the
result is undefined.

8.5.2 Compliant Solution
This compliant solution casts the character to unsigned char before passing it as an argument
to the isspace() function:

#include <ctype.h>
#include <string.h>

size_t count_preceding_whitespace(const char *s) {
 const char *t = s;
 size_t length = strlen(s) + 1;
 while (isspace((unsigned char)*t) && (t - s < length)) {
 ++t;
 }
 return t - s;
}

8.5.3 Risk Assessment
Passing values to character handling functions that cannot be represented as an unsigned char
to character handling functions is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

STR37-C Low Unlikely Low P3 L3

8.5.4 Related Guidelines

CERT C Secure Coding Standard STR34-C. Cast characters to unsigned char be-
fore converting to larger integer sizes

ISO/IEC TS 17961 Passing arguments to character-handling func-
tions that are not representable as unsigned
char [chrsgnext]

MITRE CWE CWE-704, Incorrect Type Conversion or Cast
CWE-686, Function Call with Incorrect Argu-
ment Type

8.5.5 Bibliography

[ISO/IEC 9899:2011] 7.4, “Character Handling <ctype.h>”
[Kettlewell 2002] Section 1.1, “<ctype.h> and Characters

Types”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/704.html
http://cwe.mitre.org/data/definitions/686.html

Characters and Strings (STR) - STR38-C. Do not confuse narrow and wide character strings and functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 253
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.6 STR38-C. Do not confuse narrow and wide character strings and
functions

Passing narrow string arguments to wide string functions or wide string arguments to narrow
string functions can lead to unexpected and undefined behavior. Scaling problems are likely be-
cause of the difference in size between wide and narrow characters. (See ARR39-C. Do not add or
subtract a scaled integer to a pointer.) Because wide strings are terminated by a null wide charac-
ter and can contain null bytes, determining the length is also problematic.

Because wchar_t and char are distinct types, many compilers will produce a warning diagnostic
if an inappropriate function is used. (See MSC00-C. Compile cleanly at high warning levels.)

8.6.1 Noncompliant Code Example (Wide Strings with Narrow String Functions)
This noncompliant code example incorrectly uses the strncpy() function in an attempt to copy
up to 10 wide characters. However, because wide characters can contain null bytes, the copy oper-
ation may end earlier than anticipated, resulting in the truncation of the wide string.

#include <stddef.h>
#include <string.h>

void func(void) {
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";

 strncpy(wide_str2, wide_str1, 10);
}

8.6.2 Noncompliant Code Example (Narrow Strings with Wide String Functions)
This noncompliant code example incorrectly invokes the wcsncpy() function to copy up to 10
wide characters from narrow_str1 to narrow_str2. Because narrow_str2 is a narrow
string, it has insufficient memory to store the result of the copy and the copy will result in a buffer
overflow.

#include <wchar.h>

void func(void) {
 char narrow_str1[] = "01234567890123456789";
 char narrow_str2[] = "0000000000";

 wcsncpy(narrow_str2, narrow_str1, 10);
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Characters and Strings (STR) - STR38-C. Do not confuse narrow and wide character strings and functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 254
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.6.3 Compliant Solution
This compliant solution uses the proper-width functions. Using wcsncpy() for wide character
strings and strncpy() for narrow character strings ensures that data is not truncated and buffer
overflow does not occur.

#include <string.h>
#include <wchar.h>

void func(void) {
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 /* Use of proper-width function */
 wcsncpy(wide_str2, wide_str1, 10);

 char narrow_str1[] = "0123456789";
 char narrow_str2[] = "0000000000";
 /* Use of proper-width function */
 strncpy(narrow_str2, narrow_str1, 10);
}

8.6.4 Noncompliant Code Example (strlen())
In this noncompliant code example, the strlen() function is used to determine the size of a
wide character string:

#include <stdlib.h>
#include <string.h>

void func(void) {
 wchar_t wide_str1[] = L"0123456789";
 wchar_t *wide_str2 = (wchar_t*)malloc(strlen(wide_str1) + 1);
 if (wide_str2 == NULL) {
 /* Handle error */
 }
 /* ... */
 free(wide_str2);
 wide_str2 = NULL;
}

The strlen() function determines the number of characters that precede the terminating null
character. However, wide characters can contain null bytes, particularly when expressing charac-
ters from the ASCII character set, as in this example. As a result, the strlen() function will re-
turn the number of bytes preceding the first null byte in the wide string.

Characters and Strings (STR) - STR38-C. Do not confuse narrow and wide character strings and functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 255
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8.6.5 Compliant Solution
This compliant solution correctly calculates the number of bytes required to contain a copy of the
wide string, including the terminating null wide character:

#include <stdlib.h>
#include <wchar.h>

void func(void) {
 wchar_t wide_str1[] = L"0123456789";
 wchar_t *wide_str2 = (wchar_t *)malloc(
 (wcslen(wide_str1) + 1) * sizeof(wchar_t));
 if (wide_str2 == NULL) {
 /* Handle error */
 }
 /* ... */

 free(wide_str2);
 wide_str2 = NULL;
}

8.6.6 Risk Assessment
Confusing narrow and wide character strings can result in buffer overflows, data truncation, and
other defects.

Rule Severity Likelihood Remediation Cost Priority Level

STR38-C High Likely Low P27 L1

8.6.7 Bibliography

[ISO/IEC 9899:2011] 7.24.2.4, “The strncpy Function”
7.29.4.2.2, “The wcsncpy Function”

Memory Management (MEM) - MEM30-C. Do not access freed memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 256
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9 Memory Management (MEM)

9.1 MEM30-C. Do not access freed memory

Evaluating a pointer—including dereferencing the pointer, using it as an operand of an arithmetic
operation, type casting it, and using it as the right-hand side of an assignment—into memory that
has been deallocated by a memory management function is undefined behavior. Pointers to
memory that has been deallocated are called dangling pointers. Accessing a dangling pointer can
result in exploitable vulnerabilities.

According to the C Standard, using the value of a pointer that refers to space deallocated by a call
to the free() or realloc() function is undefined behavior. (See undefined behavior 177.)

Reading a pointer to deallocated memory is undefined behavior because the pointer value is inde-
terminate and might be a trap representation. Fetching a trap representation might perform a hard-
ware trap (but is not required to).

It is at the memory manager’s discretion when to reallocate or recycle the freed memory. When
memory is freed, all pointers into it become invalid, and its contents might either be returned to
the operating system, making the freed space inaccessible, or remain intact and accessible. As a
result, the data at the freed location can appear to be valid but change unexpectedly. Conse-
quently, memory must not be written to or read from once it is freed.

9.1.1 Noncompliant Code Example
This example from Brian Kernighan and Dennis Ritchie [Kernighan 1988] shows both the incor-
rect and correct techniques for freeing the memory associated with a linked list. In their (inten-
tionally) incorrect example, p is freed before p->next is executed, so that p->next reads
memory that has already been freed.

#include <stdlib.h>

struct node {
 int value;
 struct node *next;
};

void free_list(struct node *head) {
 for (struct node *p = head; p != NULL; p = p->next) {
 free(p);
 }
}

Memory Management (MEM) - MEM30-C. Do not access freed memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 257
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.2 Compliant Solution
Kernighan and Ritchie correct this error by storing a reference to p->next in q before freeing p:

#include <stdlib.h>

struct node {
 int value;
 struct node *next;
};

void free_list(struct node *head) {
 struct node *q;
 for (struct node *p = head; p != NULL; p = q) {
 q = p->next;
 free(p);
 }
}

9.1.3 Noncompliant Code Example
In this noncompliant code example, buf is written to after it has been freed. Write-after-free vul-
nerabilities can be exploited to run arbitrary code with the permissions of the vulnerable process.
Typically, allocations and frees are far removed, making it difficult to recognize and diagnose
these problems.

#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
 char *return_val = 0;
 const size_t bufsize = strlen(argv[0]) + 1;
 char *buf = (char *)malloc(bufsize);
 if (!buf) {
 return EXIT_FAILURE;
 }
 /* ... */
 free(buf);
 /* ... */
 strcpy(buf, argv[0]);
 /* ... */
 return EXIT_SUCCESS;
}

Memory Management (MEM) - MEM30-C. Do not access freed memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 258
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.4 Compliant Solution
In this compliant solution, the memory is freed after its final use:

#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
 char *return_val = 0;
 const size_t bufsize = strlen(argv[0]) + 1;
 char *buf = (char *)malloc(bufsize);
 if (!buf) {
 return EXIT_FAILURE;
 }
 /* ... */
 strcpy(buf, argv[0]);
 /* ... */
 free(buf);
 return EXIT_SUCCESS;
}

9.1.5 Noncompliant Code Example
In this noncompliant example, realloc() may free c_str1 when it returns a null pointer, re-
sulting in c_str1 being freed twice. The C Standards Committee's proposed response to Defect
Report #400 makes it implementation-defined whether or not the old object is deallocated when
size is zero and memory for the new object is not allocated. The current implementation of re-
alloc() in the GNU C Library and Microsoft Visual Studio's Runtime Library will free c_str1
and return a null pointer for zero byte allocations. Freeing a pointer twice can result in a poten-
tially exploitable vulnerability commonly referred to as a double-free vulnerability [Seacord
2013b].

#include <stdlib.h>

void f(char *c_str1, size_t size) {
 char *c_str2 = (char *)realloc(c_str1, size);
 if (c_str2 == NULL) {
 free(c_str1);
 }
}

9.1.6 Compliant Solution
This compliant solution does not pass a size argument of zero to the realloc() function, elimi-
nating the possibility of c_str1 being freed twice:

#include <stdlib.h>

http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm

Memory Management (MEM) - MEM30-C. Do not access freed memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 259
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void f(char *c_str1, size_t size) {
 if (size != 0) {
 char *c_str2 = (char *)realloc(c_str1, size);
 if (c_str2 == NULL) {
 free(c_str1);
 }
 }
 else {
 free(c_str1);
 }

}

If the intent of calling f() is to reduce the size of the object, then doing nothing when the size is
zero would be unexpected; instead, this compliant solution frees the object.

9.1.7 Noncompliant Code Example
In this noncompliant example (CVE-2009-1364) from libwmf version 0.2.8.4, the return value of
gdRealloc (a simple wrapper around realloc() that reallocates space pointed to by im-
>clip->list) is set to more. However, the value of im->clip->list is used directly after-
wards in the code, and the C Standard specifies that if realloc() moves the area pointed to, then
the original block is freed. An attacker can then execute arbitrary code by forcing a reallocation
(with a sufficient im->clip->count) and accessing freed memory [xorl 2009].

void gdClipSetAdd(gdImagePtr im, gdClipRectanglePtr rect) {
 gdClipRectanglePtr more;
 if (im->clip == 0) {
 /* ... */
 }
 if (im->clip->count == im->clip->max) {
 more = gdRealloc (im->clip->list,(im->clip->max + 8) *
 sizeof (gdClipRectangle));
 /*
 * If the realloc fails, then we have not lost the
 * im->clip->list value.
 */
 if (more == 0) return;
 im->clip->max += 8;
 }
 im->clip->list[im->clip->count] = *rect;
 im->clip->count++;

}

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1364
http://xorl.wordpress.com/2009/05/05/cve-2009-1364-libwmf-pointer-use-after-free/

Memory Management (MEM) - MEM30-C. Do not access freed memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 260
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.8 Compliant Solution
This compliant solution simply reassigns im->clip->list to the value of more after the call to
realloc():

void gdClipSetAdd(gdImagePtr im, gdClipRectanglePtr rect) {
 gdClipRectanglePtr more;
 if (im->clip == 0) {
 /* ... */
 }
 if (im->clip->count == im->clip->max) {
 more = gdRealloc (im->clip->list,(im->clip->max + 8) *
 sizeof (gdClipRectangle));
 if (more == 0) return;
 im->clip->max += 8;
 im->clip->list = more;
 }
 im->clip->list[im->clip->count] = *rect;
 im->clip->count++;

}

9.1.9 Risk Assessment
Reading memory that has already been freed can lead to abnormal program termination and de-
nial-of-service attacks. Writing memory that has already been freed can additionally lead to the
execution of arbitrary code with the permissions of the vulnerable process.

Freeing memory multiple times has similar consequences to accessing memory after it is freed.
Reading a pointer to deallocated memory is undefined behavior because the pointer value is inde-
terminate and might be a trap representation. When reading from or writing to freed memory does
not cause a trap, it may corrupt the underlying data structures that manage the heap in a manner
that can be exploited to execute arbitrary code. Alternatively, writing to memory after it has been
freed might modify memory that has been reallocated.

Programmers should be wary when freeing memory in a loop or conditional statement; if coded
incorrectly, these constructs can lead to double-free vulnerabilities. It is also a common error to
misuse the realloc() function in a manner that results in double-free vulnerabilities. (See
MEM04-C. Beware of zero-length allocations.)

Rule Severity Likelihood Remediation Cost Priority Level

MEM30-C High Likely Medium P18 L1

9.1.9.1 Related Vulnerabilities
VU#623332 describes a double-free vulnerability in the MIT Kerberos 5 function
krb5_recvauth().

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537
http://www.kb.cert.org/vuls/id/623332
http://web.mit.edu/kerberos/www/advisories/MITKRB5-SA-2005-003-recvauth.txt

Memory Management (MEM) - MEM30-C. Do not access freed memory

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 261
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.1.10 Related Guidelines

CERT C Secure Coding Standard MEM01-C. Store a new value in pointers im-
mediately after free()

SEI CERT C++ Coding Standard MEM50-CPP. Do not access freed memory
ISO/IEC TR 24772:2013 Dangling References to Stack Frames [DCM]

Dangling Reference to Heap [XYK]
ISO/IEC TS 17961 Accessing freed memory [accfree]

Freeing memory multiple times [dblfree]
MISRA C:2012 Rule 18.6 (required)
MITRE CWE CWE-415, Double Free

CWE-416, Use After Free

9.1.11 Bibliography
[ISO/IEC 9899:2011] 7.22.3, “Memory Management Functions”
[Kernighan 1988] Section 7.8.5, “Storage Management”
[OWASP Freed Memory]
[MIT 2005]
[Seacord 2013b] Chapter 4, “Dynamic Memory Management”
[Viega 2005] Section 5.2.19, “Using Freed Memory”
[VU#623332]
[xorl 2009] CVE-2009-1364: LibWMF Pointer Use after

free()

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=440
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=440
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087145
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://xorl.wordpress.com/2009/05/05/cve-2009-1364-libwmf-pointer-use-after-free/
http://xorl.wordpress.com/2009/05/05/cve-2009-1364-libwmf-pointer-use-after-free/

Memory Management (MEM) - MEM31-C. Free dynamically allocated memory when no longer needed

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 262
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.2 MEM31-C. Free dynamically allocated memory when no longer
needed

Before the lifetime of the last pointer that stores the return value of a call to a standard memory
allocation function has ended, it must be matched by a call to free() with that pointer value.

9.2.1 Noncompliant Code Example
In this noncompliant example, the object allocated by the call to malloc() is not freed before the
end of the lifetime of the last pointer text_buffer referring to the object:

#include <stdlib.h>

enum { BUFFER_SIZE = 32 };

int f(void) {
 char *text_buffer = (char *)malloc(BUFFER_SIZE);
 if (text_buffer == NULL) {
 return -1;
 }
 return 0;
}

9.2.2 Compliant Solution
In this compliant solution, the pointer is deallocated with a call to free():

#include <stdlib.h>

enum { BUFFER_SIZE = 32 };

int f(void) {
 char *text_buffer = (char *)malloc(BUFFER_SIZE);
 if (text_buffer == NULL) {
 return -1;
 }

 free(text_buffer);
 return 0;
}

Memory Management (MEM) - MEM31-C. Free dynamically allocated memory when no longer needed

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 263
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.2.3 Exceptions
MEM31-C-EX1: Allocated memory does not need to be freed if it is assigned to a pointer with
static storage duration whose lifetime is the entire execution of a program. The following code ex-
ample illustrates a pointer that stores the return value from malloc() in a static variable:

#include <stdlib.h>

enum { BUFFER_SIZE = 32 };

int f(void) {
 static char *text_buffer = NULL;
 if (text_buffer == NULL) {
 text_buffer = (char *)malloc(BUFFER_SIZE);
 if (text_buffer == NULL) {
 return -1;
 }
 }
 return 0;
}

9.2.4 Risk Assessment
Failing to free memory can result in the exhaustion of system memory resources, which can lead
to a denial-of-service attack.

Rule Severity Likelihood Remediation Cost Priority Level

MEM31-C Medium Probable Medium P8 L2

9.2.5 Related Guidelines
ISO/IEC TR 24772:2013 Memory Leak [XYL]
ISO/IEC TS 17961 Failing to close files or free dynamic memory

when they are no longer needed [fileclose]
MITRE CWE CWE-401, Improper Release of Memory Be-

fore Removing Last Reference (“Memory
Leak”)

9.2.6 Bibliography

[ISO/IEC 9899:2011] Subclause 7.22.3, “Memory Management
Functions”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/401.html

Memory Management (MEM) - MEM33-C. Allocate and copy structures containing a flexible array member dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 264
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3 MEM33-C. Allocate and copy structures containing a flexible array
member dynamically

The C Standard, 6.7.2.1, paragraph 18 [ISO/IEC 9899:2011], says

As a special case, the last element of a structure with more than one named member
may have an incomplete array type; this is called a flexible array member. In most situa-
tions, the flexible array member is ignored. In particular, the size of the structure is as if
the flexible array member were omitted except that it may have more trailing padding
than the omission would imply.

The following is an example of a structure that contains a flexible array member:

struct flex_array_struct {
 int num;
 int data[];
};

This definition means that when computing the size of such a structure, only the first member,
num, is considered. Unless the appropriate size of the flexible array member has been explicitly
added when allocating storage for an object of the struct, the result of accessing the member
data of a variable of nonpointer type struct flex_array_struct is undefined. DCL38-C.
Use the correct syntax when declaring a flexible array member describes the correct way to de-
clare a struct with a flexible array member.

To avoid the potential for undefined behavior, structures that contain a flexible array member
should always be allocated dynamically. Flexible array structures must
• Have dynamic storage duration (be allocated via malloc() or another dynamic allocation

function)
• Be dynamically copied using memcpy() or a similar function and not by assignment
• When used as an argument to a function, be passed by pointer and not copied by value

9.3.1 Noncompliant Code Example (Storage Duration)
This noncompliant code example uses automatic storage for a structure containing a flexible array
member:

#include <stddef.h>

struct flex_array_struct {
 size_t num;
 int data[];
};

void func(void) {

Memory Management (MEM) - MEM33-C. Allocate and copy structures containing a flexible array member dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 265
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 struct flex_array_struct flex_struct;
 size_t array_size = 4;

 /* Initialize structure */
 flex_struct.num = array_size;

 for (size_t i = 0; i < array_size; ++i) {
 flex_struct.data[i] = 0;
 }
}

Because the memory for flex_struct is reserved on the stack, no space is reserved for the
data member. Accessing the data member is undefined behavior.

9.3.2 Compliant Solution (Storage Duration)
This compliant solution dynamically allocates storage for flex_array_struct:

#include <stdlib.h>

struct flex_array_struct {
 size_t num;
 int data[];
};

void func(void) {
 struct flex_array_struct *flex_struct;
 size_t array_size = 4;

 /* Dynamically allocate memory for the struct */
 flex_struct = (struct flex_array_struct *)malloc(
 sizeof(struct flex_array_struct)
 + sizeof(int) * array_size);
 if (flex_sruct == NULL) {
 /* Handle error */
 }

 /* Initialize structure */
 flex_struct->num = array_size;

 for (size_t i = 0; i < array_size; ++i) {
 flex_struct->data[i] = 0;
 }
}

Memory Management (MEM) - MEM33-C. Allocate and copy structures containing a flexible array member dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 266
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3.3 Noncompliant Code Example (Copying)
This noncompliant code example attempts to copy an instance of a structure containing a flexible
array member (struct flex_array_struct) by assignment:

#include <stddef.h>

struct flex_array_struct {
 size_t num;
 int data[];
};

void func(struct flex_array_struct *struct_a,
 struct flex_array_struct *struct_b) {
 *struct_b = *struct_a;
}

When the structure is copied, the size of the flexible array member is not considered, and only the
first member of the structure, num, is copied, leaving the array contents untouched.

9.3.4 Compliant Solution (Copying)
This compliant solution uses memcpy() to properly copy the content of struct_a into
struct_b:

#include <string.h>

struct flex_array_struct {
 size_t num;
 int data[];
};

void func(struct flex_array_struct *struct_a,
 struct flex_array_struct *struct_b) {
 if (struct_a->num > struct_b->num) {
 /* Insufficient space; handle error */
 return;
 }
 memcpy(struct_b, struct_a,
 sizeof(struct flex_array_struct) + (sizeof(int)
 * struct_a->num));
}

Memory Management (MEM) - MEM33-C. Allocate and copy structures containing a flexible array member dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 267
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.3.5 Noncompliant Code Example (Function Arguments)
In this noncompliant code example, the flexible array structure is passed by value to a function
that prints the array elements:

#include <stdio.h>
#include <stdlib.h>

struct flex_array_struct {
 size_t num;
 int data[];
};

void print_array(struct flex_array_struct struct_p) {
 puts("Array is: ");
 for (size_t i = 0; i < struct_p.num; ++i) {
 printf("%d ", struct_p.data[i]);
 }
 putchar('\n');
}

void func(void) {
 struct flex_array_struct *struct_p;
 size_t array_size = 4;

 /* Space is allocated for the struct */
 struct_p = (struct flex_array_struct *)malloc(
 sizeof(struct flex_array_struct)
 + sizeof(int) * array_size);
 if (struct_p == NULL) {
 /* Handle error */
 }
 struct_p->num = array_size;

 for (size_t i = 0; i < array_size; ++i) {
 struct_p->data[i] = i;
 }
 print_array(*struct_p);
}

Because the argument is passed by value, the size of the flexible array member is not considered
when the structure is copied, and only the first member of the structure, num, is copied.

9.3.6 Compliant Solution (Function Arguments)
In this compliant solution, the structure is passed by reference and not by value:

#include <stdio.h>
#include <stdlib.h>

Memory Management (MEM) - MEM33-C. Allocate and copy structures containing a flexible array member dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 268
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

struct flex_array_struct {
 size_t num;
 int data[];
};

void print_array(struct flex_array_struct *struct_p) {
 puts("Array is: ");
 for (size_t i = 0; i < struct_p->num; ++i) {
 printf("%d ", struct_p->data[i]);
 }
 putchar('\n');
}

void func(void) {
 struct flex_array_struct *struct_p;
 size_t array_size = 4;

 /* Space is allocated for the struct and initialized... */

 print_array(struct_p);
}

9.3.7 Risk Assessment
Failure to use structures with flexible array members correctly can result in undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

MEM33-C Low Unlikely Low P3 L3

9.3.8 Related Guidelines

CERT C Secure Coding Standard DCL38-C. Use the correct syntax when declar-
ing a flexible array member

9.3.9 Bibliography

[ISO/IEC 9899:2011] Subclause 6.7.2.1, “Structure and Union Speci-
fiers”

[JTC1/SC22/WG14 N791] Solving the Struct Hack Problem

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285

Memory Management (MEM) - MEM34-C. Only free memory allocated dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 269
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.4 MEM34-C. Only free memory allocated dynamically

The C Standard, Annex J [ISO/IEC 9899:2011], states that the behavior of a program is undefined
when

The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory management function, or the space has been deallocated by a
call to free or realloc.

See also undefined behavior 179.

Freeing memory that is not allocated dynamically can result in heap corruption and other serious
errors. Do not call free() on a pointer other than one returned by a standard memory allocation
function, such as malloc(), calloc(), realloc(), or aligned_alloc().

A similar situation arises when realloc() is supplied a pointer to non-dynamically allocated
memory. The realloc() function is used to resize a block of dynamic memory. If realloc()
is supplied a pointer to memory not allocated by a standard memory allocation function, the be-
havior is undefined. One consequence is that the program may terminate abnormally.

This rule does not apply to null pointers. The C Standard guarantees that if free() is passed a
null pointer, no action occurs.

9.4.1 Noncompliant Code Example
This noncompliant code example sets c_str to reference either dynamically allocated memory or
a statically allocated string literal depending on the value of argc. In either case, c_str is passed
as an argument to free(). If anything other than dynamically allocated memory is referenced by
c_str, the call to free(c_str) is erroneous.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum { MAX_ALLOCATION = 1000 };

int main(int argc, const char *argv[]) {
 char *c_str = NULL;
 size_t len;

 if (argc == 2) {
 len = strlen(argv[1]) + 1;
 if (len > MAX_ALLOCATION) {
 /* Handle error */
 }
 c_str = (char *)malloc(len);
 if (c_str == NULL) {
 /* Handle error */

Memory Management (MEM) - MEM34-C. Only free memory allocated dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 270
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
 strcpy(c_str, argv[1]);
 } else {
 c_str = "usage: $>a.exe [string]";
 printf("%s\n", c_str);
 }
 free(c_str);
 return 0;
}

9.4.2 Compliant Solution
This compliant solution eliminates the possibility of c_str referencing memory that is not allo-
cated dynamically when passed to free():

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum { MAX_ALLOCATION = 1000 };

int main(int argc, const char *argv[]) {
 char *c_str = NULL;
 size_t len;

 if (argc == 2) {
 len = strlen(argv[1]) + 1;
 if (len > MAX_ALLOCATION) {
 /* Handle error */
 }
 c_str = (char *)malloc(len);
 if (c_str == NULL) {
 /* Handle error */
 }
 strcpy(c_str, argv[1]);
 } else {
 printf("%s\n", "usage: $>a.exe [string]");
 return EXIT_FAILURE;
 }
 free(c_str);
 return 0;
}

Memory Management (MEM) - MEM34-C. Only free memory allocated dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 271
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.4.3 Noncompliant Code Example (realloc())
In this noncompliant example, the pointer parameter to realloc(), buf, does not refer to dy-
namically allocated memory:

#include <stdlib.h>

enum { BUFSIZE = 256 };

void f(void) {
 char buf[BUFSIZE];
 char *p = (char *)realloc(buf, 2 * BUFSIZE);
 if (p == NULL) {
 /* Handle error */
 }
}

9.4.4 Compliant Solution (realloc())
In this compliant solution, buf refers to dynamically allocated memory:

#include <stdlib.h>

enum { BUFSIZE = 256 };

void f(void) {
 char *buf = (char *)malloc(BUFSIZE * sizeof(char));
 char *p = (char *)realloc(buf, 2 * BUFSIZE);
 if (p == NULL) {
 /* Handle error */
 }
}

Note that realloc() will behave properly even if malloc() failed, because when given a null
pointer, realloc() behaves like a call to malloc().

9.4.5 Risk Assessment
The consequences of this error depend on the implementation, but they range from nothing to ar-
bitrary code execution if that memory is reused by malloc().

Rule Severity Likelihood Remediation Cost Priority Level

MEM34-C High Likely Medium P18 L1

Memory Management (MEM) - MEM34-C. Only free memory allocated dynamically

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 272
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.4.5.1 Related Vulnerabilities
CVE-2015-0240 describes a vulnerability in which an uninitialized pointer is passed to
TALLOC_FREE(), which is a Samba-specific memory deallocation macro that wraps the tal-
loc_free() function. The implementation of talloc_free() would access the uninitialized
pointer, resulting in a remote exploit.

9.4.6 Related Guidelines

CERT C Secure Coding Standard MEM31-C. Free dynamically allocated
memory when no longer needed

SEI CERT C++ Coding Standard MEM51-CPP. Properly deallocate dynamically
allocated resources

ISO/IEC TS 17961 Reallocating or freeing memory that was not
dynamically allocated [xfree]

MITRE CWE CWE-590, Free of Memory Not on the Heap

9.4.7 Bibliography

[ISO/IEC 9899:2011] Subclause J.2, “Undefined Behavior”
[Seacord 2013b] Chapter 4, “Dynamic Memory Management”

https://securityblog.redhat.com/2015/02/23/samba-vulnerability-cve-2015-0240/
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=151388277
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=151388277
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/590.html

Memory Management (MEM) - MEM35-C. Allocate sufficient memory for an object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 273
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.5 MEM35-C. Allocate sufficient memory for an object

The types of integer expressions used as size arguments to malloc(), calloc(), realloc(),
or aligned_alloc() must have sufficient range to represent the size of the objects to be stored.
If size arguments are incorrect or can be manipulated by an attacker, then a buffer overflow may
occur. Incorrect size arguments, inadequate range checking, integer overflow, or truncation can
result in the allocation of an inadequately sized buffer.

Typically, the amount of memory to allocate will be the size of the type of object to allocate.
When allocating space for an array, the size of the object will be multiplied by the bounds of the
array. When allocating space for a structure containing a flexible array member, the size of the ar-
ray member must be added to the size of the structure. (See MEM33-C. Allocate and copy struc-
tures containing a flexible array member dynamically.) Use the correct type of the object when
computing the size of memory to allocate.

STR31-C. Guarantee that storage for strings has sufficient space for character data and the null
terminator is a specific instance of this rule.

9.5.1 Noncompliant Code Example (Integer)
In this noncompliant code example, an array of long is allocated and assigned to p. The code
checks for unsigned integer overflow in compliance with INT32-C. Ensure that operations on
signed integers do not result in overflow and also ensures that len is not equal to zero. (See
MEM04-C. Beware of zero-length allocations.) However, because sizeof(int) is used to com-
pute the size, and not sizeof(long), an insufficient amount of memory can be allocated on im-
plementations where sizeof(long) is larger than sizeof(int).

#include <stdint.h>
#include <stdlib.h>

void function(size_t len) {
 long *p;
 if (len == 0 || len > SIZE_MAX / sizeof(long)) {
 /* Handle overflow */
 }
 p = (long *)malloc(len * sizeof(int));
 if (p == NULL) {
 /* Handle error */
 }
 free(p);
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537

Memory Management (MEM) - MEM35-C. Allocate sufficient memory for an object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 274
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.5.2 Compliant Solution (Integer)
This compliant solution uses sizeof(long) to correctly size the memory allocation:

#include <stdint.h>
#include <stdlib.h>

void function(size_t len) {
 long *p;
 if (len == 0 || len > SIZE_MAX / sizeof(long)) {
 /* Handle overflow */
 }
 p = (long *)malloc(len * sizeof(long));
 if (p == NULL) {
 /* Handle error */
 }
 free(p);
}

9.5.3 Compliant Solution (Integer)
Alternatively, sizeof(*p) can be used to properly size the allocation:

#include <stdint.h>
#include <stdlib.h>

void function(size_t len) {
 long *p;
 if (len == 0 || len > SIZE_MAX / sizeof(*p)) {
 /* Handle overflow */
 }
 p = (long *)malloc(len * sizeof(*p));
 if (p == NULL) {
 /* Handle error */
 }
 free(p);
}

9.5.4 Noncompliant Code Example (Pointer)
In this noncompliant code example, inadequate space is allocated for a struct tm object be-
cause the size of the pointer is being used to determine the size of the pointed-to object:

#include <stdlib.h>
#include <time.h>

struct tm *make_tm(int year, int mon, int day, int hour,
 int min, int sec) {
 struct tm *tmb;

Memory Management (MEM) - MEM35-C. Allocate sufficient memory for an object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 275
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 tmb = (struct tm *)malloc(sizeof(tmb));
 if (tmb == NULL) {
 return NULL;
 }
 *tmb = (struct tm) {
 .tm_sec = sec, .tm_min = min, .tm_hour = hour,
 .tm_mday = day, .tm_mon = mon, .tm_year = year
 };
 return tmb;
}

9.5.5 Compliant Solution (Pointer)
In this compliant solution, the correct amount of memory is allocated for the struct tm object.
When allocating space for a single object, passing the (dereferenced) pointer type to the sizeof
operator is a simple way to allocate sufficient memory. Because the sizeof operator does not
evaluate its operand, dereferencing an uninitialized or null pointer in this context is well-defined
behavior.

#include <stdlib.h>
#include <time.h>

struct tm *make_tm(int year, int mon, int day, int hour,
 int min, int sec) {
 struct tm *tmb;
 tmb = (struct tm *)malloc(sizeof(*tmb));
 if (tmb == NULL) {
 return NULL;
 }
 *tmb = (struct tm) {
 .tm_sec = sec, .tm_min = min, .tm_hour = hour,
 .tm_mday = day, .tm_mon = mon, .tm_year = year
 };
 return tmb;
}

9.5.6 Risk Assessment
Providing invalid size arguments to memory allocation functions can lead to buffer overflows and
the execution of arbitrary code with the permissions of the vulnerable process.

Rule Severity Likelihood Remediation Cost Priority Level

MEM35-C High Probable High P6 L2

Memory Management (MEM) - MEM35-C. Allocate sufficient memory for an object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 276
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.5.7 Related Guidelines

CERT C Secure Coding Standard ARR01-C. Do not apply the sizeof operator to
a pointer when taking the size of an array
INT31-C. Ensure that integer conversions do
not result in lost or misinterpreted data
INT32-C. Ensure that operations on signed in-
tegers do not result in overflow
INT18-C. Evaluate integer expressions in a
larger size before comparing or assigning to
that size
MEM04-C. Beware of zero-length allocations

ISO/IEC TR 24772:2013 Buffer Boundary Violation (Buffer Overflow)
[HCB]

ISO/IEC TS 17961:2013 Taking the size of a pointer to determine the
size of the pointed-to type [sizeofptr]

MITRE CWE CWE-131, Incorrect Calculation of Buffer Size
CWE-190, Integer Overflow or Wraparound
CWE-467, Use of sizeof() on a Pointer
Type

9.5.8 Bibliography
[Coverity 2007]
[Drepper 2006] Section 2.1.1, “Respecting Memory Bounds”
[Seacord 2013] Chapter 4, “Dynamic Memory Management”

Chapter 5, “Integer Security”
[Viega 2005] Section 5.6.8, “Use of sizeof() on a Pointer

Type”
[xorl 2009] CVE-2009-0587: Evolution Data Server

Base64 Integer Overflows

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=491
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=491
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4355
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/467.html
http://cwe.mitre.org/data/definitions/467.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/131.html
http://xorl.wordpress.com/2009/06/10/cve-2009-0587-evolution-data-server-base64-integer-overflows/
http://xorl.wordpress.com/2009/06/10/cve-2009-0587-evolution-data-server-base64-integer-overflows/

Memory Management (MEM) - MEM36-C. Do not modify the alignment of objects by calling realloc()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 277
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.6 MEM36-C. Do not modify the alignment of objects by calling
realloc()

Do not invoke realloc() to modify the size of allocated objects that have stricter alignment re-
quirements than those guaranteed by malloc(). Storage allocated by a call to the standard
aligned_alloc() function, for example, can have stricter than normal alignment requirements.
The C standard requires only that a pointer returned by realloc() be suitably aligned so that it
may be assigned to a pointer to any type of object with a fundamental alignment requirement.

9.6.1 Noncompliant Code Example
This noncompliant code example returns a pointer to allocated memory that has been aligned to a
4096-byte boundary. If the resize argument to the realloc() function is larger than the object
referenced by ptr, then realloc() will allocate new memory that is suitably aligned so that it
may be assigned to a pointer to any type of object with a fundamental alignment requirement but
may not preserve the stricter alignment of the original object.

#include <stdlib.h>

void func(void) {
 size_t resize = 1024;
 size_t alignment = 1 << 12;
 int *ptr;
 int *ptr1;

 if (NULL == (ptr = (int *)aligned_alloc(alignment, sizeof(int))))
{
 /* Handle error */
 }

 if (NULL == (ptr1 = (int *)realloc(ptr, resize))) {
 /* Handle error */
 }
}

9.6.1.1 Implementation Details
When compiled with GCC 4.1.2 and run on the x86_64 Red Hat Linux platform, the following
code produces the following output:

CODE

#include <stdlib.h>
#include <stdio.h>

int main(void) {
 size_t size = 16;
 size_t resize = 1024;

Memory Management (MEM) - MEM36-C. Do not modify the alignment of objects by calling realloc()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 278
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 size_t align = 1 << 12;
 int *ptr;
 int *ptr1;

 if (posix_memalign((void **)&ptr, align , size) != 0) {
 exit(EXIT_FAILURE);
 }

 printf("memory aligned to %zu bytes\n", align);
 printf("ptr = %p\n\n", ptr);

 if ((ptr1 = (int*) realloc((int *)ptr, resize)) == NULL) {
 exit(EXIT_FAILURE);
 }

 puts("After realloc(): \n");
 printf("ptr1 = %p\n", ptr1);

 free(ptr1);
 return 0;
}

OUTPUT

memory aligned to 4096 bytes
ptr = 0x1621b000

After realloc():
ptr1 = 0x1621a010

ptr1 is no longer aligned to 4096 bytes.

9.6.2 Compliant Solution
This compliant solution allocates resize bytes of new memory with the same alignment as the
old memory, copies the original memory content, and then frees the old memory. This solution
has implementation-defined behavior because it depends on whether extended alignments in ex-
cess of _Alignof (max_align_t) are supported and the contexts in which they are supported.
If not supported, the behavior of this compliant solution is undefined.

#include <stdlib.h>
#include <string.h>

void func(void) {
 size_t resize = 1024;
 size_t alignment = 1 << 12;
 int *ptr;
 int *ptr1;

Memory Management (MEM) - MEM36-C. Do not modify the alignment of objects by calling realloc()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 279
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (NULL == (ptr = (int *)aligned_alloc(alignment,
 sizeof(int)))) {
 /* Handle error */
 }

 if (NULL == (ptr1 = (int *)aligned_alloc(alignment,
 resize))) {
 /* Handle error */
 }

 if (NULL == (memcpy(ptr1, ptr, sizeof(int))) {
 /* Handle error */
 }

 free(ptr);
}

9.6.3 Compliant Solution (Windows)
Windows defines the _aligned_malloc() function to allocate memory on a specified align-
ment boundary. The _aligned_realloc() [MSDN] can be used to change the size of this
memory. This compliant solution demonstrates one such usage:

#include <malloc.h>

void func(void) {
 size_t alignment = 1 << 12;
 int *ptr;
 int *ptr1;

 /* Original allocation */
 if (NULL == (ptr = (int *)_aligned_malloc(sizeof(int),
 alignment))) {
 /* Handle error */
}

 /* Reallocation */
 if (NULL == (ptr1 = (int *)_aligned_realloc(ptr, 1024,
 alignment))) {
 _aligned_free(ptr);
 /* Handle error */
 }

 _aligned_free(ptr1);
}

The size and alignment arguments for _aligned_malloc() are provided in reverse order of
the C Standard aligned_alloc() function.

Memory Management (MEM) - MEM36-C. Do not modify the alignment of objects by calling realloc()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 280
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9.6.4 Risk Assessment
Improper alignment can lead to arbitrary memory locations being accessed and written to.

Recommendation Severity Likelihood Remediation Cost Priority Level

MEM36-C Low Probable High P2 L3

9.6.5 Bibliography

[ISO/IEC 9899:2011] 7.22.3.1, “The aligned_alloc Function”
[MSDN] aligned_malloc()

Input/Output (FIO) - FIO30-C. Exclude user input from format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 281
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10 Input/Output (FIO)

10.1 FIO30-C. Exclude user input from format strings

Never call a formatted I/O function with a format string containing a tainted value . An attacker
who can fully or partially control the contents of a format string can crash a vulnerable process,
view the contents of the stack, view memory content, or write to an arbitrary memory location.
Consequently, the attacker can execute arbitrary code with the permissions of the vulnerable pro-
cess [Seacord 2013b]. Formatted output functions are particularly dangerous because many pro-
grammers are unaware of their capabilities. For example, formatted output functions can be used
to write an integer value to a specified address using the %n conversion specifier.

10.1.1 Noncompliant Code Example
The incorrect_password() function in this noncompliant code example is called during iden-
tification and authentication to display an error message if the specified user is not found or the
password is incorrect. The function accepts the name of the user as a string referenced by user.
This is an exemplar of untrusted data that originates from an unauthenticated user. The function
constructs an error message that is then output to stderr using the C Standard fprintf() func-
tion.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void incorrect_password(const char *user) {
 int ret;
 /* User names are restricted to 256 or fewer characters */
 static const char msg_format[] = "%s cannot be authenticated.\n";
 size_t len = strlen(user) + sizeof(msg_format);
 char *msg = (char *)malloc(len);
 if (msg == NULL) {
 /* Handle error */
 }
 ret = snprintf(msg, len, msg_format, user);
 if (ret < 0) {
 /* Handle error */
 } else if (ret >= len) {
 /* Handle truncated output */
 }
 fprintf(stderr, msg);
 free(msg);
}

Input/Output (FIO) - FIO30-C. Exclude user input from format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 282
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The incorrect_password() function calculates the size of the message, allocates dynamic
storage, and then constructs the message in the allocated memory using the snprintf() func-
tion. The addition operations are not checked for integer overflow because the string referenced
by user is known to have a length of 256 or less. Because the %s characters are replaced by the
string referenced by user in the call to snprintf(), the resulting string needs 1 byte less than is
allocated. The snprintf() function is commonly used for messages that are displayed in multi-
ple locations or messages that are difficult to build. However, the resulting code contains a for-
mat-string vulnerability because the msg includes untrusted user input and is passed as the format-
string argument in the call to fprintf().

10.1.2 Compliant Solution (fputs())
This compliant solution fixes the problem by replacing the fprintf() call with a call to
fputs(), which outputs msg directly to stderr without evaluating its contents:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void incorrect_password(const char *user) {
 int ret;
 /* User names are restricted to 256 or fewer characters */
 static const char msg_format[] = "%s cannot be authenticated.\n";
 size_t len = strlen(user) + sizeof(msg_format);
 char *msg = (char *)malloc(len);
 if (msg == NULL) {
 /* Handle error */
 }
 ret = snprintf(msg, len, msg_format, user);
 if (ret < 0) {
 /* Handle error */
 } else if (ret >= len) {
 /* Handle truncated output */
 }
 fputs(msg, stderr);
 free(msg);
}

10.1.3 Compliant Solution (fprintf())
This compliant solution passes the untrusted user input as one of the variadic arguments to
fprintf() and not as part of the format string, eliminating the possibility of a format-string vul-
nerability:

#include <stdio.h>

void incorrect_password(const char *user) {
 static const char msg_format[] = "%s cannot be authenticated.\n";

Input/Output (FIO) - FIO30-C. Exclude user input from format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 283
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 fprintf(stderr, msg_format, user);
}

10.1.4 Noncompliant Code Example (POSIX)
This noncompliant code example is similar to the first noncompliant code example but uses the
POSIX function syslog() [IEEE Std 1003.1:2013] instead of the fprintf() function. The
syslog() function is also susceptible to format-string vulnerabilities.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>

void incorrect_password(const char *user) {
 int ret;
 /* User names are restricted to 256 or fewer characters */
 static const char msg_format[] = "%s cannot be authenticated.\n";
 size_t len = strlen(user) + sizeof(msg_format);
 char *msg = (char *)malloc(len);
 if (msg != NULL) {
 /* Handle error */
 }
 ret = snprintf(msg, len, msg_format, user);
 if (ret < 0) {
 /* Handle error */
 } else if (ret >= len) {
 /* Handle truncated output */
 }
 syslog(LOG_INFO, msg);
 free(msg);
}

The syslog() function first appeared in BSD 4.2 and is supported by Linux and other modern
UNIX implementations. It is not available on Windows systems.

10.1.5 Compliant Solution (POSIX)
This compliant solution passes the untrusted user input as one of the variadic arguments to sys-
log() instead of including it in the format string:

#include <syslog.h>

void incorrect_password(const char *user) {
 static const char msg_format[] = "%s cannot be authenticated.\n";
 syslog(LOG_INFO, msg_format, user);
}

Input/Output (FIO) - FIO30-C. Exclude user input from format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 284
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.1.6 Risk Assessment
Failing to exclude user input from format specifiers may allow an attacker to crash a vulnerable
process, view the contents of the stack, view memory content, or write to an arbitrary memory lo-
cation and consequently execute arbitrary code with the permissions of the vulnerable process.

Rule Severity Likelihood Remediation Cost Priority Level

FIO30-C High Likely Medium P18 L1

10.1.6.1 Related Vulnerabilities
Two examples of format-string vulnerabilities resulting from a violation of this rule include Et-
tercap and Samba.

In Ettercap v.NG-0.7.2, the ncurses user interface suffers from a format-string defect. The
curses_msg() function in ec_curses.c calls wdg_scroll_print(), which takes a format
string and its parameters and passes it to vw_printw(). The curses_msg() function uses one
of its parameters as the format string. This input can include user data, allowing for a format-
string vulnerability.

The Samba AFS ACL mapping VFS plug-in fails to properly sanitize user-controlled file names
that are used in a format specifier supplied to snprintf(). This security flaw becomes exploita-
ble when a user can write to a share that uses Samba’s afsacl.so library for setting Windows
NT access control lists on files residing on an AFS file system.

10.1.7 Related Guidelines
CERT Oracle Secure Coding Standard for Java IDS06-J. Exclude unsanitized user input from

format strings
CERT Perl Secure Coding Standard IDS30-PL. Exclude user input from format

strings
ISO/IEC TR 24772:2013 Injection [RST]
ISO/IEC TS 17961:2013 Including tainted or out-of-domain input in a

format string [usrfmt]
MITRE CWE CWE-134, Uncontrolled Format String

10.1.8 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, syslog
[Seacord 2013b] Chapter 6, “Formatted Output”
[Viega 2005] Section 5.2.23, “Format String Problem”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19235145
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19235145
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=58359839
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=90538209
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=90538209
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/134.html

Input/Output (FIO) - FIO32-C. Do not perform operations on devices that are only appropriate for files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 285
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.2 FIO32-C. Do not perform operations on devices that are only
appropriate for files

File names on many operating systems, including Windows and UNIX, may be used to access
special files, which are actually devices. Reserved Microsoft Windows device names include AUX,
CON, PRN, COM1, and LPT1 or paths using the \\.\ device namespace. Device files on UNIX sys-
tems are used to apply access rights and to direct operations on the files to the appropriate device
drivers.

Performing operations on device files that are intended for ordinary character or binary files can
result in crashes and denial-of-service attacks. For example, when Windows attempts to interpret
the device name as a file resource, it performs an invalid resource access that usually results in a
crash [Howard 2002].

Device files in UNIX can be a security risk when an attacker can access them in an unauthorized
way. For example, if attackers can read or write to the /dev/kmem device, they may be able to
alter the priority, UID, or other attributes of their process or simply crash the system. Similarly,
access to disk devices, tape devices, network devices, and terminals being used by other processes
can lead to problems [Garfinkel 1996].

On Linux, it is possible to lock certain applications by attempting to open devices rather than
files. Consider the following example:

/dev/mouse
/dev/console
/dev/tty0
/dev/zero

A Web browser that failed to check for these devices would allow an attacker to create a website
with image tags such as that would lock the user's mouse.

10.2.1 Noncompliant Code Example
In this noncompliant code example, the user can specify a locked device or a FIFO (first-in, first-
out) file name, which can cause the program to hang on the call to fopen():

#include <stdio.h>

void func(const char *file_name) {
 FILE *file;
 if ((file = fopen(file_name, "wb")) == NULL) {
 /* Handle error */
 }

 /* Operate on the file */

Input/Output (FIO) - FIO32-C. Do not perform operations on devices that are only appropriate for files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 286
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (fclose(file) == EOF) {
 /* Handle error */
 }
}

10.2.2 Compliant Solution (POSIX)
POSIX defines the O_NONBLOCK flag to open(), which ensures that delayed operations on a file
do not hang the program [IEEE Std 1003.1:2013].

When opening a FIFO with O_RDONLY or O_WRONLY set:

When opening a block special or character special file that supports nonblocking opens:

Otherwise, the behavior of O_NONBLOCK is unspecified.

Once the file is open, programmers can use the POSIX lstat() and fstat() functions to ob-
tain information about a file and the S_ISREG() macro to determine if the file is a regular file.

Because the behavior of O_NONBLOCK on subsequent calls to read() or write() is unspecified,
it is advisable to disable the flag after it has been determined that the file in question is not a spe-
cial device.

When available (Linux 2.1.126+, FreeBSD, Solaris 10, POSIX.1-2008), the O_NOFOLLOW flag
should also be used. (See POS01-C. Check for the existence of links when dealing with files.)
When O_NOFOLLOW is not available, symbolic link checks should use the method from POS35-C.
Avoid race conditions while checking for the existence of a symbolic link.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#ifdef O_NOFOLLOW
 #define OPEN_FLAGS O_NOFOLLOW | O_NONBLOCK
#else
 #define OPEN_FLAGS O_NONBLOCK
#endif

void func(const char *file_name) {
 struct stat orig_st;
 struct stat open_st;
 int fd;
 int flags;

 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 /* Handle error */

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229421
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=524390
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=524390

Input/Output (FIO) - FIO32-C. Do not perform operations on devices that are only appropriate for files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 287
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 /* Race window */

 fd = open(file_name, OPEN_FLAGS | O_WRONLY);
 if (fd == -1) {
 /* Handle error */
 }

 if (fstat(fd, &open_st) != 0) {
 /* Handle error */
 }

 if ((orig_st.st_mode != open_st.st_mode) ||
 (orig_st.st_ino != open_st.st_ino) ||
 (orig_st.st_dev != open_st.st_dev)) {
 /* The file was tampered with */
 }

 /*
 * Optional: drop the O_NONBLOCK now that we are sure
 * this is a good file.
 */
 if ((flags = fcntl(fd, F_GETFL)) == -1) {
 /* Handle error */
 }

 if (fcntl(fd, F_SETFL, flags & ~O_NONBLOCK) == -1) {
 /* Handle error */
 }

 /* Operate on the file */

 if (close(fd) == -1) {
 /* Handle error */
 }
}

This code contains an intractable TOCTOU (time-of-check, time-of-use) race condition under
which an attacker can alter the file referenced by file_name following the call to lstat() but
before the call to open(). The switch will be discovered after the file is opened, but opening the
file cannot be prevented in the case where this action itself causes undesired behavior. (See
FIO45-C. Avoid TOCTOU race conditions while accessing files for more information about
TOCTOU race conditions.)

Essentially, an attacker can switch out a file for one of the file types shown in the following table
with the specified effect.

Input/Output (FIO) - FIO32-C. Do not perform operations on devices that are only appropriate for files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 288
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

File Types and Effects
Type Note on Effect

Another regular file The fstat() verification fails.

FIFO Either open() returns -1 and sets errno to
ENXIO, or open() succeeds and the fstat()
verification fails.

Symbolic link open() returns -1 if O_NOFOLLOW is available;
otherwise, the fstat() verification fails.

Special device Usually the fstat() verification fails on st_mode.
This can still be a problem if the device is one for
which just opening (or closing) it causes a side effect.
If st_mode compares equal, then the device is one
that, after opening, appears to be a regular file. It
would then fail the fstat() verification on
st_dev and st_ino (unless it happens to be the
same file, as can happen with /dev/fd/* on So-
laris, but this would not be a problem).

To be compliant with this rule and to prevent this TOCTOU race condition, file_name must re-
fer to a file in a secure directory. (See FIO15-C. Ensure that file operations are performed in a se-
cure directory.)

10.2.3 Noncompliant Code Example (Windows)
This noncompliant code example uses the GetFileType() function to attempt to prevent open-
ing a special file:

#include <Windows.h>

void func(const TCHAR *file_name) {
 HANDLE hFile = CreateFile(
 file_name,
 GENERIC_READ | GENERIC_WRITE, 0,
 NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL
);
 if (hFile == INVALID_HANDLE_VALUE) {
 /* Handle error */
 } else if (GetFileType(hFile) != FILE_TYPE_DISK) {
 /* Handle error */
 CloseHandle(hFile);
 } else {
 /* Operate on the file */
 CloseHandle(hFile);
 }
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924306
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924306

Input/Output (FIO) - FIO32-C. Do not perform operations on devices that are only appropriate for files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 289
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Although tempting, the Win32 GetFileType() function is dangerous in this case. If the file
name given identifies a named pipe that is currently blocking on a read request, the call to Get-
FileType() will block until the read request completes. This provides an effective attack vector
for a denial-of-service attack on the application. Furthermore, the act of opening a file handle may
cause side effects, such as line states being set to their default voltage when opening a serial de-
vice.

10.2.4 Compliant Solution (Windows)
Microsoft documents a list of reserved identifiers that represent devices and have a device
namespace to be used specifically by devices [MSDN]. In this compliant solution, the
isReservedName() function can be used to determine if a specified path refers to a device. Care
must be taken to avoid a TOCTOU race condition when first testing a path name using the
isReservedName() function and then later operating on that path name.

#include <ctype.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

static bool isReservedName(const char *path) {
 /* This list of reserved names comes from MSDN */
 static const char *reserved[] = {
 "nul", "con", "prn", "aux", "com1", "com2", "com3",
 "com4", "com5", "com6", "com7", "com8", "com9",
 "lpt1", "lpt2", "lpt3", "lpt4", "lpt5", "lpt6",
 "lpt7", "lpt8", "lpt9"
 };
 bool ret = false;

/*
 * First, check to see if this is a device namespace, which
 * always starts with \\.\, because device namespaces are not
 * valid file paths.
 */

 if (!path || 0 == strncmp(path, "\\\\.\\", 4)) {
 return true;
 }

 /* Compare against the list of ancient reserved names */
 for (size_t i = 0; !ret &&
 i < sizeof(reserved) / sizeof(*reserved); ++i) {
 /*
 * Because Windows uses a case-insensitive file system, operate
on
 * a lowercase version of the given filename. Note: This ignores
 * globalization issues and assumes ASCII characters.

http://msdn.microsoft.com/en-us/library/aa365247%28v=vs.85%29.aspx

Input/Output (FIO) - FIO32-C. Do not perform operations on devices that are only appropriate for files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 290
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 */
 if (0 == _stricmp(path, reserved[i])) {
 ret = true;
 }
 }
 return ret;
}

10.2.5 Risk Assessment
Allowing operations that are appropriate only for regular files to be performed on devices can re-
sult in denial-of-service attacks or more serious exploits depending on the platform.

Rule Severity Likelihood Remediation Cost Priority Level

FIO32-C Medium Unlikely Medium P4 L3

10.2.6 Related Guidelines

CERT C Secure Coding Standard FIO05-C. Identify files using multiple file at-
tributes
FIO15-C. Ensure that file operations are per-
formed in a secure directory
POS01-C. Check for the existence of links
when dealing with files
POS35-C. Avoid race conditions while check-
ing for the existence of a symbolic link

CERT Oracle Secure Coding Standard for Java FIO00-J. Do not operate on files in shared di-
rectories

MITRE CWE CWE-67, Improper Handling of Windows De-
vice Names

10.2.7 Bibliography

[Garfinkel 1996] Section 5.6, “Device Files”
[Howard 2002] Chapter 11, “Canonical Representation Issues”
[IEEE Std 1003.1:2013] XSH, System Interfaces, open
[MSDN]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3284
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3284
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924306
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924306
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229421
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=229421
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=524390
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=524390
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=64389514
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=64389514
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/67.html
http://msdn.microsoft.com/en-us/library/aa365247%28v=vs.85%29.aspx

Input/Output (FIO) - FIO34-C. Distinguish between characters read from a file and EOF or WEOF

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 291
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.3 FIO34-C. Distinguish between characters read from a file and EOF
or WEOF

The EOF macro represents a negative value that is used to indicate that the file is exhausted and no
data remains when reading data from a file. EOF is an example of an in-band error indicator. In-
band error indicators are problematic to work with, and the creation of new in-band-error indica-
tors is discouraged by ERR02-C. Avoid in-band error indicators.

The byte I/O functions fgetc(), getc(), and getchar() all read a character from a stream and
return it as an int. (See STR00-C. Represent characters using an appropriate type.) If the stream
is at the end of the file, the end-of-file indicator for the stream is set and the function returns EOF.
If a read error occurs, the error indicator for the stream is set and the function returns EOF. If these
functions succeed, they cast the character returned into an unsigned char.

Because EOF is negative, it should not match any unsigned character value. However, this is only
true for implementations where the int type is wider than char. On an implementation where
int and char have the same width, a character-reading function can read and return a valid char-
acter that has the same bit-pattern as EOF. This could occur, for example, if an attacker inserted a
value that looked like EOF into the file or data stream to alter the behavior of the program.

The C Standard requires only that the int type be able to represent a maximum value of +32767
and that a char type be no larger than an int. Although uncommon, this situation can result in
the integer constant expression EOF being indistinguishable from a valid character; that is,
(int)(unsigned char)65535 == -1. Consequently, failing to use feof() and ferror() to
detect end-of-file and file errors can result in incorrectly identifying the EOF character on rare im-
plementations where sizeof(int) == sizeof(char).

This problem is much more common when reading wide characters. The fgetwc(), getwc(),
and getwchar() functions return a value of type wint_t. This value can represent the next wide
character read, or it can represent WEOF, which indicates end-of-file for wide character streams.
On most implementations, the wchar_t type has the same width as wint_t, and these functions
can return a character indistinguishable from WEOF.

In the UTF-16 character set, 0xFFFF is guaranteed not to be a character, which allows WEOF to be
represented as the value -1. Similarly, all UTF-32 characters are positive when viewed as a
signed 32-bit integer. All widely used character sets are designed with at least one value that does
not represent a character. Consequently, it would require a custom character set designed without
consideration of the C programming language for this problem to occur with wide characters or
with ordinary characters that are as wide as int.

The C Standard feof() and ferror() functions are not subject to the problems associated with
character and integer sizes and should be used to verify end-of-file and file errors for susceptible

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15631528
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16449764

Input/Output (FIO) - FIO34-C. Distinguish between characters read from a file and EOF or WEOF

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 292
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

implementations [Kettlewell 2002]. Calling both functions on each iteration of a loop adds signifi-
cant overhead, so a good strategy is to temporarily trust EOF and WEOF within the loop but verify
them with feof() and ferror() following the loop.

10.3.1 Noncompliant Code Example
This noncompliant code example loops while the character c is not EOF:

#include <stdio.h>

void func(void) {
 int c;

 do {
 c = getchar();
 } while (c != EOF);
}

Although EOF is guaranteed to be negative and distinct from the value of any unsigned character,
it is not guaranteed to be different from any such value when converted to an int. Consequently,
when int has the same width as char, this loop may terminate prematurely.

10.3.2 Compliant Solution (Portable)
This compliant solution uses feof() to test for end-of-file and ferror() to test for errors:

#include <stdio.h>

void func(void) {
 int c;

 do {
 c = getchar();
 } while (c != EOF);
 if (feof(stdin)) {
 /* Handle end of file */
 } else if (ferror(stdin)) {
 /* Handle file error */
 } else {
 /* Received a character that resembles EOF; handle error */
 }
}

10.3.3 Noncompliant Code Example (Nonportable)
This noncompliant code example uses an assertion to ensure that the code is executed only on ar-
chitectures where int is wider than char and EOF is guaranteed not to be a valid character value.
However, this code example is noncompliant because the variable c is declared as a char rather

Input/Output (FIO) - FIO34-C. Distinguish between characters read from a file and EOF or WEOF

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 293
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

than an int, making it possible for a valid character value to compare equal to the value of the
EOF macro when char is signed because of sign extension:

#include <assert.h>
#include <limits.h>
#include <stdio.h>

void func(void) {
 char c;
 static_assert(UCHAR_MAX < UINT_MAX, "FIO34-C violation");

 do {
 c = getchar();
 } while (c != EOF);
}

Assuming that a char is a signed 8-bit type and an int is a 32-bit type, if getchar() returns the
character value '\xff (decimal 255), it will be interpreted as EOF because this value is sign-ex-
tended to 0xFFFFFFFF (the value of EOF) to perform the comparison. (See STR34-C. Cast char-
acters to unsigned char before converting to larger integer sizes.)

10.3.4 Compliant Solution (Nonportable)
This compliant solution declares c to be an int. Consequently, the loop will terminate only when
the file is exhausted.

#include <assert.h>
#include <stdio.h>
#include <limits.h>

void func(void) {
 int c;
 static_assert(UCHAR_MAX < UINT_MAX, "FIO34-C violation");

 do {
 c = getchar();
 } while (c != EOF);
}

10.3.5 Noncompliant Code Example (Wide Characters)
In this noncompliant example, the result of the call to the C standard library function getwc() is
stored into a variable of type wchar_t and is subsequently compared with WEOF:

#include <stddef.h>
#include <stdio.h>
#include <wchar.h>

Input/Output (FIO) - FIO34-C. Distinguish between characters read from a file and EOF or WEOF

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 294
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

enum { BUFFER_SIZE = 32 };

void g(void) {
 wchar_t buf[BUFFER_SIZE];
 wchar_t wc;
 size_t i = 0;

 while ((wc = getwc(stdin)) != L'\n' && wc != WEOF) {
 if (i < (BUFFER_SIZE - 1)) {
 buf[i++] = wc;
 }
 }
 buf[i] = L'\0';
}

This code suffers from two problems. First, the value returned by getwc() is immediately con-
verted to wchar_t before being compared with WEOF. Second, there is no check to ensure that
wint_t is wider than wchar_t. Both of these problems make it possible for an attacker to termi-
nate the loop prematurely by supplying the wide-character value matching WEOF in the file.

10.3.6 Compliant Solution (Portable)
This compliant solution declares c to be a wint_t to match the integer type returned by
getwc(). Furthermore, it does not rely on WEOF to determine end-of-file definitively.

#include <stddef.h>
#include <stdio.h>
#include <wchar.h>

enum {BUFFER_SIZE = 32 }

void g(void) {
 wchar_t buf[BUFFER_SIZE];
 wint_t wc;
 size_t i = 0;

 while ((wc = getwc(stdin)) != L'\n' && wc != WEOF) {
 if (i < BUFFER_SIZE - 1) {
 buf[i++] = wc;
 }
 }

 if (feof(stdin) || ferror(stdin)) {
 buf[i] = L'\0';
 } else {
 /* Received a wide character that resembles WEOF; handle error
*/
 }
}

Input/Output (FIO) - FIO34-C. Distinguish between characters read from a file and EOF or WEOF

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 295
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.3.7 Exceptions
FIO34-C-EX1: A number of C functions do not return characters but can return EOF as a status
code. These functions include fclose(), fflush(), fputs(), fscanf(), puts(), scanf(),
sscanf(), vfscanf(), and vscanf(). These return values can be compared to EOF without
validating the result.

10.3.8 Risk Assessment
Incorrectly assuming characters from a file cannot match EOF or WEOF has resulted in significant
vulnerabilities, including command injection attacks. (See the *CA-1996-22 advisory.)

Rule Severity Likelihood Remediation Cost Priority Level

FIO34-C High Probable Medium P12 L1

10.3.9 Related Guidelines

CERT C Secure Coding Standard STR00-C. Represent characters using an appro-
priate type
INT31-C. Ensure that integer conversions do
not result in lost or misinterpreted data

CERT Oracle Secure Coding Standard for Java FIO08-J. Use an int to capture the return value
of methods that read a character or byte

ISO/IEC TS 17961:2013 Using character values that are indistinguisha-
ble from EOF [chreof]

10.3.10 Bibliography
[Kettlewell 2002] Section 1.2, “<stdio.h> and Character

Types”
[NIST 2006] SAMATE Reference Dataset Test Case ID

000-000-088
[Summit 2005] Question 12.2

http://www.cert.org/historical/advisories/CA-1996-22.cfm
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=169609903
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=169609903
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=27132312
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=27132312

Input/Output (FIO) - FIO37-C. Do not assume that fgets() or fgetws() returns a nonempty string when successful

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 296
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.4 FIO37-C. Do not assume that fgets() or fgetws() returns a nonempty
string when successful

Errors can occur when incorrect assumptions are made about the type of data being read. These
assumptions may be violated, for example, when binary data has been read from a file instead of
text from a user’s terminal or the output of a process is piped to stdin. (See FIO14-C. Under-
stand the difference between text mode and binary mode with file streams.) On some systems, it
may also be possible to input a null byte (as well as other binary codes) from the keyboard.

Subclause 7.21.7.2 of the C Standard [ISO/IEC 9899:2011] says,

The fgets function returns s if successful. If end-of-file is encountered and no charac-
ters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned.

The wide-character function fgetws() has the same behavior. Therefore, if fgets() or
fgetws() returns a non-null pointer, it is safe to assume that the array contains data. However, it
is erroneous to assume that the array contains a nonempty string because the data may contain
null characters.

10.4.1 Noncompliant Code Example
This noncompliant code example attempts to remove the trailing newline (\n) from an input line.
The fgets() function is typically used to read a newline-terminated line of input from a stream.
It takes a size parameter for the destination buffer and copies, at most, size - 1 characters from
a stream to a character array.

#include <stdio.h>
#include <string.h>

enum { BUFFER_SIZE = 1024 };

void func(void) {
 char buf[BUFFER_SIZE];

 if (fgets(buf, sizeof(buf), stdin) == NULL) {
 /* Handle error */
 }
 buf[strlen(buf) - 1] = '\0';
}

The strlen() function computes the length of a string by determining the number of characters
that precede the terminating null character. A problem occurs if the first character read from the
input by fgets() happens to be a null character. This may occur, for example, if a binary data
file is read by the fgets() call [Lai 2006]. If the first character in buf is a null character,

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473568
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473568

Input/Output (FIO) - FIO37-C. Do not assume that fgets() or fgetws() returns a nonempty string when successful

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 297
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

strlen(buf) returns 0, the expression strlen(buf) - 1 wraps around to a large positive
value, and a write-outside-array-bounds error occurs.

10.4.2 Compliant Solution
This compliant solution uses strchr() to replace the newline character in the string if it exists:

#include <stdio.h>
#include <string.h>

enum { BUFFER_SIZE = 1024 };

void func(void) {
 char buf[BUFFER_SIZE];
 char *p;

 if (fgets(buf, sizeof(buf), stdin)) {
 p = strchr(buf, '\n');
 if (p) {
 *p = '\0';
 }
 } else {
 /* Handle error */
 }
}

10.4.3 Risk Assessment
Incorrectly assuming that character data has been read can result in an out-of-bounds memory
write or other flawed logic.

Rule Severity Likelihood Remediation Cost Priority Level

FIO37-C High Probable Medium P12 L1

10.4.4 Related Guidelines
CERT C Secure Coding Standard FIO14-C. Understand the difference between

text mode and binary mode with file streams
FIO20-C. Avoid unintentional truncation when
using fgets() or fgetws()

MITRE CWE CWE-119, Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-123, Write-what-where Condition
CWE-125, Out-of-bounds Read
CWE-241, Improper Handling of Unexpected
Data Type

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473568
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473568
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3226
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3226
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/241.html

Input/Output (FIO) - FIO37-C. Do not assume that fgets() or fgetws() returns a nonempty string when successful

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 298
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.4.5 Bibliography

[ISO/IEC 9899:2011] Subclause 7.21.7.2, “The fgets Function”
Subclause 7.29.3.2, “The fgetws Function”

[Lai 2006]
[Seacord 2013] Chapter 2, “Strings”

Input/Output (FIO) - FIO38-C. Do not copy a FILE object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 299
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5 FIO38-C. Do not copy a FILE object

According to the C Standard, 7.21.3, paragraph 6 [ISO/IEC 9899:2011],

The address of the FILE object used to control a stream may be significant; a copy of a
FILE object need not serve in place of the original.

Consequently, do not copy a FILE object.

10.5.1 Noncompliant Code Example
This noncompliant code example can fail because a by-value copy of stdout is being used in the
call to fputs():

#include <stdio.h>

int main(void) {
 FILE my_stdout = *stdout;
 if (fputs("Hello, World!\n", &my_stdout) == EOF) {
 /* Handle error */
 }
 return 0;
}

When compiled under Microsoft Visual Studio 2013 and run on Windows, this noncompliant ex-
ample results in an “access violation” at runtime.

10.5.2 Compliant Solution
In this compliant solution, a copy of the stdout pointer to the FILE object is used in the call to
fputs():

#include <stdio.h>

int main(void) {
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF) {
 /* Handle error */
 }
 return 0;
}

Input/Output (FIO) - FIO38-C. Do not copy a FILE object

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 300
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.5.3 Risk Assessment
Using a copy of a FILE object in place of the original may result in a crash, which can be used in
a denial-of-service attack.

Rule Severity Likelihood Remediation Cost Priority Level

FIO38-C Low Probable Medium P4 L3

10.5.4 Related Guidelines

ISO/IEC TS 17961:2013 Copying a FILE object [filecpy]

10.5.5 Bibliography

[ISO/IEC 9899:2011] 7.21.3, “Files”

Input/Output (FIO) - FIO39-C. Do not alternately input and output from a stream without an intervening flush or positioning
call

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 301
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.6 FIO39-C. Do not alternately input and output from a stream without
an intervening flush or positioning call

The C Standard, 7.21.5.3, paragraph 7 [ISO/IEC 9899:2011], places the following restrictions on
update streams:

When a file is opened with update mode . . ., both input and output may be performed on
the associated stream. However, output shall not be directly followed by input without an
intervening call to the fflush function or to a file positioning function (fseek, fsetpos,
or rewind), and input shall not be directly followed by output without an intervening call
to a file positioning function, unless the input operation encounters end-of-file. Opening
(or creating) a text file with update mode may instead open (or create) a binary stream in
some implementations.

The following scenarios can result in undefined behavior. (See undefined behavior 151.)
• Receiving input from a stream directly following an output to that stream without an interven-

ing call to fflush(), fseek(), fsetpos(), or rewind() if the file is not at end-of-file
• Outputting to a stream after receiving input from that stream without a call to fseek(),

fsetpos(), or rewind() if the file is not at end-of-file

Consequently, a call to fseek(), fflush(), or fsetpos() is necessary between input and out-
put to the same stream. See ERR07-C. Prefer functions that support error checking over equiva-
lent functions that don’t for more information on why fseek() is preferred over rewind().

10.6.1 Noncompliant Code Example
This noncompliant code example appends data to a file and then reads from the same file:

#include <stdio.h>

enum { BUFFERSIZE = 32 };

extern void initialize_data(char *data, size_t size);

void func(const char *file_name) {
 char data[BUFFERSIZE];
 char append_data[BUFFERSIZE];
 FILE *file;

 file = fopen(file_name, "a+");
 if (file == NULL) {
 /* Handle error */
 }

 initialize_data(append_data, BUFFERSIZE);

 if (fwrite(append_data, 1, BUFFERSIZE, file) != BUFFERSIZE) {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20676617
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20676617

Input/Output (FIO) - FIO39-C. Do not alternately input and output from a stream without an intervening flush or positioning
call

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 302
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }
 if (fread(data, 1, BUFFERSIZE, file) < BUFFERSIZE) {
 /* Handle there not being data */
 }

 if (fclose(file) == EOF) {
 /* Handle error */
 }
}

Because there is no intervening flush or positioning call between the calls to fread() and
fwrite(), the behavior is undefined.

10.6.2 Compliant Solution
In this compliant solution, fseek() is called between the output and input, eliminating the unde-
fined behavior:

#include <stdio.h>

enum { BUFFERSIZE = 32 };
extern void initialize_data(char *data, size_t size);

void func(const char *file_name) {
 char data[BUFFERSIZE];
 char append_data[BUFFERSIZE];
 FILE *file;

 file = fopen(file_name, "a+");
 if (file == NULL) {
 /* Handle error */
 }

 initialize_data(append_data, BUFFERSIZE);
 if (fwrite(append_data, BUFFERSIZE, 1, file) != BUFFERSIZE) {
 /* Handle error */
 }

 if (fseek(file, 0L, SEEK_SET) != 0) {
 /* Handle error */
 }

 if (fread(data, BUFFERSIZE, 1, file) != 0) {
 /* Handle there not being data */
 }

 if (fclose(file) == EOF) {
 /* Handle error */

Input/Output (FIO) - FIO39-C. Do not alternately input and output from a stream without an intervening flush or positioning
call

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 303
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
}

10.6.3 Risk Assessment
Alternately inputting and outputting from a stream without an intervening flush or positioning call
is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

FIO39-C Low Likely Medium P6 L2

10.6.4 Related Guidelines

SEI CERT C++ Coding Standard FIO50-CPP. Do not alternately input and out-
put from a file stream without an intervening
positioning call

ISO/IEC TS 17961:2013 Interleaving stream inputs and outputs without
a flush or positioning call [ioileave]

10.6.5 Bibliography

[ISO/IEC 9899:2011] 7.21.5.3, “The fopen Function”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087240
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087240
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087240

Input/Output (FIO) - FIO40-C. Reset strings on fgets() or fgetws() failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 304
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.7 FIO40-C. Reset strings on fgets() or fgetws() failure

If either of the C Standard fgets() or fgetws() functions fail, the contents of the array being
written is indeterminate. (See undefined behavior 170.) It is necessary to reset the string to a
known value to avoid errors on subsequent string manipulation functions.

10.7.1 Noncompliant Code Example
In this noncompliant code example, an error flag is set if fgets() fails. However, buf is not re-
set and has indeterminate contents:

#include <stdio.h>

enum { BUFFER_SIZE = 1024 };
void func(FILE *file) {
 char buf[BUFFER_SIZE];

 if (fgets(buf, sizeof(buf), file) == NULL) {
 /* Set error flag and continue */
 }
}

10.7.2 Compliant Solution
In this compliant solution, buf is set to an empty string if fgets() fails. The equivalent solution
for fgetws() would set buf to an empty wide string.

#include <stdio.h>

enum { BUFFER_SIZE = 1024 };

void func(FILE *file) {
 char buf[BUFFER_SIZE];

 if (fgets(buf, sizeof(buf), file) == NULL) {
 /* Set error flag and continue */
 *buf = '\0';
 }
}

10.7.3 Exceptions
FIO40-C-EX1: If the string goes out of scope immediately following the call to fgets() or
fgetws() or is not referenced in the case of a failure, it need not be reset.

Input/Output (FIO) - FIO40-C. Reset strings on fgets() or fgetws() failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 305
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.7.4 Risk Assessment
Making invalid assumptions about the contents of an array modified by fgets() or fgetws()
can result in undefined behavior and abnormal program termination.

Rule Severity Likelihood Remediation Cost Priority Level

FIO40-C Low Probable Medium P4 L3

Input/Output (FIO) - FIO41-C. Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 306
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8 FIO41-C. Do not call getc(), putc(), getwc(), or putwc() with a stream
argument that has side effects

Do not invoke getc() or putc() or their wide-character analogues getwc() and putwc() with
a stream argument that has side effects. The stream argument passed to these macros may be eval-
uated more than once if these functions are implemented as unsafe macros. (See PRE31-C. Avoid
side effects in arguments to unsafe macros for more information.)

This rule does not apply to the character argument in putc() or the wide-character argument in
putwc(), which is guaranteed to be evaluated exactly once.

10.8.1 Noncompliant Code Example (getc())
This noncompliant code example calls the getc() function with an expression as the stream ar-
gument. If getc() is implemented as a macro, the file may be opened multiple times. (See
FIO24-C. Do not open a file that is already open.)

#include <stdio.h>

void func(const char *file_name) {
 FILE *fptr;

 int c = getc(fptr = fopen(file_name, "r"));
 if (feof(stdin) || ferror(stdin)) {
 /* Handle error */
 }

 if (fclose(fptr) == EOF) {
 /* Handle error */
 }
}

This noncompliant code example also violates ERR33-C. Detect and handle standard library er-
rors because the value returned by fopen() is not checked for errors.

10.8.2 Compliant Solution (getc())
In this compliant solution, fopen() is called before getc() and its return value is checked for
errors:

#include <stdio.h>

void func(const char *file_name) {
 int c;
 FILE *fptr;

 fptr = fopen(file_name, "r");
 if (fptr == NULL) {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473575

Input/Output (FIO) - FIO41-C. Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 307
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }

 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 }

 if (fclose(fptr) == EOF) {
 /* Handle error */
 }
}

10.8.3 Noncompliant Code Example (putc())
In this noncompliant example, putc() is called with an expression as the stream argument. If
putc() is implemented as a macro, this expression might be evaluated multiple times.

#include <stdio.h>

void func(const char *file_name) {
 FILE *fptr = NULL;
 int c = 'a';

 while (c <= 'z') {
 if (putc(c++, fptr ? fptr :
 (fptr = fopen(file_name, "w")) == EOF) {
 /* Handle error */
 }
 }

 if (fclose(fptr) == EOF) {
 /* Handle error */
 }
}

This noncompliant code example might appear safe even if the putc() macro evaluates its
stream argument multiple times, as the ternary conditional expression ostensibly prevents multiple
calls to fopen(). However, the assignment to fptr and the evaluation of fptr as the controlling
expression of the ternary conditional expression can take place between the same sequence points,
resulting in undefined behavior (a violation of EXP30-C. Do not depend on the order of evalua-
tion for side effects). This code also violates ERR33-C. Detect and handle standard library errors
because it fails to check the return value from fopen().

Input/Output (FIO) - FIO41-C. Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 308
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.8.4 Compliant Solution (putc())
In this compliant solution, the stream argument to putc() no longer has side effects:

#include <stdio.h>

void func(const char *file_name) {
 int c = 'a';
 FILE *fptr = fopen(file_name, "w");

 if (fptr == NULL) {
 /* Handle error */
 }

 while (c <= 'z') {
 if (putc(c++, fptr) == EOF) {
 /* Handle error */
 }
 }

 if (fclose(fptr) == EOF) {
 /* Handle error */
 }
}

The expression c++ is perfectly safe because putc() guarantees to evaluate its character argu-
ment exactly once.

NOTE: The output of this compliant solution differs depending on the character set. For example,
when run on a machine using an ASCII-derived code set such as ISO-8859 or Unicode, this solu-
tion will print out the 26 lowercase letters of the English alphabet. However, if run with an
EBCDIC-based code set, such as Codepage 037 or Codepage 285, punctuation marks or symbols
may be output between the letters.

10.8.5 Risk Assessment
Using an expression that has side effects as the stream argument to getc(), putc(), or getwc()
can result in unexpected behavior and abnormal program termination.

Rule Severity Likelihood Remediation Cost Priority Level

FIO41-C Low Unlikely Medium P2 L3

10.8.6 Related Guidelines

CERT C Secure Coding Standard FIO24-C. Do not open a file that is already
open
EXP30-C. Do not depend on the order of eval-
uation for side effects

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473575
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473575

Input/Output (FIO) - FIO42-C. Close files when they are no longer needed

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 309
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9 FIO42-C. Close files when they are no longer needed

A call to the fopen() or freopen() function must be matched with a call to fclose() before
the lifetime of the last pointer that stores the return value of the call has ended or before normal
program termination, whichever occurs first.

In general, this rule should also be applied to other functions with open and close resources, such
as the POSIX open() and close() functions, or the Microsoft Windows CreateFile() and
CloseHandle() functions.

10.9.1 Noncompliant Code Example
This code example is noncompliant because the file opened by the call to fopen() is not closed
before function func() returns:

#include <stdio.h>

int func(const char *filename) {
 FILE *f = fopen(filename, "r");
 if (NULL == f) {
 return -1;
 }
 /* ... */
 return 0;
}

10.9.2 Compliant Solution
In this compliant solution, the file pointed to by f is closed before returning to the caller:

#include <stdio.h>

int func(const char *filename) {
 FILE *f = fopen(filename, "r");
 if (NULL == f) {
 return -1;
 }
 /* ... */
 if (fclose(f) == EOF) {
 return -1;
 }
 return 0;
}

Input/Output (FIO) - FIO42-C. Close files when they are no longer needed

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 310
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9.3 Noncompliant Code Example (exit())
This code example is noncompliant because the resource allocated by the call to fopen() is not
closed before the program terminates. Although exit() closes the file, the program has no way
of determining if an error occurs while flushing or closing the file.

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 FILE *f = fopen(filename, "w");
 if (NULL == f) {
 exit(EXIT_FAILURE);
 }
 /* ... */
 exit(EXIT_SUCCESS);
}

10.9.4 Compliant Solution (exit())
In this compliant solution, the program closes f explicitly before calling exit(), allowing any
error that occurs when flushing or closing the file to be handled appropriately:

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 FILE *f = fopen(filename, "w");
 if (NULL == f) {
 /* Handle error */
 }
 /* ... */
 if (fclose(f) == EOF) {
 /* Handle error */
 }
 exit(EXIT_SUCCESS);
}

10.9.5 Noncompliant Code Example (POSIX)
This code example is noncompliant because the resource allocated by the call to open() is not
closed before function func() returns:

#include <stdio.h>
#include <fcntl.h>

int func(const char *filename) {
 int fd = open(filename, O_RDONLY, S_IRUSR);
 if (-1 == fd) {

Input/Output (FIO) - FIO42-C. Close files when they are no longer needed

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 311
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return -1
 }
 /* ... */
 return 0;
}

10.9.6 Compliant Solution (POSIX)
In this compliant solution, fd is closed before returning to the caller:

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

int func(const char *filename) {
 int fd = open(filename, O_RDONLY, S_IRUSR);
 if (-1 == fd) {
 return -1
 }
 /* ... */
 if (-1 == close(fd)) {
 return -1;
 }
 return 0;
}

10.9.7 Noncompliant Code Example (Windows)
In this noncompliant code example, the file opened by the Microsoft Windows CreateFile() func-
tion is not closed before func() returns:

#include <Windows.h>

int func(LPCTSTR filename) {
 HANDLE hFile = CreateFile(filename, GENERIC_READ, 0, NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL);
 if (INVALID_HANDLE_VALUE == hFile) {
 return -1;
 }
 /* ... */
 return 0;
}

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx

Input/Output (FIO) - FIO42-C. Close files when they are no longer needed

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 312
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.9.8 Compliant Solution (Windows)
In this compliant solution, hFile is closed by invoking the CloseHandle() function before return-
ing to the caller:

#include <Windows.h>

int func(LPCTSTR filename) {
 HANDLE hFile = CreateFile(filename, GENERIC_READ, 0, NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL);
 if (INVALID_HANDLE_VALUE == hFile) {
 return -1;
 }
 /* ... */
 if (!CloseHandle(hFile)) {
 return -1;
 }

 return 0;
}

10.9.9 Risk Assessment
Failing to properly close files may allow an attacker to exhaust system resources and can increase
the risk that data written into in-memory file buffers will not be flushed in the event of abnormal
program termination.

Rule Severity Likelihood Remediation Cost Priority Level
FIO42-C Medium Unlikely Medium P4 L3

10.9.10 Related Guidelines
SEI CERT C++ Coding Standard FIO51-CPP. Close files when they are no

longer needed
CERT Oracle Secure Coding Standard for Java FIO04-J. Release resources when they are no

longer needed
ISO/IEC TS 17961:2013 Failing to close files or free dynamic memory

when they are no longer needed [fileclose]
MITRE CWE CWE-404, Improper Resource Shutdown or

Release

10.9.11 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, open

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724211(v=vs.85).aspx
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087249
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087249
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724534
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724534
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/404.html

Input/Output (FIO) - FIO44-C. Only use values for fsetpos() that are returned from fgetpos()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 313
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.10 FIO44-C. Only use values for fsetpos() that are returned from
fgetpos()

The C Standard, 7.21.9.3 [ISO/IEC 9899:2011], defines the following behavior for fsetpos():

The fsetpos function sets the mbstate_t object (if any) and file position indicator for
the stream pointed to by stream according to the value of the object pointed to by pos,
which shall be a value obtained from an earlier successful call to the fgetpos function
on a stream associated with the same file.

Invoking the fsetpos() function with any other values for pos is undefined behavior.

10.10.1 Noncompliant Code Example
This noncompliant code example attempts to read three values from a file and then set the file po-
sition pointer back to the beginning of the file:

#include <stdio.h>
#include <string.h>

int opener(FILE *file) {
 int rc;
 fpos_t offset;

 memset(&offset, 0, sizeof(offset));

 if (file == NULL) {
 return -1;
 }

 /* Read in data from file */

 rc = fsetpos(file, &offset);
 if (rc != 0) {
 return rc;
 }

 return 0;
}

Only the return value of an fgetpos() call is a valid argument to fsetpos(); passing a value of
type fpos_t that was created in any other way is undefined behavior.

Input/Output (FIO) - FIO44-C. Only use values for fsetpos() that are returned from fgetpos()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 314
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.10.2 Compliant Solution
In this compliant solution, the initial file position indicator is stored by first calling fgetpos(),
which is used to restore the state to the beginning of the file in the later call to fsetpos():

#include <stdio.h>
#include <string.h>

int opener(FILE *file) {
 int rc;
 fpos_t offset;

 if (file == NULL) {
 return -1;
 }

 rc = fgetpos(file, &offset);
 if (rc != 0) {
 return rc;
 }

 /* Read in data from file */

 rc = fsetpos(file, &offset);
 if (rc != 0) {
 return rc;
 }

 return 0;
}

10.10.3 Risk Assessment
Misuse of the fsetpos() function can position a file position indicator to an unintended location
in the file.

Rule Severity Likelihood Remediation Cost Priority Level

FIO44-C Medium Unlikely Medium P4 L3

10.10.4 Related Guidelines

ISO/IEC TS 17961:2013 Using a value for fsetpos other than a value re-
turned from fgetpos [xfilepos]

10.10.5 Bibliography

[ISO/IEC 9899:2011] 7.21.9.3, “The fsetpos Function”

Input/Output (FIO) - FIO45-C. Avoid TOCTOU race conditions while accessing files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 315
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.11 FIO45-C. Avoid TOCTOU race conditions while accessing files

A TOCTOU (time-of-check, time-of-use) race condition is possible when two or more concurrent
processes are operating on a shared file system [Seacord 2013b]. Typically, the first access is a
check to verify some attribute of the file, followed by a call to use the file. An attacker can alter
the file between the two accesses, or replace the file with a symbolic or hard link to a different
file. These TOCTOU conditions can be exploited when a program performs two or more file op-
erations on the same file name or path name.

A program that performs two or more file operations on a single file name or path name creates a
race window between the two file operations. This race window comes from the assumption that
the file name or path name refers to the same resource both times. If an attacker can modify the
file, remove it, or replace it with a different file, then this assumption will not hold.

10.11.1 Noncompliant Code Example
If an existing file is opened for writing with the w mode argument, the file’s previous contents (if
any) are destroyed. This noncompliant code example tries to prevent an existing file from being
overwritten by first opening it for reading before opening it for writing. An attacker can exploit
the race window between the two calls to fopen() to overwrite an existing file.

#include <stdio.h>

void open_some_file(const char *file) {
 FILE *f = fopen(file, "r");
 if (NULL != f) {
 /* File exists, handle error */
 } else {
 if (fclose(f) == EOF) {
 /* Handle error */
 }
 f = fopen(file, "w");
 if (NULL == f) {
 /* Handle error */
 }

 /* Write to file */
 if (fclose(f) == EOF) {
 /* Handle error */
 }
 }
}

Input/Output (FIO) - FIO45-C. Avoid TOCTOU race conditions while accessing files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 316
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.11.2 Compliant Solution
This compliant solution invokes fopen() at a single location and uses the x mode of fopen(),
which was added in C11. This mode causes fopen() to fail if the file exists. This check and sub-
sequent open is performed without creating a race window. The x mode provides exclusive access
to the file only if the host environment provides this support.

#include <stdio.h>

void open_some_file(const char *file) {
 FILE *f = fopen(file, "wx")
 if (NULL == f) {
 /* Handle error */
 }
 /* Write to file */
 if (fclose(f) == EOF) {
 /* Handle error */
 }
}

10.11.3 Compliant Solution (POSIX)
This compliant solution uses the O_CREAT and O_EXCL flags of POSIX’s open() function. These
flags cause open() to fail if the file exists.

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

void open_some_file(const char *file) {
 int fd = open(file, O_CREAT | O_EXCL | O_WRONLY);
 if (-1 != fd) {
 FILE *f = fdopen(fd, "w");
 if (NULL != f) {
 /* Write to file */

 if (fclose(f) == EOF) {
 /* Handle error */
 }
 } else {
 if (close(fd) == -1) {
 /* Handle error */
 }
 }
 }
}

Input/Output (FIO) - FIO45-C. Avoid TOCTOU race conditions while accessing files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 317
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.11.4 Exceptions
FIO45-C-EX1: TOCTOU race conditions require that the vulnerable process is more privileged
than the attacker; otherwise there is nothing to be gained from a successful attack. An unprivi-
leged process is not subject to this rule.

FIO45-C-EX2: Accessing a file name or path name multiple times is permitted if the file refer-
enced resides in a secure directory (for more information, see FIO15-C. Ensure that file opera-
tions are performed in a secure directory).

FIO45-C-EX3: Accessing a file name or path name multiple times is permitted if the program
can verify that every operation operates on the same file.

This POSIX code example verifies that each subsequent file access operates on the same file. In
POSIX, every file can be uniquely identified by using its device and i-node attributes. This code
example checks that a file name refers to a regular file (and not a directory, symbolic link, or
other special file) by invoking lstat(). This call also retrieves its device and i-node. The file is
subsequently opened. Finally, the program verifies that the file that was opened is the same one
(matching device and i-nodes) as the file that was confirmed as a regular file.

#include <sys/stat.h>
#include <fcntl.h>

int open_regular_file(char *filename, int flags) {
 struct stat lstat_info;
 struct stat fstat_info;
 int f;

 if (lstat(filename, &lstat_info) == -1) {
 /* File does not exist, handle error */
 }

 if (!S_ISREG(lstat_info.st_mode)) {
 /* File is not a regular file, handle error */
 }

 if ((f = open(filename, flags)) == -1) {
 /* File has disappeared, handle error */
 }

 if (fstat(f, &fstat_info) == -1) {
 /* Handle error */
 }

 if (lstat_info.st_ino != fstat_info.st_ino ||
 lstat_info.st_dev != fstat_info.st_dev) {
 /* Open file is not the expected regular file, handle error */
 }

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924306
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924306

Input/Output (FIO) - FIO45-C. Avoid TOCTOU race conditions while accessing files

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 318
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* f is the expected regular open file */
 return f;
}

10.11.5 Risk Assessment
TOCTOU race conditions can result in unexpected behavior, including privilege escalation.

Rule Severity Likelihood Remediation Cost Priority Level

FIO45-C High Probable High P6 L2

10.11.6 Bibliography

[Seacord 2013b] Chapter 7, “Files”

Input/Output (FIO) - FIO46-C. Do not access a closed file

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 319
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.12 FIO46-C. Do not access a closed file

Using the value of a pointer to a FILE object after the associated file is closed is undefined behav-
ior. (See undefined behavior 148.) Programs that close the standard streams (especially stdout
but also stderr and stdin) must be careful not to use these streams in subsequent function
calls, particularly those that implicitly operate on them (such as printf(), perror(), and
getc()).

This rule can be generalized to other file representations.

10.12.1 Noncompliant Code Example
In this noncompliant code example, the stdout stream is used after it is closed:

#include <stdio.h>

int close_stdout(void) {
 if (fclose(stdout) == EOF) {
 return -1;
 }

 printf("stdout successfully closed.\n");
 return 0;
}

10.12.2 Compliant Solution
In this compliant solution, stdout is not used again after it is closed. This must remain true for
the remainder of the program, or stdout must be assigned the address of an open file object.

#include <stdio.h>

int close_stdout(void) {
 if (fclose(stdout) == EOF) {
 return -1;
 }

 fputs("stdout successfully closed.", stderr);
 return 0;
}

Input/Output (FIO) - FIO46-C. Do not access a closed file

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 320
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.12.3 Risk Assessment
Using the value of a pointer to a FILE object after the associated file is closed is undefined behav-
ior.

Rule Severity Likelihood Remediation Cost Priority Level

FIO46-C Medium Unlikely Medium P4 L3

10.12.4 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, open
[ISO/IEC 9899:2011] Subclause 7.21.3, “Files”

Subclause 7.21.5.1, “The fclose Function”

Input/Output (FIO) - FIO47-C. Use valid format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 321
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10.13 FIO47-C. Use valid format strings

The formatted output functions (fprintf() and related functions) convert, format, and print
their arguments under control of a format string. The C Standard, 7.21.6.1, paragraph 3 [ISO/IEC
9899:2011], specifies

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte charac-
ters (not %), which are copied unchanged to the output stream; and conversion specifi-
cations, each of which results in fetching zero or more subsequent arguments, convert-
ing them, if applicable, according to the corresponding conversion specifier, and then
writing the result to the output stream.

Each conversion specification is introduced by the % character followed (in order) by
• Zero or more flags (in any order), which modify the meaning of the conversion specification
• An optional minimum field width
• An optional precision that gives the minimum number of digits to appear for certain conver-

sion specifiers
• An optional length modifier that specifies the size of the argument
• A conversion specifier character that indicates the type of conversion to be applied

Common mistakes in creating format strings include
• Providing an incorrect number of arguments for the format string
• Using invalid conversion specifiers
• Using a flag character that is incompatible with the conversion specifier
• Using a length modifier that is incompatible with the conversion specifier
• Mismatching the argument type and conversion specifier
• Using an argument of type other than int for width or precision

The following table summarizes the compliance of various conversion specifications. The first
column contains one or more conversion specifier characters. The next four columns consider the
combination of the specifier characters with the various flags (the apostrophe ['], -, +, the space
character, #, and 0). The next eight columns consider the combination of the specifier characters
with the various length modifiers (h, hh, l, ll, j, z, t, and L).

Valid combinations are marked with a type name; arguments matched with the conversion specifi-
cation are interpreted as that type. For example, an argument matched with the specifier %hd is
interpreted as a short, so short appears in the cell where d and h intersect. The last column de-
notes the expected types of arguments matched with the original specifier characters.

Input/Output (FIO) - FIO47-C. Use valid format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 322
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Valid and meaningful combinations are marked by the symbol (save for the length modifier col-
umns, as described previously). Valid combinations that have no effect are labeled N/E. Using a
combination marked by the symbol, using a specification not represented in the table, or using an
argument of an unexpected type is undefined behavior. (See undefined behaviors 153, 155, 157,
158, 161, and 162.)

Input/Output (FIO) - FIO47-C. Use valid format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 323
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Conversion
Specifier
Character

'XSI -, +,
SPACE

0 h hh l ll j z t L Argument
Type

d, i short signed char long long long intmax_t size_t ptrdiff_t Signed integer

o unsigned
short

unsigned
char

unsigned
long

unsigned
long long

uintmax_t size_t ptrdiff_t Unsigned
integer

u unsigned
short

unsigned
char

unsigned
long

unsigned
long long

uintmax_t size_t ptrdiff_t Unsigned
integer

x, X unsigned
short

unsigned
char

unsigned
long

unsigned
long long

uintmax_t size_t ptrdiff_t Unsigned
integer

f, F N/E N/E long
double

double or long
double

e, E N/E N/E long
double

double or long
double

g, G N/E N/E long
double

double or long
double

a, A N/E N/E long
double

double or long
double

c wint_t int or wint_t

s NTWS NTBS or
NTWS

p void*

n short* char* long* long long* intmax_t* size_t* ptrdiff_t* Pointer to
integer

CXSI wint_t

SXSI NTWS

% None

 SPACE: The space (“ “) character
 N/E: No effect
 NTBS: char* argument pointing to a null-terminated character string
 NTWS: wchar_t* argument pointing to a null-terminated wide character string
 XSI: ISO/IEC 9945-2003 XSI extension

Input/Output (FIO) - FIO47-C. Use valid format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 324
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The formatted input functions (fscanf() and related functions) use similarly specified format
strings and impose similar restrictions on their format strings and arguments.

Do not supply an unknown or invalid conversion specification or an invalid combination of flag
character, precision, length modifier, or conversion specifier to a formatted IO function. Likewise,
do not provide a number or type of argument that does not match the argument type of the conver-
sion specifier used in the format string.

Format strings are usually string literals specified at the call site, but they need not be. However,
they should not contain tainted values. (See FIO30-C. Exclude user input from format strings for
more information.)

10.13.1 Noncompliant Code Example
Mismatches between arguments and conversion specifications may result in undefined behavior.
Compilers may diagnose type mismatches in formatted output function invocations. In this non-
compliant code example, the error_type argument to printf() is incorrectly matched with
the s specifier rather than with the d specifier. Likewise, the error_msg argument is incorrectly
matched with the d specifier instead of the s specifier. These usages result in undefined behavior.
One possible result of this invocation is that printf() will interpret the error_type argument
as a pointer and try to read a string from the address that error_type contains, possibly resulting
in an access violation.

#include <stdio.h>

void func(void) {
 const char *error_msg = "Resource not available to user.";
 int error_type = 3;
 /* ... */
 printf("Error (type %s): %d\n", error_type, error_msg);
 /* ... */
}

10.13.2 Compliant Solution
This compliant solution ensures that the arguments to the printf() function match their respec-
tive conversion specifications:

#include <stdio.h>

void func(void) {
 const char *error_msg = "Resource not available to user.";
 int error_type = 3;
 /* ... */
 printf("Error (type %d): %s\n", error_type, error_msg);

Input/Output (FIO) - FIO47-C. Use valid format strings

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 325
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* ... */
}

10.13.3 Risk Assessment
Incorrectly specified format strings can result in memory corruption or abnormal program termi-
nation.

Rule Severity Likelihood Remediation Cost Priority Level

FIO47-C High Unlikely Medium P6 L2

10.13.4 Related Guidelines

SEI CERT C++ Coding Standard FIO00-CPP. Take care when creating format
strings

ISO/IEC TS 17961:2013 Using invalid format strings [invfmtstr]
MITRE CWE CWE-686, Function Call with Incorrect Argu-

ment Type

10.13.5 Bibliography
[ISO/IEC 9899:2011] Subclause 7.21.6.1, “The fprintf Function”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087163
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087163
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/686.html

Environment (ENV) - ENV30-C. Do not modify the object referenced by the return value of certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 326
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11 Environment (ENV)

11.1 ENV30-C. Do not modify the object referenced by the return value
of certain functions

Some functions return a pointer to an object that cannot be modified without causing undefined
behavior. These functions include getenv(), setlocale(), localeconv(), asctime(), and
strerror(). In such cases, the function call results must be treated as being const-qualified.

The C Standard, 7.22.4.6, paragraph 4 [ISO/IEC 9899:2011], defines getenv() as follows:

The getenv function returns a pointer to a string associated with the matched list mem-
ber. The string pointed to shall not be modified by the program, but may be overwritten
by a subsequent call to the getenv function. If the specified name cannot be found, a
null pointer is returned.

If the string returned by getenv() must be altered, a local copy should be created. Altering the
string returned by getenv() is undefined behavior. (See undefined behavior 184.)

Similarly, subclause 7.11.1.1, paragraph 8 [ISO/IEC 9899:2011], defines setlocale() as fol-
lows:

The pointer to string returned by the setlocale function is such that a subsequent call
with that string value and its associated category will restore that part of the program’s
locale. The string pointed to shall not be modified by the program, but may be overwrit-
ten by a subsequent call to the setlocale function.

And subclause 7.11.2.1, paragraph 8 [ISO/IEC 9899:2011], defines localeconv() as follows:

The localeconv function returns a pointer to the filled-in object. The structure pointed
to by the return value shall not be modified by the program, but may be overwritten by a
subsequent call to the localeconv function. In addition, calls to the setlocale function
with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite the contents of
the structure.

Altering the string returned by setlocale() or the structure returned by localeconv() are un-
defined behaviors. (See undefined behaviors 120 and 121.) Furthermore, the C Standard imposes
no requirements on the contents of the string by setlocale(). Consequently, no assumptions
can be made as to the string's internal contents or structure.

Environment (ENV) - ENV30-C. Do not modify the object referenced by the return value of certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 327
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Finally, subclause 7.24.6.2, paragraph 4 [ISO/IEC 9899:2011], states

The strerror function returns a pointer to the string, the contents of which are locale-
specific. The array pointed to shall not be modified by the program, but may be overwrit-
ten by a subsequent call to the strerror function.

Altering the string returned by strerror() is undefined behavior. (See undefined behavior 184.)

11.1.1 Noncompliant Code Example (getenv())
This noncompliant code example modifies the string returned by getenv() by replacing all dou-
ble quotation marks (“) with underscores (_):

#include <stdlib.h>

void trstr(char *c_str, char orig, char rep) {
 while (*c_str != '\0') {
 if (*c_str == orig) {
 *c_str = rep;
 }
 ++c_str;
 }
}

void func(void) {
 char *env = getenv("TEST_ENV");
 if (env == NULL) {
 /* Handle error */
 }
 trstr(env,'"', '_');
}

11.1.2 Compliant Solution (getenv()) (Environment Not Modified)
If the programmer does not intend to modify the environment, this compliant solution demon-
strates how to modify a copy of the return value:

#include <stdlib.h>
#include <string.h>

void trstr(char *c_str, char orig, char rep) {
 while (*c_str != '\0') {
 if (*c_str == orig) {
 *c_str = rep;
 }
 ++c_str;
 }
}

Environment (ENV) - ENV30-C. Do not modify the object referenced by the return value of certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 328
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void func(void) {
 const char *env;
 char *copy_of_env;

 env = getenv("TEST_ENV");
 if (env == NULL) {
 /* Handle error */
 }

 copy_of_env = (char *)malloc(strlen(env) + 1);
 if (copy_of_env == NULL) {
 /* Handle error */
 }

 strcpy(copy_of_env, env);
 trstr(copy_of_env,'"', '_');
 /* ... */
 free(copy_of_env);
}

11.1.3 Compliant Solution (getenv()) (Modifying the Environment in POSIX)
If the programmer’s intent is to modify the environment, this compliant solution, which saves the
altered string back into the environment by using the POSIX setenv() and strdup() functions,
can be used:

#include <stdlib.h>
#include <string.h>

void trstr(char *c_str, char orig, char rep) {
 while (*c_str != '\0') {
 if (*c_str == orig) {
 *c_str = rep;
 }
 ++c_str;
 }
}

void func(void) {
 const char *env;
 char *copy_of_env;

 env = getenv("TEST_ENV");
 if (env == NULL) {
 /* Handle error */
 }

 copy_of_env = strdup(env);
 if (copy_of_env == NULL) {
 /* Handle error */

Environment (ENV) - ENV30-C. Do not modify the object referenced by the return value of certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 329
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 trstr(copy_of_env,'"', '_');

 if (setenv("TEST_ENV", copy_of_env, 1) != 0) {
 /* Handle error */
 }
 /* ... */
 free(copy_of_env);
}

11.1.4 Noncompliant Code Example (localeconv())
In this noncompliant example, the object returned by localeconv() is directly modified:

#include <locale.h>

void f2(void) {
 struct lconv *conv = localeconv();

 if ('\0' == conv->decimal_point[0]) {
 conv->decimal_point = ".";
 }
}

11.1.5 Compliant Solution (localeconv()) (Copy)
This compliant solution modifies a copy of the object returned by localeconv():

#include <locale.h>
#include <stdlib.h>
#include <string.h>

void f2(void) {
 const struct lconv *conv = localeconv();
 if (conv == NULL) {
 /* Handle error */
 }

 struct lconv *copy_of_conv = (struct lconv *)malloc(
 sizeof(struct lconv));
 if (copy_of_conv == NULL) {
 /* Handle error */
 }

 memcpy(copy_of_conv, conv, sizeof(struct lconv));

 if ('\0' == copy_of_conv->decimal_point[0]) {
 copy_of_conv->decimal_point = ".";

Environment (ENV) - ENV30-C. Do not modify the object referenced by the return value of certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 330
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
 /* ... */
 free(copy_of_conv);
}

11.1.6 Risk Assessment
Modifying the object pointed to by the return value of getenv(), setlocale(), locale-
conv(), asctime(), or strerror() is undefined behavior. Even if the modification succeeds,
the modified object can be overwritten by a subsequent call to the same function.

Rule Severity Likelihood Remediation Cost Priority Level

ENV30-C Low Probable Medium P4 L3

11.1.7 Related Guidelines
ISO/IEC TS 17961:2013 Modifying the string returned by getenv, lo-

caleconv, setlocale, and strerror
[libmod]

11.1.8 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, getenv
XSH, System Interfaces, setlocale
XSH, System Interfaces, localeconv

[ISO/IEC 9899:2011] 7.11.1.1, “The setlocale Function”
7.11.2.1, “The localeconv Function”
7.22.4.6, “The getenv Function”
7.24.6.2, “The strerror Function”

Environment (ENV) - ENV31-C. Do not rely on an environment pointer following an operation that may invalidate it

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 331
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.2 ENV31-C. Do not rely on an environment pointer following an
operation that may invalidate it

Some implementations provide a nonportable environment pointer that is valid when main() is
called but may be invalidated by operations that modify the environment.

The C Standard, J.5.1 [ISO/IEC 9899:2011], states

In a hosted environment, the main function receives a third argument, char *envp[],
that points to a null-terminated array of pointers to char, each of which points to a string
that provides information about the environment for this execution of the program.

Consequently, under a hosted environment supporting this common extension, it is possible to ac-
cess the environment through a modified form of main():

main(int argc, char *argv[], char *envp[]){ /* ... */ }

However, modifying the environment by any means may cause the environment memory to be re-
allocated, with the result that envp now references an incorrect location. For example, when com-
piled with GCC 4.8.1 and run on a 32-bit Intel GNU/Linux machine, the following code,

#include <stdio.h>
#include <stdlib.h>

extern char **environ;

int main(int argc, const char *argv[], const char *envp[]) {
 printf("environ: %p\n", environ);
 printf("envp: %p\n", envp);
 setenv("MY_NEW_VAR", "new_value", 1);
 puts("--Added MY_NEW_VAR--");
 printf("environ: %p\n", environ);
 printf("envp: %p\n", envp);
 return 0;
}

yields

% ./envp-environ
environ: 0xbf8656ec
envp: 0xbf8656ec
--Added MY_NEW_VAR--
environ: 0x804a008
envp: 0xbf8656ec

Environment (ENV) - ENV31-C. Do not rely on an environment pointer following an operation that may invalidate it

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 332
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

It is evident from these results that the environment has been relocated as a result of the call to
setenv(). The external variable environ is updated to refer to the current environment; the
envp parameter is not.

An environment pointer may also become invalidated by subsequent calls to getenv(). (See
ENV34-C. Do not store pointers returned by certain functions for more information.)

11.2.1 Noncompliant Code Example (POSIX)
After a call to the POSIX setenv() function or to another function that modifies the environ-
ment, the envp pointer may no longer reference the current environment. The Portable Operating
System Interface (POSIX®), Base Specifications, Issue 7 [IEEE Std 1003.1:2013], states

Unanticipated results may occur if setenv() changes the external variable environ. In
particular, if the optional envp argument to main() is present, it is not changed, and
thus may point to an obsolete copy of the environment (as may any other copy of envi-
ron).

This noncompliant code example accesses the envp pointer after calling setenv():

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char *argv[], const char *envp[]) {
 if (setenv("MY_NEW_VAR", "new_value", 1) != 0) {
 /* Handle error */
 }
 if (envp != NULL) {
 for (size_t i = 0; envp[i] != NULL; ++i) {
 puts(envp[i]);
 }
 }
 return 0;
}

Because envp may no longer point to the current environment, this program has undefined behav-
ior.

11.2.2 Compliant Solution (POSIX)
Use environ in place of envp when defined:

#include <stdio.h>
#include <stdlib.h>

extern char **environ;

Environment (ENV) - ENV31-C. Do not rely on an environment pointer following an operation that may invalidate it

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 333
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

int main(void) {
 if (setenv("MY_NEW_VAR", "new_value", 1) != 0) {
 /* Handle error */
 }
 if (environ != NULL) {
 for (size_t i = 0; environ[i] != NULL; ++i) {
 puts(environ[i]);
 }
 }
 return 0;
}

11.2.3 Noncompliant Code Example (Windows)
After a call to the Windows _putenv_s() function or to another function that modifies the envi-
ronment, the envp pointer may no longer reference the environment.

According to the Visual C++ reference [MSDN]

The environment block passed to main and wmain is a “frozen” copy of the current envi-
ronment. If you subsequently change the environment via a call to _putenv or
_wputenv, the current environment (as returned by getenv / _wgetenv and the _envi-
ron / _wenviron variable) will change, but the block pointed to by envp will not change.

This noncompliant code example accesses the envp pointer after calling _putenv_s():

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char *argv[], const char *envp[]) {
 if (_putenv_s("MY_NEW_VAR", "new_value") != 0) {
 /* Handle error */
 }
 if (envp != NULL) {
 for (size_t i = 0; envp[i] != NULL; ++i) {
 puts(envp[i]);
 }
 }
 return 0;
}

Because envp no longer points to the current environment, this program has undefined behavior.

http://msdn.microsoft.com/en-us/library/eyw7eyfw.aspx

Environment (ENV) - ENV31-C. Do not rely on an environment pointer following an operation that may invalidate it

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 334
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.2.4 Compliant Solution (Windows)
This compliant solution uses the _environ variable in place of envp:

#include <stdio.h>
#include <stdlib.h>

_CRTIMP extern char **_environ;

int main(int argc, const char *argv[]) {
 if (_putenv_s("MY_NEW_VAR", "new_value") != 0) {
 /* Handle error */
 }
 if (_environ != NULL) {
 for (size_t i = 0; _environ[i] != NULL; ++i) {
 puts(_environ[i]);
 }
 }
return 0;
}

11.2.5 Compliant Solution
This compliant solution can reduce remediation time when a large amount of noncompliant envp
code exists. It replaces

int main(int argc, char *argv[], char *envp[]) {
 /* ... */
}

with

#if defined (_POSIX_) || defined (__USE_POSIX)
 extern char **environ;
 #define envp environ
#elif defined(_WIN32)
 _CRTIMP extern char **_environ;
 #define envp _environ
#endif

int main(int argc, char *argv[]) {
 /* ... */
}

This compliant solution may need to be extended to support other implementations that support
forms of the external variable environ.

http://msdn.microsoft.com/en-us/library/stxk41x1.aspx

Environment (ENV) - ENV31-C. Do not rely on an environment pointer following an operation that may invalidate it

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 335
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.2.6 Risk Assessment
Using the envp environment pointer after the environment has been modified can result in unde-
fined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

ENV31-C Low Probable Medium P4 L3

11.2.7 Related Guidelines

SEI CERT C++ Coding Standard VOID ENV31-CPP. Do not rely on an environ-
ment pointer following an operation that may
invalidate it

11.2.8 Bibliography
[IEEE Std 1003.1:2013] XSH, System Interfaces, setenv
[ISO/IEC 9899:2011] J.5.1, “Environment Arguments”
[MSDN] _environ, _wenviron,

getenv, _wgetenv,
_putenv_s, _wputenv_s

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087276
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087276
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087276
http://msdn.microsoft.com/en-us/library/stxk41x1.aspx
http://msdn.microsoft.com/en-us/library/stxk41x1.aspx
http://msdn.microsoft.com/en-us/library/tehxacec.aspx
http://msdn.microsoft.com/en-us/library/eyw7eyfw.aspx
http://msdn.microsoft.com/en-us/library/eyw7eyfw.aspx

Environment (ENV) - ENV32-C. All exit handlers must return normally

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 336
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.3 ENV32-C. All exit handlers must return normally

The C Standard provides three functions that cause an application to terminate normally:
_Exit(), exit(), and quick_exit(). These are collectively called exit functions. When the
exit() function is called, or control transfers out of the main() entry point function, functions
registered with atexit() are called (but not at_quick_exit()). When the quick_exit()
function is called, functions registered with at_quick_exit() (but not atexit()) are called.
These functions are collectively called exit handlers. When the _Exit() function is called, no
exit handlers or signal handlers are called.

Exit handlers must terminate by returning. It is important and potentially safety-critical for all exit
handlers to be allowed to perform their cleanup actions. This is particularly true because the appli-
cation programmer does not always know about handlers that may have been installed by support
libraries. Two specific issues include nested calls to an exit function and terminating a call to an
exit handler by invoking longjmp.

A nested call to an exit function is undefined behavior. (See undefined behavior 182.) This behav-
ior can occur only when an exit function is invoked from an exit handler or when an exit function
is called from within a signal handler. (See SIG30-C. Call only asynchronous-safe functions
within signal handlers.)

If a call to the longjmp() function is made that would terminate the call to a function registered
with atexit(), the behavior is undefined.

11.3.1 Noncompliant Code Example
In this noncompliant code example, the exit1() and exit2() functions are registered by
atexit() to perform required cleanup upon program termination. However, if some_condi-
tion evaluates to true, exit() is called a second time, resulting in undefined behavior.

#include <stdlib.h>

void exit1(void) {
 /* ... Cleanup code ... */
 return;
}

void exit2(void) {
 extern int some_condition;
 if (some_condition) {
 /* ... More cleanup code ... */
 exit(0);
 }
 return;
}

int main(void) {

Environment (ENV) - ENV32-C. All exit handlers must return normally

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 337
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (atexit(exit1) != 0) {
 /* Handle error */
 }
 if (atexit(exit2) != 0) {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Functions registered by the atexit() function are called in the reverse order from which they
were registered. Consequently, if exit2() exits in any way other than by returning, exit1()
will not be executed. The same may also be true for atexit() handlers installed by support li-
braries.

11.3.2 Compliant Solution
A function that is registered as an exit handler by atexit() must exit by returning, as in this
compliant solution:

#include <stdlib.h>

void exit1(void) {
 /* ... Cleanup code ... */
 return;
}

void exit2(void) {
 extern int some_condition;
 if (some_condition) {
 /* ... More cleanup code ... */
 }
 return;
}

int main(void) {
 if (atexit(exit1) != 0) {
 /* Handle error */
 }
 if (atexit(exit2) != 0) {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Environment (ENV) - ENV32-C. All exit handlers must return normally

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 338
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.3.3 Noncompliant Code Example
In this noncompliant code example, exit1() is registered by atexit() so that upon program
termination, exit1() is called. The exit1() function jumps back to main() to return, with un-
defined results.

#include <stdlib.h>
#include <setjmp.h>

jmp_buf env;
int val;

void exit1(void) {
 longjmp(env, 1);
}

int main(void) {
 if (atexit(exit1) != 0) {
 /* Handle error */
 }
 if (setjmp(env) == 0) {
 exit(0);
 } else {
 return 0;
 }
}

11.3.4 Compliant Solution
This compliant solution does not call longjmp()but instead returns from the exit handler nor-
mally:

#include <stdlib.h>

void exit1(void) {
 return;
}

int main(void) {
 if (atexit(exit1) != 0) {
 /* Handle error */
 }
 return 0;
}

Environment (ENV) - ENV32-C. All exit handlers must return normally

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 339
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.3.5 Risk Assessment
Terminating a call to an exit handler in any way other than by returning is undefined behavior and
may result in abnormal program termination or other unpredictable behavior. It may also prevent
other registered handlers from being invoked.

Rule Severity Likelihood Remediation Cost Priority Level

ENV32-C Medium Likely Medium P12 L1

11.3.6 Related Guidelines
CERT C Secure Coding Standard SIG30-C. Call only asynchronous-safe func-

tions within signal handlers
ISO/IEC TR 24772:2013 Structured Programming [EWD]

Termination Strategy [REU]
MITRE CWE CWE-705, Incorrect Control Flow Scoping

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/705.html

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 340
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4 ENV33-C. Do not call system()

The C Standard system() function executes a specified command by invoking an implementa-
tion-defined command processor, such as a UNIX shell or CMD.EXE in Microsoft Windows. The
POSIX popen() and Windows _popen() functions also invoke a command processor but create a
pipe between the calling program and the executed command, returning a pointer to a stream that
can be used to either read from or write to the pipe [IEEE Std 1003.1:2013].

Use of the system() function can result in exploitable vulnerabilities, in the worst case allowing
execution of arbitrary system commands. Situations in which calls to system() have high risk
include the following:
• When passing an unsanitized or improperly sanitized command string originating from a

tainted source
• If a command is specified without a path name and the command processor path name resolu-

tion mechanism is accessible to an attacker
• If a relative path to an executable is specified and control over the current working directory

is accessible to an attacker
• If the specified executable program can be spoofed by an attacker

Do not invoke a command processor via system() or equivalent functions to execute a com-
mand.

11.4.1 Noncompliant Code Example
In this noncompliant code example, the system() function is used to execute any_cmd in the
host environment. Invocation of a command processor is not required.

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

enum { BUFFERSIZE = 512 };

void func(const char *input) {
 char cmdbuf[BUFFERSIZE];
 int len_wanted = snprintf(cmdbuf, BUFFERSIZE,
 "any_cmd '%s'", input);
 if (len_wanted >= BUFFERSIZE) {
 /* Handle error */
 } else if (len_wanted < 0) {
 /* Handle error */
 } else if (system(cmdbuf) == -1) {
 /* Handle error */
 }
}

http://pubs.opengroup.org/onlinepubs/9699919799/
https://msdn.microsoft.com/en-us/library/96ayss4b(v=vs.140).aspx

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 341
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

If this code is compiled and run with elevated privileges on a Linux system, for example, an at-
tacker can create an account by entering the following string:

happy'; useradd 'attacker

The shell would interpret this string as two separate commands:

any_cmd 'happy';
useradd 'attacker'

and create a new user account that the attacker can use to access the compromised system.

This noncompliant code example also violates STR02-C. Sanitize data passed to complex subsys-
tems.

11.4.2 Compliant Solution (POSIX)
In this compliant solution, the call to system() is replaced with a call to execve(). The exec
family of functions does not use a full shell interpreter, so it is not vulnerable to command-injec-
tion attacks, such as the one illustrated in the noncompliant code example.

The execlp(), execvp(), and (nonstandard) execvP() functions duplicate the actions of the
shell in searching for an executable file if the specified file name does not contain a forward slash
character (/). As a result, they should be used without a forward slash character (/) only if the
PATH environment variable is set to a safe value, as described in ENV03-C. Sanitize the environ-
ment when invoking external programs.

The execl(), execle(), execv(), and execve() functions do not perform path name substi-
tution.

Additionally, precautions should be taken to ensure the external executable cannot be modified by
an untrusted user, for example, by ensuring the executable is not writable by the user.

#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>

void func(char *input) {
 pid_t pid;
 int status;
 pid_t ret;
 char *const args[3] = {"any_exe", input, NULL};
 char **env;

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1788
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1788
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4318
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4318

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 342
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 extern char **environ;

 /* ... Sanitize arguments ... */

 pid = fork();
 if (pid == -1) {
 /* Handle error */
 } else if (pid != 0) {
 while ((ret = waitpid(pid, &status, 0)) == -1) {
 if (errno != EINTR) {
 /* Handle error */
 break;
 }
 }
 if ((ret != -1) &&
 (!WIFEXITED(status) || !WEXITSTATUS(status))) {
 /* Report unexpected child status */
 }
 } else {
 /* ... Initialize env as a sanitized copy of environ ... */
 if (execve("/usr/bin/any_cmd", args, env) == -1) {
 /* Handle error */
 _Exit(127);
 }
 }
}

This compliant solution is significantly different from the preceding noncompliant code example.
First, input is incorporated into the args array and passed as an argument to execve(), elimi-
nating concerns about buffer overflow or string truncation while forming the command string.
Second, this compliant solution forks a new process before executing “/usr/bin/any_cmd” in
the child process. Although this method is more complicated than calling system(), the added
security is worth the additional effort.

The exit status of 127 is the value set by the shell when a command is not found, and POSIX rec-
ommends that applications should do the same. XCU, Section 2.8.2, of Standard for Information
Technology—Portable Operating System Interface (POSIX®), Base Specifications, Issue 7 [IEEE
Std 1003.1:2013], says

If a command is not found, the exit status shall be 127. If the command name is found,
but it is not an executable utility, the exit status shall be 126. Applications that invoke
utilities without using the shell should use these exit status values to report similar er-
rors.

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 343
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4.3 Compliant Solution (Windows)
This compliant solution uses the Microsoft Windows CreateProcess() API:

#include <Windows.h>

void func(TCHAR *input) {
 STARTUPINFO si = { 0 };
 PROCESS_INFORMATION pi;
 si.cb = sizeof(si);
 if (!CreateProcess(TEXT("any_cmd.exe"), input, NULL, NULL, FALSE,
 0, 0, 0, &si, &pi)) {
 /* Handle error */
 }
 CloseHandle(pi.hThread);
 CloseHandle(pi.hProcess);
}

This compliant solution relies on the input parameter being non-const. If it were const, the
solution would need to create a copy of the parameter because the CreateProcess() function
can modify the command-line arguments to be passed into the newly created process.

This solution creates the process such that the child process does not inherit any handles from the
parent process, in compliance with WIN03-C. Understand HANDLE inheritance.

11.4.4 Noncompliant Code Example (POSIX)
This noncompliant code invokes the C system() function to remove the .config file in the
user’s home directory.

#include <stdlib.h>

void func(void) {
 system("rm ~/.config");
}

If the vulnerable program has elevated privileges, an attacker can manipulate the value of the
HOME environment variable such that this program can remove any file named .config anywhere
on the system.

11.4.5 Compliant Solution (POSIX)
An alternative to invoking the system() call to execute an external program to perform a re-
quired operation is to implement the functionality directly in the program using existing library

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=119308307

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 344
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

calls. This compliant solution calls the POSIX unlink() function to remove a file without invok-
ing the system() function [IEEE Std 1003.1:2013]:

#include <pwd.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
void func(void) {
 const char *file_format = "%s/.config";
 size_t len;
 char *pathname;
 struct passwd *pwd;

 /* Get /etc/passwd entry for current user */
 pwd = getpwuid(getuid());
 if (pwd == NULL) {
 /* Handle error */
 }

 /* Build full path name home dir from pw entry */

 len = strlen(pwd->pw_dir) + strlen(file_format) + 1;
 pathname = (char *)malloc(len);
 if (NULL == pathname) {
 /* Handle error */
 }
 int r = snprintf(pathname, len, file_format, pwd->pw_dir);
 if (r < 0 || r >= len) {
 /* Handle error */
 }
 if (unlink(pathname) != 0) {
 /* Handle error */
 }

 free(pathname);
}

The unlink() function is not susceptible to a symlink attack where the final component of
pathname (the file name) is a symbolic link because unlink() will remove the symbolic link
and not affect any file or directory named by the contents of the symbolic link. (See FIO01-C. Be
careful using functions that use file names for identification.) While this reduces the susceptibility
of the unlink() function to symlink attacks, it does not eliminate it. The unlink() function is
still susceptible if one of the directory names included in the pathname is a symbolic link. This
could cause the unlink() function to delete a similarly named file in a different directory.

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1331
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1331

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 345
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4.6 Compliant Solution (Windows)
This compliant solution uses the Microsoft Windows SHGetKnownFolderPath() API to get the
current user’s My Documents folder, which is then combined with the file name to create the path
to the file to be deleted. The file is then removed using the DeleteFile() API.

#include <Windows.h>
#include <ShlObj.h>
#include <Shlwapi.h>

#if defined(_MSC_VER)
 #pragma comment(lib, "Shlwapi")
#endif

void func(void) {
 HRESULT hr;
 LPWSTR path = 0;
 WCHAR full_path[MAX_PATH];

 hr = SHGetKnownFolderPath(&FOLDERID_Documents, 0, NULL, &path);
 if (FAILED(hr)) {
 /* Handle error */
 }
 if (!PathCombineW(full_path, path, L".config")) {
 /* Handle error */
 }
 CoTaskMemFree(path);
 if (!DeleteFileW(full_path)) {
 /* Handle error */
 }
}

11.4.7 Exceptions
ENV33-C-EX1: It is permissible to call system() with a null pointer argument to determine the
presence of a command processor for the system.

11.4.8 Risk Assessments
If the command string passed to system(), popen(), or other function that invokes a command
processor is not fully sanitized, the risk of exploitation is high. In the worst case scenario, an at-
tacker can execute arbitrary system commands on the compromised machine with the privileges
of the vulnerable process.

Rule Severity Likelihood Remediation Cost Priority Level

ENV33-C High Probable Medium P12 L1

http://msdn.microsoft.com/en-us/library/windows/desktop/bb762188(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363915(v=vs.85).aspx

Environment (ENV) - ENV33-C. Do not call system()

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 346
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.4.9 Related Guidelines

CERT C Secure Coding Standard ENV03-C. Sanitize the environment when in-
voking external programs.

SEI CERT C++ Coding Standard ENV02-CPP. Do not call system() if you do
not need a command processor

CERT Oracle Secure Coding Standard for Java IDS07-J. Sanitize untrusted data passed to the
Runtime.exec() method

ISO/IEC TR 24772:2013 Unquoted Search Path or Element [XZQ]
ISO/IEC TS 17961:2013 Calling system [syscall]
MITRE CWE CWE-78, Improper Neutralization of Special

Elements Used in an OS Command (aka “OS
Command Injection”)
CWE-88, Argument Injection or Modification

11.4.10 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, exec
XSH, System Interfaces, popen
XSH, System Interfaces, unlink

[Wheeler 2004]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=169607175
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4318
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4318
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087270
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087270
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=28442971
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=28442971
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html

Environment (ENV) - ENV34-C. Do not store pointers returned by certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 347
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5 ENV34-C. Do not store pointers returned by certain functions

The C Standard, 7.22.4.6, paragraph 4 [ISO/IEC 9899:2011], states

The getenv function returns a pointer to a string associated with the matched list mem-
ber. The string pointed to shall not be modified by the program but may be overwritten
by a subsequent call to the getenv function.

This paragraph gives an implementation the latitude, for example, to return a pointer to a statically
allocated buffer. Consequently, do not store this pointer because the string data it points to may be
overwritten by a subsequent call to the getenv() function or invalidated by modifications to the
environment. This string should be referenced immediately and discarded. If later use is antici-
pated, the string should be copied so the copy can be safely referenced as needed.

The getenv() function is not thread-safe. Make sure to address any possible race conditions re-
sulting from the use of this function.

The asctime(), localeconv(), setlocale(), and strerror() functions have similar re-
strictions. Do not access the objects returned by any of these functions after a subsequent call.

11.5.1 Noncompliant Code Example
This noncompliant code example attempts to compare the value of the TMP and TEMP environment
variables to determine if they are the same:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void func(void) {
 char *tmpvar;
 char *tempvar;

 tmpvar = getenv("TMP");
 if (!tmpvar) {
 /* Handle error */
 }
 tempvar = getenv("TEMP");
 if (!tempvar) {
 /* Handle error */
 }
 if (strcmp(tmpvar, tempvar) == 0) {
 printf("TMP and TEMP are the same.\n");
 } else {
 printf("TMP and TEMP are NOT the same.\n");
 }
}

Environment (ENV) - ENV34-C. Do not store pointers returned by certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 348
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This code example is noncompliant because the string referenced by tmpvar may be overwritten
as a result of the second call to the getenv() function. As a result, it is possible that both
tmpvar and tempvar will compare equal even if the two environment variables have different
values.

11.5.2 Compliant Solution
This compliant solution uses the malloc() and strcpy() functions to copy the string returned
by getenv() into a dynamically allocated buffer:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void func(void) {
 char *tmpvar;
 char *tempvar;

 const char *temp = getenv("TMP");
 if (temp != NULL) {
 tmpvar = (char *)malloc(strlen(temp)+1);
 if (tmpvar != NULL) {
 strcpy(tmpvar, temp);
 } else {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }

 temp = getenv("TEMP");
 if (temp != NULL) {
 tempvar = (char *)malloc(strlen(temp)+1);
 if (tempvar != NULL) {
 strcpy(tempvar, temp);
 } else {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }

 if (strcmp(tmpvar, tempvar) == 0) {
 printf("TMP and TEMP are the same.\n");
 } else {
 printf("TMP and TEMP are NOT the same.\n");
 }
 free(tmpvar);

Environment (ENV) - ENV34-C. Do not store pointers returned by certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 349
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 free(tempvar);
}

11.5.3 Compliant Solution (Annex K)
The C Standard, Annex K, provides the getenv_s() function for getting a value from the current
environment. However, getenv_s() can still have data races with other threads of execution that
modify the environment list.

#define __STDC_WANT_LIB_EXT1__ 1
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void func(void) {
 char *tmpvar;
 char *tempvar;
 size_t requiredSize;
 errno_t err;
 err = getenv_s(&requiredSize, NULL, 0, "TMP");

 if (err) {
 /* Handle error */
 }

 tmpvar = (char *)malloc(requiredSize);
 if (!tmpvar) {
 /* Handle error */
 }
 err = getenv_s(&requiredSize, tmpvar, requiredSize, "TMP");

 if (err) {
 /* Handle error */
 }
 err = getenv_s(&requiredSize, NULL, 0, "TEMP");
 if (err) {
 /* Handle error */
 }

 tempvar = (char *)malloc(requiredSize);
 if (!tempvar) {
 /* Handle error */
 }
 err = getenv_s(&requiredSize, tempvar, requiredSize, "TEMP");

 if (err) {
 /* Handle error */
 }
 if (strcmp(tmpvar, tempvar) == 0) {

Environment (ENV) - ENV34-C. Do not store pointers returned by certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 350
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 printf("TMP and TEMP are the same.\n");
 } else {
 printf("TMP and TEMP are NOT the same.\n");
 }
 free(tmpvar);
 tmpvar = NULL;
 free(tempvar);
 tempvar = NULL;
}

11.5.4 Compliant Solution (Windows)
Microsoft Windows provides the _dupenv_s() and wdupenv_s() functions for getting a value
from the current environment [MSDN]. The _dupenv_s() function searches the list of environ-
ment variables for a specified name. If the name is found, a buffer is allocated; the variable’s
value is copied into the buffer, and the buffer’s address and number of elements are returned. The
_dupenv_s() and _wdupenv_s() functions provide more convenient alternatives to
getenv_s() and _wgetenv_s() because each function handles buffer allocation directly.

The caller is responsible for freeing any allocated buffers returned by these functions by calling
free().

#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>

void func(void) {
 char *tmpvar;
 char *tempvar;
 size_t len;

 errno_t err = _dupenv_s(&tmpvar, &len, "TMP");
 if (err) {
 /* Handle error */
 }
 err = _dupenv_s(&tempvar, &len, "TEMP");
 if (err) {
 /* Handle error */
 }

 if (strcmp(tmpvar, tempvar) == 0) {
 printf("TMP and TEMP are the same.\n");
 } else {
 printf("TMP and TEMP are NOT the same.\n");
 }
 free(tmpvar);
 tmpvar = NULL;
 free(tempvar);

http://msdn.microsoft.com/en-us/library/ms175774.aspx
http://msdn.microsoft.com/en-us/library/ms175774.aspx

Environment (ENV) - ENV34-C. Do not store pointers returned by certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 351
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 tempvar = NULL;
}

11.5.5 Compliant Solution (POSIX)
POSIX provides the strdup() function, which can make a copy of the environment variable
string [IEEE Std 1003.1:2013]. The strdup() function is also included in Extensions to the C
Library—Part II [ISO/IEC TR 24731-2:2010].

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

void func(void) {
 char *tmpvar;
 char *tempvar;

 const char *temp = getenv("TMP");
 if (temp != NULL) {
 tmpvar = strdup(temp);
 if (tmpvar == NULL) {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }

 temp = getenv("TEMP");
 if (temp != NULL) {
 tempvar = strdup(temp);
 if (tempvar == NULL) {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }

 if (strcmp(tmpvar, tempvar) == 0) {
 printf("TMP and TEMP are the same.\n");
 } else {
 printf("TMP and TEMP are NOT the same.\n");
 }
 free(tmpvar);
 tmpvar = NULL;
 free(tempvar);
 tempvar = NULL;
}

Environment (ENV) - ENV34-C. Do not store pointers returned by certain functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 352
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

11.5.6 Risk Assessment
Storing the pointer to the string returned by getenv(), localeconv(), setlocale(), or
strerror() can result in overwritten data.

Rule Severity Likelihood Remediation Cost Priority Level

ENV34-C Low Probable Medium P4 L3

11.5.7 Related Guidelines

C Secure Coding Standard ENV00-C. Do not store objects that can be
overwritten by multiple calls to getenv() and
similar functions

ISO/IEC TR 24731-2 5.3.1.1, “The strdup Function”
ISO/IEC TS 17961:2013 Using an object overwritten by getenv, lo-

caleconv, setlocale, and strerror [li-
buse]

11.5.8 Bibliography

[IEEE Std 1003.1:2013] Chapter 8, “Environment Variables”
XSH, System Interfaces, strdup

[ISO/IEC 9899:2011] Subclause 7.22.4, “Communication with the
Environment”
Subclause 7.22.4.6, “The getenv Function”
Subclause K.3.6.2.1, “The getenv_s Func-
tion”

[MSDN] _dupenv_s(), _wdupenv_s()
[Viega 2003] Section 3.6, “Using Environment Variables Se-

curely”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=76284146
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=76284146
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=76284146
http://msdn.microsoft.com/en-us/library/ms175774.aspx

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 353
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12 Signals (SIG)

12.1 SIG30-C. Call only asynchronous-safe functions within signal
handlers

Call only asynchronous-safe functions within signal handlers. For strictly conforming programs,
only the C standard library functions abort(), _Exit(), quick_exit(), and signal() can be
safely called from within a signal handler.

The C Standard, 7.14.1.1, paragraph 5 [ISO/IEC 9899:2011], states that if the signal occurs other
than as the result of calling the abort() or raise() function, the behavior is undefined if

...the signal handler calls any function in the standard library other than the abort func-
tion, the _Exit function, the quick_exit function, or the signal function with the first
argument equal to the signal number corresponding to the signal that caused the invoca-
tion of the handler.

Implementations may define a list of additional asynchronous-safe functions. These functions can
also be called within a signal handler. This restriction applies to library functions as well as appli-
cation-defined functions.

According to the C Rationale, 7.14.1.1 [C99 Rationale 2003],

When a signal occurs, the normal flow of control of a program is interrupted. If a signal
occurs that is being trapped by a signal handler, that handler is invoked. When it is fin-
ished, execution continues at the point at which the signal occurred. This arrangement
can cause problems if the signal handler invokes a library function that was being exe-
cuted at the time of the signal.

In general, it is not safe to invoke I/O functions from within signal handlers. Programmers should
ensure a function is included in the list of an implementation’s asynchronous-safe functions for all
implementations the code will run on before using them in signal handlers.

12.1.1 Noncompliant Code Example
In this noncompliant example, the C standard library functions fprintf() and free() are
called from the signal handler via the function log_message(). Neither function is asynchro-
nous-safe.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

enum { MAXLINE = 1024 };

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 354
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

char *info = NULL;

void log_message(void) {
 fputs(info, stderr);
}

void handler(int signum) {
 log_message();
 free(info);
 info = NULL;
}

int main(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 }
 info = (char *)malloc(MAXLINE);
 if (info == NULL) {
 /* Handle Error */
 }

 while (1) {
 /* Main loop program code */

 log_message();

 /* More program code */
 }
 return 0;
}

12.1.2 Compliant Solution
Signal handlers should be as concise as possible—ideally by unconditionally setting a flag and re-
turning. This compliant solution sets a flag of type volatile sig_atomic_t and returns; the
log_message() and free() functions are called directly from main():

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

enum { MAXLINE = 1024 };
volatile sig_atomic_t eflag = 0;
char *info = NULL;

void log_message(void) {
 fputs(info, stderr);
}

void handler(int signum) {

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 355
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 eflag = 1;
}

int main(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 }
 info = (char *)malloc(MAXLINE);
 if (info == NULL) {
 /* Handle error */
 }

 while (!eflag) {
 /* Main loop program code */

 log_message();

 /* More program code */
 }

 log_message();
 free(info);
 info = NULL;

 return 0;
}

12.1.3 Noncompliant Code Example (longjmp())
Invoking the longjmp() function from within a signal handler can lead to undefined behavior if
it results in the invocation of any non-asynchronous-safe functions. Consequently, neither
longjmp() nor the POSIX siglongjmp() functions should ever be called from within a signal
handler.

This noncompliant code example is similar to a vulnerability in an old version of Sendmail [VU
#834865]. The intent is to execute code in a main() loop, which also logs some data. Upon re-
ceiving a SIGINT, the program transfers out of the loop, logs the error, and terminates.

However, an attacker can exploit this noncompliant code example by generating a SIGINT just
before the second if statement in log_message(). The result is that longjmp() transfers con-
trol back to main(), where log_message() is called again. However, the first if statement
would not be executed this time (because buf is not set to NULL as a result of the interrupt), and
the program would write to the invalid memory location referenced by buf0.

#include <setjmp.h>
#include <signal.h>
#include <stdlib.h>

http://www.kb.cert.org/vuls/id/834865
http://www.kb.cert.org/vuls/id/834865

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 356
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

enum { MAXLINE = 1024 };
static jmp_buf env;

void handler(int signum) {
 longjmp(env, 1);
}

void log_message(char *info1, char *info2) {
 static char *buf = NULL;
 static size_t bufsize;
 char buf0[MAXLINE];

 if (buf == NULL) {
 buf = buf0;
 bufsize = sizeof(buf0);
 }

 /*
 * Try to fit a message into buf, else reallocate
 * it on the heap and then log the message.
 */

 /* Program is vulnerable if SIGINT is raised here */

 if (buf == buf0) {
 buf = NULL;
 }
}

int main(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 }
 char *info1;
 char *info2;

 /* info1 and info2 are set by user input here */

 if (setjmp(env) == 0) {
 while (1) {
 /* Main loop program code */
 log_message(info1, info2);
 /* More program code */
 }
 } else {
 log_message(info1, info2);
 }

 return 0;
}

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 357
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.1.4 Compliant Solution
In this compliant solution, the call to longjmp() is removed; the signal handler sets an error flag
instead:

#include <signal.h>
#include <stdlib.h>

enum { MAXLINE = 1024 };
volatile sig_atomic_t eflag = 0;

void handler(int signum) {
 eflag = 1;
}

void log_message(char *info1, char *info2) {
 static char *buf = NULL;
 static size_t bufsize;
 char buf0[MAXLINE];

 if (buf == NULL) {
 buf = buf0;
 bufsize = sizeof(buf0);
 }

 /*
 * Try to fit a message into buf, else reallocate
 * it on the heap and then log the message.
 */
 if (buf == buf0) {
 buf = NULL;
 }
}

int main(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 }
 char *info1;
 char *info2;

 /* info1 and info2 are set by user input here */

 while (!eflag) {
 /* Main loop program code */
 log_message(info1, info2);
 /* More program code */
 }

 log_message(info1, info2);

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 358
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return 0;
}

12.1.5 Noncompliant Code Example (raise())
In this noncompliant code example, the int_handler() function is used to carry out tasks spe-
cific to SIGINT and then raises SIGTERM. However, there is a nested call to the raise() func-
tion, which is undefined behavior.

#include <signal.h>
#include <stdlib.h>

void term_handler(int signum) {
 /* SIGTERM handler */
}

void int_handler(int signum) {
 /* SIGINT handler */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int main(void) {
 if (signal(SIGTERM, term_handler) == SIG_ERR) {
 /* Handle error */
 }
 if (signal(SIGINT, int_handler) == SIG_ERR) {
 /* Handle error */
 }

 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 }
 /* More code */

 return EXIT_SUCCESS;
}

12.1.6 Compliant Solution
In this compliant solution, int_handler() invokes term_handler() instead of raising
SIGTERM:

#include <signal.h>
#include <stdlib.h>

void term_handler(int signum) {

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 359
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* SIGTERM handler */
}

void int_handler(int signum) {
 /* SIGINT handler */
 /* Pass control to the SIGTERM handler */
 term_handler(SIGTERM);
}

int main(void) {
 if (signal(SIGTERM, term_handler) == SIG_ERR) {
 /* Handle error */
 }
 if (signal(SIGINT, int_handler) == SIG_ERR) {
 /* Handle error */
 }

 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 }
 /* More code */

 return EXIT_SUCCESS;
}

12.1.7 Implementation Details

12.1.7.1 POSIX
The following table from the POSIX standard [IEEE Std 1003.1:2013] defines a set of functions
that are asynchronous-signal-safe. Applications may invoke these functions, without restriction,
from a signal handler.

_Exit() fexecve() posix_trace_event

()
sigprocmask()

_exit() fork() pselect() sigqueue()
abort() fstat() pthread_kill() sigset()
accept() fstatat() pthread_self() sigsuspend()
access() fsync() pthread_sigmask() sleep()
aio_error() ftruncate() raise() sockatmark()
aio_return() futimens() read() socket()
aio_suspend() getegid() readlink() socketpair()
alarm() geteuid() readlinkat() stat()
bind() getgid() recv() symlink()

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 360
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

cfgetispeed() getgroups() recvfrom() symlinkat()
cfgetospeed() getpeername() recvmsg() tcdrain()
cfsetispeed() getpgrp() rename() tcflow()
cfsetospeed() getpid() renameat() tcflush()
chdir() getppid() rmdir() tcgetattr()
chmod() getsockname() select() tcgetpgrp()
chown() getsockopt() sem_post() tcsendbreak()
clock_gettime() getuid() send() tcsetattr()
close() kill() sendmsg() tcsetpgrp()
connect() link() sendto() time()
creat() linkat() setgid() timer_getover-

run()
dup() listen() setpgid() timer_gettime()
dup2() lseek() setsid() timer_settime()
execl() lstat() setsockopt() times()
execle() mkdir() setuid() umask()
execv() mkdirat() shutdown() uname()
execve() mkfifo() sigaction() unlink()
faccessat() mkfifoat() sigaddset() unlinkat()
fchdir() mknod() sigdelset() utime()
fchmod() mknodat() sigemptyset() utimensat()
fchmodat() open() sigfillset() utimes()
fchown() openat() sigismember() wait()
fchownat() pause() signal() waitpid()
fcntl() pipe() sigpause() write()
fdatasync() poll() sigpending()

All functions not listed in this table are considered to be unsafe with respect to signals. In the
presence of signals, all POSIX functions behave as defined when called from or interrupted by a
signal handler, with a single exception: when a signal interrupts an unsafe function and the signal
handler calls an unsafe function, the behavior is undefined.

The C Standard, 7.14.1.1, paragraph 4 [ISO/IEC 9899:2011], states

If the signal occurs as the result of calling the abort or raise function, the signal handler
shall not call the raise function.

However, in the description of signal(), POSIX [IEEE Std 1003.1:2013] states

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 361
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This restriction does not apply to POSIX applications, as POSIX.1-2008 requires
raise() to be async-signal-safe.

See also undefined behavior 131.

12.1.7.2 OpenBSD
The OpenBSD signal() manual page lists a few additional functions that are asynchronous-safe
in OpenBSD but “probably not on other systems” [OpenBSD], including snprintf(), vsn-
printf(), and syslog_r() but only when the syslog_data struct is initialized as a local
variable.

12.1.8 Risk Assessment
Invoking functions that are not asynchronous-safe from within a signal handler is undefined be-
havior.

Rule Severity Likelihood Remediation Cost Priority Level

SIG30-C High Likely Medium P18 L1

12.1.8.1 Related Vulnerabilities
For an overview of software vulnerabilities resulting from improper signal handling, see Michal
Zalewski’s paper “Delivering Signals for Fun and Profit” [Zalewski 2001].

CERT Vulnerability Note VU #834865, “Sendmail signal I/O race condition,” describes a vulner-
ability resulting from a violation of this rule. Another notable case where using the longjmp()
function in a signal handler caused a serious vulnerability is wu-ftpd 2.4 [Greenman 1997]. The
effective user ID is set to 0 in one signal handler. If a second signal interrupts the first, a call is
made to longjmp(), returning the program to the main thread but without lowering the user’s
privileges. These escalated privileges can be used for further exploitation.

12.1.9 Related Guidelines

ISO/IEC TS 17961:2013 Calling functions in the C Standard Library
other than abort, _Exit, and signal from
within a signal handler [asyncsig]

MITRE CWE CWE-479, Signal Handler Use of a Non-reen-
trant Function

12.1.10 Bibliography

[C99 Rationale 2003] Subclause 5.2.3, “Signals and Interrupts”
Subclause 7.14.1.1, “The signal Function”

[Dowd 2006] Chapter 13, “Synchronization and State”
[Greenman 1997]

http://www.openbsd.org/cgi-bin/man.cgi?query=signal
http://www.kb.cert.org/vuls/id/834865
http://seclists.org/bugtraq/1997/Jan/0011.html
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/479.html

Signals (SIG) - SIG30-C. Call only asynchronous-safe functions within signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 362
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[IEEE Std 1003.1:2013] XSH, System Interfaces, longjmp
XSH, System Interfaces, raise

[ISO/IEC 9899:2011] 7.14.1.1, “The signal Function”
[OpenBSD] signal() Man Page
[VU #834865]
[Zalewski 2001] “Delivering Signals for Fun and Profit”

http://www.openbsd.org/cgi-bin/man.cgi?query=signal
http://www.kb.cert.org/vuls/id/834865

Signals (SIG) - SIG31-C. Do not access shared objects in signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 363
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.2 SIG31-C. Do not access shared objects in signal handlers

Accessing or modifying shared objects in signal handlers can result in race conditions that can
leave data in an inconsistent state. The two exceptions (C Standard, 5.1.2.3, paragraph 5) to this
rule are the ability to read from and write to lock-free atomic objects and variables of type vola-
tile sig_atomic_t. Accessing any other type of object from a signal handler is undefined be-
havior. (See undefined behavior 131.)

The need for the volatile keyword is described in DCL22-C. Use volatile for data that cannot
be cached.

The type sig_atomic_t is the integer type of an object that can be accessed as an atomic entity
even in the presence of asynchronous interrupts. The type of sig_atomic_t is implementation-
defined, though it provides some guarantees. Integer values ranging from SIG_ATOMIC_MIN
through SIG_ATOMIC_MAX, inclusive, may be safely stored to a variable of the type. In addition,
when sig_atomic_t is a signed integer type, SIG_ATOMIC_MIN must be no greater than −127
and SIG_ATOMIC_MAX no less than 127. Otherwise, SIG_ATOMIC_MIN must be 0 and
SIG_ATOMIC_MAX must be no less than 255. The macros SIG_ATOMIC_MIN and
SIG_ATOMIC_MAX are defined in the header <stdint.h>.

According to the C99 Rationale [C99 Rationale 2003], other than calling a limited, prescribed set
of library functions,

the C89 Committee concluded that about the only thing a strictly conforming program
can do in a signal handler is to assign a value to a volatile static variable which
can be written uninterruptedly and promptly return.

However, this issue was discussed at the April 2008 meeting of ISO/IEC WG14, and it was
agreed that there are no known implementations in which it would be an error to read a value
from a volatile sig_atomic_t variable, and the original intent of the committee was that
both reading and writing variables of volatile sig_atomic_t would be strictly conforming.

The signal handler may also call a handful of functions, including abort(). (See SIG30-C. Call
only asynchronous-safe functions within signal handlers for more information.)

12.2.1 Noncompliant Code Example
In this noncompliant code example, err_msg is updated to indicate that the SIGINT signal was
delivered. The err_msg variable is a character pointer and not a variable of type volatile
sig_atomic_t.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

enum { MAX_MSG_SIZE = 24 };

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2982202
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2982202

Signals (SIG) - SIG31-C. Do not access shared objects in signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 364
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

char *err_msg;

void handler(int signum) {
 strcpy(err_msg, "SIGINT encountered.");
}

int main(void) {
 signal(SIGINT, handler);

 err_msg = (char *)malloc(MAX_MSG_SIZE);
 if (err_msg == NULL) {
 /* Handle error */
 }
 strcpy(err_msg, "No errors yet.");
 /* Main code loop */
 return 0;
}

12.2.2 Compliant Solution (Writing volatile sig_atomic_t)
For maximum portability, signal handlers should only unconditionally set a variable of type vol-
atile sig_atomic_t and return, as in this compliant solution:

#include <signal.h>
#include <stdlib.h>
#include <string.h>

enum { MAX_MSG_SIZE = 24 };
volatile sig_atomic_t e_flag = 0;

void handler(int signum) {
 e_flag = 1;
}

int main(void) {
 char *err_msg = (char *)malloc(MAX_MSG_SIZE);
 if (err_msg == NULL) {
 /* Handle error */
 }

 signal(SIGINT, handler);
 strcpy(err_msg, "No errors yet.");
 /* Main code loop */
 if (e_flag) {
 strcpy(err_msg, "SIGINT received.");
 }
 return 0;
}

Signals (SIG) - SIG31-C. Do not access shared objects in signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 365
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.2.3 Compliant Solution (Lock-Free Atomic Access)
Signal handlers can refer to objects with static or thread storage a duration that are lock-free
atomic objects, as in this compliant solution:

#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <stdatomic.h>

#ifdef __STDC_NO_ATOMICS__
#error "Atomics are not supported"
#elif ATOMIC_INT_LOCK_FREE == 0
#error "int is never lock-free"
#endif

atomic_int e_flag = ATOMIC_VAR_INIT(0);

void handler(int signum) {
 e_flag = 1;
}

int main(void) {
 enum { MAX_MSG_SIZE = 24 };
 char err_msg[MAX_MSG_SIZE];
#if ATOMIC_INT_LOCK_FREE == 1
 if (!atomic_is_lock_free(&e_flag)) {
 return EXIT_FAILURE;
 }
#endif
 if (signal(SIGINT, handler) == SIG_ERR) {
 return EXIT_FAILURE;
 }
 strcpy(err_msg, "No errors yet.");
 /* Main code loop */
 if (e_flag) {
 strcpy(err_msg, "SIGINT received.");
 }
 return EXIT_SUCCESS;
}

12.2.4 Exceptions
SIG31-C-EX1: The C Standard, 7.14.1.1 paragraph 5 [ISO/IEC 9899:2011], makes a special ex-
ception for errno when a valid call to the signal() function results in a SIG_ERR return, allow-
ing errno to take an indeterminate value. (See ERR32-C. Do not rely on indeterminate values of
errno.)

Signals (SIG) - SIG31-C. Do not access shared objects in signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 366
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.2.5 Risk Assessment
Accessing or modifying shared objects in signal handlers can result in accessing data in an incon-
sistent state. Michal Zalewski’s paper “Delivering Signals for Fun and Profit” [Zalewski 2001]
provides some examples of vulnerabilities that can result from violating this and other signal-han-
dling rules.

Rule Severity Likelihood Remediation Cost Priority Level

SIG31-C High Likely High P9 L2

12.2.6 Related Guidelines

ISO/IEC TS 17961:2013 Accessing shared objects in signal handlers [ac-
csig]

MITRE CWE CWE-662, Improper Synchronization

12.2.7 Bibliography

[C99 Rationale 2003] 5.2.3, “Signals and Interrupts”
[ISO/IEC 9899:2011] Subclause 7.14.1.1, “The signal Function”
[Zalewski 2001]

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/662.html

Signals (SIG) - SIG34-C. Do not call signal() from within interruptible signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 367
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.3 SIG34-C. Do not call signal() from within interruptible signal
handlers

A signal handler should not reassert its desire to handle its own signal. This is often done on non-
persistent platforms—that is, platforms that, upon receiving a signal, reset the handler for the sig-
nal to SIG_DFL before calling the bound signal handler. Calling signal() under these condi-
tions presents a race condition. (See SIG01-C. Understand implementation-specific details
regarding signal handler persistence.)

A signal handler may call signal() only if it does not need to be asynchronous-safe (that is, if
all relevant signals are masked so that the handler cannot be interrupted).

12.3.1 Noncompliant Code Example (POSIX)
On nonpersistent platforms, this noncompliant code example contains a race window, starting
when the host environment resets the signal and ending when the handler calls signal(). During
that time, a second signal sent to the program will trigger the default signal behavior, conse-
quently defeating the persistent behavior implied by the call to signal() from within the handler
to reassert the binding.

If the environment is persistent (that is, it does not reset the handler when the signal is received),
the signal() call from within the handler() function is redundant.

#include <signal.h>

void handler(int signum) {
 if (signal(signum, handler) == SIG_ERR) {
 /* Handle error */
 }
 /* Handle signal */
}

void func(void) {
 if (signal(SIGUSR1, handler) == SIG_ERR) {
 /* Handle error */
 }
}

12.3.2 Compliant Solution (POSIX)
Calling the signal() function from within the signal handler to reassert the binding is unneces-
sary for persistent platforms, as in this compliant solution:

#include <signal.h>

void handler(int signum) {
 /* Handle signal */

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473460
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473460

Signals (SIG) - SIG34-C. Do not call signal() from within interruptible signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 368
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

}

void func(void) {
 if (signal(SIGUSR1, handler) == SIG_ERR) {
 /* Handle error */
 }
}

12.3.3 Compliant Solution (POSIX)
POSIX defines the sigaction() function, which assigns handlers to signals in a similar manner
to signal() but allows the caller to explicitly set persistence. Consequently, the sigaction()
function can be used to eliminate the race window on nonpersistent platforms, as in this compliant
solution:

#include <signal.h>
#include <stddef.h>

void handler(int signum) {
 /* Handle signal */
}

void func(void) {
 struct sigaction act;
 act.sa_handler = handler;
 act.sa_flags = 0;
 if (sigemptyset(&act.sa_mask) != 0) {
 /* Handle error */
 }
 if (sigaction(SIGUSR1, &act, NULL) != 0) {
 /* Handle error */
 }
}

Although the handler in this example does not call signal(), it could do so safely because the
signal is masked and the handler cannot be interrupted. If the same handler is installed for more
than one signal, the signals must be masked explicitly in act.sa_mask to ensure that the handler
cannot be interrupted because the system masks only the signal being delivered.

POSIX recommends that new applications should use sigaction() rather than signal(). The
sigaction() function is not defined by the C Standard and is not supported on some platforms,
including Windows.

12.3.4 Compliant Solution (Windows)
There is no safe way to implement persistent signal-handler behavior on Windows platforms, and
it should not be attempted. If a design depends on this behavior, and the design cannot be altered,

Signals (SIG) - SIG34-C. Do not call signal() from within interruptible signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 369
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

it may be necessary to claim a deviation from this rule after completing an appropriate risk analy-
sis.

The reason for this is that Windows is a nonpersistent platform as discussed above. Just before
calling the current handler function, Windows resets the handler for the next occurrence of the
same signal to SIG_DFL. If the handler calls signal() to reinstall itself, there is still a race win-
dow. A signal might occur between the start of the handler and the call to signal(), which
would invoke the default behavior instead of the desired handler.

12.3.5 Exceptions
SIG34-C-EX1: For implementations with persistent signal handlers, it is safe for a handler to
modify the behavior of its own signal. Behavior modifications include ignoring the signal, reset-
ting to the default behavior, and having the signal handled by a different handler. A handler reas-
serting its binding is also safe but unnecessary.

The following code example resets a signal handler to the system’s default behavior:

#include <signal.h>

void handler(int signum) {
#if !defined(_WIN32)
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 /* Handle error */
 }
#endif
 /* Handle signal */
}

void func(void) {
 if (signal(SIGUSR1, handler) == SIG_ERR) {
 /* Handle error */
 }
}

12.3.6 Risk Assessment
Two signals in quick succession can trigger a race condition on nonpersistent platforms, causing
the signal’s default behavior despite a handler’s attempt to override it.

Rule Severity Likelihood Remediation Cost Priority Level

SIG34-C Low Unlikely Low P3 L3

Signals (SIG) - SIG34-C. Do not call signal() from within interruptible signal handlers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 370
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.3.7 Related Guidelines

CERT C Secure Coding Standard SIG01-C. Understand implementation-specific
details regarding signal handler persistence

ISO/IEC TS 17961:2013 Calling signal from interruptible signal han-
dlers [sigcall]

MITRE CWE CWE-479, Signal Handler Use of a Non-reen-
trant Function

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473460
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473460
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/479.html

Signals (SIG) - SIG35-C. Do not return from a computational exception signal handler

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 371
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.4 SIG35-C. Do not return from a computational exception signal
handler

According to the C Standard, 7.14.1.1 [ISO/IEC 9899:2011], if a signal handler returns when it
has been entered as a result of a computational exception (that is, with the value of its argument of
SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value corresponding to such an
exception) returns, then the behavior is undefined. (See undefined behavior 130.)

The Portable Operating System Interface (POSIX®), Base Specifications, Issue 7 [IEEE Std
1003.1:2013], adds SIGBUS to the list of computational exception signal handlers:

The behavior of a process is undefined after it returns normally from a signal-catching
function for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not generated by
kill(), sigqueue(), or raise().

Do not return from SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value corre-
sponding to a computational exception, such as SIGBUS on POSIX systems, regardless of how the
signal was generated.

12.4.1 Noncompliant Code Example
In this noncompliant code example, the division operation has undefined behavior if denom
equals 0 and may result in a SIGFPE signal to the program. (See INT33-C. Ensure that division
and remainder operations do not result in divide-by-zero errors.)

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

volatile sig_atomic_t denom;

void sighandle(int s) {
 /* Fix the offending volatile */
 if (denom == 0) {
 denom = 1;
 }
}

int main(int argc, char *argv[]) {
 if (argc < 2) {
 return 0;
 }

 char *end = NULL;
 long temp = strtol(argv[1], &end, 10);

 if (end == argv[1] || 0 != *end ||

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=40075415

Signals (SIG) - SIG35-C. Do not return from a computational exception signal handler

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 372
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 ((LONG_MIN == temp || LONG_MAX == temp) && errno == ERANGE))
{
 /* Handle error */
 }

 denom = (sig_atomic_t)temp;
 signal(SIGFPE, sighandle);

 long result = 100 / (long)denom;
 return 0;
}

When compiled with some implementations, this noncompliant code example will loop infinitely
if given the input 0. It illustrates that even when a SIGFPE handler attempts to fix the error condi-
tion while obeying all other rules of signal handling, the program still does not behave as ex-
pected.

12.4.2 Compliant Solution
The only portably safe way to leave a SIGFPE, SIGILL, or SIGSEGV handler is to invoke
abort(), quick_exit(), or _Exit(). In the case of SIGFPE, the default action is abnormal
termination, so no user-defined handler is required:

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 if (argc < 2) {
 return 0;
 }

 char *end = NULL;
 long denom = strtol(argv[1], &end, 10);

 if (end == argv[1] || 0 != *end ||
 ((LONG_MIN == denom || LONG_MAX == denom) && errno ==
ERANGE)) {
 /* Handle error */
 }

 long result = 100 / denom;
 return 0;
}

Signals (SIG) - SIG35-C. Do not return from a computational exception signal handler

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 373
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12.4.2.1 Implementation Details
Some implementations define useful behavior for programs that return from one or more of these
signal handlers. For example, Solaris provides the sigfpe() function specifically to set a
SIGFPE handler that a program may safely return from. Oracle also provides platform-specific
computational exceptions for the SIGTRAP, SIGBUS, and SIGEMT signals. Finally, GNU libsigs-
egv takes advantage of the ability to return from a SIGSEGV handler to implement page-level
memory management in user mode.

12.4.3 Risk Assessment
Returning from a computational exception signal handler is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

SIG35-C Low Unlikely High P1 L3

12.4.4 Bibliography

[IEEE Std 1003.1:2013] 2.4.1, Signal Generation and Delivery
[ISO/IEC 9899:2011] Subclause 7.14.1.1, “The signal Function”

http://docs.oracle.com/

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 374
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13 Error Handling (ERR)

13.1 ERR30-C. Set errno to zero before calling a library function known
to set errno, and check errno only after the function returns a value
indicating failure

The value of errno is initialized to zero at program startup, but it is never subsequently set to
zero by any C standard library function. The value of errno may be set to nonzero by a C stand-
ard library function call whether or not there is an error, provided the use of errno is not docu-
mented in the description of the function. It is meaningful for a program to inspect the contents of
errno only after an error might have occurred. More precisely, errno is meaningful only after a
library function that sets errno on error has returned an error code.

According to Question 20.4 of C-FAQ [Summit 2005]

In general, you should detect errors by checking return values, and use errno only to
distinguish among the various causes of an error, such as “File not found” or “Permis-
sion denied.” (Typically, you use perror or strerror to print these discriminating error
messages.) It’s only necessary to detect errors with errno when a function does not
have a unique, unambiguous, out-of-band error return (that is, because all of its possible
return values are valid; one example is atoi [sic]). In these cases (and in these
cases only; check the documentation to be sure whether a function allows this), you can
detect errors by setting errno to 0, calling the function, and then testing errno. (Setting
errno to 0 first is important, as no library function ever does that for you.)

Note that atoi() is not required to set the value of errno.

Library functions fall into the following categories:
• Those that set errno and return and out-of-band error indicator
• Those that set errno and return and in-band error indicator
• Those that do not promise to set errno
• Those with differing standards documentation

13.1.1 Library Functions that Set errno and Return an Out-of-Band Error
Indicator

The C Standard specifies that the functions listed in the following table set errno and return an
out-of-band error indicator. That is, their return value on error can never be returned by a success-
ful call.

A program may set and check errno for these library functions but is not required to do so. The
program should not check the value of errno without first verifying that the function returned an

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 375
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

error indicator. For example, errno should not be checked after calling signal() without first
ensuring that signal() actually returned SIG_ERR.

Functions That Set errno and Return an Out-of-Band Error Indicator

Function Name Return Value errno Value

ftell() -1L Positive

fgetpos(), fsetpos() Nonzero Positive

mbrtowc(), mbsrtowcs() (size_t)(-1) EILSEQ
signal() SIG_ERR Positive

wcrtomb(), wcsrtombs() (size_t)(-1) EILSEQ
mbrtoc16(), mbrtoc32() (size_t)(-1) EILSEQ
c16rtomb(), cr32rtomb() (size_t)(-1) EILSEQ

13.1.2 Library Functions that Set errno and Return an In-Band Error Indicator
The C Standard specifies that the functions listed in the following table set errno and return an
in-band error indicator. That is, the return value when an error occurs is also a valid return value
for successful calls. For example, the strtoul() function returns ULONG_MAX and sets errno to
ERANGE if an error occurs. Because ULONG_MAX is a valid return value, errno must be used to
check whether an error actually occurred. A program that uses errno for error checking must set
it to 0 before calling one of these library functions and then inspect errno before a subsequent
library function call.

The fgetwc() and fputwc() functions return WEOF in multiple cases, only one of which results
in setting errno. The string conversion functions will return the maximum or minimum repre-
sentable value and set errno to ERANGE if the converted value cannot be represented by the data
type. However, if the conversion cannot happen because the input is invalid, the function will re-
turn 0, and the output pointer parameter will be assigned the value of the input pointer parameter,
provided the output parameter is non-null.

Functions that Set errno and Return an In-Band Error Indicator
Function Name Return Value errno Value

fgetwc(), fputwc() WEOF EILSEQ
strtol(), wcstol() LONG_MIN or LONG_MAX ERANGE
strtoll(), wcstoll() LLONG_MIN or LLONG_MAX ERANGE
strtoul(), wcstoul() ULONG_MAX ERANGE
strtoull(), wcstoull() ULLONG_MAX ERANGE
strtoumax(),wcstoumax() UINTMAX_MAX ERANGE
strtod(), wcstod() 0 or ±HUGE_VAL ERANGE
strtof(), wcstof() 0 or ±HUGE_VALF ERANGE

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 376
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Name Return Value errno Value

strtold(), wcstold() 0 or ±HUGE_VALL ERANGE
strtoimax(),wcstoimax() INTMAX_MIN, INTMAX_MAX ERANGE

13.1.3 Library Functions that Do Not Promise to Set errno
The C Standard fails to document the behavior of errno for some functions. For example, the
setlocale() function normally returns a null pointer in the event of an error, but no guarantees
are made about setting errno.

After calling one of these functions, a program should not rely solely on the value of errno to de-
termine if an error occurred. The function might have altered errno, but this does not ensure that
errno will properly indicate an error condition.

13.1.4 Library Functions with Differing Standards Documentation
Some functions behave differently regarding errno in various standards. The fopen() function
is one such example. When fopen() encounters an error, it returns a null pointer. The C Standard
makes no mention of errno when describing fopen(). However, POSIX.1 declares that when
fopen() encounters an error, it returns a null pointer and sets errno to a value indicating the er-
ror [IEEE Std 1003.1-2013]. The implication is that a program conforming to C but not to POSIX
(such as a Windows program) should not check errno after calling fopen(), but a POSIX pro-
gram may check errno if fopen() returns a null pointer.

13.1.5 Library Functions and errno
The following uses of errno are documented in the C Standard:
• Functions defined in <complex.h> may set errno but are not required to.
• For numeric conversion functions in the strtod, strtol, wcstod, and wcstol families, if

the correct result is outside the range of representable values, an appropriate minimum or
maximum value is returned and the value ERANGE is stored in errno. For floating-point con-
version functions in the strtod and wcstod families, if an underflow occurs, whether
errno acquires the value ERANGE is implementation-defined. If the conversion fails, 0 is re-
turned and errno is not set.

• The numeric conversion function atof() and those in the atoi family “need not affect the
value of” errno.

• For mathematical functions in <math.h>, if the integer expression math_errhandling &
MATH_ERRNO is nonzero, on a domain error, errno acquires the value EDOM; on an overflow
with default rounding or if the mathematical result is an exact infinity from finite arguments,
errno acquires the value ERANGE; and on an underflow, whether errno acquires the value
ERANGE is implementation-defined.

• If a request made by calling signal() cannot be honored, a value of SIG_ERR is returned
and a positive value is stored in errno.

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 377
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• The byte I/O functions, wide-character I/O functions, and multibyte conversion functions
store the value of the macro EILSEQ in errno if and only if an encoding error occurs.

• On failure, fgetpos() and fsetpos() return nonzero and store an implementation-defined
positive value in errno.

• On failure, ftell() returns -1L and stores an implementation-defined positive value in
errno.

• The perror() function maps the error number in errno to a message and writes it to
stderr.

The POSIX.1 standard defines the use of errno by many more functions (including the C stand-
ard library function). POSIX also has a small set of functions that are exceptions to the rule. These
functions have no return value reserved to indicate an error, but they still set errno on error. To
detect an error, an application must set errno to 0 before calling the function and check whether
it is nonzero after the call. Affected functions include strcoll(), strxfrm(), strerror(),
wcscoll(), wcsxfrm(), and fwide().The C Standard allows these functions to set errno to a
nonzero value on success. Consequently, this type of error checking should be performed only on
POSIX systems.

13.1.6 Noncompliant Code Example (strtoul())
This noncompliant code example fails to set errno to 0 before invoking strtoul(). If an error
occurs, strtoul() returns a valid value (ULONG_MAX), so errno is the only means of determin-
ing if strtoul() ran successfully.

#include <errno.h>
#include <limits.h>
#include <stdlib.h>

void func(const char *c_str) {
 unsigned long number;
 char *endptr;

 number = strtoul(c_str, &endptr, 0);
 if (endptr == c_str || (number == ULONG_MAX
 && errno == ERANGE)) {
 /* Handle error */
 } else {
 /* Computation succeeded */
 }
}

Any error detected in this manner may have occurred earlier in the program or may not represent
an actual error.

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 378
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.1.7 Compliant Solution (strtoul())
This compliant solution sets errno to 0 before the call to strtoul() and inspects errno after
the call:

#include <errno.h>
#include <limits.h>
#include <stdlib.h>

void func(const char *c_str) {
 unsigned long number;
 char *endptr;

 errno = 0;
 number = strtoul(c_str, &endptr, 0);
 if (endptr == c_str || (number == ULONG_MAX
 && errno == ERANGE)) {
 /* Handle error */
 } else {
 /* Computation succeeded */
 }
}

13.1.8 Noncompliant Code Example (fopen())
This noncompliant code example may fail to diagnose errors because fopen() might not set
errno even if an error occurs:

#include <errno.h>
#include <stdio.h>

void func(const char *filename) {
 FILE *fileptr;

 errno = 0;
 fileptr = fopen(filename, "rb");
 if (errno != 0) {
 /* Handle error */
 }
}

13.1.9 Compliant Solution (fopen(), C)
The C Standard makes no mention of errno when describing fopen(). In this compliant solu-
tion, the results of the call to fopen() are used to determine failure and errno is not checked:

#include <stdio.h>

void func(const char *filename) {

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 379
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 FILE *fileptr = fopen(filename, "rb");
 if (fileptr == NULL) {
 /* An error occurred in fopen() */
 }
}

13.1.10 Compliant Solution (fopen(), POSIX)
In this compliant solution, errno is checked only after an error has already been detected by an-
other means:

#include <errno.h>
#include <stdio.h>

void func(const char *filename) {
 FILE *fileptr;

 errno = 0;
 fileptr = fopen(filename, "rb");
 if (fileptr == NULL) {
 /*
 * An error occurred in fopen(); now it's valid
 * to examine errno.
 */
 perror(filename);
 }
}

13.1.11 Risk Assessment
The improper use of errno may result in failing to detect an error condition or in incorrectly
identifying an error condition when none exists.

Rule Severity Likelihood Remediation Cost Priority Level

ERR30-C Medium Probable Medium P8 L2

13.1.12 Related Guidelines

CERT C Secure Coding Standard EXP12-C. Do not ignore values returned by
functions

ISO/IEC TS 17961:2013 Incorrectly setting and using errno [inverrno]
MITRE CWE CWE-456, Missing Initialization of a Variable

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=169607175
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924853
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=17924853
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/456.html

Error Handling (ERR) - ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only
after the function returns a value indicating failure

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 380
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.1.13 Bibliography

[Brainbell.com] Macros and Miscellaneous Pitfalls
[Horton 1990] Section 11, p. 168

Section 14, p. 254
[IEEE Std 1003.1-2013] XSH, System Interfaces, fopen
[Koenig 1989] Section 5.4, p. 73
[Summit 2005]

http://www.brainbell.com/tutors/c/Advice_and_Warnings_for_C/Macros_and_Miscellaneous_Pitfalls.html

Error Handling (ERR) - ERR32-C. Do not rely on indeterminate values of errno

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 381
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.2 ERR32-C. Do not rely on indeterminate values of errno

According to the C Standard [ISO/IEC 9899:2011], the behavior of a program is undefined when

the value of errno is referred to after a signal occurred other than as the result of calling
the abort or raise function and the corresponding signal handler obtained a SIG_ERR
return from a call to the signal function.

See undefined behavior 133.

A signal handler is allowed to call signal(); if that fails, signal() returns SIG_ERR and sets
errno to a positive value. However, if the event that caused a signal was external (not the result
of the program calling abort() or raise()), the only functions the signal handler may call are
_Exit() or abort(), or it may call signal() on the signal currently being handled; if sig-
nal() fails, the value of errno is indeterminate.

This rule is also a special case of SIG31-C. Do not access shared objects in signal handlers. The
object designated by errno is of static storage duration and is not a volatile sig_atomic_t.
As a result, performing any action that would require errno to be set would normally cause unde-
fined behavior. The C Standard, 7.14.1.1, paragraph 5, makes a special exception for errno in
this case, allowing errno to take on an indeterminate value but specifying that there is no other
undefined behavior. This special exception makes it possible to call signal() from within a sig-
nal handler without risking undefined behavior, but the handler, and any code executed after the
handler returns, must not depend on the value of errno being meaningful.

13.2.1 Noncompliant Code Example
The handler() function in this noncompliant code example attempts to restore default handling
for the signal indicated by signum. If the request to set the signal to default can be honored, the
signal() function returns the value of the signal handler for the most recent successful call to
the signal() function for the specified signal. Otherwise, a value of SIG_ERR is returned and a
positive value is stored in errno. Unfortunately, the value of errno is indeterminate because the
handler() function is called when an external signal is raised, so any attempt to read errno (for
example, by the perror() function) is undefined behavior:

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

typedef void (*pfv)(int);

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler"); /* Undefined behavior */
 /* Handle error */
 }

Error Handling (ERR) - ERR32-C. Do not rely on indeterminate values of errno

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 382
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

}

int main(void) {
 pfv old_handler = signal(SIGINT, handler);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 /* Handle error */
 }

 /* Main code loop */

 return EXIT_SUCCESS;
}

The call to perror() from handler() also violates SIG30-C. Call only asynchronous-safe
functions within signal handlers.

13.2.2 Compliant Solution
This compliant solution does not reference errno and does not return from the signal handler if
the signal() call fails:

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

typedef void (*pfv)(int);

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 abort();
 }
}

int main(void) {
 pfv old_handler = signal(SIGINT, handler);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 /* Handle error */
 }

 /* Main code loop */

 return EXIT_SUCCESS;
}

Error Handling (ERR) - ERR32-C. Do not rely on indeterminate values of errno

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 383
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.2.3 Noncompliant Code Example (POSIX)
POSIX is less restrictive than C about what applications can do in signal handlers. It has a long
list of asynchronous-safe functions that can be called. (See SIG30-C. Call only asynchronous-safe
functions within signal handlers.) Many of these functions set errno on error, which can lead to a
signal handler being executed between a call to a failed function and the subsequent inspection of
errno. Consequently, the value inspected is not the one set by that function but the one set by a
function call in the signal handler. POSIX applications can avoid this problem by ensuring that
signal handlers containing code that might alter errno always save the value of errno on entry
and restore it before returning.

The signal handler in this noncompliant code example alters the value of errno. As a result, it
can cause incorrect error handling if executed between a failed function call and the subsequent
inspection of errno:

#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>

void reaper(int signum) {
 errno = 0;
 for (;;) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if ((0 == rc) || (-1 == rc && EINTR != errno)) {
 break;
 }
 }
 if (ECHILD != errno) {
 /* Handle error */
 }
}

int main(void) {
 struct sigaction act;
 act.sa_handler = reaper;
 act.sa_flags = 0;
 if (sigemptyset(&act.sa_mask) != 0) {
 /* Handle error */
 }
 if (sigaction(SIGCHLD, &act, NULL) != 0) {
 /* Handle error */
 }

 /* ... */

 return EXIT_SUCCESS;
}

Error Handling (ERR) - ERR32-C. Do not rely on indeterminate values of errno

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 384
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.2.4 Compliant Solution (POSIX)
This compliant solution saves and restores the value of errno in the signal handler:

#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>

void reaper(int signum) {
 errno_t save_errno = errno;
 errno = 0;
 for (;;) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if ((0 == rc) || (-1 == rc && EINTR != errno)) {
 break;
 }
 }
 if (ECHILD != errno) {
 /* Handle error */
 }
 errno = save_errno;
}

int main(void) {
 struct sigaction act;
 act.sa_handler = reaper;
 act.sa_flags = 0;
 if (sigemptyset(&act.sa_mask) != 0) {
 /* Handle error */
 }
 if (sigaction(SIGCHLD, &act, NULL) != 0) {
 /* Handle error */
 }

 /* ... */

 return EXIT_SUCCESS;
}

13.2.5 Risk Assessment
Referencing indeterminate values of errno is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

ERR32-C Low Unlikely Low P3 L3

Error Handling (ERR) - ERR32-C. Do not rely on indeterminate values of errno

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 385
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.2.6 Related Guidelines

CERT C Secure Coding Standard SIG30-C. Call only asynchronous-safe func-
tions within signal handlers
SIG31-C. Do not access shared objects in sig-
nal handlers

13.2.7 Bibliography

[ISO/IEC 9899:2011] Subclause 7.14.1.1, “The signal Function”

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 386
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.3 ERR33-C. Detect and handle standard library errors

The majority of the standard library functions, including I/O functions and memory allocation
functions, return either a valid value or a value of the correct return type that indicates an error
(for example, −1 or a null pointer). Assuming that all calls to such functions will succeed and fail-
ing to check the return value for an indication of an error is a dangerous practice that may lead to
unexpected or undefined behavior when an error occurs. It is essential that programs detect and
appropriately handle all errors in accordance with an error-handling policy, as discussed in
ERR00-C. Adopt and implement a consistent and comprehensive error-handling policy.

The successful completion or failure of each of the standard library functions listed in the follow-
ing table shall be determined either by comparing the function’s return value with the value listed
in the column labeled “Error Return” or by calling one of the library functions mentioned in the
footnotes.

Standard Library Functions

Function Successful Return Error Return

aligned_alloc() Pointer to space NULL
asctime_s() 0 Nonzero
at_quick_exit() 0 Nonzero
atexit() 0 Nonzero
bsearch() Pointer to matching element NULL
bsearch_s() Pointer to matching element NULL
btowc() Converted wide character WEOF
c16rtomb() Number of bytes (size_t)(-1)
c32rtomb() Number of bytes (size_t)(-1)
calloc() Pointer to space NULL
clock() Processor time (clock_t)(-1)
cnd_broadcast() thrd_success thrd_error
cnd_init() thrd_success thrd_nomem or thrd_error
cnd_signal() thrd_success thrd_error
cnd_timedwait() thrd_success thrd_timedout or

thrd_error
cnd_wait() thrd_success thrd_error
ctime_s() 0 Nonzero
fclose() 0 EOF (negative)
fflush() 0 EOF (negative)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6619151

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 387
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

fgetc() Character read EOF6
fgetpos() 0 Nonzero, errno > 0
fgets() Pointer to string NULL
fgetwc() Wide character read WEOF6
fopen() Pointer to stream NULL
fopen_s() 0 Nonzero
fprintf() Number of characters

(nonnegative)
Negative

fprintf_s() Number of characters
(nonnegative)

Negative

fputc() Character written EOF7
fputs() Nonnegative EOF (negative)
fputwc() Wide character written WEOF
fputws() Nonnegative EOF (negative)
fread() Elements read Elements read
freopen() Pointer to stream NULL
freopen_s() 0 Nonzero
fscanf() Number of conversions

(nonnegative)
EOF (negative)

fscanf_s() Number of conversions
(nonnegative)

EOF (negative)

fseek() 0 Nonzero
fsetpos() 0 Nonzero, errno > 0
ftell() File position −1L, errno > 0
fwprintf() Number of wide characters

(nonnegative)
Negative

fwprintf_s() Number of wide characters
(nonnegative)

Negative

fwrite() Elements written Elements written
fwscanf() Number of conversions

(nonnegative)
EOF (negative)

fwscanf_s() Number of conversions
(nonnegative)

EOF (negative)

getc() Character read EOF6

6 By calling ferror() and feof()
7 By calling ferror()

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 388
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

getchar() Character read EOF6
getenv() Pointer to string NULL
getenv_s() Pointer to string NULL
gets_s() Pointer to string NULL
getwc() Wide character read WEOF
getwchar() Wide character read WEOF
gmtime() Pointer to broken-down time NULL
gmtime_s() Pointer to broken-down time NULL
localtime() Pointer to broken-down time NULL
localtime_s() Pointer to broken-down time NULL
malloc() Pointer to space NULL
mblen(), s != NULL Number of bytes −1
mbrlen(), s != NULL Number of bytes or status (size_t)(-1)
mbrtoc16() Number of bytes or status (size_t)(-1), errno ==

EILSEQ
mbrtoc32() Number of bytes or status (size_t)(-1), errno ==

EILSEQ
mbrtowc(), s != NULL Number of bytes or status (size_t)(-1), errno ==

EILSEQ
mbsrtowcs() Number of non-null elements (size_t)(-1), errno ==

EILSEQ
mbsrtowcs_s() 0 Nonzero
mbstowcs() Number of non-null elements (size_t)(-1)
mbstowcs_s() 0 Nonzero
mbtowc(), s != NULL Number of bytes −1
memchr() Pointer to located character NULL
mktime() Calendar time (time_t)(-1)
mtx_init() thrd_success thrd_error
mtx_lock() thrd_success thrd_error
mtx_timedlock() thrd_success thrd_timedout or

thrd_error
mtx_trylock() thrd_success thrd_busy or thrd_error
mtx_unlock() thrd_success thrd_error
printf_s() Number of characters

(nonnegative)
Negative

putc() Character written EOF7

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 389
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

putwc() Wide character written WEOF
raise() 0 Nonzero
realloc() Pointer to space NULL
remove() 0 Nonzero
rename() 0 Nonzero
setlocale() Pointer to string NULL
setvbuf() 0 Nonzero
scanf() Number of conversions

(nonnegative)
EOF (negative)

scanf_s() Number of conversions
(nonnegative)

EOF (negative)

signal() Pointer to previous function SIG_ERR, errno > 0
snprintf() Number of characters that

would be written (nonnegative)
Negative

snprintf_s() Number of characters that
would be written (nonnegative)

Negative

sprintf() Number of non-null characters
written

Negative

sprintf_s() Number of non-null characters
written

Negative

sscanf() Number of conversions
(nonnegative)

EOF (negative)

sscanf_s() Number of conversions
(nonnegative)

EOF (negative)

strchr() Pointer to located character NULL
strerror_s() 0 Nonzero
strftime() Number of non-null characters 0
strpbrk() Pointer to located character NULL
strrchr() Pointer to located character NULL
strstr() Pointer to located string NULL
strtod() Converted value 0, errno == ERANGE
strtof() Converted value 0, errno == ERANGE
strtoimax() Converted value INTMAX_MAX or INTMAX_MIN,

errno == ERANGE
strtok() Pointer to first character of a

token
NULL

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 390
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

strtok_s() Pointer to first character of a
token

NULL

strtol() Converted value LONG_MAX or LONG_MIN,
errno == ERANGE

strtold() Converted value 0, errno == ERANGE
strtoll() Converted value LLONG_MAX or LLONG_MIN,

errno == ERANGE
strtoumax() Converted value UINTMAX_MAX, errno ==

ERANGE
strtoul() Converted value ULONG_MAX, errno ==

ERANGE
strtoull() Converted value ULLONG_MAX, errno ==

ERANGE
strxfrm() Length of transformed string >= n
swprintf() Number of non-null wide char-

acters
Negative

swprintf_s() Number of non-null wide char-
acters

Negative

swscanf() Number of conversions
(nonnegative)

EOF (negative)

swscanf_s() Number of conversions
(nonnegative)

EOF (negative)

thrd_create() thrd_success thrd_nomem or thrd_error
thrd_detach() thrd_success thrd_error
thrd_join() thrd_success thrd_error
thrd_sleep() 0 Negative
time() Calendar time (time_t)(-1)
timespec_get() Base 0
tmpfile() Pointer to stream NULL
tmpfile_s() 0 Nonzero
tmpnam() Non-null pointer NULL
tmpnam_s() 0 Nonzero
tss_create() thrd_success thrd_error
tss_get() Value of thread-specific stor-

age
0

tss_set() thrd_success thrd_error

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 391
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

ungetc() Character pushed back EOF8
ungetwc() Character pushed back WEOF
vfprintf() Number of characters

(nonnegative)
Negative

vfprintf_s() Number of characters
(nonnegative)

Negative

vfscanf() Number of conversions
(nonnegative)

EOF (negative)

vfscanf_s() Number of conversions
(nonnegative)

EOF (negative)

vfwprintf() Number of wide characters
(nonnegative)

Negative

vfwprintf_s() Number of wide characters
(nonnegative)

Negative

vfwscanf() Number of conversions
(nonnegative)

EOF (negative)

vfwscanf_s() Number of conversions
(nonnegative)

EOF (negative)

vprintf_s() Number of characters
(nonnegative)

Negative

vscanf() Number of conversions
(nonnegative)

EOF (negative)

vscanf_s() Number of conversions
(nonnegative)

EOF (negative)

vsnprintf() Number of characters that
would be written (nonnegative)

Negative

vsnprintf_s() Number of characters that
would be written (nonnegative)

Negative

vsprintf() Number of non-null characters
(nonnegative)

Negative

vsprintf_s() Number of non-null characters
(nonnegative)

Negative

8 The ungetc() function does not set the error indicator even when it fails, so it is not possible to check for

errors reliably unless it is known that the argument is not equal to EOF. The C Standard [ISO/IEC 9899:2011]
states that “one character of pushback is guaranteed,” so this should not be an issue if, at most, one character
is ever pushed back before reading again. (See FIO13-C. Never push back anything other than one read char-
acter.)

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473626
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473626
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473626

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 392
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

vsscanf() Number of conversions
(nonnegative)

EOF (negative)

vsscanf_s() Number of conversions
(nonnegative)

EOF (negative)

vswprintf() Number of non-null wide char-
acters

Negative

vswprintf_s() Number of non-null wide char-
acters

Negative

vswscanf() Number of conversions
(nonnegative)

EOF (negative)

vswscanf_s() Number of conversions
(nonnegative)

EOF (negative)

vwprintf_s() Number of wide characters
(nonnegative)

Negative

vwscanf() Number of conversions
(nonnegative)

EOF (negative)

vwscanf_s() Number of conversions
(nonnegative)

EOF (negative)

wcrtomb() Number of bytes stored (size_t)(-1)
wcschr() Pointer to located wide charac-

ter
NULL

wcsftime() Number of non-null wide char-
acters

0

wcspbrk() Pointer to located wide charac-
ter

NULL

wcsrchr() Pointer to located wide charac-
ter

NULL

wcsrtombs() Number of non-null bytes (size_t)(-1), errno ==
EILSEQ

wcsrtombs_s() 0 Nonzero
wcsstr() Pointer to located wide string NULL
wcstod() Converted value 0, errno == ERANGE
wcstof() Converted value 0, errno == ERANGE
wcstoimax() Converted value INTMAX_MAX or INTMAX_MIN,

errno == ERANGE
wcstok() Pointer to first wide character

of a token
NULL

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 393
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

wcstok_s() Pointer to first wide character
of a token

NULL

wcstol() Converted value LONG_MAX or LONG_MIN,
errno == ERANGE

wcstold() Converted value 0, errno == ERANGE
wcstoll() Converted value LLONG_MAX or LLONG_MIN,

errno == ERANGE
wcstombs() Number of non-null bytes (size_t)(-1)
wcstombs_s() 0 Nonzero
wcstoumax() Converted value UINTMAX_MAX, errno ==

ERANGE
wcstoul() Converted value ULONG_MAX, errno ==

ERANGE
wcstoull() Converted value ULLONG_MAX, errno ==

ERANGE
wcsxfrm() Length of transformed wide

string
>= n

wctob() Converted character EOF
wctomb(), s != NULL Number of bytes stored −1
wctomb_s(), s != NULL Number of bytes stored −1
wctrans() Valid argument to

towctrans
0

wctype() Valid argument to iswctype 0
wmemchr() Pointer to located wide charac-

ter
NULL

wprintf_s() Number of wide characters
(nonnegative)

Negative

wscanf() Number of conversions
(nonnegative)

EOF (negative)

wscanf_s() Number of conversions
(nonnegative)

EOF (negative)

Note: According to FIO35-C. Use feof() and ferror() to detect end-of-file and file errors when
sizeof(int) == sizeof(char), callers should verify end-of-file and file errors for the functions in this
table as follows:

 1 By calling ferror() and feof()

 2 By calling ferror()

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2952
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2952
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2952

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 394
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.3.1 Noncompliant Code Example (setlocale())
In this noncompliant code example, the function utf8_to_wcs() attempts to convert a sequence
of UTF-8 characters to wide characters. It first invokes setlocale() to set the global locale to
the implementation-defined “en_US.UTF-8” but does not check for failure. The setlocale()
function will fail by returning a null pointer, for example, when the locale is not installed. The
function may fail for other reasons as well, such as the lack of resources. Depending on the se-
quence of characters pointed to by utf8, the subsequent call to mbstowcs() may fail or result in
the function storing an unexpected sequence of wide characters in the supplied buffer wcs.

#include <locale.h>
#include <stdlib.h>

int utf8_to_wcs(wchar_t *wcs, size_t n, const char *utf8,
 size_t *size) {
 if (NULL == size) {
 return -1;
 }
 setlocale(LC_CTYPE, "en_US.UTF-8");
 *size = mbstowcs(wcs, utf8, n);
 return 0;
}

13.3.2 Compliant Solution (setlocale())
This compliant solution checks the value returned by setlocale() and avoids calling
mbstowcs() if the function fails. The function also takes care to restore the locale to its initial
setting before returning control to the caller.

#include <locale.h>
#include <stdlib.h>

int utf8_to_wcs(wchar_t *wcs, size_t n, const char *utf8,
 size_t *size) {
 if (NULL == size) {
 return -1;
 }
 const char *save = setlocale(LC_CTYPE, "en_US.UTF-8");
 if (NULL == save) {
 return -1;
 }

 *size = mbstowcs(wcs, utf8, n);
 if (NULL == setlocale(LC_CTYPE, save)) {
 return -1;
 }

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 395
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return 0;
}

13.3.3 Noncompliant Code Example (calloc())
In this noncompliant code example, temp_num, tmp2, and num_of_records are derived from a
tainted source. Consequently, an attacker can easily cause calloc() to fail by providing a large
value for num_of_records.

#include <stdlib.h>
#include <string.h>

enum { SIG_DESC_SIZE = 32 };

typedef struct {
 char sig_desc[SIG_DESC_SIZE];
} signal_info;

void func(size_t num_of_records, size_t temp_num,
 const char *tmp2, size_t tmp2_size_bytes) {
 signal_info *start = (signal_info *)calloc(num_of_records,
 sizeof(signal_info));

 if (tmp2 == NULL) {
 /* Handle error */
 } else if (temp_num > num_of_records) {
 /* Handle error */
 } else if (tmp2_size_bytes < SIG_DESC_SIZE) {
 /* Handle error */
 }

 signal_info *point = start + temp_num - 1;
 memcpy(point->sig_desc, tmp2, SIG_DESC_SIZE);
 point->sig_desc[SIG_DESC_SIZE - 1] = '\0';
 /* ... */
 free(start);
}

When calloc() fails, it returns a null pointer that is assigned to start. If start is null, an at-
tacker can provide a value for temp_num that, when scaled by sizeof(signal_info), refer-
ences a writable address to which control is eventually transferred. The contents of the string ref-
erenced by tmp2 can then be used to overwrite the address, resulting in an arbitrary code
execution vulnerability.

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 396
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.3.4 Compliant Solution (calloc())
To correct this error, ensure the pointer returned by calloc() is not null:

#include <stdlib.h>
#include <string.h>

enum { SIG_DESC_SIZE = 32 };

typedef struct {
 char sig_desc[SIG_DESC_SIZE];
} signal_info;

void func(size_t num_of_records, size_t temp_num,
 const char *tmp2, size_t tmp2_size_bytes) {
 signal_info *start = (signal_info *)calloc(num_of_records,
 sizeof(signal_info));
 if (start == NULL) {
 /* Handle allocation error */
 } else if (tmp2 == NULL) {
 /* Handle error */
 } else if (temp_num > num_of_records) {
 /* Handle error */
 } else if (tmp2_size_bytes < SIG_DESC_SIZE) {
 /* Handle error */
 }

 signal_info *point = start + temp_num - 1;
 memcpy(point->sig_desc, tmp2, SIG_DESC_SIZE);
 point->sig_desc[SIG_DESC_SIZE - 1] = '\0';
 /* ... */
 free(start);
}

13.3.5 Noncompliant Code Example (realloc())
This noncompliant code example calls realloc() to resize the memory referred to by p. How-
ever, if realloc() fails, it returns a null pointer and the connection between the original block of
memory and p is lost, resulting in a memory leak.

#include <stdlib.h>

void *p;
void func(size_t new_size) {
 if (new_size == 0) {
 /* Handle error */
 }
 p = realloc(p, new_size);
 if (p == NULL) {
 /* Handle error */

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 397
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
}

This code example complies with MEM04-C. Do not perform zero-length allocations.

13.3.6 Compliant Solution (realloc())
In this compliant solution, the result of realloc() is assigned to the temporary pointer q and
validated before it is assigned to the original pointer p:

#include <stdlib.h>

void *p;
void func(size_t new_size) {
 void *q;

 if (new_size == 0) {
 /* Handle error */
 }

 q = realloc(p, new_size);
 if (q == NULL) {
 /* Handle error */
 } else {
 p = q;
 }
}

13.3.7 Noncompliant Code Example (fseek())
In this noncompliant code example, the fseek() function is used to set the file position to a loca-
tion offset in the file referred to by file prior to reading a sequence of bytes from the file.
However, if an I/O error occurs during the seek operation, the subsequent read will fill the buffer
with the wrong contents.

#include <stdio.h>

size_t read_at(FILE *file, long offset,
 void *buf, size_t nbytes) {
 fseek(file, offset, SEEK_SET);
 return fread(buf, 1, nbytes, file);
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 398
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

13.3.8 Compliant Solution (fseek())
According to the C Standard, the fseek() function returns a nonzero value to indicate that an er-
ror occurred. This compliant solution tests for this condition before reading from a file to elimi-
nate the chance of operating on the wrong portion of the file if fseek() fails:

#include <stdio.h>

size_t read_at(FILE *file, long offset,
 void *buf, size_t nbytes) {
 if (fseek(file, offset, SEEK_SET) != 0) {
 /* Indicate error to caller */
 return 0;
 }
 return fread(buf, 1, nbytes, file);
}

13.3.9 Noncompliant Code Example (snprintf())
In this noncompliant code example, snprintf() is assumed to succeed. However, if the call
fails (for example, because of insufficient memory, as described in GNU libc bug 441945), the
subsequent call to log_message() has undefined behavior because the character buffer is unini-
tialized and need not be null-terminated.

#include <stdio.h>

extern void log_message(const char *);

void f(int i, int width, int prec) {
 char buf[40];
 snprintf(buf, sizeof(buf), "i = %*.*i", width, prec, i);
 log_message(buf);
 /* ... */
}

13.3.10 Compliant Solution (snprintf())
This compliant solution does not assume that snprintf() will succeed regardless of its argu-
ments. It tests the return value of snprintf() before subsequently using the formatted buffer.
This compliant solution also treats the case where the static buffer is not large enough for
snprintf() to append the terminating null character as an error.

#include <stdio.h>
#include <string.h>

extern void log_message(const char *);

void f(int i, int width, int prec) {

http://bugzilla.redhat.com/show_bug.cgi?id=441945

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 399
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 char buf[40];
 int n;
 n = snprintf(buf, sizeof(buf), "i = %*.*i", width, prec, i);
 if (n < 0 || n >= sizeof(buf)) {
 /* Handle snprintf() error */
 strcpy(buf, "unknown error");
 }
 log_message(buf);
}

13.3.11 Compliant Solution (snprintf(null))
If unknown, the length of the formatted string can be discovered by invoking snprintf() with a
null buffer pointer to determine the size required for the output, then dynamically allocating a
buffer of sufficient size, and finally calling snprintf() again to format the output into the dy-
namically allocated buffer. Even with this approach, the success of all calls still needs to be tested,
and any errors must be appropriately handled. A possible optimization is to first attempt to format
the string into a reasonably small buffer allocated on the stack and, only when the buffer turns out
to be too small, dynamically allocate one of a sufficient size:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

extern void log_message(const char *);

void f(int i, int width, int prec) {
 char buffer[20];
 char *buf = buffer;
 int n = sizeof(buffer);
 const char fmt[] = "i = %*.*i";

 n = snprintf(buf, n, fmt, width, prec, i);
 if (n < 0) {
 /* Handle snprintf() error */
 strcpy(buffer, "unknown error");
 goto write_log;
 }

 if (n < sizeof(buffer)) {
 goto write_log;
 }

 buf = (char *)malloc(n + 1);
 if (NULL == buf) {
 /* Handle malloc() error */
 strcpy(buffer, "unknown error");
 goto write_log;
 }

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 400
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 n = snprintf(buf, n, fmt, width, prec, i);
 if (n < 0) {
 /* Handle snprintf() error */
 strcpy(buffer, "unknown error");
 }

write_log:
 log_message(buf);

 if (buf != buffer) {
 free(buf);
 }
}

This solution uses the goto statement, as suggested in MEM12-C. Consider using a goto chain
when leaving a function on error when using and releasing resources.

13.3.12 Exceptions
ERR33-C-EX1: It is acceptable to ignore the return value of a function that cannot fail, or a func-
tion whose return value is inconsequential, or when an error condition need not be diagnosed. The
function’s results should be explicitly cast to void to signify programmer intent. Return values
from the functions in the following table do not need to be checked because their historical use
has overwhelmingly omitted error checking and the consequences are not relevant to security.

Functions for Which Return Values Need Not Be Checked
Function Successful Return Error Return

putchar() Character written EOF
putwchar() Wide character written WEOF
puts() Nonnegative EOF (negative)
printf(), vprintf() Number of characters

(nonnegative)
Negative

wprintf(), vwprintf() Number of wide characters
(nonnegative)

Negative

kill_dependency() The input parameter NA
memcpy(), wmemcpy() The destination input parame-

ter
NA

memmove(), wmemmove() The destination input parame-
ter

NA

strcpy(), wcscpy() The destination input parame-
ter

NA

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 401
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Function Successful Return Error Return

strncpy(), wcsncpy() The destination input parame-
ter

NA

strcat(), wcscat() The destination input parame-
ter

NA

strncat(), wcsncat() The destination input parame-
ter

NA

memset(), wmemset() The destination input parame-
ter

NA

13.3.13 Risk Assessment
Failing to detect error conditions can lead to unpredictable results, including abnormal program
termination and denial-of-service attacks or, in some situations, could even allow an attacker to
run arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

ERR33-C High Likely Medium P18 L1

13.3.13.1 Related Vulnerabilities
The vulnerability in Adobe Flash [VU#159523] arises because Flash neglects to check the return
value from calloc(). Even when calloc() returns a null pointer, Flash writes to an offset
from the return value. Dereferencing a null pointer usually results in a program crash, but derefer-
encing an offset from a null pointer allows an exploit to succeed without crashing the program.

13.3.14 Related Guidelines

CERT C Secure Coding Standard ERR00-C. Adopt and implement a consistent
and comprehensive error-handling policy
EXP34-C. Do not dereference null pointers
FIO13-C. Never push back anything other than
one read character
MEM04-C. Do not perform zero-length alloca-
tions
MEM12-C. Consider using a goto chain when
leaving a function on error when using and re-
leasing resources

SEI CERT C++ Coding Standard ERR10-CPP. Check for error conditions
FIO04-CPP. Detect and handle input and out-
put errors

ISO/IEC TS 17961:2013 Failing to detect and handle standard library er-
rors [liberr]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6619151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6619151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473626
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473626
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473626
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=29032944
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1564
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087175
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087175

Error Handling (ERR) - ERR33-C. Detect and handle standard library errors

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 402
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

MITRE CWE CWE-252, Unchecked Return Value
CWE-253, Incorrect Check of Function Return
Value
CWE-390, Detection of Error Condition with-
out Action
CWE-391, Unchecked Error Condition
CWE-476, NULL Pointer Dereference

13.3.15 Bibliography
[DHS 2006] Handle All Errors Safely
[Henricson 1997] Recommendation 12.1, “Check for All Errors

Reported from Functions”
[ISO/IEC 9899:2011] Subclause 7.21.7.10, “The ungetc Function”
[VU#159523]

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/253.html
http://cwe.mitre.org/data/definitions/390.html
http://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/476.html
https://buildsecurityin.us-cert.gov/articles/knowledge/coding-practices/handle-all-errors-safely
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=414

Concurrency (CON) - CON30-C. Clean up thread-specific storage

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 403
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14 Concurrency (CON)

14.1 CON30-C. Clean up thread-specific storage

The tss_create() function creates a thread-specific storage pointer identified by a key.
Threads can allocate thread-specific storage and associate the storage with a key that uniquely
identifies the storage by calling the tss_set() function. If not properly freed, this memory may
be leaked. Ensure that thread-specific storage is freed.

14.1.1 Noncompliant Code Example
In this noncompliant code example, each thread dynamically allocates storage in the get_data()
function, which is then associated with the global key by the call to tss_set() in the
add_data() function. This memory is subsequently leaked when the threads terminate.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int *get_data(void) {
 int *arr = (int *)malloc(2 * sizeof(int));
 if (arr == NULL) {
 return arr; /* Report error */
 }
 arr[0] = 10;
 arr[1] = 42;
 return arr;
}

int add_data(void) {
 int *data = get_data();
 if (data == NULL) {
 return -1; /* Report error */
 }

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

Concurrency (CON) - CON30-C. Clean up thread-specific storage

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 404
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (data != NULL) {
 /* Print data */
 }
}

int function(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], function, NULL))
{
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

14.1.2 Compliant Solution
In this compliant solution, each thread explicitly frees the thread-specific storage returned by the
tss_get() function before terminating:

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;

Concurrency (CON) - CON30-C. Clean up thread-specific storage

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 405
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

int function(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;
}

/* ... Other functions are unchanged */

14.1.3 Compliant Solution
This compliant solution invokes a destructor function registered during the call to tss_create()
to automatically free any thread-specific storage:

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

/* ... Other functions are unchanged */

void destructor(void *data) {
 free(data);
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, destructor)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], function, NULL))
{
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }

Concurrency (CON) - CON30-C. Clean up thread-specific storage

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 406
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 tss_delete(key);
 return 0;
}

14.1.4 Risk Assessment
Failing to free thread-specific objects results in memory leaks and could result in a denial-of-ser-
vice attack.

Rule Severity Likelihood Remediation Cost Priority Level

CON30-C Medium Unlikely Medium P4 L3

Concurrency (CON) - CON31-C. Do not destroy a mutex while it is locked

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 407
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.2 CON31-C. Do not destroy a mutex while it is locked

Mutexes are used to protect shared data structures being concurrently accessed. If a mutex is de-
stroyed while a thread is blocked waiting for that mutex, critical sections and shared data are no
longer protected.

The C Standard, 7.26.4.1, paragraph 2 [ISO/IEC 9899:2011], states

The mtx_destroy function releases any resources used by the mutex pointed to by
mtx. No threads can be blocked waiting for the mutex pointed to by mtx.

This statement implies that destroying a mutex while a thread is waiting on it is undefined behav-
ior.

14.2.1 Noncompliant Code Example
This noncompliant code example creates several threads that each invoke the do_work() func-
tion, passing a unique number as an ID. The do_work() function initializes the lock mutex if
the argument is 0 and destroys the mutex if the argument is max_threads - 1. In all other
cases, the do_work() function provides normal processing. Each thread, except the final cleanup
thread, increments the atomic completed variable when it is finished.

Unfortunately, this code contains several race conditions, allowing the mutex to be destroyed be-
fore it is unlocked. Additionally, there is no guarantee that lock will be initialized before it is
passed to mtx_lock(). Each of these behaviors is undefined.

#include <stdatomic.h>
#include <stddef.h>
#include <threads.h>

mtx_t lock;
/* Atomic so multiple threads can modify safely */
atomic_int completed = ATOMIC_VAR_INIT(0);
enum { max_threads = 5 };

int do_work(void *arg) {
 int *i = (int *)arg;

 if (*i == 0) { /* Creation thread */
 if (thrd_success != mtx_init(&lock, mtx_plain)) {
 /* Handle error */
 }
 atomic_store(&completed, 1);
 } else if (*i < max_threads - 1) { /* Worker thread */
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* Access data protected by the lock */

Concurrency (CON) - CON31-C. Do not destroy a mutex while it is locked

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 408
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 atomic_fetch_add(&completed, 1);
 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
 } else { /* Destruction thread */
 mtx_destroy(&lock);
 }
 return 0;
}

int main(void) {
 thrd_t threads[max_threads];

 for (size_t i = 0; i < max_threads; i++) {
 if (thrd_success != thrd_create(&threads[i], do_work, &i)) {
 /* Handle error */
 }
 }
 for (size_t i = 0; i < max_threads; i++) {
 if (thrd_success != thrd_join(threads[i], 0)) {
 /* Handle error */
 }
 }
 return 0;
}

14.2.2 Compliant Solution
This compliant solution eliminates the race conditions by initializing the mutex in main() before
creating the threads and by destroying the mutex in main() after joining the threads:

#include <stdatomic.h>
#include <stddef.h>
#include <threads.h>

mtx_t lock;
/* Atomic so multiple threads can increment safely */
atomic_int completed = ATOMIC_VAR_INIT(0);
enum { max_threads = 5 };

int do_work(void *dummy) {
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* Access data protected by the lock */
 atomic_fetch_add(&completed, 1);
 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }

Concurrency (CON) - CON31-C. Do not destroy a mutex while it is locked

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 409
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return 0;
}

int main(void) {
 thrd_t threads[max_threads];

 if (thrd_success != mtx_init(&lock, mtx_plain)) {
 /* Handle error */
 }
 for (size_t i = 0; i < max_threads; i++) {
 if (thrd_success != thrd_create(&threads[i], do_work, NULL)) {
 /* Handle error */
 }
 }
 for (size_t i = 0; i < max_threads; i++) {
 if (thrd_success != thrd_join(threads[i], 0)) {
 /* Handle error */
 }
 }

 mtx_destroy(&lock);
 return 0;
}

14.2.3 Risk Assessment
Destroying a mutex while it is locked may result in invalid control flow and data corruption.

Rule Severity Likelihood Remediation Cost Priority Level

CON31-C Medium Probable High P4 L3

14.2.4 Related Guidelines

MITRE CWE CWE-667, Improper Locking

14.2.5 Bibliography
[ISO/IEC 9899:2011] 7.26.4.1, “The mtx_destroy Function”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/667.html

Concurrency (CON) - CON32-C. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 410
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.3 CON32-C. Prevent data races when accessing bit-fields from
multiple threads

When accessing a bit-field, a thread may inadvertently access a separate bit-field in adjacent
memory. This is because compilers are required to store multiple adjacent bit-fields in one storage
unit whenever they fit. Consequently, data races may exist not just on a bit-field accessed by mul-
tiple threads but also on other bit-fields sharing the same byte or word. A similar problem is dis-
cussed in CON00-C. Avoid race conditions with multiple threads, but the issue described by this
rule can be harder to diagnose because it may not be obvious that the same memory location is be-
ing modified by multiple threads.

One approach for preventing data races in concurrent programming is to use a mutex. When
properly observed by all threads, a mutex can provide safe and secure access to a shared object.
However, mutexes provide no guarantees with regard to other objects that might be accessed
when the mutex is not controlled by the accessing thread. Unfortunately, there is no portable way
to determine which adjacent bit-fields may be stored along with the desired bit-field.

Another approach is to insert a non-bit-field member between any two bit-fields to ensure that
each bit-field is the only one accessed within its storage unit. This technique effectively guaran-
tees that no two bit-fields are accessed simultaneously.

14.3.1 Noncompliant Code Example (Bit-field)

Adjacent bit-fields may be stored in a single memory location. Consequently, modifying adjacent
bit-fields in different threads is undefined behavior, as shown in this noncompliant code example:

struct multi_threaded_flags {
 unsigned int flag1 : 2;
 unsigned int flag2 : 2;
};

struct multi_threaded_flags flags;

int thread1(void *arg) {
 flags.flag1 = 1;
 return 0;
}

int thread2(void *arg) {
 flags.flag2 = 2;
 return 0;
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1376360

Concurrency (CON) - CON32-C. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 411
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The C Standard, 3.14, paragraph 3 [ISO/IEC 9899:2011], states

NOTE 2 A bit-field and an adjacent non-bit-field member are in separate memory loca-
tions. The same applies to two bit-fields, if one is declared inside a nested structure dec-
laration and the other is not, or if the two are separated by a zero-length bit-field declara-
tion, or if they are separated by a non-bit-field member declaration. It is not safe to
concurrently update two non-atomic bit-fields in the same structure if all members de-
clared between them are also (non-zero-length) bit-fields, no matter what the sizes of
those intervening bit-fields happen to be.

For example, the following instruction sequence is possible:

Thread 1: register 0 = flags
Thread 1: register 0 &= ~mask(flag1)
Thread 2: register 0 = flags
Thread 2: register 0 &= ~mask(flag2)
Thread 1: register 0 |= 1 << shift(flag1)
Thread 1: flags = register 0
Thread 2: register 0 |= 2 << shift(flag2)
Thread 2: flags = register 0

14.3.2 Compliant Solution (Bit-field, C11, Mutex)
This compliant solution protects all accesses of the flags with a mutex, thereby preventing any
data races:

#include <threads.h>

struct multi_threaded_flags {
 unsigned int flag1 : 2;
 unsigned int flag2 : 2;
};

struct mtf_mutex {
 struct multi_threaded_flags s;
 mtx_t mutex;
};

struct mtf_mutex flags;

int thread1(void *arg) {
 if (thrd_success != mtx_lock(&flags.mutex)) {
 /* Handle error */
 }
 flags.s.flag1 = 1;
 if (thrd_success != mtx_unlock(&flags.mutex)) {
 /* Handle error */
 }

Concurrency (CON) - CON32-C. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 412
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return 0;
}

int thread2(void *arg) {
 if (thrd_success != mtx_lock(&flags.mutex)) {
 /* Handle error */
 }
 flags.s.flag2 = 2;
 if (thrd_success != mtx_unlock(&flags.mutex)) {
 /* Handle error */
 }
 return 0;
}

14.3.3 Compliant Solution (C11)
In this compliant solution, two threads simultaneously modify two distinct non-bit-field members
of a structure. Because the members occupy different bytes in memory, no concurrency protection
is required.

struct multi_threaded_flags {
 unsigned char flag1;
 unsigned char flag2;
};

struct multi_threaded_flags flags;

int thread1(void *arg) {
 flags.flag1 = 1;
 return 0;
}

int thread2(void *arg) {
 flags.flag2 = 2;
 return 0;
}

Unlike C99, C11 explicitly defines a memory location and provides the following note in sub-
clause 3.14.2 [ISO/IEC 9899:2011]:

NOTE 1 Two threads of execution can update and access separate memory locations
without interfering with each other.

It is almost certain that flag1 and flag2 are stored in the same word. Using a compiler that con-
forms to C99 or earlier, if both assignments occur on a thread-scheduling interleaving that ends
with both stores occurring after one another, it is possible that only one of the flags will be set as
intended. The other flag will contain its previous value because both members are represented by
the same word, which is the smallest unit the processor can work on. Before the changes were

Concurrency (CON) - CON32-C. Prevent data races when accessing bit-fields from multiple threads

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 413
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

made to the C Standard for C11, there were no guarantees that these flags could be modified con-
currently.

14.3.4 Risk Assessment
Although the race window is narrow, an assignment or an expression can evaluate improperly be-
cause of misinterpreted data resulting in a corrupted running state or unintended information dis-
closure.

Rule Severity Likelihood Remediation Cost Priority Level

CON32-C Medium Probable Medium P8 L2

14.3.5 Bibliography

[ISO/IEC 9899:2011] 3.14, “Memory Location”

Concurrency (CON) - CON33-C. Avoid race conditions when using library functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 414
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.4 CON33-C. Avoid race conditions when using library functions

Some C standard library functions are not guaranteed to be reentrant with respect to threads.
Functions such as strtok() and asctime() return a pointer to the result stored in function-allo-
cated memory on a per-process basis. Other functions such as rand() store state information in
function-allocated memory on a per-process basis. Multiple threads invoking the same function
can cause concurrency problems, which often result in abnormal behavior and can cause more se-
rious vulnerabilities, such as abnormal termination, denial-of-service attack, and data integrity vi-
olations.

According to the C Standard, the library functions listed in the following table may contain data
races when invoked by multiple threads.

Functions Remediation

rand(), srand() MSC30-C. Do not use the rand() function for
generating pseudorandom numbers

getenv(), getenv_s() ENV34-C. Do not store pointers returned by
certain functions

strtok() strtok_s() in C11 Annex K
strtok_r() in POSIX

strerror() strerror_s() in C11 Annex K
strerror_r() in POSIX

asctime(), ctime(),
localtime(), gmtime()

asctime_s(), ctime_s(), local-
time_s(), gmtime_s() in C11 Annex K

setlocale() Protect multithreaded access to locale-specific
functions with a mutex

ATOMIC_VAR_INIT, atomic_init() Do not attempt to initialize an atomic variable
from multiple threads

tmpnam() tmpnam_s() in C11 Annex K
tmpnam_r() in POSIX

mbrtoc16(), c16rtomb(),
mbrtoc32(), c32rtomb()

Do not call with a null mbstate_t * argu-
ment

Section 2.9.1 of the Portable Operating System Interface (POSIX®), Base Specifications, Issue 7
[IEEE Std 1003.1:2013] extends the list of functions that are not required to be thread-safe.

14.4.1 Noncompliant Code Example
In this noncompliant code example, the function f() is called from within a multithreaded appli-
cation but encounters an error while calling a system function. The strerror() function returns
a human-readable error string given an error number. The C Standard, 7.24.6.2 [ISO/IEC

Concurrency (CON) - CON33-C. Avoid race conditions when using library functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 415
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9899:2011], specifically states that strerror() is not required to avoid data races. An imple-
mentation could write the error string into a static array and return a pointer to it, and that array
might be accessible and modifiable by other threads.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void f(FILE *fp) {
 fpos_t pos;
 errno = 0;

 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

This code first sets errno to 0 to comply with ERR30-C. Set errno to zero before calling a library
function known to set errno, and check errno only after the function returns a value indicating fail-
ure.

14.4.2 Compliant Solution (Annex K, strerror_s())
This compliant solution uses the strerror_s() function from Annex K of the C Standard,
which has the same functionality as strerror() but guarantees thread-safety:

#define __STDC_WANT_LIB_EXT1__ 1
#include <errno.h>
#include <stdio.h>
#include <string.h>

enum { BUFFERSIZE = 64 };
void f(FILE *fp) {
 fpos_t pos;
 errno = 0;

 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_s(errmsg, BUFFERSIZE, errno) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

Because Annex K is optional, strerror_s() may not be available in all implementations.

Concurrency (CON) - CON33-C. Avoid race conditions when using library functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 416
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.4.3 Compliant Solution (POSIX,strerror_r())
This compliant solution uses the POSIX strerror_r() function, which has the same functional-
ity as strerror() but guarantees thread safety:

#include <errno.h>
#include <stdio.h>
#include <string.h>

enum { BUFFERSIZE = 64 };

void f(FILE *fp) {
 fpos_t pos;
 errno = 0;

 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

Linux provides two versions of strerror_r(), known as the XSI-compliant version and the
GNU-specific version. This compliant solution assumes the XSI-compliant version, which is the
default when an application is compiled as required by POSIX (that is, by defining
_POSIX_C_SOURCE or _XOPEN_SOURCE appropriately). The strerror_r() manual page lists
versions that are available on a particular system.

14.4.4 Risk Assessment
Race conditions caused by multiple threads invoking the same library function can lead to abnor-
mal termination of the application, data integrity violations, or a denial-of-service attack.

Rule Severity Likelihood Remediation Cost Priority Level

CON33-C Medium Probable High P4 L3

14.4.5 Related Guidelines

CERT C Secure Coding Standard ERR30-C. Set errno to zero before calling a li-
brary function known to set errno, and check
errno only after the function returns a value in-
dicating failure

SEI CERT C++ Coding Standard CON00-CPP. Avoid assuming functions are
thread safe unless otherwise specified

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729841
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729841

Concurrency (CON) - CON33-C. Avoid race conditions when using library functions

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 417
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.4.6 Bibliography

[IEEE Std 1003.1:2013] Section 2.9.1, “Thread Safety”
[ISO/IEC 9899:2011] Subclause 7.24.6.2, “The strerror Function”
[Open Group 1997b] Section 10.12, “Thread-Safe POSIX.1 and C-

Language Functions”

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 418
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.5 CON34-C. Declare objects shared between threads with
appropriate storage durations

Accessing the automatic or thread-local variables of one thread from another thread is implemen-
tation-defined behavior and can cause invalid memory accesses because the execution of threads
can be interwoven within the constraints of the synchronization model. As a result, the referenced
stack frame or thread-local variable may no longer be valid when another thread tries to access it.
Shared static variables can be protected by thread synchronization mechanisms.

However, automatic (local) variables cannot be shared in the same manner because the referenced
stack frame’s thread would need to stop executing, or some other mechanism must be employed
to ensure that the referenced stack frame is still valid. Do not access automatic or thread-local ob-
jects from a thread other than the one with which the object is associated. See DCL30-C. Declare
objects with appropriate storage durations for information on how to declare objects with appro-
priate storage durations when data is not being shared between threads.

14.5.1 Noncompliant Code Example (Automatic Storage Duration)
This noncompliant code example passes the address of a variable to a child thread, which prints it
out. The variable has automatic storage duration. Depending on the execution order, the child
thread might reference the variable after the variable’s lifetime in the parent thread. This would
cause the child thread to access an invalid memory location.

#include <threads.h>
#include <stdio.h>

int child_thread(void *val) {
 int *res = (int *)val;
 printf("Result: %d\n", *res);
 return 0;
}

void create_thread(thrd_t *tid) {
 int val = 1;
 if (thrd_success != thrd_create(tid, child_thread, &val)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 create_thread(&tid);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 419
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.5.2 Noncompliant Code Example (Automatic Storage Duration)
One solution is to ensure that all objects with automatic storage duration shared between threads
are declared such that their lifetime extends past the lifetime of the threads. This can be accom-
plished using a thread synchronization mechanism, such as thrd_join(). In this code example,
val is declared in main(), where thrd_join() is called. Because the parent thread waits until
the child thread completes before continuing its execution, the shared objects have a lifetime at
least as great as the thread. However, this example relies on implementation-defined behavior and
is nonportable.

#include <threads.h>
#include <stdio.h>

int child_thread(void *val) {
 int *result = (int *)val;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

void create_thread(thrd_t *tid, int *val) {
 if (thrd_success != thrd_create(tid, child_thread, val)) {
 /* Handle error */
 }
}

int main(void) {
 int val = 1;
 thrd_t tid;
 create_thread(&tid, &val);
 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

14.5.3 Compliant Solution (Static Storage Duration)
This compliant solution stores the value in an object having static storage duration. The lifetime
of this object is the entire execution of the program; consequently, it can be safely accessed by
any thread.

#include <threads.h>
#include <stdio.h>

int child_thread(void *v) {
 int *result = (int *)v;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 420
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void create_thread(thrd_t *tid) {
 static int val = 1;
 if (thrd_success != thrd_create(tid, child_thread, &val)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 create_thread(&tid);
 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

14.5.4 Compliant Solution (Allocated Storage Duration)
This compliant solution stores the value passed to the child thread in a dynamically allocated ob-
ject. Because this object will persist until explicitly freed, the child thread can safely access its
value.

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

int child_thread(void *val) {
 int *result = (int *)val;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

void create_thread(thrd_t *tid, int *value) {
 *value = 1;
 if (thrd_success != thrd_create(tid, child_thread,
 value)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 int *value = (int *)malloc(sizeof(int));
 if (!value) {
 /* Handle error */
 }
 create_thread(&tid, value);
 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 421
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
 free(value);
 return 0;
}

14.5.5 Noncompliant Code Example (Thread-Specific Storage)
In this noncompliant code example, the value is stored in thread-specific storage of the parent
thread. However, because thread-specific data is available only to the thread that stores it, the
child_thread() function will set result to a null value.

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

static tss_t key;

int child_thread(void *v) {
 void *result = tss_get(*(tss_t *)v);
 printf("Result: %d\n", *(int *)result);
 return 0;
}

int create_thread(void *thrd) {
 int *val = (int *)malloc(sizeof(int));
 if (val == NULL) {
 /* Handle error */
 }
 *val = 1;
 if (thrd_success != tss_set(key, val)) {
 /* Handle error */
 }
 if (thrd_success != thrd_create((thrd_t *)thrd,
 child_thread, &key)) {
 /* Handle error */
 }
 return 0;
}

int main(void) {
 thrd_t parent_tid, child_tid;

 if (thrd_success != tss_create(&key, free)) {
 /* Handle error */
 }
 if (thrd_success != thrd_create(&parent_tid, create_thread,
 &child_tid)) {
 /* Handle error */
 }
 if (thrd_success != thrd_join(parent_tid, NULL)) {

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 422
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }
 if (thrd_success != thrd_join(child_tid, NULL)) {
 /* Handle error */
 }
 tss_delete(key);
 return 0;
}

14.5.6 Compliant Solution (Thread-Specific Storage)
This compliant solution illustrates how thread-specific storage can be combined with a call to a
thread synchronization mechanism, such as thrd_join(). Because the parent thread waits until
the child thread completes before continuing its execution, the child thread is guaranteed to access
a valid live object.

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>

static tss_t key;

int child_thread(void *v) {
 int *result = v;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return 0;
}

int create_thread(void *thrd) {
 int *val = (int *)malloc(sizeof(int));
 if (val == NULL) {
 /* Handle error */
 }
 *val = 1;
 if (thrd_success != tss_set(key, val)) {
 /* Handle error */
 }
 /* ... */
 void *v = tss_get(key);
 if (thrd_success != thrd_create((thrd_t *)thrd,
 child_thread, v)) {
 /* Handle error */
 }
 return 0;
}

int main(void) {
 thrd_t parent_tid, child_tid;

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 423
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (thrd_success != tss_create(&key, free)) {
 /* Handle error */
 }
 if (thrd_success != thrd_create(&parent_tid, create_thread,
 &child_tid)) {
 /* Handle error */
 }
 if (thrd_success != thrd_join(parent_tid, NULL)) {
 /* Handle error */
 }
 if (thrd_success != thrd_join(child_tid, NULL)) {
 /* Handle error */
 }
 tss_delete(key);
return 0;
}

This compliant solution uses pointer-to-integer and integer-to-pointer conversions, which have
implementation-defined behavior. (See INT36-C. Converting a pointer to integer or integer to
pointer.)

14.5.7 Compliant Solution (Thread-Local Storage, Windows, Visual Studio)
Similar to the preceding compliant solution, this compliant solution uses thread-local storage
combined with thread synchronization to ensure the child thread is accessing a valid live object. It
uses the Visual Studio–specific __declspec(thread) language extension to provide the thread-
local storage and the WaitForSingleObject() API to provide the synchronization.

#include <Windows.h>
#include <stdio.h>

DWORD WINAPI child_thread(LPVOID v) {
 int *result = (int *)v;
 printf("Result: %d\n", *result); /* Correctly prints 1 */
 return NULL;
}

int create_thread(HANDLE *tid) {
 /* Declare val as a thread-local value */
 __declspec(thread) int val = 1;
 *tid = create_thread(NULL, 0, child_thread, &val, 0, NULL);
 return *tid == NULL;
}

int main(void) {
 HANDLE tid;

 if (create_thread(&tid)) {
 /* Handle error */

http://msdn.microsoft.com/en-us/library/9w1sdazb.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms687032(v=vs.85).aspx

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 424
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 if (WAIT_OBJECT_0 != WaitForSingleObject(tid, INFINITE)) {
 /* Handle error */
 }
 CloseHandle(tid);

 return 0;
}

14.5.8 Noncompliant Code Example (OpenMP, parallel)
It is important to note that local data can be used securely with threads when using other thread
interfaces, so the programmer need not always copy data into nonlocal memory when sharing data
with threads. For example, the shared keyword in The OpenMP® API Specification for Parallel
Programming [OpenMP] can be used in combination with OpenMP’s threading interface to share
local memory without having to worry about whether local automatic variables remain valid.

In this noncompliant code example, a variable j is declared outside a parallel#pragma and not
listed as a private variable. In OpenMP, variables outside a parallel #pragma are shared un-
less designated as private.

#include <omp.h>
#include <stdio.h>

int main(void) {
 int j = 0;
 #pragma omp parallel
 {
 int t = omp_get_thread_num();
 printf("Running thread - %d\n", t);
 for (int i = 0; i < 5050; i++) {
 j++; /* j not private; could be a race condition */
 }
 printf("Just ran thread - %d\n", t);
 printf("loop count %d\n", j);
 }
return 0;
}

14.5.9 Compliant Solution (OpenMP, parallel, private)
In this compliant solution, the variable j is declared outside of the parallel#pragma but is ex-
plicitly labeled as private:

#include <omp.h>
#include <stdio.h>

http://openmp.org/wp/
http://openmp.org/wp/
http://openmp.org/wp/

Concurrency (CON) - CON34-C. Declare objects shared between threads with appropriate storage durations

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 425
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

int main(void) {
 int j = 0;
 #pragma omp parallel private(j)
 {
 int t = omp_get_thread_num();
 printf("Running thread - %d\n", t);
 for (int i = 0; i < 5050; i++) {
 j++;
 }
 printf("Just ran thread - %d\n", t);
 printf("loop count %d\n", j);
 }
return 0;
}

14.5.10 Risk Assessment
Threads that reference the stack of other threads can potentially overwrite important information
on the stack, such as function pointers and return addresses. The compiler may not generate warn-
ings if the programmer allows one thread to access another thread’s local variables, so a program-
mer may not catch a potential error at compile time. The remediation cost for this error is high be-
cause analysis tools have difficulty diagnosing problems with concurrency and race conditions.

Recommendation Severity Likelihood Remediation Cost Priority Level

CON34-C Medium Probable High P4 L3

14.5.11 Related Guidelines

CERT C Secure Coding Standard DCL30-C. Declare objects with appropriate
storage durations

14.5.12 Bibliography

[ISO/IEC 9899:2011] 6.2.4, “Storage Durations of Objects”
[OpenMP] The OpenMP® API Specification for Parallel

Programming

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
http://openmp.org/wp/
http://openmp.org/wp/

Concurrency (CON) - CON35-C. Avoid deadlock by locking in a predefined order

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 426
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.6 CON35-C. Avoid deadlock by locking in a predefined order

Mutexes are used to prevent multiple threads from causing a data race by accessing shared re-
sources at the same time. Sometimes, when locking mutexes, multiple threads hold each other’s
lock, and the program consequently deadlocks. Four conditions are required for deadlock to oc-
cur:
• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

Deadlock needs all four conditions, so preventing deadlock requires preventing any one of the
four conditions. One simple solution is to lock the mutexes in a predefined order, which prevents
circular wait.

14.6.1 Noncompliant Code Example
The behavior of this noncompliant code example depends on the runtime environment and the
platform’s scheduler. The program is susceptible to deadlock if thread thr1 attempts to lock
ba2’s mutex at the same time thread thr2 attempts to lock ba1’s mutex in the deposit() func-
tion.

#include <stdlib.h>
#include <threads.h>

typedef struct {
 int balance;
 mtx_t balance_mutex;
} bank_account;

typedef struct {
 bank_account *from;
 bank_account *to;
 int amount;
} transaction;

void create_bank_account(bank_account **ba,
 int initial_amount) {
 bank_account *nba = (bank_account *)malloc(
 sizeof(bank_account)
);
 if (nba == NULL) {
 /* Handle error */
 }

 nba->balance = initial_amount;
 if (thrd_success

Concurrency (CON) - CON35-C. Avoid deadlock by locking in a predefined order

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 427
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 != mtx_init(&nba->balance_mutex, mtx_plain)) {
 /* Handle error */
 }

 *ba = nba;
}

int deposit(void *ptr) {
 transaction *args = (transaction *)ptr;

 if (thrd_success != mtx_lock(&args->from->balance_mutex)) {
 /* Handle error */
 }

 /* Not enough balance to transfer */
 if (args->from->balance < args->amount) {
 if (thrd_success
 != mtx_unlock(&args->from->balance_mutex)) {
 /* Handle error */
 }
 return -1; /* Indicate error */
 }
 if (thrd_success != mtx_lock(&args->to->balance_mutex)) {
 /* Handle error */
 }

 args->from->balance -= args->amount;
 args->to->balance += args->amount;

 if (thrd_success
 != mtx_unlock(&args->from->balance_mutex)) {
 /* Handle error */
 }

 if (thrd_success
 != mtx_unlock(&args->to->balance_mutex)) {
 /* Handle error */
 }

 free(ptr);
 return 0;
}

int main(void) {
 thrd_t thr1, thr2;
 transaction *arg1;
 transaction *arg2;
 bank_account *ba1;
 bank_account *ba2;

 create_bank_account(&ba1, 1000);

Concurrency (CON) - CON35-C. Avoid deadlock by locking in a predefined order

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 428
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 create_bank_account(&ba2, 1000);

 arg1 = (transaction *)malloc(sizeof(transaction));
 if (arg1 == NULL) {
 /* Handle error */
 }
 arg2 = (transaction *)malloc(sizeof(transaction));
 if (arg2 == NULL) {
 /* Handle error */
 }
 arg1->from = ba1;
 arg1->to = ba2;
 arg1->amount = 100;

 arg2->from = ba2;
 arg2->to = ba1;
 arg2->amount = 100;

 /* Perform the deposits */
 if (thrd_success
 != thrd_create(&thr1, deposit, (void *)arg1)) {
 /* Handle error */
 }
 if (thrd_success
 != thrd_create(&thr2, deposit, (void *)arg2)) {
 /* Handle error */
 }
 return 0;
}

14.6.2 Compliant Solution
This compliant solution eliminates the circular wait condition by establishing a predefined order
for locking in the deposit() function. Each thread will lock on the basis of the bank_account
ID, which is set when the bank_account struct is initialized.

#include <stdlib.h>
#include <threads.h>

typedef struct {
 int balance;
 mtx_t balance_mutex;

 /* Should not change after initialization */
 unsigned int id;
} bank_account;

typedef struct {
 bank_account *from;
 bank_account *to;

Concurrency (CON) - CON35-C. Avoid deadlock by locking in a predefined order

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 429
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 int amount;
} transaction;

unsigned int global_id = 1;

void create_bank_account(bank_account **ba,
 int initial_amount) {
 bank_account *nba = (bank_account *)malloc(
 sizeof(bank_account)
);
 if (nba == NULL) {
 /* Handle error */
 }

 nba->balance = initial_amount;
 if (thrd_success
 != mtx_init(&nba->balance_mutex, mtx_plain)) {
 /* Handle error */
 }

 nba->id = global_id++;
 *ba = nba;
}

int deposit(void *ptr) {
 transaction *args = (transaction *)ptr;
 int result = -1;
 mtx_t *first;
 mtx_t *second;

 if (args->from->id == args->to->id) {
 return -1; /* Indicate error */
 }

 /* Ensure proper ordering for locking */
 if (args->from->id < args->to->id) {
 first = &args->from->balance_mutex;
 second = &args->to->balance_mutex;
 } else {
 first = &args->to->balance_mutex;
 second = &args->from->balance_mutex;
 }
 if (thrd_success != mtx_lock(first)) {
 /* Handle error */
 }
 if (thrd_success != mtx_lock(second)) {
 /* Handle error */
 }

 /* Not enough balance to transfer */
 if (args->from->balance >= args->amount) {

Concurrency (CON) - CON35-C. Avoid deadlock by locking in a predefined order

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 430
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 args->from->balance -= args->amount;
 args->to->balance += args->amount;
 result = 0;
 }

 if (thrd_success != mtx_unlock(second)) {
 /* Handle error */
 }
 if (thrd_success != mtx_unlock(first)) {
 /* Handle error */
 }
 free(ptr);
 return result;
}

14.6.3 Risk Assessment
Deadlock prevents multiple threads from progressing, halting program execution. A denial-of-ser-
vice attack is possible if the attacker can create the conditions for deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

CON35-C Low Probable Medium P4 L3

14.6.4 Related Guidelines

CERT Oracle Secure Coding Standard for Java LCK07-J. Avoid deadlock by requesting and
releasing locks in the same order

MITRE CWE CWE-764, Multiple Locks of a Critical Re-
source

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724723
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724723
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/764.html

Concurrency (CON) - CON36-C. Wrap functions that can spuriously wake up in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 431
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.7 CON36-C. Wrap functions that can spuriously wake up in a loop

The cnd_wait() and cnd_timedwait() functions temporarily cede possession of a mutex so
that other threads that may be requesting the mutex can proceed. These functions must always be
called from code that is protected by locking a mutex. The waiting thread resumes execution only
after it has been notified, generally as the result of the invocation of the cnd_signal() or
cnd_broadcast() function invoked by another thread. The cnd_wait() function must be in-
voked from a loop that checks whether a condition predicate holds. A condition predicate is an ex-
pression constructed from the variables of a function that must be true for a thread to be allowed
to continue execution. The thread pauses execution, via cnd_wait(), cnd_timedwait(), or
some other mechanism, and is resumed later, presumably when the condition predicate is true and
the thread is notified.

#include <threads.h>
#include <stdbool.h>

extern bool until_finish(void);
extern mtx_t lock;
extern cnd_t condition;

void func(void) {
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
}

while (until_finish()) { /* Predicate does not hold */
 if (thrd_success != cnd_wait(&condition, &lock)) {
 /* Handle error */
 }
}

/* Resume when condition holds */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

The notification mechanism notifies the waiting thread and allows it to check its condition predi-
cate. The invocation of cnd_broadcast() in another thread cannot precisely determine which
waiting thread will be resumed. Condition predicate statements allow notified threads to deter-
mine whether they should resume upon receiving the notification.

14.7.1 Noncompliant Code Example
This noncompliant code example monitors a linked list and assigns one thread to consume list ele-
ments when the list is nonempty.

Concurrency (CON) - CON36-C. Wrap functions that can spuriously wake up in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 432
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This thread pauses execution using cnd_wait() and resumes when notified, presumably when
the list has elements to be consumed. It is possible for the thread to be notified even if the list is
still empty, perhaps because the notifying thread used cnd_broadcast(), which notifies all
threads. Notification using cnd_broadcast() is frequently preferred over using cnd_sig-
nal(). (See CON38-C. Preserve thread safety and liveness when using condition variables for
more information.)

A condition predicate is typically the negation of the condition expression in the loop. In this non-
compliant code example, the condition predicate for removing an element from a linked list is
(list->next != NULL), whereas the condition expression for the while loop condition is
(list->next == NULL).

This noncompliant code example nests the cnd_wait() function inside an if block and conse-
quently fails to check the condition predicate after the notification is received. If the notification
was spurious or malicious, the thread would wake up prematurely.

#include <stddef.h>
#include <threads.h>

struct node_t {
 void *node;
 struct node_t *next;
};

struct node_t list;
static mtx_t lock;
static cnd_t condition;

void consume_list_element(void) {
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }

 if (list.next == NULL) {
 if (thrd_success != cnd_wait(&condition, &lock)) {
 /* Handle error */
 }
 }

 /* Proceed when condition holds */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

Concurrency (CON) - CON36-C. Wrap functions that can spuriously wake up in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 433
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.7.2 Compliant Solution
This compliant solution calls the cnd_wait() function from within a while loop to check the
condition both before and after the call to cnd_wait():

#include <stddef.h>
#include <threads.h>

struct node_t {
 void *node;
 struct node_t *next;
};

struct node_t list;
static mtx_t lock;
static cnd_t condition;

void consume_list_element(void) {
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }

 while (list.next == NULL) {
 if (thrd_success != cnd_wait(&condition, &lock)) {
 /* Handle error */
 }
 }

 /* Proceed when condition holds */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

14.7.3 Risk Assessment
Failure to enclose calls to the cnd_wait() or cnd_timedwait() functions inside a while loop
can lead to indefinite blocking and denial of service (DoS).

Rule Severity Likelihood Remediation Cost Priority Level

CON36-C Low Unlikely Medium P2 L3

14.7.4 Related Guidelines

CERT Oracle Secure Coding Standard for Java THI03-J. Always invoke wait() and await()
methods inside a loop

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940661
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940661

Concurrency (CON) - CON36-C. Wrap functions that can spuriously wake up in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 434
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.7.5 Bibliography

[ISO/IEC 9899:2011] 7.17.7.4, “The atomic_compare_exchange
Generic Functions”

[Lea 2000] 1.3.2, “Liveness”
3.2.2, “Monitor Mechanics”

Concurrency (CON) - CON37-C. Do not call signal() in a multithreaded program

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 435
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.8 CON37-C. Do not call signal() in a multithreaded program

Calling the signal() function in a multithreaded program is undefined behavior. (See undefined
behavior 135.)

14.8.1 Noncompliant Code Example
This noncompliant code example invokes the signal() function from a multithreaded program:

#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGUSR1, handler); /* Undefined behavior */
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

NOTE: The SIGUSR1 signal value is not defined in the C Standard; consequently, this is not a C-
compliant code example.

14.8.2 Compliant Solution
This compliant solution uses an object of type atomic_bool to indicate when the child thread
should terminate its loop:

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>

Concurrency (CON) - CON37-C. Do not call signal() in a multithreaded program

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 436
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

14.8.3 Exceptions
CON37-C-EX1: Implementations such as POSIX that provide defined behavior when multi-
threaded programs use custom signal handlers are exempt from this rule [IEEE Std 1003.1-2013].

14.8.4 Risk Assessment
Mixing signals and threads causes undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

CON37-C Low Probable Low P6 L2

14.8.5 Bibliography

[IEEE Std 1003.1-2013] XSH 2.9.1, “Thread Safety”

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 437
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.9 CON38-C. Preserve thread safety and liveness when using
condition variables

Both thread safety and liveness are concerns when using condition variables. The thread-safety
property requires that all objects maintain consistent states in a multithreaded environment [Lea
2000]. The liveness property requires that every operation or function invocation execute to com-
pletion without interruption; for example, there is no deadlock.

Condition variables must be used inside a while loop. (See CON36-C. Wrap functions that can
spuriously wake up in a loop for more information.) To guarantee liveness, programs must test the
while loop condition before invoking the cnd_wait() function. This early test checks whether
another thread has already satisfied the condition predicate and has sent a notification. Invoking
the cnd_wait() function after the notification has been sent results in indefinite blocking.

To guarantee thread safety, programs must test the while loop condition after returning from the
cnd_wait() function. When a given thread invokes the cnd_wait() function, it will attempt to
block until its condition variable is signaled by a call to cnd_broadcast() or to cnd_sig-
nal().

The cnd_signal() function unblocks one of the threads that are blocked on the specified condi-
tion variable at the time of the call. If multiple threads are waiting on the same condition variable,
the scheduler can select any of those threads to be awakened (assuming that all threads have the
same priority level). The cnd_broadcast() function unblocks all of the threads that are blocked
on the specified condition variable at the time of the call. The order in which threads execute fol-
lowing a call to cnd_broadcast() is unspecified. Consequently, an unrelated thread could start
executing, discover that its condition predicate is satisfied, and resume execution even though it
was supposed to remain dormant. For these reasons, threads must check the condition predicate
after the cnd_wait() function returns. A while loop is the best choice for checking the condi-
tion predicate both before and after invoking cnd_wait().

The use of cnd_signal() is safe if each thread uses a unique condition variable. If multiple
threads share a condition variable, the use of cnd_signal() is safe only if the following condi-
tions are met:
• All threads must perform the same set of operations after waking up, which means that any

thread can be selected to wake up and resume for a single invocation of cnd_signal().
• Only one thread is required to wake upon receiving the signal.

The cnd_broadcast() function can be used to unblock all of the threads that are blocked on the
specified condition variable if the use of cnd_signal() is unsafe.

14.9.1 Noncompliant Code Example (cnd_signal())
This noncompliant code example uses five threads that are intended to execute sequentially ac-
cording to the step level assigned to each thread when it is created (serialized processing). The
current_step variable holds the current step level and is incremented when the respective

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 438
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

thread completes. Finally, another thread is signaled so that the next step can be executed. Each
thread waits until its step level is ready, and the cnd_wait() function call is wrapped inside a
while loop, in compliance with CON36-C. Wrap functions that can spuriously wake up in a loop.

#include <stdio.h>
#include <threads.h>

enum { NTHREADS = 5 };

mtx_t mutex;
cnd_t cond;

int run_step(void *t) {
 static int current_step = 0;
 size_t my_step = *(size_t *)t;

 if (thrd_success != mtx_lock(&mutex)) {
 /* Handle error */
 }

 printf("Thread %zu has the lock\n", my_step);
 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);

 if (thrd_success != cnd_wait(&cond, &mutex)) {
 /* Handle error */
 }

 printf("Thread %zu woke up\n", my_step);
 }
 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);
 current_step++;

 /* Signal awaiting task */
 if (thrd_success != cnd_signal(&cond)) {
 /* Handle error */
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 }
 return 0;
}
int main(void) {
 thrd_t threads[NTHREADS];
 size_t step[NTHREADS];

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 439
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 if (thrd_success != mtx_init(&mutex, mtx_plain)) {
 /* Handle error */
 }

 if (thrd_success != cnd_init(&cond)) {
 /* Handle error */
 }

 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 step[i] = i;

 if (thrd_success != thrd_create(&threads[i], run_step,
 &step[i])) {
 /* Handle error */
 }
}

 /* Wait for all threads to complete */
 for (size_t i = NTHREADS; i != 0; --i) {
 if (thrd_success != thrd_join(threads[i-1], NULL)) {
 /* Handle error */
 }
 }

 mtx_destroy(&mutex);
 cnd_destroy(&cond);
 return 0;
}

In this example, all threads share a condition variable. Each thread has its own distinct condition
predicate because each thread requires current_step to have a different value before proceed-
ing. When the condition variable is signaled, any of the waiting threads can wake up.

The following table illustrates a possible scenario in which the liveness property is violated. If, by
chance, the notified thread is not the thread with the next step value, that thread will wait again.
No additional notifications can occur, and eventually the pool of available threads will be ex-
hausted.

Deadlock: Out-of-Sequence Step Value
Time Thread #

(my_step)
current_step Action

0 3 0 Thread 3 executes first time: predicate is FALSE -
> wait()

1 2 0 Thread 2 executes first time: predicate is FALSE -
> wait()

2 4 0 Thread 4 executes first time: predicate is FALSE -
> wait()

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 440
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Time Thread #
(my_step)

current_step Action

3 0 0 Thread 0 executes first time: predicate is TRUE ->
current_step++; cnd_signal()

4 1 1 Thread 1 executes first time: predicate is TRUE ->
current_step++; cnd_signal()

5 3 2 Thread 3 wakes up (scheduler choice): predicate is
FALSE -> wait()

6 — — Thread exhaustion! No more threads to run, and a
conditional variable signal is needed to wake up the
others

This noncompliant code example violates the liveness property.

14.9.2 Compliant Solution (cnd_broadcast())
This compliant solution uses the cnd_broadcast() function to signal all waiting threads instead
of a single random thread. Only the run_step() thread code from the noncompliant code exam-
ple is modified, as follows:

#include <stdio.h>
#include <threads.h>

mtx_t mutex;
cnd_t cond;
int run_step(void *t) {
 static size_t current_step = 0;
 size_t my_step = *(size_t *)t;

 if (thrd_success != mtx_lock(&mutex)) {
 /* Handle error */
 }

 printf("Thread %zu has the lock\n", my_step);

 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);

 if (thrd_success != cnd_wait(&cond, &mutex)) {
 /* Handle error */
 }

 printf("Thread %zu woke up\n", my_step);
 }

 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);

 current_step++;

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 441
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Signal ALL waiting tasks */
 if (thrd_success != cnd_broadcast(&cond)) {
 /* Handle error */
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 }
 return 0;
}

Awakening all threads solves and guarantees the liveness property because each thread will exe-
cute its condition predicate test, and exactly one will succeed and continue execution.

14.9.3 Compliant Solution (Using cnd_signal() with a Unique Condition
Variable per Thread)

Another compliant solution is to use a unique condition variable for each thread (all associated
with the same mutex). In this case, cnd_signal() wakes up only the thread that is waiting on it.
This solution is more efficient than using cnd_broadcast() because only the desired thread is
awakened.

The condition predicate of the signaled thread must be true; otherwise, a deadlock will occur.

#include <stdio.h>
#include <threads.h>

enum { NTHREADS = 5 };

mtx_t mutex;
cnd_t cond[NTHREADS];

int run_step(void *t) {
 static size_t current_step = 0;
 size_t my_step = *(size_t *)t;

 if (thrd_success != mtx_lock(&mutex)) {
 /* Handle error */
 }

 printf("Thread %zu has the lock\n", my_step);

 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);

 if (thrd_success != cnd_wait(&cond[my_step], &mutex)) {
 /* Handle error */

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 442
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }

 printf("Thread %zu woke up\n", my_step);
 }

 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);

 current_step++;

 /* Signal next step thread */
 if ((my_step + 1) < NTHREADS) {
 if (thrd_success != cnd_signal(&cond[my_step + 1])) {
 /* Handle error */
 }
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 }
 return 0;
}

int main(void) {
 thrd_t threads[NTHREADS];
 size_t step[NTHREADS];

 if (thrd_success != mtx_init(&mutex, mtx_plain)) {
 /* Handle error */
 }

 for (size_t i = 0; i< NTHREADS; ++i) {
 if (thrd_success != cnd_init(&cond[i])) {
 /* Handle error */
 }
 }

 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 step[i] = i;
 if (thrd_success != thrd_create(&threads[i], run_step,
 &step[i])) {
 /* Handle error */
 }
 }

 /* Wait for all threads to complete */
 for (size_t i = NTHREADS; i != 0; --i) {
 if (thrd_success != thrd_join(threads[i-1], NULL)) {

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 443
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /* Handle error */
 }
 }

 mtx_destroy(&mutex);

 for (size_t i = 0; i < NTHREADS; ++i) {
 cnd_destroy(&cond[i]);
 }
 return 0;
}

14.9.4 Compliant Solution (Windows, Condition Variables)
This compliant solution uses a CONDITION_VARIABLE object, available on Microsoft Windows
(Vista and later):

#include <Windows.h>
#include <stdio.h>

CRITICAL_SECTION lock;
CONDITION_VARIABLE cond;

DWORD WINAPI run_step(LPVOID t) {
 static size_t current_step = 0;
 size_t my_step = (size_t)t;

 EnterCriticalSection(&lock);
 printf("Thread %zu has the lock\n", my_step);

 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);

 if (!SleepConditionVariableCS(&cond, &lock, INFINITE)) {
 /* Handle error */
 }

 printf("Thread %zu woke up\n", my_step);
 }

 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);

 current_step++;

 LeaveCriticalSection(&lock);

 /* Signal ALL waiting tasks */
 WakeAllConditionVariable(&cond);

Concurrency (CON) - CON38-C. Preserve thread safety and liveness when using condition variables

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 444
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 printf("Thread %zu is exiting...\n", my_step);
 return 0;
}

enum { NTHREADS = 5 };

int main(void) {
 HANDLE threads[NTHREADS];

 InitializeCriticalSection(&lock);
 InitializeConditionVariable(&cond);

 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 threads[i] = CreateThread(NULL, 0, run_step, (LPVOID)i, 0,
NULL);
 }

 /* Wait for all threads to complete */
 WaitForMultipleObjects(NTHREADS, threads, TRUE, INFINITE);

 DeleteCriticalSection(&lock);

 return 0;
}

14.9.5 Risk Assessment
Failing to preserve the thread safety and liveness of a program when using condition variables can
lead to indefinite blocking and denial of service (DoS).

Rule Severity Likelihood Remediation Cost Priority Level

CON38-C Low Unlikely Medium P2 L3

14.9.6 Related Guidelines

CERT Oracle Secure Coding Standard for Java THI02-J. Notify all waiting threads rather than
a single thread

14.9.7 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces,
pthread_cond_broadcast
XSH, System Interfaces,
pthread_cond_signal

[Lea 2000]

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19234874
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19234874

Concurrency (CON) - CON39-C. Do not join or detach a thread that was previously joined or detached

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 445
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.10 CON39-C. Do not join or detach a thread that was previously
joined or detached

The C Standard, 7.26.5.6 [ISO/IEC 9899:2011], states that a thread shall not be joined once it was
previously joined or detached. Similarly, subclause 7.26.5.3 states that a thread shall not be de-
tached once it was previously joined or detached. Violating either of these subclauses results in
undefined behavior.

14.10.1 Noncompliant Code Example
This noncompliant code example detaches a thread that is later joined.

#include <stddef.h>
#include <threads.h>

int thread_func(void *arg) {
 /* Do work */
 thrd_detach(thrd_current());
 return 0;
}

int main(void) {
 thrd_t t;

 if (thrd_success != thrd_create(&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join(t, 0)) {
 /* Handle error */
 return 0;
 }
 return 0;
}

14.10.2 Compliant Solution
This compliant solution does not detach the thread. Its resources are released upon successfully
joining with the main thread:

#include <stddef.h>
#include <threads.h>

int thread_func(void *arg) {
 /* Do work */
 return 0;
}

Concurrency (CON) - CON39-C. Do not join or detach a thread that was previously joined or detached

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 446
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

int main(void) {
 thrd_t t;

 if (thrd_success != thrd_create(&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join(t, 0)) {
 /* Handle error */
 return 0;
 }
 return 0;
}

14.10.3 Risk Assessment
Joining or detaching a previously joined or detached thread is undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

CON39-C Low Likely Medium P6 L2

14.10.4 Bibliography

[ISO/IEC 9899:2011] Subclause 7.26.5.3, “The thrd_detach Func-
tion”
Subclause 7.26.5.6, “The thrd_join Func-
tion”

Concurrency (CON) - CON40-C. Do not refer to an atomic variable twice in an expression

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 447
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.11 CON40-C. Do not refer to an atomic variable twice in an
expression

A consistent locking policy guarantees that multiple threads cannot simultaneously access or
modify shared data. Atomic variables eliminate the need for locks by guaranteeing thread safety
when certain operations are performed on them. The thread-safe operations on atomic variables
are specified in the C Standard, subclauses 7.17.7 and 7.17.8 [ISO/IEC 9899:2011]. While atomic
operations can be combined, combined operations do not provide the thread safety provided by
individual atomic operations.

Every time an atomic variable appears on the left side of an assignment operator, including a com-
pound assignment operator such as *=, an atomic write is performed on the variable. The use of
the increment (++) or decrement (--) operators on an atomic variable constitutes an atomic
read-and-write operation and is consequently thread-safe. Any reference of an atomic variable an-
ywhere else in an expression indicates a distinct atomic read on the variable.

If the same atomic variable appears twice in an expression, then two atomic reads, or an atomic
read and an atomic write, are required. Such a pair of atomic operations is not thread-safe, as an-
other thread can modify the atomic variable between the two operations. Consequently, an atomic
variable must not be referenced twice in the same expression.

14.11.1 Noncompliant Code Example (atomic_bool)
This noncompliant code example declares a shared atomic_boolflag variable and provides a
toggle_flag() method that negates the current value of flag:

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void) {
 atomic_init(&flag, false);
}

void toggle_flag(void) {
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void) {
 return atomic_load(&flag);
}

Execution of this code may result in a data race because the value of flag is read, negated, and
written back. This occurs even though the read and write are both atomic.

Concurrency (CON) - CON40-C. Do not refer to an atomic variable twice in an expression

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 448
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Consider, for example, two threads that call toggle_flag(). The expected effect of toggling
flag twice is that it is restored to its original value. However, the scenario in the following table
leaves flag in the incorrect state.

toggle_flag() without Compare-and-Exchange
Time flag Thread Action

1 true t1 Reads the current value
of flag, true, into a
cache

2 true t2 Reads the current value
of flag, (still) true,
into a different cache

3 true t1 Toggles the temporary
variable in the cache to
false

4 true t2 Toggles the temporary
variable in the different
cache to false

5 false t1 Writes the cache varia-
ble’s value to flag

6 false t2 Writes the different cache
variable’s value to flag

As a result, the effect of the call by t2 is not reflected in flag; the program behaves as if tog-
gle_flag() was called only once, not twice.

14.11.2 Compliant Solution (atomic_compare_exchange_weak())
This compliant solution uses a compare-and-exchange to guarantee that the correct value is stored
in flag. All updates are visible to other threads. The call to atomic_compare_ex-
change_weak() is in a loop in conformance with CON41-C. Wrap functions that can fail spuri-
ously in a loop.

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void) {
 atomic_init(&flag, false);
}

void toggle_flag(void) {
 bool old_flag = atomic_load(&flag);
 bool new_flag;
 do {
 new_flag = !old_flag;
 } while (!atomic_compare_exchange_weak(&flag, &old_flag,

Concurrency (CON) - CON40-C. Do not refer to an atomic variable twice in an expression

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 449
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

new_flag));
}

bool get_flag(void) {
 return atomic_load(&flag);
}

An alternative solution is to use the atomic_flag data type for managing Boolean values atomi-
cally. However, atomic_flag does not support a toggle operation.

14.11.3 Compliant Solution (Compound Assignment)
This compliant solution uses the ^= assignment operation to toggle flag. This operation is guar-
anteed to be atomic, according to the C Standard, 6.5.16.2, paragraph 3. This operation performs a
bitwise-exclusive-or between its arguments, but for Boolean arguments, this is equivalent to nega-
tion.

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void) {
 flag ^= 1;
}

bool get_flag(void) {
 return flag;
}

An alternative solution is to use a mutex to protect the atomic operation, but this solution loses the
performance benefits of atomic variables.

14.11.4 Noncompliant Code Example
This noncompliant code example takes an atomic global variable n and computes n + (n - 1)
+ (n - 2) + ... + 1, using the formula n * (n + 1) / 2:

#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

int compute_sum(void) {
 return n * (n + 1) / 2;
}

The value of n may change between the two atomic reads of n in the expression, yielding an in-
correct result.

Concurrency (CON) - CON40-C. Do not refer to an atomic variable twice in an expression

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 450
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.11.5 Compliant Solution
This compliant solution passes the atomic variable as a function parameter, forcing the variable to
be copied and guaranteeing a correct result:

#include <stdatomic.h>

int compute_sum(atomic_int n) {
 return n * (n + 1) / 2;
}

14.11.6 Risk Assessment
When operations on atomic variables are assumed to be atomic, but are not atomic, surprising data
races can occur, leading to corrupted data and invalid control flow.

Rule Severity Likelihood Remediation Cost Priority Level

CON40-C Medium Probable Medium P8 L2

14.11.7 Related Guidelines

MITRE CWE CWE-366, Race Condition within a Thread
CWE-413, Improper Resource Locking
CWE-567, Unsynchronized Access to Shared
Data in a Multithreaded Context
CWE-667, Improper Locking

14.11.8 Bibliography

[ISO/IEC 9899:2011] 6.5.16.2, “Compound Assignment”
7.17, “Atomics”

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/413.html
http://cwe.mitre.org/data/definitions/567.html
http://cwe.mitre.org/data/definitions/667.html

Concurrency (CON) - CON41-C. Wrap functions that can fail spuriously in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 451
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.12 CON41-C. Wrap functions that can fail spuriously in a loop

Functions that can fail spuriously should be wrapped in a loop. The atomic_compare_ex-
change_weak() and atomic_compare_exchange_weak_explicit() functions both attempt
to set an atomic variable to a new value but only if it currently possesses a known old value. Un-
like the related functions atomic_compare_exchange_strong() and atomic_compare_ex-
change_strong_explicit(), these functions are permitted to fail spuriously. This makes
these functions faster on some platforms—for example, on architectures that implement compare-
and-exchange using load-linked/store-conditional instructions, such as Alpha, ARM, MIPS, and
PowerPC. The C Standard, 7.17.7.4, paragraph 4 [ISO/IEC 9899:2011], describes this behavior:

A weak compare-and-exchange operation may fail spuriously. That is, even when the
contents of memory referred to by expected and object are equal, it may return zero
and store back to expected the same memory contents that were originally there.

14.12.1 Noncompliant Code Example
In this noncompliant code example, reorganize_data_structure() is to be used as an argu-
ment to thrd_create(). After reorganizing, the function attempts to replace the head pointer
so that it points to the new version. If no other thread has changed the head pointer since it was
originally loaded, reorganize_data_structure() is intended to exit the thread with a result
of true, indicating success. Otherwise, the new reorganization attempt is discarded and the
thread is exited with a result of false. However, atomic_compare_exchange_weak() may
fail even when the head pointer has not changed. Therefore, reorganize_data_structure()
may perform the work and then discard it unnecessarily.

#include <stdatomic.h>
#include <stdbool.h>

struct data {
 struct data *next;
 /* ... */
};

extern void cleanup_data_structure(struct data *head);

int reorganize_data_structure(void *thread_arg) {
 struct data *_Atomic *ptr_to_head = thread_arg;
 struct data *old_head = atomic_load(ptr_to_head);
 struct data *new_head;
 bool success;

 /* ... Reorganize the data structure ... */

 success = atomic_compare_exchange_weak(ptr_to_head,
 &old_head, new_head);
 if (!success) {
 cleanup_data_structure(new_head);

Concurrency (CON) - CON41-C. Wrap functions that can fail spuriously in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 452
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
 return success; /* Exit the thread */
}

14.12.2 Compliant Solution (atomic_compare_exchange_weak())
To recover from spurious failures, a loop must be used. However, atomic_compare_ex-
change_weak() might fail because the head pointer changed, or the failure may be spurious. In
either case, the thread must perform the work repeatedly until the compare-and-exchange suc-
ceeds, as shown in this compliant solution:

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>

struct data {
 struct data *next;
 /* ... */
};

extern void cleanup_data_structure(struct data *head);

int reorganize_data_structure(void *thread_arg) {
 struct data *_Atomic *ptr_to_head = thread_arg;
 struct data *old_head = atomic_load(ptr_to_head);
 struct data *new_head = NULL;
 struct data *saved_old_head;
 bool success;

 do {
 if (new_head != NULL) {
 cleanup_data_structure(new_head);
 }
 saved_old_head = old_head;

 /* ... Reorganize the data structure ... */

 } while (!(success = atomic_compare_exchange_weak(
 ptr_to_head, &old_head, new_head
)) && old_head == saved_old_head);
 return success; /* Exit the thread */
}

This loop could also be part of a larger control flow; for example, the thread from the noncompli-
ant code example could be retried if it returns false.

Concurrency (CON) - CON41-C. Wrap functions that can fail spuriously in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 453
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

14.12.3 Compliant Solution (atomic_compare_exchange_strong())
When a weak compare-and-exchange would require a loop and a strong one would not, the strong
one is preferable, as in this compliant solution:

#include <stdatomic.h>
#include <stdbool.h>

struct data {
 struct data *next;
 /* ... */
};

extern void cleanup_data_structure(struct data *head);

int reorganize_data_structure(void *thread_arg) {
 struct data *_Atomic *ptr_to_head = thread_arg;
 struct data *old_head = atomic_load(ptr_to_head);
 struct data *new_head;
 bool success;

 /* ... Reorganize the data structure ... */

 success = atomic_compare_exchange_strong(
 ptr_to_head, &old_head, new_head
);
 if (!success) {
 cleanup_data_structure(new_head);
 }
 return success; /* Exit the thread */
}

14.12.4 Risk Assessment
Failing to wrap the atomic_compare_exchange_weak() and atomic_compare_ex-
change_weak_explicit() functions in a loop can result in incorrect values and control flow.

Rule Severity Likelihood Remediation Cost Priority Level

CON41-C Low Unlikely Medium P2 L3

14.12.5 Related Guidelines

CERT Oracle Secure Coding Standard for Java THI03-J. Always invoke wait() and await()
methods inside a loop

14.12.6 Bibliography

[ISO/IEC 9899:2011] 7.17.7.4, “The atomic_compare_exchange
Generic Functions”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940661
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18940661

Concurrency (CON) - CON41-C. Wrap functions that can fail spuriously in a loop

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 454
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Lea 2000] 1.3.2, “Liveness”
3.2.2, “Monitor Mechanics”

Miscellaneous (MSC) - MSC30-C. Do not use the rand() function for generating pseudorandom numbers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 455
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15 Miscellaneous (MSC)

15.1 MSC30-C. Do not use the rand() function for generating
pseudorandom numbers

Pseudorandom number generators use mathematical algorithms to produce a sequence of numbers
with good statistical properties, but the numbers produced are not genuinely random.

The C Standard rand() function makes no guarantees as to the quality of the random sequence
produced. The numbers generated by some implementations of rand() have a comparatively
short cycle and the numbers can be predictable. Applications that have strong pseudorandom
number requirements must use a generator that is known to be sufficient for their needs.

15.1.1 Noncompliant Code Example
The following noncompliant code generates an ID with a numeric part produced by calling the
rand() function. The IDs produced are predictable and have limited randomness.

#include <stdio.h>
#include <stdlib.h>

enum { len = 12 };

void func(void) {
 /*
 * id will hold the ID, starting with the characters
 * "ID" followed by a random integer.
 */
 char id[len];
 int r;
 int num;
 /* ... */
 r = rand(); /* Generate a random integer */
 num = snprintf(id, len, "ID%-d", r); /* Generate the ID */
 /* ... */
}

15.1.2 Compliant Solution (POSIX)
This compliant solution replaces the rand() function with the POSIX random() function:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

enum { len = 12 };

Miscellaneous (MSC) - MSC30-C. Do not use the rand() function for generating pseudorandom numbers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 456
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void func(void) {
 /*
 * id will hold the ID, starting with the characters
 * "ID" followed by a random integer.
 */
 char id[len];
 int r;
 int num;
 /* ... */
 struct timespec ts;
 if (timespec_get(&ts, TIME_UTC) == 0) {
 /* Handle error */
 }
 srandom(ts.tv_nsec ^ ts.tv_sec); /* Seed the PRNG */
 /* ... */
 r = random(); /* Generate a random integer */
 num = snprintf(id, len, "ID%-d", r); /* Generate the ID */
 /* ... */
}

The POSIX random() function is a better pseudorandom number generator. Although on some
platforms the low dozen bits generated by rand() go through a cyclic pattern, all the bits gener-
ated by random() are usable. The rand48 family of functions provides another alternative for
pseudorandom numbers.

Although not specified by POSIX, arc4random() is another possibility for systems that support
it. The arc4random(3) manual page [OpenBSD] states

... provides higher quality of data than those described in rand(3), random(3), and
drand48(3).

To achieve the best random numbers possible, an implementation-specific function must be used.
When unpredictability is crucial and speed is not an issue, as in the creation of strong crypto-
graphic keys, use a true entropy source, such as /dev/random, or a hardware device capable of
generating random numbers. The /dev/random device can block for a long time if there are not
enough events going on to generate sufficient entropy.

15.1.3 Compliant Solution (Windows)
On Windows platforms, the CryptGenRandom() function can be used to generate cryptograph-
ically strong random numbers. The exact details of the implementation are unknown, including,
for example, what source of entropy CryptGenRandom() uses. The Microsoft Developer Net-
work CryptGenRandom() reference [MSDN] states

http://www.openbsd.org/cgi-bin/man.cgi?query=arc4random
http://msdn2.microsoft.com/en-us/library/aa379942.aspx

Miscellaneous (MSC) - MSC30-C. Do not use the rand() function for generating pseudorandom numbers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 457
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

If an application has access to a good random source, it can fill the pbBuffer buffer
with some random data before calling CryptGenRandom(). The CSP [cryptographic ser-
vice provider] then uses this data to further randomize its internal seed. It is acceptable
to omit the step of initializing the pbBuffer buffer before calling CryptGenRandom().

#include <Windows.h>
#include <wincrypt.h>
#include <stdio.h>

void func(void) {
 HCRYPTPROV prov;
 if (CryptAcquireContext(&prov, NULL, NULL,
 PROV_RSA_FULL, 0)) {
 long int li = 0;
 if (CryptGenRandom(prov, sizeof(li), (BYTE *)&li)) {
 printf("Random number: %ld\n", li);
 } else {
 /* Handle error */
 }
 if (!CryptReleaseContext(prov, 0)) {
 /* Handle error */
 }
 } else {
 /* Handle error */
 }
}

15.1.4 Risk Assessment
The use of the rand() function can result in predictable random numbers.

Rule Severity Likelihood Remediation Cost Priority Level

MSC30-C Medium Unlikely Low P6 L2

15.1.5 Related Guidelines
SEI CERT C++ Coding Standard MSC50-CPP. Do not use std::rand() for gener-

ating pseudorandom numbers
CERT Oracle Secure Coding Standard for Java MSC02-J. Generate strong random numbers
MITRE CWE CWE-327, Use of a Broken or Risky Crypto-

graphic Algorithm
CWE-330, Use of Insufficiently Random Val-
ues
CWE-331, Insufficient Entropy

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087385
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20087385
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4179
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23724440
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/331.html

Miscellaneous (MSC) - MSC30-C. Do not use the rand() function for generating pseudorandom numbers

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 458
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

CWE-338, Use of Cryptographically Weak
Pseudo-Random Number Generator (PRNG)

15.1.6 Bibliography

[MSDN] “CryptGenRandom Function“
[OpenBSD] arc4random()

https://cwe.mitre.org/data/definitions/338.html
http://msdn.microsoft.com/en-us/library/aa379942.aspx
http://www.openbsd.org/cgi-bin/man.cgi?query=arc4random

Miscellaneous (MSC) - MSC32-C. Properly seed pseudorandom number generators

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 459
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.2 MSC32-C. Properly seed pseudorandom number generators

A pseudorandom number generator (PRNG) is a deterministic algorithm capable of generating se-
quences of numbers that approximate the properties of random numbers. Each sequence is com-
pletely determined by the initial state of the PRNG and the algorithm for changing the state. Most
PRNGs make it possible to set the initial state, also called the seed state. Setting the initial state is
called seeding the PRNG.

Calling a PRNG in the same initial state, either without seeding it explicitly or by seeding it with
the same value, results in generating the same sequence of random numbers in different runs of
the program. Consider a PRNG function that is seeded with some initial seed value and is consec-
utively called to produce a sequence of random numbers, S. If the PRNG is subsequently seeded
with the same initial seed value, then it will generate the same sequence S.

As a result, after the first run of an improperly seeded PRNG, an attacker can predict the sequence
of random numbers that will be generated in the future runs. Improperly seeding or failing to seed
the PRNG can lead to vulnerabilities, especially in security protocols.

The solution is to ensure that the PRNG is always properly seeded. A properly seeded PRNG will
generate a different sequence of random numbers each time it is run.

Not all random number generators can be seeded. True random number generators that rely on
hardware to produce completely unpredictable results do not need to be and cannot be seeded.
Some high-quality PRNGs, such as the /dev/random device on some UNIX systems, also can-
not be seeded. This rule applies only to algorithmic pseudorandom number generators that can be
seeded.

15.2.1 Noncompliant Code Example (POSIX)
This noncompliant code example generates a sequence of 10 pseudorandom numbers using the
random() function. When random() is not seeded, it behaves like rand(), producing the same
sequence of random numbers each time any program that uses it is run.

#include <stdio.h>
#include <stdlib.h>

void func(void) {
 for (unsigned int i = 0; i < 10; ++i) {
 /* Always generates the same sequence */
 printf("%ld, ", random());
 }
}

Miscellaneous (MSC) - MSC32-C. Properly seed pseudorandom number generators

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 460
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The output is as follows:

1st run: 1804289383, 846930886, 1681692777, 1714636915,
1957747793, 424238335, 719885386, 1649760492,
596516649, 1189641421,

2nd run: 1804289383, 846930886, 1681692777, 1714636915,
1957747793, 424238335, 719885386, 1649760492,
596516649, 1189641421,

...

nth run: 1804289383, 846930886, 1681692777, 1714636915,
1957747793, 424238335, 719885386, 1649760492,
596516649, 1189641421,

15.2.2 Compliant Solution (POSIX)
Call srandom() before invoking random() to seed the random sequence generated by ran-
dom(). This compliant solution produces different random number sequences each time the func-
tion is called, depending on the resolution of the system clock:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void func(void) {
 struct timespec ts;
 if (timespec_get(&ts, TIME_UTC) == 0) {
 /* Handle error */
 } else {
 srandom(ts.tv_nsec ^ ts.tv_sec);
 for (unsigned int i = 0; i < 10; ++i) {
 /* Generates different sequences at different runs */
 printf("%ld, ", random());
 }
 }
}

Miscellaneous (MSC) - MSC32-C. Properly seed pseudorandom number generators

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 461
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The output is as follows:

1st run: 198682410, 2076262355, 910374899, 428635843,
2084827500, 1558698420, 4459146, 733695321,
2044378618, 1649046624,

2nd run: 1127071427, 252907983, 1358798372, 2101446505,
1514711759, 229790273, 954268511, 1116446419,
368192457,
1297948050,

3rd run: 2052868434, 1645663878, 731874735, 1624006793,
938447420, 1046134947, 1901136083, 418123888,
836428296,
2017467418,

This output may not be sufficiently random for concurrent execution, which may lead to corre-
lated generated series in different threads. Depending on the application and the desired level of
security, a programmer may choose alternative ways to seed PRNGs. In general, hardware is more
capable than software of generating real random numbers (for example, by sampling the thermal
noise of a diode).

15.2.3 Compliant Solution (Windows)
The CryptGenRandom() function does not run the risk of not being properly seeded because its
arguments serve as seeders:

#include <Windows.h>
#include <wincrypt.h>
#include <stdio.h>

void func(void) {
 HCRYPTPROV hCryptProv;
 long rand_buf;
 /* Example of instantiating the CSP */
 if (CryptAcquireContext(&hCryptProv, NULL, NULL,
 PROV_RSA_FULL, 0)) {
 printf("CryptAcquireContext succeeded.\n");
 } else {
 printf("Error during CryptAcquireContext!\n");
 }

 for (unsigned int i = 0; i < 10; ++i) {
 if (!CryptGenRandom(hCryptProv, sizeof(rand_buf),
 (BYTE *)&rand_buf)) {
 printf("Error\n");
 } else {
 printf("%ld, ", rand_buf);
 }

http://msdn.microsoft.com/en-us/library/aa379942.aspx

Miscellaneous (MSC) - MSC32-C. Properly seed pseudorandom number generators

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 462
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 }
}

The output is as follows:

1st run: -1597837311, 906130682, -1308031886, 1048837407, -
931041900, -658114613, -1709220953, -1019697289,
1802206541,406505841,

2nd run: 885904119, -687379556, -1782296854, 1443701916, -
624291047, 2049692692, -990451563, -142307804,
1257079211,897185104,

3rd run: 190598304, -1537409464, 1594174739, -424401916, -
1975153474, 826912927, 1705549595, -1515331215,
474951399, 1982500583,

15.2.4 Risk Assessment
Rule Severity Likelihood Remediation Cost Priority Level

MSC32-C Medium Likely Low P18 L1

15.2.5 Related Guidelines

CERT C Secure Coding Standard MSC30-C. Do not use the rand() function for
generating pseudorandom numbers

SEI CERT C++ Coding Standard MSC51-CPP. Ensure your random number
generator is properly seeded

MITRE CWE CWE-327, Use of a Broken or Risky Crypto-
graphic Algorithm
CWE-330, Use of Insufficiently Random Val-
ues
CWE-331, Insufficient Entropy
CWE-338, Use of Cryptographically Weak
Pseudo-Random Number Generator (PRNG)

15.2.6 Bibliography

[MSDN] “CryptGenRandom Function“

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23134345
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=23134345
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/331.html
https://cwe.mitre.org/data/definitions/338.html
http://msdn.microsoft.com/en-us/library/aa379942.aspx

Miscellaneous (MSC) - MSC33-C. Do not pass invalid data to the asctime() function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 463
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.3 MSC33-C. Do not pass invalid data to the asctime() function

The C Standard, 7.27.3.1 [ISO/IEC 9899:2011], provides the following sample implementation of
the asctime() function:

char *asctime(const struct tm *timeptr) {
 static const char wday_name[7][3] = {
 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
 };
 static const char mon_name[12][3] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 };
 static char result[26];
 sprintf(
 result,
 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
 wday_name[timeptr->tm_wday],
 mon_name[timeptr->tm_mon],
 timeptr->tm_mday, timeptr->tm_hour,
 timeptr->tm_min, timeptr->tm_sec,
 1900 + timeptr->tm_year
);
 return result;
}

This function is supposed to output a character string of 26 characters at most, including the ter-
minating null character. If we count the length indicated by the format directives, we arrive at 25.
Taking into account the terminating null character, the array size of the string appears sufficient.

However, this implementation assumes that the values of the struct tm data are within normal
ranges and does nothing to enforce the range limit. If any of the values print more characters than
expected, the sprintf() function may overflow the result array. For example, if tm_year has
the value 12345, then 27 characters (including the terminating null character) are printed, result-
ing in a buffer overflow.

The POSIX® Base Specifications [IEEE Std 1003.1:2013] says the following about the
asctime() and asctime_r() functions:

These functions are included only for compatibility with older implementations. They
have undefined behavior if the resulting string would be too long, so the use of these
functions should be discouraged. On implementations that do not detect output string
length overflow, it is possible to overflow the output buffers in such a way as to cause
applications to fail, or possible system security violations. Also, these functions do not
support localized date and time formats. To avoid these problems, applications should
use strftime() to generate strings from broken-down times.

Miscellaneous (MSC) - MSC33-C. Do not pass invalid data to the asctime() function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 464
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The C Standard, Annex K, also defines asctime_s(), which can be used as a secure substitute
for asctime().

The asctime() function appears in the list of obsolescent functions in MSC24-C. Do not use
deprecated or obsolescent functions.

15.3.1 Noncompliant Code Example
This noncompliant code example invokes the asctime() function with potentially unsanitized
data:

#include <time.h>

void func(struct tm *time_tm) {
 char *time = asctime(time_tm);
 /* ... */
}

15.3.2 Compliant Solution (strftime())
The strftime() function allows the programmer to specify a more rigorous format and also to
specify the maximum size of the resulting time string:

#include <time.h>

enum { maxsize = 26 };

void func(struct tm *time) {
 char s[maxsize];
 /* Current time representation for locale */
 const char *format = "%c";

 size_t size = strftime(s, maxsize, format, time);
}

This call has the same effects as asctime() but also ensures that no more than maxsize charac-
ters are printed, preventing buffer overflow.

15.3.3 Compliant Solution (asctime_s())
The C Standard, Annex K, defines the asctime_s() function, which serves as a close replace-
ment for the asctime() function but requires an additional argument that specifies the maximum
size of the resulting time string:

#define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>

enum { maxsize = 26 };

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151

Miscellaneous (MSC) - MSC33-C. Do not pass invalid data to the asctime() function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 465
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

void func(struct tm *time_tm) {
 char buffer[maxsize];

 if (asctime_s(buffer, maxsize, &time_tm)) {
 /* Handle error */
 }
}

15.3.4 Risk Assessment
On implementations that do not detect output-string-length overflow, it is possible to overflow the
output buffers.

Rule Severity Likelihood Remediation Cost Priority Level

MSC33-C High Likely Low P27 L1

15.3.5 Related Guidelines

CERT C Secure Coding Standard MSC24-C. Do not use deprecated or obsoles-
cent functions

15.3.6 Bibliography

[IEEE Std 1003.1:2013] XSH, System Interfaces, asctime
[ISO/IEC 9899:2011] 7.27.3.1, “The asctime Function”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32047151

Miscellaneous (MSC) - MSC37-C. Ensure that control never reaches the end of a non-void function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 466
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.4 MSC37-C. Ensure that control never reaches the end of a non-void
function

If control reaches the closing curly brace (}) of a non-void function without evaluating a return
statement, using the return value of the function call is undefined behavior. (See undefined behav-
ior 88.)

15.4.1 Noncompliant Code Example
In this noncompliant code example, control reaches the end of the checkpass() function when
the two strings passed to strcmp() are not equal, resulting in undefined behavior. Many compil-
ers will generate code for the checkpass() function, returning various values along the execu-
tion path where no return statement is defined.

#include <string.h>
#include <stdio.h>

int checkpass(const char *password) {
 if (strcmp(password, "pass") == 0) {
 return 1;
 }
}

void func(const char *userinput) {
 if (checkpass(userinput)) {
 printf("Success\n");
 }
}

This error is frequently diagnosed by compilers. (See MSC00-C. Compile cleanly at high warning
levels.)

15.4.2 Compliant Solution
This compliant solution ensures that the checkpass() function always returns a value:

#include <string.h>
#include <stdio.h>

int checkpass(const char *password) {
 if (strcmp(password, "pass") == 0) {
 return 1;
 }
 return 0;
}

void func(const char *userinput) {
 if (checkpass(userinput)) {

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=555

Miscellaneous (MSC) - MSC37-C. Ensure that control never reaches the end of a non-void function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 467
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 printf("Success!\n");
 }
}

15.4.3 Noncompliant Code Example
In this noncompliant code example, control reaches the end of the getlen() function when in-
put does not contain the integer delim. Because the potentially undefined return value of
getlen() is later used as an index into an array, a buffer overflow may occur.

#include <stddef.h>

size_t getlen(const int *input, size_t maxlen, int delim) {
 for (size_t i = 0; i < maxlen; ++i) {
 if (input[i] == delim) {
 return i;
 }
 }
}

void func(int userdata) {
 size_t i;
 int data[] = { 1, 1, 1 };
 i = getlen(data, sizeof(data), 0);
 data[i] = userdata;
}

15.4.3.1 Implementation Details (GCC)
Violating this rule can have unexpected consequences, as in the following example:

#include <stdio.h>

size_t getlen(const int *input, size_t maxlen, int delim) {
 for (size_t i = 0; i < maxlen; ++i) {
 if (input[i] == delim) {
 return i;
 }
 }
}

int main(int argc, char **argv) {
 size_t i;
 int data[] = { 1, 1, 1 };

 i = getlen(data, sizeof(data), 0);
 printf("Returned: %zu\n", i);
 data[i] = 0;

Miscellaneous (MSC) - MSC37-C. Ensure that control never reaches the end of a non-void function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 468
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 return 0;
}

When this program is compiled with -Wall on most versions of the GCC compiler, the following
warning is generated:

example.c: In function 'getlen':
example.c:12: warning: control reaches end of non-void function

None of the inputs to the function equal the delimiter, so when run with GCC 5.3 on Linux, con-
trol reaches the end of the getlen() function, which is undefined behavior and in this test re-
turns 3, causing an out-of-bounds write to the data array.

15.4.4 Compliant Solution
This compliant solution changes the interface of getlen() to store the result in a user-provided
pointer and return an error code to indicate any error conditions. The best method for handling
this type of error is specific to the application and the type of error. (See ERR00-C. Adopt and im-
plement a consistent and comprehensive error-handling policy for more on error handling.)

#include <stddef.h>

int getlen(const int *input, size_t maxlen, int delim,
 size_t *result) {
 for (size_t i = 0; i < maxlen; ++i) {
 if (input[i] == delim) {
 if (result != NULL) {
 *result = i;
 }
 return 0;
 }
 }
 return -1;
}

void func(int userdata) {
 size_t i;
 int data[] = {1, 1, 1};
 if (getlen(data, sizeof(data), 0, &i) != 0) {
 /* Handle error */
 } else {
 data[i] = userdata;
 }
}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6619151
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6619151

Miscellaneous (MSC) - MSC37-C. Ensure that control never reaches the end of a non-void function

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 469
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.4.5 Exceptions
MSC37-C-EX1: According to the C Standard, 5.1.2.2.3, paragraph 1 [ISO/IEC 9899:2011],
“Reaching the } that terminates the main function returns a value of 0.” As a result, it is permissi-
ble for control to reach the end of the main() function without executing a return statement.

15.4.6 Risk Assessment
Using the return value from a non-void function where control reaches the end of the function
without evaluating a return statement can lead to buffer overflow vulnerabilities as well as other
unexpected program behaviors.

Rule Severity Likelihood Remediation Cost Priority Level

MSC37-C High Unlikely Low P9 L2

15.4.7 Related Guidelines

CERT C Secure Coding Standard MSC01-C. Strive for logical completeness

15.4.8 Bibliography
[ISO/IEC 9899:2011] 5.1.2.2.3, “Program Termination”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=354

Miscellaneous (MSC) - MSC38-C. Do not treat a predefined identifier as an object if it might only be implemented as a macro

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 470
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.5 MSC38-C. Do not treat a predefined identifier as an object if it
might only be implemented as a macro

The C Standard, 7.1.4 paragraph 1, [ISO/IEC 9899:2011] states

Any function declared in a header may be additionally implemented as a function-like
macro defined in the header, so if a library function is declared explicitly when its header
is included, one of the techniques shown below can be used to ensure the declaration is
not affected by such a macro. Any macro definition of a function can be suppressed lo-
cally by enclosing the name of the function in parentheses, because the name is then
not followed by the left parenthesis that indicates expansion of a macro function name.
For the same syntactic reason, it is permitted to take the address of a library function
even if it is also defined as a macro.185

185 This means that an implementation shall provide an actual function for each library
function, even if it also provides a macro for that function.

However, the C Standard enumerates specific exceptions in which the behavior of accessing an
object or function expanded to be a standard library macro definition is undefined. The macros are
assert, errno, math_errhandling, setjmp, va_arg, va_copy, va_end, and va_start.
These cases are described by undefined behaviors110, 114, 122, 124, and 138. Programmers must
not suppress these macros to access the underlying object or function.

15.5.1 Noncompliant Code Example (assert)
In this noncompliant code example, the standard assert() macro is suppressed in an attempt to
pass it as a function pointer to the execute_handler() function. Attempting to suppress the
assert() macro is undefined behavior.

#include <assert.h>

typedef void (*handler_type)(int);

void execute_handler(handler_type handler, int value) {
 handler(value);
}

void func(int e) {
 execute_handler(&(assert), e < 0);
}

Miscellaneous (MSC) - MSC38-C. Do not treat a predefined identifier as an object if it might only be implemented as a macro

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 471
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.5.2 Compliant Solution (assert)
In this compliant solution, the assert() macro is wrapped in a helper function, removing the un-
defined behavior:

#include <assert.h>

typedef void (*handler_type)(int);

void execute_handler(handler_type handler, int value) {
 handler(value);
}

static void assert_handler(int value) {
 assert(value);
}

void func(int e) {
 execute_handler(&assert_handler, e < 0);
}

15.5.3 Noncompliant Code Example (Redefining errno)
Legacy code is apt to include an incorrect declaration, such as the following in this noncompliant
code example:

extern int errno;

15.5.4 Compliant Solution (Declaring errno)
This compliant solution demonstrates the correct way to declare errno by including the header
<errno.h>:

#include <errno.h>

C-conforming implementations are required to declare errno in <errno.h>, although some his-
toric implementations failed to do so.

15.5.5 Risk Assessment
Accessing objects or functions underlying the specific macros enumerated in this rule is undefined
behavior.

Rule Severity Likelihood Remediation Cost Priority Level

MSC38-C Low Unlikely Medium P2 L3

Miscellaneous (MSC) - MSC38-C. Do not treat a predefined identifier as an object if it might only be implemented as a macro

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 472
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.5.6 Related Guidelines

SEI CERT C Coding Standard DCL37-C. Do not declare or define a reserved
identifier

15.5.7 Bibliography

ISO/IEC 9899:2011 7.1.4, “Use of Library Functions”

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=285

Miscellaneous (MSC) - MSC39-C. Do not call va_arg() on a va_list that has an indeterminate value

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 473
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.6 MSC39-C. Do not call va_arg() on a va_list that has an
indeterminate value

Variadic functions access their variable arguments by using va_start() to initialize an object of
type va_list, iteratively invoking the va_arg() macro, and finally calling va_end(). The
va_list may be passed as an argument to another function, but calling va_arg() within that
function causes the va_list to have an indeterminate value in the calling function. As a result,
attempting to read variable arguments without reinitializing the va_list can have unexpected
behavior. According to the C Standard, 7.16, paragraph 3 [ISO/IEC 9899:2011],

If access to the varying arguments is desired, the called function shall declare an object
(generally referred to as ap in this subclause) having type va_list. The object ap may
be passed as an argument to another function; if that function invokes the va_arg
macro with parameter ap, the value of ap in the calling function is indeterminate and
shall be passed to the va_end macro prior to any further reference to ap.253

253 It is permitted to create a pointer to a va_list and pass that pointer to another func-
tion, in which case the original function may take further use of the original list after
the other function returns.

15.6.1 Noncompliant Code Example
This noncompliant code example attempts to check that none of its variable arguments are zero by
passing a va_list to helper function contains_zero(). After the call to contains_zero(),
the value of ap is indeterminate.

#include <stdarg.h>
#include <stdio.h>

int contains_zero(size_t count, va_list ap) {
 for (size_t i = 1; i < count; ++i) {
 if (va_arg(ap, double) == 0.0) {
 return 1;
 }
 }
 return 0;
}

int print_reciprocals(size_t count, ...) {
 va_list ap;
 va_start(ap, count);

 if (contains_zero(count, ap)) {
 va_end(ap);
 return 1;
 }

 for (size_t i = 0; i < count; ++i) {

Miscellaneous (MSC) - MSC39-C. Do not call va_arg() on a va_list that has an indeterminate value

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 474
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 printf("%f ", 1.0 / va_arg(ap, double));
 }

 va_end(ap);
 return 0;
}

15.6.2 Compliant Solution
The compliant solution modifies contains_zero() to take a pointer to a va_list. It then uses
the va_copy macro to make a copy of the list, traverses the copy, and cleans it up. Consequently,
the print_reciprocals() function is free to traverse the original va_list.

#include <stdarg.h>
#include <stdio.h>

int contains_zero(size_t count, va_list *ap) {
 va_list ap1;
 va_copy(ap1, *ap);
 for (size_t i = 1; i < count; ++i) {
 if (va_arg(ap1, double) == 0.0) {
 return 1;
 }
 }
 va_end(ap1);
 return 0;
}

int print_reciprocals(size_t count, ...) {
 int status;
 va_list ap;
 va_start(ap, count);

 if (contains_zero(count, &ap)) {
 printf("0 in arguments!\n");
 status = 1;
 } else {
 for (size_t i = 0; i < count; i++) {
 printf("%f ", 1.0 / va_arg(ap, double));
 }
 printf("\n");
 status = 0;
 }

 va_end(ap);
 return status;
}

Miscellaneous (MSC) - MSC39-C. Do not call va_arg() on a va_list that has an indeterminate value

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 475
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.6.3 Risk Assessment
Reading variable arguments using a va_list that has an indeterminate value can have unex-
pected results.

Rule Severity Likelihood Remediation Cost Priority Level

MSC39-C Low Unlikely Low P3 L3

15.6.4 Bibliography

[ISO/IEC 9899:2011] Subclause 7.16, “Variable Arguments
<stdarg.h>”

Miscellaneous (MSC) - MSC40-C. Do not violate constraints

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 476
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.7 MSC40-C. Do not violate constraints

According to the C Standard, 3.8 [ISO/IEC 9899:2011], a constraint is a “restriction, either syn-
tactic or semantic, by which the exposition of language elements is to be interpreted.” Despite the
similarity of the terms, a runtime constraint is not a kind of constraint.

Violating any shall statement within a constraint clause in the C Standard requires an implementa-
tion to issue a diagnostic message, the C Standard, 5.1.1.3 [ISO/IEC 9899:2011] states

A conforming implementation shall produce at least one diagnostic message (identified
in an implementation-defined manner) if a preprocessing translation unit or translation
unit contains a violation of any syntax rule or constraint, even if the behavior is also ex-
plicitly specified as undefined or implementation-defined. Diagnostic messages need not
be produced in other circumstances.

The C Standard further explains in a footnote

The intent is that an implementation should identify the nature of, and where possible lo-
calize, each violation. Of course, an implementation is free to produce any number of di-
agnostics as long as a valid program is still correctly translated. It may also successfully
translate an invalid program.

Any constraint violation is a violation of this rule because it can result in an invalid program.

15.7.1 Noncompliant Code Example (Inline, Internal Linkage)
The C Standard, 6.7.4, paragraph 3 [ISO/IEC 9899:2011], states

An inline definition of a function with external linkage shall not contain a definition of a
modifiable object with static or thread storage duration, and shall not contain a reference
to an identifier with internal linkage.

The motivation behind this constraint lies in the semantics of inline definitions. Paragraph 7 of
subclause 6.7.4 reads, in part:

An inline definition provides an alternative to an external definition, which a translator
may use to implement any call to the function in the same translation unit. It is unspeci-
fied whether a call to the function uses the inline definition or the external definition.

That is, if a function has an external and inline definition, implementations are free to choose
which definition to invoke (two distinct invocations of the function may call different definitions,
one the external definition, the other the inline definition). Therefore, issues can arise when these
definitions reference internally linked objects or mutable objects with static or thread storage du-
ration.

Miscellaneous (MSC) - MSC40-C. Do not violate constraints

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 477
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

This noncompliant code example refers to a static variable with file scope and internal linkage
from within an external inline function:

static int I = 12;
extern inline void func(int a) {
 int b = a * I;
 /* ... */
}

15.7.2 Compliant Solution (Inline, Internal Linkage)
This compliant solution omits the static qualifier; consequently, the variable I has external
linkage by default:

int I = 12;
extern inline void func(int a) {
 int b = a * I;
 /* ... */
}

15.7.3 Noncompliant Code Example (inline, Modifiable Static)
This noncompliant code example defines a modifiable static variable within an extern in-
line function.

extern inline void func(void) {
 static int I = 12;
 /* Perform calculations which may modify I */
}

15.7.4 Compliant Solution (Inline, Modifiable Static)
This compliant solution removes the static keyword from the local variable definition. If the
modifications to I must be retained between invocations of func(), it must be declared at file
scope so that it will be defined with external linkage.

extern inline void func(void) {
 int I = 12;
 /* Perform calculations which may modify I */
}

Miscellaneous (MSC) - MSC40-C. Do not violate constraints

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 478
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.7.5 Noncompliant Code Example (Inline, Modifiable static)
This noncompliant code example includes two translation units: file1.c and file2.c. The first
file, file1.c, defines a pseudorandom number generation function:

/* file1.c */

/* Externally linked definition of the function get_random() */
extern unsigned int get_random(void) {
 /* Initialize the seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute the next pseudorandom value and update the seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

The left-shift operation in the last line may wrap, but this is permitted by exception INT30-C-EX3
to rule INT30-C. Ensure that unsigned integer operations do not wrap.

The second file, file2.c, defines an inline version of this function that references mutable
static objects—namely, objects that maintain the state of the pseudorandom number generator.
Separate invocations of the get_random() function can call different definitions, each operating
on separate static objects, resulting in a faulty pseudorandom number generator.

/* file2.c */

/* Inline definition of get_random function */
inline unsigned int get_random(void) {
 /*
 * Initialize the seeds
 * Constraint violation: static duration storage referenced
 * in non-static inline definition
 */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute the next pseudorandom value and update the seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int main(void) {
 unsigned int rand_no;
 for (int ii = 0; ii < 100; ii++) {

Miscellaneous (MSC) - MSC40-C. Do not violate constraints

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 479
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

 /*
 * Get a pseudorandom number. Implementation defined whether
the
 * inline definition in this file or the external definition
 * in file2.c is called.
 */
 rand_no = get_random();
 /* Use rand_no... */
 }

 /* ... */

 /*
 * Get another pseudorandom number. Behavior is
 * implementation defined.
 */
 rand_no = get_random();
 /* Use rand_no... */
 return 0;
}

15.7.6 Compliant Solution (Inline, Modifiable static)
This compliant solution adds the static modifier to the inline function definition in file2.c,
giving it internal linkage. All references to get_random() in file.2.c will now reference the
internally linked definition. The first file, which was not changed, is not shown here.

/* file2.c */

/* Static inline definition of get_random function */
static inline unsigned int get_random(void) {
 /*
 * Initialize the seeds.
 * No more constraint violation; the inline function is now
 * internally linked.
 */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute the next pseudorandom value and update the seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int main(void) {
 /* Generate pseudorandom numbers using get_random()... */
 return 0;
}

Miscellaneous (MSC) - MSC40-C. Do not violate constraints

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 480
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15.7.7 Risk Assessment
Constraint violations are a broad category of error that can result in unexpected control flow and
corrupted data.

Rule Severity Likelihood Remediation Cost Priority Level

MSC40-C Low Unlikely Medium P2 L3

15.7.8 Bibliography

[ISO/IEC 9899:2011] 4, “Conformance”
5.1.1.3, “Diagnostics”
6.7.4, “Function Specifiers”

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 481
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix A: Bibliography

[Acton 2006]
Acton, Mike. “Understanding Strict Aliasing.” CellPerformance, June 1, 2006.

[Apiki 2006]
Apiki, Steve. “Lock-Free Programming on AMD Multi-Core System.” AMD Developer Central,
2006.

[Apple 2006]
Apple, Inc. Secure Coding Guide. May 2006.

[Asgher 2000]
Asgher, Sarmad. “Practical Lock-Free Buffers.” Dr. Dobbs Go-Parallel, August 26, 2000.

[Bailey 2014]
Bailey, Don A. Raising Lazarus—The 20 Year Old Bug that Went to Mars. 2014.

[Banahan 2003]
Banahan, Mike. The C Book. 2003.

[Barney 2010]
Barney, Blaise. “Mutex Variables.” POSIX Threads Programming, 2010.

[Becker 2008]
Becker, Pete. Working Draft, Standard for Programming Language C++. April 2008.

[Beebe 2005]
Beebe, Nelson H. F. Re: Remainder (%) Operator and GCC. 2005.

[Black 2007]
Black, Paul E., Kass, Michael, & Koo, Michael. Source Code Security Analysis Tool Functional
Specification Version 1.0. Special Publication 500-268. Information Technology Laboratory
(ITL), Software Diagnostics and Conformance Testing Division, May 2007.

[Brainbell.com]
Brainbell.com. Advice and Warnings for C Tutorials.

[Bryant 2003]
Bryant, Randal E. & O’Halloran, David. Computer Systems: A Programmer’s Perspective. Upper
Saddle River, NJ: Prentice Hall, 2003 (ISBN 0-13-034074-X).

http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
http://developer.amd.com/
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
http://www.drdobbs.com/go-parallel/article/showArticle.jhtml;jsessionid=IBA5HITYQUKK1QE1GHRSKH4ATMY32JVN?articleID=219500200
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://www.phy.duke.edu/%7Ergb/General/c_book/c_book/index.html
https://computing.llnl.gov/tutorials/pthreads/#Mutexes
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf
http://gcc.gnu.org/ml/gcc-help/2005-11/msg00141.html
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://www.brainbell.com/tutors/c/Advice_and_Warnings_for_C/

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 482
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Burch 2006]
Burch, Hal; Long, Fred; & Seacord, Robert C. Specifications for Managed Strings (CMU/SEI-
2006-TR-006). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2006.

[Butenhof 1997]
Butenhof, David R. Programming with POSIX® Threads. Boston: Addison-Wesley Professional,
1997 (ISBN 0-201-63392-2).

[C99 Rationale 2003]
Rationale for International Standard—Programming Languages—C, Revision 5.10 (C99 Ra-
tionale), April 2003.

[Callaghan 1995]
Callaghan, B.; Pawlowski, B.; & Staubach, P. IETF RFC 1813 NFS Version 3 Protocol Specifica-
tion, June 1995.

[Cassidy 2014]
Cassidy, Sean. existential type crisis : Diagnosis of the Heartbleed Bug [blog post]. April 2014.

[CERT 2006a]
CERT/CC. CERT/CC Statistics 1988–2006.

[CERT 2006b]
CERT/CC. US-CERT’s Technical Cyber Security Alerts.

[CERT 2006c]
CERT/CC. Secure Coding website.

[Chen 2002]
Chen, H.; Wagner, D.; & Dean, D. Setuid Demystified. USENIX Security Symposium, 2002.

[Chess 2007]
Chess, Brian, & West, Jacob. Secure Programming with Static Analysis. Boston: Addison-Wesley
2007.

[Corfield 1993]
Corfield, Sean A. “Making String Literals 'const'.” November 1993.

[Coverity 2007]
Coverity Prevent User’s Manual (3.3.0). 2007.

[CVE]
Common Vulnerabilities and Exposures Website. http://cve.mitre.org

http://resources.sei.cmu.edu/asset_files/TechnicalReport/2006_005_001_14768.pdf
http://www.informit.com/store/product.aspx?isbn=0201633922
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf
http://www.ietf.org/rfc/rfc1813.txt
http://www.ietf.org/rfc/rfc1813.txt
http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-bug.html
http://ptgmedia.pearsoncmg.com/images/078972443X/elementLinks/03fig10.gif
http://www.us-cert.gov/cas/techalerts/index.html
http://www.cert.org/secure-coding/
http://www.cs.berkeley.edu/%7Edaw/papers/setuid-usenix02.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1993/N0389.asc

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 483
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[C++ Reference]
Standard C Library, General C+, C+ Standard Template Library.

[Dewhurst 2002]
Dewhurst, Stephen C. C++ Gotchas: Avoiding Common Problems in Coding and Design. Bos-
ton: Addison-Wesley Professional, 2002.

[Dewhurst 2005]
Dewhurst, Stephen C. C++ Common Knowledge: Essential Intermediate Programming. Boston:
Addison-Wesley Professional, 2005.

[DHS 2006]
U.S. Department of Homeland Security. Build Security In. 2006.

[DISA 2015]
DISA. Application Security and Development Security Technical Implementation Guide, Version
3, Release 10. Accessed April 2016.

[DOD 5220]
U.S. Department of Defense. DoD Standard 5220.22-M (Word document).

[Dowd 2006]
Dowd, M.; McDonald, J.; & Schuh, J. The Art of Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Boston: Addison-Wesley, 2006. (See http://taossa.com for
updates and errata.)

[Drepper 2006]
Drepper, Ulrich. Defensive Programming for Red Hat Enterprise Linux (and What To Do If
Something Goes Wrong). May 3, 2006.

[Duff 1988]
Duff, Tom. Tom Duff on Duff’s Device. August 29, 1988.

[Dutta 2003]
Dutta, Shiv. Best Practices for Programming in C. June 26, 2003.

[Eckel 2007]
Eckel, Bruce. Thinking in C++, Vol. 2. January 25, 2007.

[ECTC 1998]
Embedded C++ Technical Committee. The Embedded C++ Programming Guide Lines, Version
WP-GU-003. January 6, 1998.

[Eide and Regehr]
Eide, E., & Regehr, J. Volatiles Are Miscompiled, and What to Do about It. 2008.

http://www.cppreference.com/
https://buildsecurityin.us-cert.gov/
http://iase.disa.mil/stigs/Documents/U_Application_Security_and_Development_V3R10_STIG.zip
http://iase.disa.mil/stigs/Documents/U_Application_Security_and_Development_V3R10_STIG.zip
http://www.dss.mil/documents/odaa/nispom2006-5220.pdf
http://taossa.com/
http://people.redhat.com/drepper/defprogramming.pdf
http://people.redhat.com/drepper/defprogramming.pdf
http://www.lysator.liu.se/c/duffs-device.html
http://www.ibm.com/developerworks/aix/library/au-hook_duttaC.html
http://bruce-eckel.developpez.com/livres/cpp/ticpp/v2/
http://www.caravan.net/ec2plus/guide.html
http://portal.acm.org/citation.cfm?id=1450058.1450093

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 484
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Feather 1997]
Feather, Clive, D. W. Solving the struct Hack Problem. JTC1/SC22/WG14 N791, (1997).

[Finlay 2003]
Finlay, Ian A. CERT Advisory CA-2003-16, Buffer Overflow in Microsoft RPC. CERT/CC, July
2003.

[Fisher 1999]
Fisher, David & Lipson, Howard. “Emergent Algorithms—A New Method for Enhancing Surviv-
ability in Unbounded Systems.” Proceedings of the 32nd Annual Hawaii International Confer-
ence on System Sciences (HICSS-32). Maui, HI, January 5–8, 1999.

[Flake 2006]
Flake, Halvar. “Attacks on Uninitialized Local Variables.” Black Hat Federal, 2006.

[Fortify 2006]
Fortify Software Inc. Fortify Taxonomy: Software Security Errors. 2006.

[FSF 2005]
Free Software Foundation. GCC Online Documentation. 2005.

[Garfinkel 1996]
Garfinkel, Simson & Spafford, Gene. Practical UNIX & Internet Security, 2nd ed. Sebastopol,
CA: O’Reilly Media, April 1996 (ISBN 1-56592-148-8).

[GCC Bugs]
C Team. GCC Bugs. Free Software Foundation, Inc. (n.d.).

[GNU 2010]
GNU. Coding Standards. GNU, 2010.

[GNU Pth]
Engelschall, Ralf S. GNU Portable Threads, 2006.

[Goldberg 1991]
Goldberg, David. What Every Computer Scientist Should Know about Floating-Point Arithmetic.
Sun Microsystems, March 1991.

[Goodin 2009]
Goodin, Dan. Clever Attack Exploits Fully-Patched Linux Kernel. The Register, July 2009.

[Gough 2005]
Gough, Brian J. An Introduction to GCC. Network Theory Ltd. Revised August 2005 (ISBN 0-
9541617-9-3).

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n791.htm
http://www.cert.org/advisories/CA-2003-16.html
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/intro.html
http://gcc.gnu.org/onlinedocs
http://www.fsf.org/
http://www.gnu.org/prep/standards/standards.html
http://www.gnu.org/software/pth/
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://www.theregister.co.uk/2009/07/17/linux_kernel_exploit/
http://www.network-theory.co.uk/docs/gccintro/index.html

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 485
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Graff 2003]
Graff, Mark G. & Van Wyk, Kenneth R. Secure Coding: Principles and Practices. Cambridge,
MA: O’Reilly, 2003 (ISBN 0596002424).

[Greenman 1997]
Greenman, David. Serious Security Bug in wu-ftpd v2.4. BUGTRAQ Mailing List (bugtraq@se-
curityfocus.com), January 2, 1997.

[Griffiths 2006]
Griffiths, Andrew. Clutching at Straws: When You Can Shift the Stack Pointer. 2006.

[Gutmann 1996]
Gutmann, Peter. Secure Deletion of Data from Magnetic and Solid-State Memory. July 1996.

[Haddad 2005]
Haddad, Ibrahim. “Secure Coding in C and C++: An Interview with Robert Seacord, Senior Vul-
nerability Analyst at CERT.” Linux World Magazine, November 2005.

[Hatton 1995]
Hatton, Les. Safer C: Developing Software for High-Integrity and Safety-Critical Systems. New
York: McGraw-Hill, 1995 (ISBN 0-07-707640-0).

[Hatton 2003]
Hatton, Les. EC-: A Measurement-Based Safer Subset of ISO C Suitable for Embedded System
Development. November 5, 2003.

[Henricson 1992]
Henricson, Mats & Nyquist, Erik. Programming in C++, Rules and Recommendations. Ellemtel
Telecommunication Systems Laboratories, 1992.

[Horton 1990]
Horton, Mark R. Portable C Software. Upper Saddle River, NJ: Prentice-Hall, 1990 (ISBN:0-13-
868050-7).

[Howard 2002]
Howard, Michael & LeBlanc, David C. Writing Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002.

[HP 2003]
Hewlett-Packard Company. Tru64 UNIX: Protecting Your System against File Name Spoofing
Attacks. Houston, TX, January 2003.

http://seclists.org/bugtraq/1997/Jan/0011.html
http://phrack.org/archives/issues/63/14.txt
http://www.cs.auckland.ac.nz/%7Epgut001/pubs/secure_del.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=52665
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=52665
http://www.leshatton.org/Documents/ISOC_subset.pdf
http://www.leshatton.org/Documents/ISOC_subset.pdf
http://www.doc.ic.ac.uk/lab/cplus/c++.rules/
http://www.microsoft.com/mspress/books/5957.aspx
http://www.microsoft.com/mspress/books/5957.aspx
http://h30097.www3.hp.com/docs/wpapers/spoof_wp/symlink_external.pdf
http://h30097.www3.hp.com/docs/wpapers/spoof_wp/symlink_external.pdf

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 486
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[IEC 60812 2006]
IEC (International Electrotechnical Commission). Analysis Techniques for System Reliability—
Procedure for Failure Mode and Effects Analysis (FMEA), 2nd ed. (IEC 60812). Geneva, Swit-
zerland: IEC, 2006.

[IEC 61508-4]
IEC (International Electrotechnical Commission). Functional Safety of Electrical/Electronic/Pro-
grammable Electronic Safety-Related Systems—Part 4: Definitions and Abbreviations. Geneva,
Switzerland: IEC, 1998.

[IEEE 754 2006]
IEEE (Institute of Electrical and Electronics Engineers). Standard for Binary Floating-Point
Arithmetic (IEEE 754-1985). New York: IEEE, 2006.

[IEEE Std 610.12 1990]
IEEE. IEEE Standard Glossary of Software Engineering Terminology. (1990).

[IEEE Std 1003.1:2004]
IEEE and The Open Group. The Open Group Base Specifications Issue 6 (IEEE Std 1003.1),
2004 Edition. (See also ISO/IEC 9945-2004 and Open Group 04.)

[IEEE Std 1003.1:2008]
IEEE and The Open Group. The Open Group Base Specifications Issue 7 (IEEE Std 1003.1),
2008 Edition. (See also ISO/IEC 9945-2008 and Open Group 2008.)

[IEEE Std 1003.1:2013]
IEEE and The Open Group. Standard for Information Technology—Portable Operating System
Interface (POSIX), Base Specifications, Issue 7 (IEEE Std 1003.1, 2013 Edition).

[IETF: RFC 6520]
Internet Engineering Task Force (IETF). Request for Comments 6520: Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS) Heartbeat Extension. February 2012.

[Intel 2001]
Intel Corp. Floating-Point IEEE Filter for Microsoft Windows 2000 on the Intel Itanium Architec-
ture. March 2001.

[Internet Society 2000]
The Internet Society. Internet Security Glossary (RFC 2828). 2000.

[ISO/IEC 646:1991]
ISO/IEC (International Organization for Standardization/International Electrotechnical Commis-
sion). Information Technology: ISO 7-Bit Coded Character Set for Information Interchange
(ISO/IEC 646-1991). Geneva, Switzerland: ISO, 1991.

http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=159342
http://www.opengroup.org/onlinepubs/009695399/
http://www.opengroup.org/onlinepubs/9699919799
http://ieeexplore.ieee.org/servlet/opac?punumber=6506089
http://ieeexplore.ieee.org/servlet/opac?punumber=6506089
https://tools.ietf.org/html/rfc6520
ftp://ftp.rfc-editor.org/in-notes/rfc2828.txt

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 487
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[ISO/IEC 9899:1990]
ISO/IEC. Programming Languages—C (ISO/IEC 9899:1990). Geneva, Switzerland: ISO, 1990.

[ISO/IEC 9899:1999]
ISO/IEC. Programming Languages—C, 2nd ed (ISO/IEC 9899:1999). Geneva, Switzerland: ISO,
1999.

[ISO/IEC 9899:2011]
ISO/IEC. Programming Languages—C, 3rd ed (ISO/IEC 9899:2011). Geneva, Switzerland: ISO,
2011.

[ISO/IEC 9945:2003]
ISO/IEC. Information Technology—Programming Languages, Their Environments and System
Software Interfaces—Portable Operating System Interface (POSIX®) [including Technical Corri-
gendum 1] (ISO/IEC 9945:2003). Geneva, Switzerland: ISO, 2003.

[ISO/IEC 10646:2003]
ISO/IEC. Information Technology—Universal Multiple-Octet Coded Character Set (UCS)
(ISO/IEC 10646:2003). Geneva, Switzerland: International Organization for Standardization,
2003.

[ISO/IEC 10646:2012]
ISO/IEC. Information technology—Universal Multiple-Octet Coded Character Set (UCS)
(ISO/IEC 10646:2012). Geneva, Switzerland: ISO, 2012.

[ISO/IEC 11889-1:2009]
ISO/IEC. Information Technology—Trusted Platform Module—Part 1: Overview (ISO/IEC
11889-1:2009). Geneva, Switzerland: ISO, 2009.

[ISO/IEC 14882:2003]
ISO/IEC. Programming Languages—C++, Second Edition (ISO/IEC 14882-2003). Geneva,
Switzerland: ISO, 2003.

[ISO/IEC 14882:2011]
ISO/IEC. Information Technology—Programming Languages—C++, Third Edition (ISO/IEC
14882-2011). Geneva, Switzerland: ISO, 2011.

[ISO/IEC 23360-1:2006]
ISO/IEC. Linux Standard Base (LSB) Core Specification 3.1—Part 1: Generic Specification. Ge-
neva, Switzerland: ISO, 2006.

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=43781

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 488
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[ISO/IEC/IEEE 9945:2008]
ISO/IEC/IEEE. Information Technology—Programming Languages, Their Environments and Sys-
tem Software Interfaces—Portable Operating System Interface (POSIX®) (ISO/IEC/IEEE
9945:2008). Geneva, Switzerland: ISO, 2008.

[ISO/IEC/IEEE 24765:2010]
ISO/IEC/IEEE. Systems and Software Engineering—Vocabulary (ISO/IEC/IEEE 24765:2010).
Geneva, Switzerland: ISO, 2010.

[ISO/IEC DTR 24732]
ISO/IEC JTC1. Extension for the Programming Language C to Support Decimal Floating-Point
Arithmetic (ISO/IEC JTC1 SC22 WG14 N1290). Geneva, Switzerland: ISO, March 2008.

[ISO/IEC JTC1/SC22/WG11]
ISO/IEC. Binding Techniques (ISO/IEC JTC1/SC22/WG11). Geneva, Switzerland: ISO, 2007.

[ISO/IEC JTC1/SC22/WG14]
ISO/IEC. Solving the Struct Hack Problem (ISO/IEC JTC1/SC22/WG14 N791). Geneva, Switzer-
land: ISO, 1997.

[ISO/IEC TR 24731-1:2007]
ISO/IEC. Extensions to the C Library—Part I: Bounds-Checking Interfaces (ISO/IEC TR 24731).
Geneva, Switzerland: ISO, April 2006.

[ISO/IEC PDTR 24731-2]
ISO/IEC. Extensions to the C Library—Part II: Dynamic Allocation Functions (ISO/IEC PDTR
24731-2). Geneva, Switzerland: ISO, August 2007.

[ISO/IEC TR 24731-2:2010]
ISO/IEC. Extensions to the C Library—Part II: Dynamic Allocation Functions (ISO/IEC TR
24731). Geneva, Switzerland: ISO, April 2010.

[ISO/IEC TR 24772:2010]
ISO/IEC. Information Technology—Programming Languages—Guidance to Avoiding Vulnera-
bilities in Programming Languages through Language Selection and Use (ISO/IEC TR
24772:2010). Geneva, Switzerland: ISO, October 2010.

[ISO/IEC TR 24772:2013]
ISO/IEC. Information Technology—Programming Languages—Guidance to Avoiding Vulnerabil-
ities in Programming Languages through Language Selection and Use (ISO/IEC TR
24772:2013). Geneva, Switzerland: ISO, March 2013.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1290.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1290.pdf
http://www.open-std.org/JTC1/SC22/WG11/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n791.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1248.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=51678&ICS1=35&ICS2=060

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 489
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[ISO/IEC TS 17961]
ISO/IEC. Information Technology—Programming Languages, Their Environments and System
Software Interfaces—C Secure Coding Rules (ISO/IEC TS 17961). Geneva, Switzerland: ISO,
2012.

[ISO/IEC WG14 N1173]
ISO/IEC WG14 N1173. Rationale for TR 24731 Extensions to the C Library—Part I: Bounds-
Checking Interfaces.

[Jack 2007]
Jack, Barnaby. Vector Rewrite Attack. May 2007.

[Jones 2004]
Jones, Nigel. Learn a New Trick with the offsetof() Macro. Embedded Systems Programming,
March 2004.

[Jones 2008]
Jones, Derek M. The New C Standard: An Economic and Cultural Commentary. Knowledge Soft-
ware Ltd., 2008.

[Jones 2010]
Jones, Larry. (2010). WG14 N1539 Committee Draft ISO/IEC 9899:201x.

[Juric n.d.]
Juric, Zeljko, et al. (n.d.). TIGCC Documentation, Latest Development Version
(TIGCC/TIGCCLIB CVS): C Language Keywords.

[Keaton 2009]
Keaton, David; Plum, Thomas; Seacord, Robert C.; Svoboda, David; Volkovitsky, Alex; & Wil-
son, Timothy. As-if Infinitely Ranged Integer Model. CMU/SEI-2009-TN-023. July 2009.

[Keil 2008]
Keil, an ARM Company. “Floating Point Support.” RealView Libraries and Floating Point Sup-
port Guide, 2008.

[Kennaway 2000]
Kennaway, Kris. Re: /tmp topic. December 2000.

[Kernighan 1988]
Kernighan, Brian W. & Ritchie, Dennis M. The C Programming Language, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[Kettlewell 2002]
Kettlewell, Richard. C Language Gotchas. February 2002.

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1173.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1173.pdf
http://cansecwest.com/csw07/Vector-Rewrite-Attack.pdf
http://www.embedded.com/design/prototyping-and-development/4024941/Learn-a-new-trick-with-the-offsetof--macro
http://www.knosof.co.uk/cbook/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf
http://tigcc.ticalc.org/doc/keywords.html
http://tigcc.ticalc.org/doc/keywords.html
http://www.sei.cmu.edu/publications/documents/09.reports/09tn023.html
http://www.keil.com/support/docs/1879.htm
http://lwn.net/2000/1221/a/sec-tmp.php3
http://www.greenend.org.uk/rjk/2001/02/cfu.html

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 490
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Kettlewell 2003]
Kettlewell, Richard. Inline Functions in C. March 2003.

[Kirch-Prinz 2002]
Kirch-Prinz, Ulla & Prinz, Peter. C Pocket Reference. Sebastopol, CA: O’Reilly, November 2002
(ISBN: 0-596-00436-2).

[Klarer 2004]
Klarer, R., Maddock, J.; Dawes, B.; & Hinnant, H. “Proposal to Add Static Assertions to the Core
Language (Revision 3).” ISO C++ committee paper ISO/IEC JTC1/SC22/WG21/N1720, October
2004.

[Klein 2002]
Klein, Jack. Bullet Proof Integer Input Using strtol(). 2002.

[Koenig 1989]
Koenig, Andrew. C Traps and Pitfalls. Addison-Wesley Professional, 1989.

[Kuhn 2006]
Kuhn, Markus. UTF-8 and Unicode FAQ for Unix/Linux. 2006.

[Lai 2006]
Lai, Ray. “Reading Between the Lines.” OpenBSD Journal, October 2006.

[Lea 2000]
Lea, Doug. Concurrent Programming in Java, 2nd ed., Addison-Wesley Professional, Boston,
2000.

[Lewis 2006]
Lewis, Richard. “Security Considerations when Handling Sensitive Data.” Posted on the Applica-
tion Security by Richard Lewis blog October 2006.

[Linux 2008]
Linux Programmer’s Manual. October 2008.

[Lions 1996]
Lions, J. L. ARIANE 5 Flight 501 Failure Report. Paris, France: European Space Agency (ESA)
& National Center for Space Study (CNES) Inquiry Board, July 1996.

[Lipson 2000]
Lipson, Howard & Fisher, David. “Survivability: A New Technical and Business Perspective on
Security,” 33–39. Proceedings of the 1999 New Security Paradigms Workshop. Caledon Hills,
Ontario, Canada, Sept. 22–24, 1999. New York: Association for Computing Machinery, 2000.

http://www.greenend.org.uk/rjk/2003/03/inline.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
http://home.att.net/%7Ejackklein/c/code/strtol.html
http://www.cl.cam.ac.uk/%7Emgk25/unicode.html
http://undeadly.org/cgi?action=article&sid=20061027031811
http://secureapps.blogspot.com/2006/10/security-considerations-when-handling.html
http://www.kernel.org/doc/man-pages/online_pages.html
http://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 491
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Lipson 2006]
Lipson, Howard. Evolutionary Systems Design: Recognizing Changes in Security and Survivabil-
ity Risks (CMU/SEI-2006-TN-027). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2006.

[Liu 2009]
Likai Liu. Making NULL-pointer reference legal, Life of a Computer Science Student. January,
2009.

[Lockheed Martin 2005]
Lockheed Martin. Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Devel-
opment and Demonstration Program. Document Number 2RDU00001 Rev C., December 2005.

[Loosemore 2007]
Loosemore, Sandra; Stallman, Richard M.; McGrath, Roland; Oram, Andrew; & Drepper, Ulrich.
The GNU C Library Reference Manual, Edition 0.11. September 2007.

[McCluskey 2001]
McCluskey, Glen. Flexible Array Members and Designators in C9X. ;login:, 26, 4 (July 2001):
29–32.

[Mell 2007]
Mell, Peter; Scarfone, Karen; & Romanosky, Sasha. “A Complete Guide to the Common Vulnera-
bility Scoring System Version 2.0.” FIRST, June 2007.

[Mercy 2006]
Mercy. Exploiting Uninitialized Data. January 2006.

[Meyers 2004]
Meyers, Randy. Limited size_t WG14 N1080. September 2004.

[Michael 2004]
Michael, M.M. “Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.” IEEE
Transactions on Parallel and Distributed Systems, 15, 8 (2004).

[Microsoft 2003]
Microsoft Security Bulletin MS03-026, “Buffer Overrun In RPC Interface Could Allow Code Ex-
ecution (823980).” September 2003.

[Microsoft 2007]
Microsoft. C Language Reference, 2007.

http://lifecs.likai.org/2009/01/making-null-pointer-reference-legal.html
http://www.research.att.com/%7Ebs/JSF-AV-rules.pdf
http://www.research.att.com/%7Ebs/JSF-AV-rules.pdf
http://www.gnu.org/software/libc/manual/
http://www.usenix.org/publications/login/2001-07/pdfs/mccluskey.pdf
http://seclists.org/fulldisclosure/2006/Jan/5
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1080.pdf
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
http://msdn2.microsoft.com/en-us/library/fw5abdx6%28VS.80%29.aspx

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 492
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Miller 1999]
Miller, Todd C. & de Raadt, Theo. strlcpy and strlcat—Consistent, Safe, String Copy and Concat-
enation. In Proceedings of the FREENIX Track, 1999 USENIX Annual Technical Conference,
June 6–11, 1999, Monterey, California, USA. Berkeley, CA: USENIX Association, 1999.

[Miller 2004]
Miller, Mark C.; Reus, James F.; Matzke, Robb P.; Koziol, Quincey A.; & Cheng, Albert P.
“Smart Libraries: Best SQE Practices for Libraries with an Emphasis on Scientific Computing.”
In Proceedings of the Nuclear Explosives Code Developer’s Conference. Livermore, CA: Law-
rence Livermore National Laboratory, December 2004.

[Miller 2007]
Miller, Damien. “Security Measures in OpenSSH,” white paper. OpenSSH Project, 2007.

[MISRA 2004]
MISRA (Motor Industry Software Reliability Association). MISRA C: 2004 Guidelines for the
Use of the C Language in Critical Systems. Nuneaton, UK: MIRA, 2004 (ISBN 095241564X).

[MISRA 2008]
MISRA. MISRA C++: 2008 Guidelines for the Use of the C++ Language in Critical Systems.
Nuneaton, UK: MIRA, 2008 (ISBN 978-906400-03-3 [paperback], ISBN 978-906400-04-0
[PDF]), 2008.

[MISRA C:2012]
MISRA. MISRA C3: Guidelines for the Use of the C Language in Critical Systems 2012. Nunea-
ton, UK: MIRA, 2012. ISBN 978-1-906400-10-1.

[MIT 2004]
MIT (Massachusetts Institute of Technology). “MIT krb5 Security Advisory 2004-002,” 2004.

[MIT 2005]
MIT. “MIT krb5 Security Advisory 2005-003.

[MITRE 2010]
MITRE. Common Weakness Enumeration, Version 1.8. February 2010.

[MITRE 2007]
MITRE. Common Weakness Enumeration, Draft 9. April 2008.

[MKS]
MKS, Inc. MKS Reference Pages.

[MSDN]
Microsoft Developer Network.

https://wci.llnl.gov/codes/smartlibs/UCRL-JRNL-208636.pdf
http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007.pdf
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt
http://web.mit.edu/kerberos/www/advisories/MITKRB5-SA-2005-003-recvauth.txt
http://cwe.mitre.org/
http://cwe.mitre.org/
http://www.mkssoftware.com/docs/
http://msdn.microsoft.com/en-us/default.aspx

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 493
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Murenin 2007]
Murenin, Constantine A. cnst: 10-Year-Old Pointer-Arithmetic Bug in make(1) Is Now Gone,
Thanks to malloc.conf and Some Debugging. LiveJournal, June 2007.

[NAI 1998]
Network Associates, Inc. Bugtraq: Network Associates Inc. Advisory (OpenBSD). 1998.

[NASA-GB-1740.13]
NASA Glenn Research Center, Office of Safety Assurance Technologies. NASA Software Safety
Guidebook (NASA-GB-1740.13).

[NIST 2006]
NIST. SAMATE Reference Dataset. 2006.

[OpenBSD]
Berkley Software Design, Inc. Manual Pages. June 2008.

[Open Group 1997a]
The Open Group. The Single UNIX® Specification, Version 2. 1997.

[Open Group 1997b]
The Open Group. Go Solo 2—The Authorized Guide to Version 2 of the Single UNIX Specifica-
tion. May 1997.

[Open Group 2004]
The Open Group. The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition.
2004. (See also IEEE Std 1003.1-2004.)

[Open Group 2008]
The Open Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2008 Edition.
2008. (See also IEEE Std 1003.1-2008.)

[OpenMP]
The OpenMP API® Specification for Parallel Programming.

[OWASP Double Free]
Open Web Application Security Project, “Double Free.”

[OWASP Freed Memory]
Open Web Application Security Project, “Using Freed Memory.”

[Pethia 2003]
Pethia, Richard D. “Viruses and Worms: What Can We Do About Them?” September 10, 2003.

http://cnst.livejournal.com/24040.html
http://cnst.livejournal.com/24040.html
http://seclists.org/bugtraq/1998/Aug/0071.html
http://www.hq.nasa.gov/office/codeq/doctree/canceled/1740_13_96.pdf
http://www.hq.nasa.gov/office/codeq/doctree/canceled/1740_13_96.pdf
http://samate.nist.gov/SRD/
http://www.openbsd.org/cgi-bin/man.cgi
http://www.opengroup.org/onlinepubs/7990989775/toc.htm
http://www.unix.org/whitepapers/64bit.html
http://www.unix.org/whitepapers/64bit.html
http://www.opengroup.org/onlinepubs/009695399/toc.htm
http://www.opengroup.org/onlinepubs/9699919799/toc.htm
http://openmp.org/wp/
http://www.owasp.org/index.php/Double_Free
http://www.owasp.org/index.php/Using_freed_memory
http://web.archive.org/web/20030919012916/http:/www.cert.org/congressional_testimony/Pethia-Testimony-9-10-2003/

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 494
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Pfaff 2004]
Pfaff, Ken Thompson. “Casting (time_t)(-1).” Google Groups comps.lang.c, March 2, 2004.

[Pike 1993]
Pike, Rob & Thompson, Ken. “Hello World.” Proceedings of the USENIX Winter 1993 Technical
Conference, San Diego, CA, January 25–29, 1993, pp3 43–50.

[Plakosh 2005]
Plakosh, Dan. “Consistent Memory Management Conventions.” Build Security In, 2005.

[Plum 1985]
Plum, Thomas. Reliable Data Structures in C. Kamuela, HI: Plum Hall, Inc., 1985 (ISBN 0-
911537-04-X).

[Plum 1989]
Plum, Thomas & Saks, Dan. C Programming Guidelines, 2nd ed. Kamuela, HI: Plum Hall, 1989
(ISBN 0911537074).

[Plum 1991]
Plum, Thomas. C++ Programming. Kamuela, HI: Plum Hall, 1991 (ISBN 0911537104).

[Plum 2008]
Plum, Thomas. “Static Assertions.” June 2008.

[Plum 2012]
Plum, Thomas. C Finally Gets a New Standard. Dr. Dobb’s, 2012.

[Redwine 2006]
Redwine, Samuel T., Jr., ed. Secure Software Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain Secure Software Version 1.1. U.S. Department of
Homeland Security, September 2006. (See Software Assurance Common Body of Knowledge on
Build Security In.)

[Roelker 2004]
Roelker, Daniel. “HTTP IDS Evasions Revisited.” September 2004.

[RUS-CERT]
RUS-CERT Advisory 2002-08:02, “Flaw in calloc and Similar Routines.“ 2002.

[Saks 1999]
Saks, Dan. “const T vs.T const.” Embedded Systems Programming, February 1999, pp. 13–16.

[Saks 2000]
Saks, Dan. “Numeric Literals.” Embedded Systems Programming, September 2000.

http://groups.google.com/group/comp.lang.c/browse_thread/thread/8983d8d729244f2b/ea0e2972775a1114#ea0e2972775a1114
http://plan9.bell-labs.com/sys/doc/utf.pdf
https://buildsecurityin.us-cert.gov/articles/knowledge/coding-practices/consistent-memory-management-conventions
https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1330.pdf
http://www.drdobbs.com/cpp/232800444
https://www.google.com/search?q=Software+Assurance+Common+Body+of+Knowledge
https://buildsecurityin.us-cert.gov/bsi/home.html
https://www.youtube.com/watch?v=a693gPour1A
http://cert.uni-stuttgart.de/advisories/calloc.php
http://www.dansaks.com/articles/1999-02%20const%20T%20vs%20T%20const.pdf
http://www.embedded.com/electronics-blogs/programming-pointers/4403282/Numeric-Literals
http://www.embedded.com/electronics-blogs/programming-pointers/4403282/Numeric-Literals

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 495
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Saks 2001a]
Saks, Dan. “Symbolic Constants.” Embedded Systems Design, November 2001.

[Saks 2001b]
Saks, Dan. “Enumeration Constants vs. Constant Objects.” Embedded Systems Design, November
2001.

[Saks 2002]
Saks, Dan. “Symbolic Constant Expressions.” Embedded Systems Design, February 2002.

[Saks 2005]
Saks, Dan. “Catching Errors Early with Compile-Time Assertions.” Embedded Systems Design,
June 2005.

[Saks 2007a]
Saks, Dan. “Sequence Points.“ Embedded Systems Design, July 1, 2002.

[Saks 2007b]
Saks, Dan. “Bail, Return, Jump, or . . . Throw?” Embedded Systems Design, March 2007.

[Saks 2007c]
Saks, Dan. “Standard C’s Pointer Difference Type.” Embedded Systems Design, October 2007.

[Saks 2008]
Saks, Dan & Dewhurst, Stephen C. “Sooner Rather Than Later: Static Programming Techniques
for C++” (presentation). March 2008.

[Saltzer 1974]
Saltzer, J. H. “Protection and the Control of Information Sharing in Multics.” Communications of
the ACM 17, 7 (July 1974): 388–402.

[Saltzer 1975]
Saltzer, J. H. & Schroeder, M. D. “The Protection of Information in Computer Systems.” Pro-
ceedings of the IEEE 63, 9 (September 1975): 1278–1308.

[Schwarz 2005]
Schwarz, B.; Wagner, Hao Chen; Morrison, D.; West, G.; Lin, J.; & Tu, J. Wei. “Model Checking
an Entire Linux Distribution for Security Violations.” Proceedings of the 21st Annual Computer
Security Applications Conference, December 2005 (ISSN 1063-9527; ISBN 0-7695-2461-3).

[Seacord 2003]
Seacord, Robert C.; Plakosh, Daniel; & Lewis, Grace A. Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices. Boston: Addison-Wesley, 2003.

http://www.embedded.com/story/OEG20011016S0116
http://www.embedded.com/story/OEG20011016S0116
http://www.embedded.com/columns/programmingpointers/9900402
http://www.embedded.com/story/OEG20020124S0117
http://www.embedded.com/columns/programmingpointers/164900888?_requestid=287187
http://www.embedded.com/columns/programmingpointers/9900661?_requestid=481957
http://www.embedded.com/columns/programmingpointers/197008821
http://www.embedded.com/electronics-blogs/programming-pointers/4007211/Standard-C-s-pointer-difference-type
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.4289&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.9257&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.2051&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.2051&rep=rep1&type=pdf
http://www.informit.com/store/product.aspx?isbn=0321118847
http://www.informit.com/store/product.aspx?isbn=0321118847

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 496
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Seacord 2005a]
Seacord, Robert C. Secure Coding in C and C++. Boston: Addison-Wesley, 2005. (See
http://www.cert.org/books/secure-coding for news and errata.)

[Seacord 2005b]
Seacord, Robert C. “Managed String Library for C, C/C++.” Users Journal, 23, 10 (October
2005): 30–34.

[Seacord 2005c]
Seacord, Robert C. “Variadic Functions: How They Contribute to Security Vulnerabilities and
How to Fix Them.” Linux World Magazine, November 2005.

[Seacord 2013a]
Seacord, Robert C. “C Secure Coding Rules: Past, Present, and Future.” InformIT, June 26, 2013..

[Seacord 2013b]
Seacord, Robert C. Secure Coding in C and C++. Boston: Addison-Wesley, 2013. (See
http://www.cert.org/books/secure-coding for news and errata.)

[Secunia]
Secunia Advisory SA10635, “HP-UX calloc Buffer Size Miscalculation Vulnerability.” 2004.

[SecuriTeam 2007]
SecuriTeam. “Microsoft Visual C++ 8.0 Standard Library Time Functions Invalid Assertion DoS
(Problem 3000).” February 13, 2007.

[SecurityFocus 2007]
SecurityFocus. “Linux Kernel Floating Point Exception Handler Local Denial of Service Vulnera-
bility.” 2001.

[Sloss 2004]
Sloss, Andrew, Symes, Dominic, & Wright, Chris. ARM System Developer’s Guide. San Fran-
cisco: Elsevier/Morgan Kauffman, 2004 (ISBN-10: 1558608745; ISBN-13: 978-1558608740).

[Spinellis 2006]
Spinellis, Diomidis. Code Quality: The Open Source Perspective. Boston: Addison-Wesley, 2006.

[StackOvflw 2009]
StackOverflow.com. “Should I return TRUE / FALSE values from a C function?” User Ques-
tions, March 15, 2010.

[Steele 1977]
Steele, G. L. “Arithmetic shifting considered harmful.” SIGPLAN Not. 12, 11 (November 1977):
61–69.

http://www.cert.org/books/secure-coding
http://www.cert.org/books/secure-coding/LWM%203-11%20%28Seacord%29.pdf
http://www.cert.org/books/secure-coding/LWM%203-11%20%28Seacord%29.pdf
http://www.informit.com/articles/article.aspx?p=2088511
http://www.cert.org/books/secure-coding
http://secunia.com/advisories/10635/
http://www.securiteam.com/windowsntfocus/5MP0D0UKKO.html
http://www.securiteam.com/windowsntfocus/5MP0D0UKKO.html
http://www.securityfocus.com/bid/10538/discuss
http://www.securityfocus.com/bid/10538/discuss
http://infocenter.arm.com/help/topic/com.arm.doc.dui0056d/DUI0056.pdf
http://www.spinellis.gr/codequality
http://stackoverflow.com/questions/559061/should-i-return-true-false-values-from-a-c-function
http://doi.acm.org/10.1145/956641.956647

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 497
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Stevens 2005]
Stevens, W. Richard. Advanced Programming in the UNIX Environment. Boston: Addison-Wes-
ley, 1995 (ISBN 032152594-9).

[Summit 1995]
Summit, Steve. C Programming FAQs: Frequently Asked Questions. Boston: Addison-Wesley,
1995 (ISBN 0201845199).

[Summit 2005]
Summit, Steve. comp.lang.c Frequently Asked Questions. 2005.

[Sun 1993]
Sun Microsystems. Sun Security Bulletin #00122 1993.

[Sun 2005]
Sun Microsystems. C User’s Guide. 819-3688-10. Sun Microsystems, 2005.

[Sutter 2004]
Sutter, Herb & Alexandrescu, Andrei. C++ Coding Standards: 101 Rules, Guidelines, and Best
Practices. Boston: Addison-Wesley Professional, 2004 (ISBN 0321113586).

[Tsafrir 2008]
Tsafrir, Dan; Da Silva, Dilma; & Wagner, David. The Murky Issue of Changing Process Identity:
Revising “Setuid Demystified.” USENIX, June 2008, pp. 55–66

[Unicode 2006]
The Unicode Consortium. The Unicode Standard, Version 5.0, 5th ed. Boston: Addison-Wesley
Professional, 2006 (ISBN: 0321480910).

[Unicode 2012]
The Unicode Consortium. The Unicode Standard, Version 6.2.

[UNIX 1992]
UNIX System Laboratories. System V Interface Definition, 3rd ed. Wokingham, MA: Addison-
Wesley, 1992.

[van de Voort 2007]
van de Voort, Marco. Development Tutorial (a.k.a Build FAQ). January 29, 2007.

[Vanegue 2010]
Vanegue, Julien. Automated Vulnerability Analysis of Zero-Sized Head Allocations. Hackito
Ergo Sum (HES’10) Conference, Paris, April 10, 2010.

http://www.faqs.org/faqs/comp.lang.c/C-FAQ-list/
http://www.securityfocus.com/advisories/198
http://docs.sun.com/source/819-3688/
http://www.gotw.ca/publications/c++cs.htm
http://www.eecs.berkeley.edu/%7Edaw/papers/setuid-login08b.pdf
http://www.eecs.berkeley.edu/%7Edaw/papers/setuid-login08b.pdf
http://www.unicode.org/standard/standard.html
http://www.unicode.org/versions/Unicode6.2.0/
http://www.stack.nl/%7Emarcov/buildfaq.pdf
http://seclists.org/dailydave/2010/q2/27

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 498
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[van Sprundel 2006]
van Sprundel, Ilja. Unusualbugs. 2006.

[Viega 2001]
Viega, John. Protecting Sensitive Data in Memory. February 2001.

[Viega 2003]
Viega, John & Messier, Matt. Secure Programming Cookbook for C and C++: Recipes for Cryp-
tography, Authentication, Networking, Input Validation & More. Sebastopol, CA: O’Reilly, 2003
(ISBN 0-596-00394-3).

[Viega 2005]
Viega, John. CLASP Reference Guide Volume 1.1. Secure Software, 2005.

[VU#159523]
Giobbi, Ryan. Vulnerability Note VU#159523, Adobe Flash Player Integer Overflow Vulnerabil-
ity. April 2008.

[VU#162289]
Dougherty, Chad. Vulnerability Note VU#162289, GCC Silently Discards Some Wraparound
Checks. April 2008.

[VU#196240]
Taschner, Chris & Manion, Art. Vulnerability Note VU#196240, Sourcefire Snort DCE/RPC Pre-
processor Does Not Properly Reassemble Fragmented Packets. 2007.

[VU#286468]
Burch, Hal. Vulnerability Note VU#286468, Ettercap Contains a Format String Error in the
“curses_msg()” Function. 2007.

[VU#439395]
Lipson, Howard. Vulnerability Note VU#439395, Apache Web Server Performs Case Sensitive
Filtering on Mac OS X HFS+ Case Insensitive Filesystem. 2001.

[VU#551436]
Giobbi, Ryan. Vulnerability Note VU#551436, Mozilla Firefox SVG Viewer Vulnerable to Buffer
Overflow. 2007.

[VU#568148]
Finlay, Ian A. & Morda, Damon G. Vulnerability Note VU#568148, Microsoft Windows RPC
Vulnerable to Buffer Overflow. 2003.

[VU#623332]
Mead, Robert. Vulnerability Note VU#623332, MIT Kerberos 5 Contains Double-Free Vulnera-
bility in “krb5_recvauth()” Function. 2005.

http://www.slideshare.net/amiable_indian/unusual-bugs
http://www.cgisecurity.com/lib/protecting-sensitive-data.html
http://www.securesoftware.com/process/
http://www.kb.cert.org/vuls/id/159523
http://www.kb.cert.org/vuls/id/162289
http://www.kb.cert.org/vulnotes/id/196240
http://www.kb.cert.org/vulnotes/id/286468
http://www.kb.cert.org/vuls/id/439395
http://www.kb.cert.org/vulnotes/id/551436
http://www.kb.cert.org/vulnotes/id/568148
http://www.kb.cert.org/vuls/id/623332

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 499
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[VU#649732]
Gennari, Jeff. Vulnerability Note VU#649732, Samba AFS ACL Mapping VFS Plug-In Format
String Vulnerability. 2007.

[VU#654390]
Rafail, Jason A. Vulnerability Note VU#654390 ISC DHCP Contains C Includes That Define vsn-
printf() to vsprintf() Creating Potential Buffer Overflow Conditions. June 2004.

[VU#720951]
Dorman, Will. Vulnerability Note VU#720951, OpenSSL TLS Heartbeat Extension Read Over-
flow Discloses Sensitive Information. April 2014

[VU#743092]
Rafail, Jason A. & Havrilla, Jeffrey S. Vulnerability Note VU#743092, realpath(3) Function Con-
tains Off-by-One Buffer Overflow. July 2003.

[VU#834865]
Gennari, Jeff. Vulnerability Note VU#834865, Sendmail Signal I/O Race Condition. March 2008.

[VU#837857]
Dougherty, Chad. Vulnerability Note VU#837857, SX.Org Server Fails to Properly Test for Ef-
fective User ID. August 2006.

[VU#881872]
Manion, Art & Taschner, Chris. Vulnerability Note VU#881872, Sun Solaris Telnet Authentica-
tion Bypass Vulnerability. 2007.

[VU#925211]
Dougherty, Chad. Vulnerability Note VU#925211, “Debian and Ubuntu OpenSSL Packages Con-
tain a Predictable Random Number Generator.” June 2008.

[Walfridsson 2003]
Walfridsson, Krister. Aliasing, Pointer Casts and GCC 3.3. August 2003.

[Walls 2006]
Walls, Douglas. How to Use the Qualifier in C. Sun ONE Tools Group, Sun Microsystems.
March 2006.

[Wang 2012]
Wang, Xi. More Randomness or Less. June 2012.

[Warren 2002]
Warren, Henry S. Hacker’s Delight. Boston: Addison Wesley, 2002 (ISBN 0201914654).

http://www.kb.cert.org/vulnotes/id/649732
http://www.kb.cert.org/vulnotes/id/654390
http://www.kb.cert.org/vuls/id/720951
http://www.kb.cert.org/vulnotes/id/743092
http://www.kb.cert.org/vuls/id/834865
http://www.kb.cert.org/vuls/id/837857
http://www.kb.cert.org/vulnotes/id/881872
https://www.kb.cert.org/vuls/id/925211
http://mail-index.netbsd.org/tech-kern/2003/08/11/0001.html
http://www.oracle.com/technetwork/server-storage/solaris/cc-restrict-139391.html
http://kqueue.org/blog/2012/06/25/more-randomness-or-less/
http://www.hackersdelight.org/

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 500
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[WG14/N1396]
Thomas, J. & Tydeman, F. “Wide function return values.”(WG14/N1396) September 2009.

[Wheeler 2003]
Wheeler, David. Secure Programming for Linux and Unix HOWTO, v3.010. March 2003.

[Wheeler 2004]
Wheeler, David. Secure Programmer: Call Components Safely. December 2004.

[Wojtczuk 2008]
Wojtczuk, Rafal. “Analyzing the Linux Kernel vmsplice Exploit.” McAfee Avert Labs Blog, Feb-
ruary 13, 2008.

[xorl 2009]
xorl. xorl %eax, %eax. 2009.

[Yergeau 1998]
Yergeau, F. RFC 2279 - UTF-8, a transformation format of ISO 10646. January 1998.

[Zadegan 2009]
Zadegan, B. “A Lesson on Infinite Loops.” WinJade (formerly AeroXperience), January 2009.

[Zalewski 2001]
Zalewski, Michal. Delivering Signals for Fun and Profit: Understanding, Exploiting and Prevent-
ing Signal-Handling Related Vulnerabilities. Bindview Corporation, May 2001.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1396.htm
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/
http://www-128.ibm.com/developerworks/linux/library/l-calls.html
http://www.avertlabs.com/research/blog/index.php/2008/02/13/analyzing-the-linux-kernel-vmsplice-exploit/
http://xorl.wordpress.com/
http://www.faqs.org/rfcs/rfc2279.html
http://winjade.net/
http://lcamtuf.coredump.cx/signals.txt
http://lcamtuf.coredump.cx/signals.txt

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 501
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix B: Definitions

abnormal end
Termination of a process prior to completion [ISO/IEC/IEEE 24765:2010].

abnormal program termination
See abnormal end.

analyzer
Mechanism that diagnoses coding flaws in software programs [ISO/IEC 9899:2011].
NOTE: Analyzers may include static analysis tools, tools within a compiler suite, or tools in other
contexts.

async-signal-safe function
A function that may be invoked, without restriction, from signal-catching functions. No function
(defined in ISO/IEC 9945) is async-signal-safe unless explicitly described as such. See asynchro-
nous-safe [ISO/IEC 9945:2008].

asynchronous-safe function
A function is asynchronous-safe, or asynchronous-signal safe, if it can be called safely and with-
out side effects from within a signal handler context. That is, it must be able to be interrupted at
any point to run linearly out of sequence without causing an inconsistent state. It must also func-
tion properly when global data might itself be in an inconsistent state. Some asynchronous-safe
operations are listed here:
Call the signal() function to reinstall a signal handler:
• Unconditionally modify a volatile sig_atomic_t variable (as modification to this type

is atomic).
• Call the _Exit() function to immediately terminate program execution.
• Invoke an asynchronous-safe function, as specified by the implementation.

Few functions are portably asynchronous-safe [GNU Pth].

availability
The degree to which a system or component is operational and accessible when required for use.
Often expressed as a probability [IEEE Std 610.12 1990].

condition predicate
An expression constructed from the variables of a function that must be true for a thread to be al-
lowed to continue execution.

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 502
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

conforming
Conforming programs may depend on nonportable features of a conforming implementation
[ISO/IEC 9899:2011].

critical sections
Code that accesses shared data and would otherwise be protected from data races.

dangling pointer
A pointer to deallocated memory.

data flow analysis
Tracking of value constraints along nonexcluded paths through the code.
NOTE: Tracking can be performed intraprocedurally, with various assumptions made about what
happens at function call boundaries, or interprocedurally, where values are tracked flowing into
function calls (directly or indirectly) as arguments and flowing back out either as return values or
indirectly through arguments.

Data flow analysis may or may not track values flowing into or out of the heap or take into ac-
count global variables. When this specification refers to values flowing, the key point is contrast
with variables or expressions because a given variable or expression may hold different values
along different paths and a given value may be held by multiple variables or expressions along a
path.

data race
The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior [ISO/IEC 9899:2011].

denial-of-service attack
Also DoS attack. An attempt to make a computer resource unavailable to its intended users.

diagnostic message
A message belonging to an implementation-defined subset of the implementation’s message out-
put. A diagnostic message may indicate a constraint violation or a valid but questionable language
construct. Messages typically include the file name and line number pointing to the offending
code construct. In addition, implementations often indicate the severity of the problem. Although
the C Standard does not specify any such requirement, the most severe problems often cause im-
plementations to fail to fully translate a translation unit. Diagnostics output in such cases are
termed errors. Other problems may cause implementations simply to issue a warning message and
continue translating the rest of the program. See error message and warning message [ISO/IEC
9899:2011].

double-free vulnerability
An exploitable error resulting from the same allocated object being freed more than once.

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 503
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

error message
A diagnostic message generated when source code is encountered that prevents an implementa-
tion from translating a translation unit. See diagnostic message and warning message.

error tolerance
The ability of a system or component to continue normal operation despite the presence of errone-
ous inputs [IEEE Std 610.12 1990].

exploit
Technique that takes advantage of a security vulnerability to violate an explicit or implicit secu-
rity policy [ISO/IEC TS 17961:2013].

fail safe
Pertaining to a system or component that automatically places itself in a safe operating mode in
the event of a failure—for example, a traffic light that reverts to blinking red in all directions
when normal operation fails [IEEE Std 610.12 1990].

fail soft
Pertaining to a system or component that continues to provide partial operational capability in the
event of certain failures—for example, a traffic light that continues to alternate between red and
green if the yellow light fails [IEEE Std 610.12 1990].

fatal diagnostic
A diagnostic message that causes an implementation not to perform the translation.

fault tolerance
The ability of a system or component to continue normal operation despite the presence of hard-
ware or software faults [IEEE Std 610.12 1990].

freestanding environment
An environment in which C program execution may take place without any benefit of an operat-
ing system. Program startup might occur at some function other than main(), complex types
might not be implemented, and only certain minimal library facilities are guaranteed to be availa-
ble [ISO/IEC 9899:2011].

function-like macro
A #define preprocessing directive that defines an identifier immediately followed by zero or
more parameters, the ellipsis (...), or a combination of the two, enclosed in parentheses, similar
syntactically to a function call. Subsequent instances of the macro name followed by a parenthe-
sized list of arguments in a translation unit are replaced by the replacement list of preprocessing
tokens that constitute the remainder of the directive. See object-like macro and unsafe function-
like macro [ISO/IEC 9899:2011].

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 504
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

hosted environment
An environment that is not freestanding. Program startup occurs at main(), complex types are
implemented, and all C standard library facilities are available [ISO/IEC 9899:2011].

implementation
Particular set of software, running in a particular translation environment under particular control
options, that performs translation of programs for, and supports execution of functions in, a partic-
ular execution environment [ISO/IEC 9899:2011].

implementation-defined behavior
Unspecified behavior whereby each implementation documents how the choice is made [ISO/IEC
9899:2011].

in-band error indicator
A library function return value on error that can never be returned by a successful call to that li-
brary function [ISO/IEC 9899:2011].

incomplete type
A type that describes an identifier but lacks information needed to determine the size of the identi-
fier [ISO/IEC 9899:2011].

indeterminate value
Either an unspecified value or a trap representation [ISO/IEC 9899:2011].

invalid pointer
A pointer that is not a valid pointer.

liveness
Every operation or method invocation executes to completion without interruptions, even if it
goes against safety.

locale-specific behavior
Behavior that depends on local conventions of nationality, culture, and language that each imple-
mentation documents [ISO/IEC 9899:2011].

lvalue
An expression with an object type or an incomplete type other than void. The name lvalue comes
originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) lvalue. It is perhaps better considered as representing an object “locator value”
[ISO/IEC 9899:2011].

mitigation
Methods, techniques, processes, tools, or runtime libraries that can prevent or limit exploits
against vulnerabilities [Seacord 2005a].

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 505
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

mutilated value
Result of an operation performed on an untainted value that yields either an undefined result (such
as the result of signed integer overflow), the result of right-shifting a negative number, implicit
conversion to an integral type where the value cannot be represented in the destination type, or
unsigned integer wrapping.
EXAMPLE
int j = INT_MAX + 1; // j is mutilated
char c = 1234; // c is mutilated if char is eight bits
unsigned int u = 0U - 1; // u is mutilated

NOTE: A mutilated value can be just as dangerous as a tainted value because it can differ either in
sign or magnitude from what the programmer expects.

nonpersistent signal handler
Signal handler running on an implementation that requires the program to again register the signal
handler after occurrences of the signal to catch subsequent occurrences of that signal.

normal program termination
Normal termination occurs by a return from main(), when requested with the exit(), _exit(),
or _Exit() functions, or when the last thread in the process terminates by returning from its start
function, by calling the pthread_exit() function or through cancellation. See abnormal termi-
nation [IEEE Std 1003.1-2013].

object-like macro
A #define preprocessing directive that defines an identifier with no parentheses. Subsequent in-
stances of the macro name in a translation unit are replaced by the replacement list of prepro-
cessing tokens that constitute the remainder of the directive. See function-like macro [ISO/IEC
9899:2011].

out-of-band error indicator
A library function return value used to indicate nothing but the error status [ISO/IEC TS
17961:2013].

out-of-domain value
One of a set of values that is not in the domain of a particular operator or function [ISO/IEC TS
17961:2013].

reentrant
Pertaining to a software module that can be entered as part of one process while also in execution
as part of another process and still achieve the desired results [ISO/IEC/IEEE 24765:2010].

reliability
The ability of a system or component to perform its required functions under stated conditions for
a specified period of time [IEEE Std 610.12 1990].

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 506
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

restricted sink
Operands and arguments whose domain is a subset of the domain described by their types
[ISO/IEC 9899:2011].

robustness
The degree to which a system or component can function correctly in the presence of invalid in-
puts or stressful environmental conditions [IEEE Std 610.12 1990].

rvalue
Value of an expression [ISO/IEC 9899:2011].

sanitize
Assure by testing or replacement that a tainted or other value conforms to the constraints imposed
by one or more restricted sinks into which it may flow [ISO/IEC TS 17961:2013].
NOTE: If the value does not conform, either the path is diverted to avoid using the value or a dif-
ferent, known-conforming value is substituted—for example, adding a null character to the end of
a buffer before passing it as an argument to the strlen function.

security flaw
Defect that poses a potential security risk [ISO/IEC TS 17961:2013].

security policy
Set of rules and practices that specify or regulate how a system or organization provides security
services to protect sensitive and critical system resources [Internet Society 2000].

sequence point
Evaluation of an expression may produce side effects. At specific points in the execution se-
quence called sequence points, all side effects of previous evaluations have completed, and no
side effects of subsequent evaluations have yet taken place [ISO/IEC 9899:2011].

side effect
Changes in the state of the execution environment achieved by accessing a volatile object, modi-
fying an object, modifying a file, or calling a function that does any of those operations [ISO/IEC
9899:2011].
NOTE: The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessi-
ble status flags and control modes. Floating-point operations implicitly set the status flags; modes
affect result values of floating-point operations. Implementations that support such a floating-
point state are required to regard changes to it as side effects. These are detailed in Annex F of the
C Standard.

static analysis
Any process for assessing code without executing it [ISO/IEC TS 17961:2013].

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 507
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

strictly conforming
A strictly conforming program is one that uses only those features of the language and library
specified in the international standard. Strictly conforming programs are intended to be maximally
portable among conforming implementations and cannot, for example, depend on implementa-
tion-defined behavior [ISO/IEC 9899:2011].

string
A contiguous sequence of characters terminated by and including the first null character [ISO/IEC
9899:2011].

tainted source
External source of untrusted data.
NOTE: Tainted sources include
• parameters to the main() function, the returned values from localeconv(), fgetc(),

getc, getchar(), fgetwc(), getwc(), and getwchar(), and the strings produced by
getenv(), fscanf(), vfscanf(), vscanf(), fgets(), fread(), fwscanf(), vfws-
canf(), vwscanf(), wscanf(), and fgetws()

• parameters to the main() function,
• the returned values from localeconv(), fgetc(), getc, getchar(), fgetwc(),

getwc(), and getwchar()
• the strings produced by getenv(), fscanf(), vfscanf(), vscanf(), fgets(),

fread(), fwscanf(), vfwscanf(), vwscanf(), wscanf(), and fgetws()[ISO/IEC TS
17961:2013]

tainted value
Value derived from a tainted source that has not been sanitized [ISO/IEC TS 17961:2013].

target implementation
Implementation of the C programming language whose environmental limits and implementation-
defined behavior are assumed by the analyzer during the analysis of a program [ISO/IEC TS
17961:2013].

TOCTOU, TOCTTOU
Time-of-check, time-of-use (TOCTOU), also referred to as time-of-check-to-time-of-use
(TOCTTOU), represents a vulnerability in which access control checks are nonatomic with the
operations they protect, allowing an attacker to violate access control rules.

trap representation
Object representation that does not represent a value of the object type. Attempting to read the
value of an object that has a trap representation other than by an expression that has a character
type is undefined. Producing such a representation by a side effect that modifies all or any part of
the object other than by an expression that has a character type is undefined [ISO/IEC
9899:2011].

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 508
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

undefined behavior (UB)
Behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for
which the C Standard imposes no requirements. An example of undefined behavior is the behav-
ior on integer overflow [ISO/IEC 9899:2011].

unexpected behavior
Well-defined behavior that may be unexpected or unanticipated by the programmer; incorrect pro-
gramming assumptions.

unsafe function-like macro
A function-like macro whose expansion causes one or more of its arguments not to be evaluated
exactly once.

unsigned integer wrapping
Computation involving unsigned operands whose result is reduced modulo the number that is one
greater than the largest value that can be represented by the resulting type.

unspecified behavior
Behavior for which the standard provides two or more possibilities and imposes no further re-
quirements on which is chosen in any instance [ISO/IEC 9899:2011].

unspecified value
A valid value of the relevant type where the C Standard imposes no requirements on which value
is chosen in any instance. An unspecified value cannot be a trap representation [ISO/IEC
9899:2011].

untrusted data
Data originating from outside of a trust boundary [ISO/IEC 11889-1:2009].

valid pointer
Pointer that refers to an element within an array or one past the last element of an array. See inva-
lid pointer [ISO/IEC TS 17961:2013].
NOTE: For the purposes of this definition, a pointer to an object that is not an element of an array
behaves the same as a pointer to the first element of an array of length one with the type of the ob-
ject as its element type. (See C Standard, 6.5.8, paragraph 4.)

For the purposes of this definition, an object can be considered to be an array of a certain number
of bytes; that number is the size of the object, as produced by the sizeof operator. (See C Stand-
ard, 6.3.2.3, paragraph 7.)

validation
Confirmation by examination and provision of objective evidence that the particular requirements
for a specific intended use are fulfilled [IEC 61508-4].

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 509
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

verification
Confirmation by examination and provision of objective evidence that the requirements have been
fulfilled [IEC 61508-4].

vulnerability
Set of conditions that allows an attacker to violate an explicit or implicit security policy [ISO/IEC
TS 17961:2013].

warning message
A diagnostic message generated when source code is encountered that does not prevent an imple-
mentation from translating a translation unit. See diagnostic message and error message.

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 510
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix C: Undefined Behavior

According to the C Standard, Annex J, J.2 [ISO/IEC 9899:2011], the behavior of a program is un-
defined in the circumstances outlined in the following table. The “Guideline” column in the table
identifies the coding practices that address the specific case of undefined behavior (UB). The de-
scriptions of undefined behaviors in the “Description” column are direct quotes from the standard.
The parenthesized numbers refer to the subclause of the C Standard (C11) that identifies the unde-
fined behavior.

UB Description Guideline

1 A “shall” or “shall not” requirement that appears outside of a con-
straint is violated (clause 4).

MSC15-C

2 A nonempty source file does not end in a new-line character which is
not immediately preceded by a backslash character or ends in a par-
tial preprocessing token or comment (5.1.1.2).

3 Token concatenation produces a character sequence matching the
syntax of a universal character name (5.1.1.2).

PRE30-C

4 A program in a hosted environment does not define a function named
main using one of the specified forms (5.1.2.2.1).

5 The execution of a program contains a data race (5.1.2.4).
6 A character not in the basic source character set is encountered in a

source file, except in an identifier, a character constant, a string lit-
eral, a header name, a comment, or a preprocessing token that is
never converted to a token (5.2.1).

7 An identifier, comment, string literal, character constant, or header
name contains an invalid multibyte character or does not begin and
end in the initial shift state (5.2.1.2).

8 The same identifier has both internal and external linkage in the same
translation unit (6.2.2).

DCL36-C

9 An object is referred to outside of its lifetime (6.2.4). DCL21-C,
DCL30-C

10 The value of a pointer to an object whose lifetime has ended is used
(6.2.4).

DCL30-C,
EXP33-C

11 The value of an object with automatic storage duration is used while
it is indeterminate (6.2.4, 6.7.9, 6.8).

EXP33-C,
MSC22-C

12 A trap representation is read by an lvalue expression that does not
have character type (6.2.6.1).

EXP33-C

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=15630866
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729673
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729673
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729646

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 511
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

13 A trap representation is produced by a side effect that modifies any
part of the object using an lvalue expression that does not have char-
acter type (6.2.6.1).

14 The operands to certain operators are such that they could produce a
negative zero result, but the implementation does not support nega-
tive zeros (6.2.6.2).

15 Two declarations of the same object or function specify types that are
not compatible (6.2.7).

DCL23-C,
DCL40-C

16 A program requires the formation of a composite type from a variable
length array type whose size is specified by an expression that is not
evaluated (6.2.7).

17 Conversion to or from an integer type produces a value outside the
range that can be represented (6.3.1.4).

FLP34-C

18 Demotion of one real floating type to another produces a value out-
side the range that can be represented (6.3.1.5).

FLP34-C

19 An lvalue does not designate an object when evaluated (6.3.2.1).
20 A non-array lvalue with an incomplete type is used in a context that

requires the value of the designated object (6.3.2.1).

21 An lvalue designation an object of automatic storage duration that
could have been declared with the register storage class is used in
a context that requires the value of the designated object, but the ob-
ject is uninitialized (6.3.2.1).

22 An lvalue having array type is converted to a pointer to the initial ele-
ment of the array, and the array object has register storage class
(6.3.2.1).

23 An attempt is made to use the value of a void expression, or an im-
plicit or explicit conversion (except to void) is applied to a void ex-
pression (6.3.2.2).

24 Conversion of a pointer to an integer type produces a value outside
the range that can be represented (6.3.2.3).

INT36-C

25 Conversion between two pointer types produces a result that is incor-
rectly aligned (6.3.2.3).

EXP36-C

26 A pointer is used to call a function whose type is not compatible with
the pointed-to type (6.3.2.3).

EXP37-C

27 An unmatched ' or " character is encountered on a logical source line
during tokenization (6.4).

28 A reserved keyword token is used in translation phase 7 or 8 for some
purpose other than as a keyword (6.4.1).

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1344

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 512
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

29 A universal character name in an identifier does not designate a char-
acter whose encoding falls into one of the specified ranges (6.4.2.1).

30 The initial character of an identifier is a universal character name des-
ignating a digit (6.4.2.1).

31 Two identifiers differ only in nonsignificant characters (6.4.2.1). DCL23-C,
DCL31-C

32 The identifier func{} is explicitly declared (6.4.2.2).
33 The program attempts to modify a string literal (6.4.5). STR30-C
34 The characters ', back-slash, ", /, or /* occur in the sequence be-

tween the < and > delimiters, or the characters ', back-slash, //, or
/* occur in the sequence between the " delimiters, in a header name
preprocessing token (6.4.7).

EXP39-C

35 A side effect on a scalar object is unsequenced relative to either a dif-
ferent side effect on the same scalar object or a value computation us-
ing the value of the same scalar object (6.5).

EXP30-C

36 An exceptional condition occurs during the evaluation of an expres-
sion (6.5).

INT32-C

37 An object has its stored value accessed other than by an lvalue of an
allowable type (6.5).

DCL40-
C,EXP39-C

38 For a call to a function without a function prototype in scope, the
number of arguments does not equal the number of parameters
(6.5.2.2).

EXP37-C

39 For call to a function without a function prototype in scope where the
function is defined with a function prototype, either the prototype
ends with an ellipsis or the types of the arguments after promotion are
not compatible with the types of the parameters (6.5.2.2).

EXP37-C

40 For a call to a function without a function prototype in scope where
the function is not defined with a function prototype, the types of the
arguments after promotion are not compatible with those of the pa-
rameters after promotion (with certain exceptions) (6.5.2.2).

EXP37-C

41 A function is defined with a type that is not compatible with the type
(of the expression) pointed to by the expression that denotes the
called function (6.5.2.2).

DCL40-C,
EXP37-C

42 A member of an atomic structure or union is accessed (6.5.2.3).
43 The operand of the unary * operator has an invalid value (6.5.3.2).
44 A pointer is converted to other than an integer or pointer type (6.5.4).
45 The value of the second operand of the / or % operator is zero (6.5.5). INT33-C

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1344

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 513
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

46 Addition or subtraction of a pointer into, or just beyond, an array ob-
ject and an integer type produces a result that does not point into, or
just beyond, the same array object (6.5.6).

ARR30-C

47 Addition or subtraction of a pointer into, or just beyond, an array ob-
ject and an integer type produces a result that points just beyond the
array object and is used as the operand of a unary * operator that is
evaluated (6.5.6).

ARR30-C

48 Pointers that do not point into, or just beyond, the same array object
are subtracted (6.5.6).

ARR36-C

49 An array subscript is out of range, even if an object is apparently ac-
cessible with the given subscript (as in the lvalue expression
a[1][7] given the declaration int a[4][5]) (6.5.6).

ARR30-C

50 The result of subtracting two pointers is not representable in an object
of type ptrdiff_t (6.5.6).

51 An expression is shifted by a negative number or by an amount
greater than or equal to the width of the promoted expression (6.5.7).

INT34-C

52 An expression having signed promoted type is left-shifted and either
the value of the expression is negative or the result of shifting would
not be representable in the promoted type (6.5.7).

53 Pointers that do not point to the same aggregate or union (nor just be-
yond the same array object) are compared using relational operators
(6.5.8).

ARR36-C

54 An object is assigned to an inexactly overlapping object or to an ex-
actly overlapping object with incompatible type (6.5.16.1).

55 An expression that is required to be an integer constant expression
does not have an integer type; has operands that are not integer con-
stants, enumeration constants, character constants, sizeof expres-
sions whose results are integer constants, or immediately-cast floating
constants; or contains casts (outside operands to sizeof operators)
other than conversions of arithmetic types to integer types (6.6).

56 A constant expression in an initializer is not, or does not evaluate to,
one of the following: an arithmetic constant expression, a null pointer
constant, an address constant, or an address constant for an object
type plus or minus an integer constant expression (6.6).

57 An arithmetic constant expression does not have arithmetic type; has
operands that are not integer constants, floating constants, enumera-
tion constants, character constants, or sizeof expressions; or con-
tains casts (outside operands to sizeof operators) other than conver-
sions of arithmetic types to arithmetic types (6.6).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 514
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

58 The value of an object is accessed by an array-subscript [], member-
access . or ->, address &, or indirection * operator or a pointer cast
in creating an address constant (6.6).

59 An identifier for an object is declared with no linkage and the type of
the object is incomplete after its declarator, or after its init-declarator
if it has an initializer (6.7).

60 A function is declared at block scope with an explicit storage-class
specifier other than extern (6.7.1).

61 A structure or union is defined as containing no named members
(6.7.2.1).

62 An attempt is made to access, or generate a pointer to just past, a
flexible array member of a structure when the referenced object pro-
vides no elements for that array (6.7.2.1).

ARR30-C

63 When the complete type is needed, an incomplete structure or union
type is not completed in the same scope by another declaration of the
tag that defines the content (6.7.2.3).

64 An attempt is made to modify an object defined with a const-quali-
fied type through use of an lvalue with non-const-qualified type
(6.7.3).

EXP05-C,
EXP40-C

65 An attempt is made to refer to an object defined with a volatile-
qualified type through use of an lvalue with non-volatile-qualified
type (6.7.3).

EXP32-C

66 The specification of a function type includes any type qualifiers
(6.7.3).

67 Two qualified types that are required to be compatible do not have
the identically qualified version of a compatible type (6.7.3).

68 An object which has been modified is accessed through a restrict-
qualified pointer to a const-qualified type, or through a restrict-
qualified pointer and another pointer that are not both based on the
same object (6.7.3.1).

EXP43-C

69 A restrict-qualified pointer is assigned a value based on another
restricted pointer whose associated block neither began execution be-
fore the block associated with this pointer, nor ended before the as-
signment (6.7.3.1).

70 A function with external linkage is declared with an inline function
specifier, but is not also defined in the same translation unit (6.7.4).

71 A function declared with a _Noreturn function specifier returns to
its caller (6.7.4).

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=340

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 515
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

72 The definition of an object has an alignment specifier and another
declaration of that object has a different alignment specifier (6.7.5).

73 Declarations of an object in different translation units have different
alignment specifiers (6.7.5).

74 Two pointer types that are required to be compatible are not identi-
cally qualified, or are not pointers to compatible types (6.7.6.1).

75 The size expression in an array declaration is not a constant expres-
sion and evaluates at program execution time to a nonpositive value
(6.7.6.2).

ARR32-C

76 In a context requiring two array types to be compatible, they do not
have compatible element types, or their size specifiers evaluate to un-
equal values (6.7.6.2).

77 A declaration of an array parameter includes the keyword static
within the [and] and the corresponding argument does not provide
access to the first element of an array with at least the specified num-
ber of elements (6.7.6.3).

78 A storage-class specifier or type qualifier modifies the keyword void
as a function parameter type list (6.7.6.3).

79 In a context requiring two function types to be compatible, they do
not have compatible return types, or their parameters disagree in use
of the ellipsis terminator or the number and type of parameters (after
default argument promotion, when there is no parameter type list or
when one type is specified by a function definition with an identifier
list) (6.7.6.3).

80 The value of an unnamed member of a structure or union is used
(6.7.9).

81 The initializer for a scalar is neither a single expression nor a single
expression enclosed in braces (6.7.9).

82 The initializer for a structure or union object that has automatic stor-
age duration is neither an initializer list nor a single expression that
has compatible structure or union type (6.7.9).

83 The initializer for an aggregate or union, other than an array initial-
ized by a string literal, is not a brace-enclosed list of initializers for its
elements or members (6.7.9).

84 An identifier with external linkage is used, but in the program there
does not exist exactly one external definition for the identifier, or the
identifier is not used and there exist multiple external definitions for
the identifier (6.9).

85 A function definition includes an identifier list, but the types of the
parameters are not declared in a following declaration list (6.9.1).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 516
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

86 An adjusted parameter type in a function definition is not an object
type (6.9.1).

87 A function that accepts a variable number of arguments is defined
without a parameter type list that ends with the ellipsis notation
(6.9.1).

88 The } that terminates a function is reached, and the value of the func-
tion call is used by the caller (6.9.1).

MSC37-C

89 An identifier for an object with internal linkage and an incomplete
type is declared with a tentative definition (6.9.2).

90 The token defined is generated during the expansion of a #if or
#elif preprocessing directive, or the use of the defined unary opera-
tor does not match one of the two specified forms prior to macro re-
placement (6.10.1).

91 The #include preprocessing directive that results after expansion
does not match one of the two header name forms (6.10.2).

92 The character sequence in an #include preprocessing directive does
not start with a letter (6.10.2).

93 There are sequences of preprocessing tokens within the list of macro
arguments that would otherwise act as preprocessing directives
(6.10.3).

PRE32-C

94 The result of the preprocessing operator # is not a valid character
string literal (6.10.3.2).

95 The result of the preprocessing operator ## is not a valid prepro-
cessing token (6.10.3.3).

96 The #line preprocessing directive that results after expansion does
not match one of the two well-defined forms, or its digit sequence
specifies zero or a number greater than 2147483647 (6.10.4).

97 A non-STDC#pragma preprocessing directive that is documented as
causing translation failure or some other form of undefined behavior
is encountered (6.10.6).

98 A #pragma STDC preprocessing directive does not match one of the
well-defined forms (6.10.6).

99 The name of a predefined macro, or the identifier defined, is the sub-
ject of a #define or #undef preprocessing directive (6.10.8).

100 An attempt is made to copy an object to an overlapping object by use
of a library function, other than as explicitly allowed (e.g., memmove)
(clause 7).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 517
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

101 A file with the same name as one of the standard headers, not pro-
vided as part of the implementation, is placed in any of the standard
places that are searched for included source files (7.1.2).

102 A header is included within an external declaration or definition
(7.1.2).

103 A function, object, type, or macro that is specified as being declared
or defined by some standard header is used before any header that de-
clares or defines it is included (7.1.2).

104 A standard header is included while a macro is defined with the same
name as a keyword (7.1.2).

105 The program attempts to declare a library function itself, rather than
via a standard header, but the declaration does not have external link-
age (7.1.2).

106 The program declares or defines a reserved identifier, other than as
allowed by 7.1.4 (7.1.3).

DCL37-C

107 The program removes the definition of a macro whose name begins
with an underscore and either an uppercase letter or another under-
score (7.1.3).

108 An argument to a library function has an invalid value or a type not
expected by a function with a variable number of arguments (7.1.4).

109 The pointer passed to a library function array parameter does not
have a value such that all address computations and object accesses
are valid (7.1.4).

ARR30-C,
ARR38-C

110 The macro definition of assert is suppressed in order to access an
actual function (7.2).

MSC38-C

111 The argument to the assert macro does not have a scalar type (7.2).
112 The CX_LIMITED_RANGE, FENV_ACCESS, or FP_CONTRACT pragma

is used in any context other than outside all external declarations or
preceding all explicit declarations and statements inside a compound
statement (7.3.4, 7.6.1, 7.12.2).

113 The value of an argument to a character handling function is neither
equal to the value of EOF nor representable as an unsigned char
(7.4).

STR37-C

114 A macro definition of errno is suppressed in order to access an ac-
tual object, or the program defines an identifier with the name errno
(7.5).

DCL37-C,
MSC38-C

115 Part of the program tests floating-point status flags, sets floating-
point control modes, or runs under non-default mode settings, but

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 518
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

was translated with the state for the FENV_ACCESS pragma "off"
(7.6.1).

116 The exception-mask argument for one of the functions that provide
access to the floating-point status flags has a nonzero value not ob-
tained by bitwise OR of the floating-point exception macros (7.6.2).

117 The fesetexceptflag function is used to set floating-point status
flags that were not specified in the call to the fegetexceptflag
function that provided the value of the corresponding fexcept_t ob-
ject (7.6.2.4).

118 The argument to fesetenv or feupdateenv is neither an object set
by a call to fegetenv or feholdexcept, nor is it an environment
macro (7.6.4.3, 7.6.4.4).

119 The value of the result of an integer arithmetic or conversion function
cannot be represented (7.8.2.1, 7.8.2.2, 7.8.2.3, 7.8.2.4, 7.22.6.1,
7.22.6.2, 7.22.1).

ERR07-C

120 The program modifies the string pointed to by the value returned by
the setlocale function (7.11.1.1).

ENV30-C

121 The program modifies the structure pointed to by the value returned
by the localeconv function (7.11.2.1).

ENV30-C

122 A macro definition of math_errhandling is suppressed or the pro-
gram defines an identifier with the name math_errhandling
(7.12).

MSC38-C

123 An argument to a floating-point classification or comparison macro is
not of real floating type (7.12.3, 7.12.14).

124 A macro definition of setjmp is suppressed in order to access an ac-
tual function, or the program defines an external identifier with the
name setjmp (7.13).

MSC38-C

125 An invocation of the setjmp macro occurs other than in an allowed
context (7.13.2.1).

MSC22-C

126 The longjmp function is invoked to restore a nonexistent environ-
ment (7.13.2.1).

MSC22-C

127 After a longjmp, there is an attempt to access the value of an object
of automatic storage class with non-volatile-qualified type, local
to the function containing the invocation of the corresponding set-
jmp macro, that was changed between the setjmp invocation and
longjmp call (7.13.2.1).

MSC22-C

128 The program specifies an invalid pointer to a signal handler function
(7.14.1.1).

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=20676617
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729646
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729646
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=42729646

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 519
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

129 A signal handler returns when the signal corresponded to a computa-
tional exception (7.14.1.1).

SIG31-C

130 A signal handler called in response to SIGFPE, SIGILL, SIGSEGV, or
any other implementation-defined value corresponding to a computa-
tional exception returns (7.14.1.1).

SIG35-C

131 A signal occurs as the result of calling the abort or raise function,
and the signal handler calls the raise function (7.14.1.1).

SIG30-C,
SIG31-C

132 A signal occurs other than as the result of calling the abort or raise
function, and the signal handler refers to an object with static or
thread storage duration that is not a lock-free atomic object other than
by assigning a value to an object declared as volatile sig_atomic_t, or
calls any function in the standard library other than the abort func-
tion, the _Exit function, the quick_exit function, or the signal func-
tion (for the same signal number) (7.14.1.1).

SIG31-C

133 The value of errno is referred to after a signal occurred other than as
the result of calling the abort or raise function and the correspond-
ing signal handler obtained a SIG_ERR return from a call to the sig-
nal function (7.14.1.1).

ERR32-C

134 A signal is generated by an asynchronous signal handler (7.14.1.1).
135 The signal function is used in a multi-threaded program (7.14.1.1).
136 A function with a variable number of arguments attempts to access its

varying arguments other than through a properly declared and initial-
ized va_list object, or before the va_start macro is invoked
(7.16, 7.16.1.1, 7.16.1.4).

137 The macro va_arg is invoked using the parameter ap that was
passed to a function that invoked the macro va_arg with the same
parameter (7.16).

CON37-C

138 A macro definition of va_start, va_arg, va_copy, or va_end is
suppressed in order to access an actual function, or the program de-
fines an external identifier with the name va_copy or va_end
(7.16.1).

MSC38-C

139 The va_start or va_copy macro is invoked without a correspond-
ing invocation of the va_end macro in the same function, or vice
versa (7.16.1, 7.16.1.2, 7.16.1.3, 7.16.1.4).

140 The type parameter to the va_arg macro is not such that a pointer to
an object of that type can be obtained simply by postfixing a *
(7.16.1.1).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 520
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

141 The va_arg macro is invoked when there is no actual next argument,
or with a specified type that is not compatible with the promoted type
of the actual next argument, with certain exceptions (7.16.1.1).

DCL10-C

142 The va_copy or va_start macro is called to initialize a va_list
that was previously initialized by either macro without an intervening
invocation of the va_end macro for the same va_list (7.16.1.2,
7.16.1.4).

143 The parameter parmN of a va_start macro is declared with the reg-
ister storage class, with a function or array type, or with a type that is
not compatible with the type that results after application of the de-
fault argument promotions (7.16.1.4).

144 The member designator parameter of an offsetof macro is an inva-
lid right operand of the . operator for the type parameter, or desig-
nates a bit-field (7.19).

145 The argument in an instance of one of the integer-constant macros is
not a decimal, octal, or hexadecimal constant, or it has a value that
exceeds the limits for the corresponding type (7.20.4).

146 A byte input/output function is applied to a wide-oriented stream, or a
wide character input/output function is applied to a byte-oriented
stream (7.21.2).

147 Use is made of any portion of a file beyond the most recent wide
character written to a wide-oriented stream (7.21.2).

148 The value of a pointer to a FILE object is used after the associated
file is closed (7.21.3).

FIO42-C,
FIO46-C

149 The stream for the fflush function points to an input stream or to an
update stream in which the most recent operation was input
(7.21.5.2).

150 The string pointed to by the mode argument in a call to the fopen
function does not exactly match one of the specified character se-
quences (7.21.5.3).

151 An output operation on an update stream is followed by an input op-
eration without an intervening call to the fflush function or a file
positioning function, or an input operation on an update stream is fol-
lowed by an output operation with an intervening call to a file posi-
tioning function (7.21.5.3).

FIO39-C

152 An attempt is made to use the contents of the array that was supplied
in a call to the setvbuf function (7.21.5.6).

153 There are insufficient arguments for the format in a call to one of the
formatted input/output functions, or an argument does not have an ap-
propriate type (7.21.6.1, 7.21.6.2, 7.29.2.1, 7.29.2.2).

FIO47-C

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473475
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=5406769

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 521
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

154 The format in a call to one of the formatted input/output functions or
to the strftime or wcsftime function is not a valid multibyte char-
acter sequence that begins and ends in its initial shift state (7.21.6.1,
7.121.6.2, 7.27.3.5, 7.229.2.1, 7.29.2.2, 7.29.5.1).

155 In a call to one of the formatted output functions, a precision appears
with a conversion specifier other than those described (7.21.6.1,
7.29.2.1).

 FIO47-C

156 A conversion specification for a formatted output function uses an as-
terisk to denote an argument-supplied field width or precision, but the
corresponding argument is not provided (7.21.6.1, 7.29.2.1).

157 A conversion specification for a formatted output function uses a # or
0 flag with a conversion specifier other than those described
(7.21.6.1, 7.29.2.1).

 FIO47-C

158 A conversion specification for one of the formatted input/output func-
tions uses a length modifier with a conversion specifier other than
those described (7.21.6.1, 7.21.6.2, 7.29.2.1, 7.29.2.2).

 FIO47-C

159 An s conversion specifier is encountered by one of the formatted out-
put functions, and the argument is missing the null terminator (unless
a precision is specified that does not require null termination)
(7.21.6.1, 7.29.2.1).

160 An n conversion specification for one of the formatted input/output
functions includes any flags, an assignment-suppressing character, a
field width, or a precision (7.21.6.1, 7.21.6.2, 7.29.2.1, 7.29.2.2).

161 A % conversion specifier is encountered by one of the formatted in-
put/output functions, but the complete conversion specification is not
exactly %% (7.21.6.1, 7.21.6.2, 7.29.2.1, 7.29.2.2).

 FIO47-C

162 An invalid conversion specification is found in the format for one of
the formatted input/output functions, or the strftime or wcsftime
function (7.21.6.1, 7.21.6.2, 7.27.3.5, 7.29.2.1, 7.29.2.2, 7.29.5.1).

FIO47-C

163 The number of characters or wide characters transmitted by a format-
ted output function (or written to an array, or that would have been
written to an array) is greater than INT_MAX (7.21.6.1, 7.29.2.1).

164 The number of input items assigned by a formatted input function is
greater than INT_MAX (7.21.6.2, 7.29.2.2).

165 The result of a conversion by one of the formatted input functions
cannot be represented in the corresponding object, or the receiving
object does not have an appropriate type (7.21.6.2, 7.29.2.2).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 522
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

166 A c, s, or [conversion specifier is encountered by one of the format-
ted input functions, and the array pointed to by the corresponding ar-
gument is not large enough to accept the input sequence (and a null
terminator if the conversion specifier is s or [) (7.21.6.2, 7.29.2.2).

167 A c, s, or [conversion specifier with an l qualifier is encountered by
one of the formatted input functions, but the input is not a valid
multibyte character sequence that begins in the initial shift state
(7.21.6.2, 7.29.2.2).

168 The input item for a %p conversion by one of the formatted input
functions is not a value converted earlier during the same program
execution (7.21.6.2, 7.29.2.2).

169 The vfprintf, vfscanf, vprintf, vscanf, vsnprintf,
vsprintf, vsscanf, vfwprintf, vfwscanf, vswprintf, vsws-
canf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in
an invocation of va_end) after the function returns (7.21.6.8,
7.21.6.9, 7.21.6.10, 7.21.6.11, 7.21.6.12, 7.21.6.13, 7.21.6.14,
7.29.2.5, 7.29.2.6, 7.29.2.7, 7.29.2.8, 7.29.2.9, 7.29.2.10).

170 The contents of the array supplied in a call to the fgets, gets, or
fgetws function are used after a read error occurred (7.21.7.2,
7.21.7.7, 7.293.2).

FIO40-C

171 The file position indicator for a binary stream is used after a call to
the ungetc function where its value was zero before the call
(7.21.7.11).

172 The file position indicator for a stream is used after an error occurred
during a call to the fread or fwrite function (7.21.8.1, 7.21.8.2).

173 A partial element read by a call to the fread function is used
(7.21.8.1).

174 The fseek function is called for a text stream with a nonzero offset
and either the offset was not returned by a previous successful call to
the ftell function on a stream associated with the same file or
whence is not SEEK_SET (7.21.9.2).

175 The fsetpos function is called to set a position that was not returned
by a previous successful call to the fgetpos function on a stream as-
sociated with the same file (7.21.9.3).

176 A non-null pointer returned by a call to the calloc, malloc, or re-
alloc function with a zero requested size is used to access an object
(7.22.3).

MEM04-C

177 The value of a pointer that refers to space deallocated by a call to the
free or realloc function is used (7.22.3).

MEM30-C

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 523
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

178 The alignment requested of the aligned_alloc function is not
valid or not supported by the implementation, or the size requested is
not an integral multiple of the alignment (7.22.3.1).

179 The pointer argument to the free or realloc function does not
match a pointer earlier returned by calloc, malloc, or realloc, or
the space has been deallocated by a call to free or realloc
(7.22.3.3, 7.22.3.5).

MEM34-C

180 The value of the object allocated by the malloc function is used
(7.22.3.4).

181 The values of any bytes in a new object allocated by the realloc
function beyond the size of the old object are used (7.22.3.5).

EXP33-C

182 The program calls the exit or quick_exit function more than once, or
calls both functions (7.22.4.4, 7.22.4.7).

ENV32-
C,ERR04-C

183 During the call to a function registered with the atexit or
at_quick_exit function, a call is made to the longjmp function that
would terminate the call to the registered function (7.22.4.4,
7.22.4.7).

ENV32-C

184 The string set up by the getenv or strerror function is modified
by the program (7.22.4.6, 7.24.6.2).

ENV30-C

185 A signal is raised while the quick_exit function is executing
(7.22.4.7).

186 A command is executed through the system function in a way that is
documented as causing termination or some other form of undefined
behavior (7.22.4.8).

187 A searching or sorting utility function is called with an invalid pointer
argument, even if the number of elements is zero (7.22.5).

188 The comparison function called by a searching or sorting utility func-
tion alters the contents of the array being searched or sorted, or re-
turns ordering values inconsistently (7.22.5).

189 The array being searched by the bsearch function does not have its
elements in proper order (7.22.5.1).

190 The current conversion state is used by a multibyte/wide character
conversion function after changing the LC_CTYPE category (7.22.7).

191 A string or wide string utility function is instructed to access an array
beyond the end of an object (7.24.1, 7.29.4).

192 A string or wide string utility function is called with an invalid
pointer argument, even if the length is zero (7.24.1, 7.29.4).

193 The contents of the destination array are used after a call to the
strxfrm, strftime, wcsxfrm, or wcsftime function in which the

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=16187691

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 524
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

UB Description Guideline

specified length was too small to hold the entire null-terminated re-
sult (7.24.4.5, 7.27.3.5, 7.29.4.4.4, 7.29.5.1).

194 The first argument in the very first call to the strtok or wcstok is a
null pointer (7.24.5.8, 7.29.4.5.7).

195 The type of an argument to a type-generic macro is not compatible
with the type of the corresponding parameter of the selected function
(7.25).

196 A complex argument is supplied for a generic parameter of a type-ge-
neric macro that has no corresponding complex function (7.25).

197 At least one member of the broken-down time passed to asctime con-
tains a value outside its normal range, or the calculated year exceeds
four digits or is less than the year 1000 (7.27.3.1).

198 The argument corresponding to an s specifier without an l qualifier
in a call to the fwprintf function does not point to a valid multibyte
character sequence that begins in the initial shift state (7.29.2.11).

199 In a call to the wcstok function, the object pointed to by ptr does
not have the value stored by the previous call for the same wide string
(7.29.4.5.7).

200 An mbstate_t object is used inappropriately (7.29.6). EXP33-C
201 The value of an argument of type wint_t to a wide character classi-

fication or case mapping function is neither equal to the value of
WEOF nor representable as a wchar_t (7.30.1).

202 The iswctype function is called using a different LC_CTYPE cate-
gory from the one in effect for the call to the wctype function that
returned the description (7.30.2.2.1).

203 The towctrans function is called using a different LC_CTYPE cate-
gory from the one in effect for the call to the wctrans function that
returned the description (7.30.3.2.1).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 525
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix D: Unspecified Behavior

According to the C Standard, Annex J, J.1 [ISO/IEC 9899:2011], the behavior of a program is un-
specified in the circumstances outlined the following table. The descriptions of unspecified be-
haviors in the “Description” column are direct quotes from the standard. The parenthesized num-
bers refer to the subclause of the C Standard (C11) that identifies the unspecified behavior. The
“Guideline” column in the table identifies the coding practices that address the specific case of
unspecified behavior (USB).

USB Description Guideline

1 The manner and timing of static initialization (5.1.2).
2 The termination status returned to the hosted environment if the re-

turn type of main is not compatible with int (5.1.2.2.3).

3 The values of objects that are neither lock-free atomic objects nor of
type volatile sig_atomic_t and the state of the floating-point
environment when the processing of the abstract machine is inter-
rupted by receipt of a signal (5.1.2.3).

4 The behavior of the display device if a printing character is written
when the active position is at the final position of a line (5.2.2).

5 The behavior of the display device if a backspace character is written
when the active position is at the initial position of a line 5.2.2).

6 The behavior of the display device if a horizontal tab character is
written when the active position is at or past the last defined horizon-
tal tabulation position (5.2.2).

7 The behavior of the display device if a vertical tab character is writ-
ten when the active position is at or past the last defined vertical tabu-
lation position (5.2.2).

8 How an extended source character that does not correspond to a uni-
versal character name counts toward the significant initial characters
in an external identifier (5.2.4.1).

9 Many aspects of the representations of types (6.2.6).
10 The value of padding bytes when storing values in structures or un-

ions (6.2.6.1).

11 The values of bytes that correspond to union members other than the
one last stored into (6.2.6.1).

EXP39-C

12 The representation used when storing a value in an object that has
more than one object representation for that value (6.2.6.1).

13 The values of any padding bits in integer representations (6.2.6.2).

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 526
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

USB Description Guideline

14 Whether certain operators can generate negative zeros and whether a
negative zero becomes a normal zero when stored in an object
(6.2.6.2).

15 Whether two string literals result in distinct arrays (6.4.5).
16 The order in which subexpressions are evaluated and the order in

which side effects take place, except as specified for the function-call
(), &&, ||, ?:, and comma operators (6.5).

EXP30-C

17 The order in which the function designator, arguments, and subex-
pressions within the arguments are evaluated in a function call
(6.5.2.2).

18 The order of side effects among compound literal initialization list
expressions (6.5.2.5).

19 The order in which the operands of an assignment operator are evalu-
ated (6.5.16).

20 The alignment of the addressable storage unit allocated to hold a bit-
field (6.7.2.1).

21 Whether a call to an inline function uses the inline definition or the
external definition of the function (6.7.4).

22 Whether or not a size expression is evaluated when it is part of the
operand of a sizeof operator and changing the value of the size ex-
pression would not affect the result of the operator (6.7.6.2).

EXP44-C

23 The order in which any side effects occur among the initialization list
expressions in an initializer (6.7.9).

24 The layout of storage for function parameters (6.9.1).
25 When a fully expanded macro replacement list contains a function-

like macro name as its last preprocessing token and the next prepro-
cessing token from the source file is a (, and the fully expanded re-
placement of that macro ends with the name of the first macro and the
next preprocessing token from the source file is again a (, whether
that is considered a nested replacement (6.10.3).

26 The order in which # and ## operations are evaluated during macro
substitution (6.10.3.2, 6.10.3.3).

27 The state of the floating-point status flags when execution passes
from a part of the program translated with FENV_ACCESS "off" to a
part translated with FENV_ACCESS "on" (7.6.1).

28 The order in which feraiseexcept raises floating-point exceptions,
except as stated in F.8.6 (7.6.2.3).

29 Whether math_errhandling is a macro or an identifier with exter-
nal linkage (7.12).

DCL37-C

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 527
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

USB Description Guideline

30 The results of the frexp functions when the specified value is not a
floating-point number (7.12.6.4).

31 The numeric result of the ilogb functions when the correct value is
outside the range of the return type (7.12.6.5, F.10.3.5).

32 The result of rounding when the value is out of range (7.12.9.5,
7.12.9.7, F.10.6.5).

33 The value stored by the remquo functions in the object pointed to by
quo when y is zero (7.12.10.3).

34 Whether a comparison macro argument that is represented in a format
wider than its semantic type is converted to the semantic type
(7.12.14).

35 Whether setjmp is a macro or an identifier with external linkage
(7.13).

DCL37-C

36 Whether va_copy and va_end are macros or identifiers with exter-
nal linkage (7.16.1).

DCL37-C

37 The hexadecimal digit before the decimal point when a non-normal-
ized floating-point number is printed with an a or A conversion speci-
fier (7.21.6.1, 7.29.2.1).

38 The value of the file position indicator after a successful call to the
ungetc function for a text stream, or the ungetwc function for any
stream, until all pushed-back characters are read or discarded
(7.21.7.10, 7.29.3.10).

39 The details of the value stored by the fgetpos function (7.21.9.1).
40 The details of the value returned by the ftell function for a text

stream (7.21.9.4).

41 Whether the strtod, strtof, strtold, wcstod, wcstof, and
wcstold functions convert a minus-signed sequence to a negative
number directly or by negating the value resulting from converting
the corresponding unsigned sequence (7.22.1.3, 7.29.4.1.1).

42 The order and contiguity of storage allocated by successive calls to
the calloc, malloc, and realloc functions (7.22.3).

43 The amount of storage allocated by a successful call to the calloc,
malloc, and realloc function when 0 bytes was requested (7.22.3).

MEM04-C

44 Whether a call to the atexit function that does not happen before
the exit function is called will succeed (7.22.4.2).

45 Whether a call to the at_quick_exit function that does not happen
before the quick_exit function is called will succeed (7.22.4.3).

46 Which of two elements that compare as equal is matched by the
bsearch function (7.22.5.1).

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=537

SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems 528
Software Engineering Institute | Carnegie Mellon University
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

USB Description Guideline

47 The order of two elements that compare as equal in an array sorted by
the qsort function (7.22.5.2).

48 The encoding of the calendar time returned by the time function
(7.27.2.4).

MSC05-C

49 The characters stored by the strftime or wcsftime function if any
of the time values being converted is outside the normal range
(7.27.3.5, 7.29.5.1).

50 Whether an encoding error occurs if a wchar_t value that does not
correspond to a member of the extended character set appears in the
format string for a function in 7.29.2 or 7.29.5 and the specified se-
mantics do not require that value to be processed by wcrtomb
(7.29.1).

51 The conversion state after an encoding error occurs (7.28.1.1,
7.28.1.2, 7.28.1.3, 7.28.1.4, 7.29.6.3.2, 7.29.6.3.3, 7.29.6.4.1,
7.29.6.4.2).

52 The resulting value when the “invalid” floating-point exception is
raised during IEC 60559 floating to integer conversion (F.4).

53 Whether conversion of non-integer IEC 60559 floating values to inte-
ger raises the “inexact” floating-point exception (F.4).

54 Whether or when library functions in <math.h> raise the “inexact”
floating-point exception in an IEC 60559 conformant implementation
(F.10).

55 Whether or when library functions in <math.h> raise an undeserved
“underflow” floating-point exception in an IEC 60559 conformant
implementation (F.10).

56 The exponent value stored by frexp for a NaN or infinity (F.10.3.4).
57 The numeric result returned by the lrint, llrint, lround, and

llround functions if the rounded value is outside the range of the re-
turn type (F.10.6.5, F.10.6.7).

58 The sign of one part of the complex result of several math functions
for certain exceptional values in IEC 60559 compatible implementa-
tions (G.6.1.1, G.6.2.2, G.6.2.3, G.6.2.4, G.6.2.5, G.6.2.6, G.6.3.1,
G.6.4.2).

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1376342

	SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems (2016 Edition)
	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 History
	1.4 ISO/IEC TS 17961 C Secure Coding Rules
	1.5 Tool Selection and Validation
	1.6 Taint Analysis
	1.7 Rules Versus Recommendations
	1.8 Conformance Testing
	1.9 Development Process
	1.10 Usage
	1.11 System Qualities
	1.12 Vulnerability Metric
	1.13 How This Coding Standard Is Organized
	1.14 Automatically Generated Code
	1.15 Government Regulations
	1.16 Acknowledgments

	2 Preprocessor (PRE)
	2.1 PRE30-C. Do not create a universal character name through concatenation
	2.2 PRE31-C. Avoid side effects in arguments to unsafe macros
	2.3 PRE32-C. Do not use preprocessor directives in invocations of function-like macros

	3 Declarations and Initialization (DCL)
	3.1 DCL30-C. Declare objects with appropriate storage durations
	3.2 DCL31-C. Declare identifiers before using them
	3.3 DCL36-C. Do not declare an identifier with conflicting linkage classifications
	3.4 DCL37-C. Do not declare or define a reserved identifier
	3.5 DCL38-C. Use the correct syntax when declaring a flexible array member
	3.6 DCL39-C. Avoid information leakage when passing a structure across a trust boundary
	3.7 DCL40-C. Do not create incompatible declarations of the same function or object
	3.8 DCL41-C. Do not declare variables inside a switch statement before the first case label

	4 Expressions (EXP)
	4.1 EXP30-C. Do not depend on the order of evaluation for side effects
	4.2 EXP32-C. Do not access a volatile object through a nonvolatile reference
	4.3 EXP33-C. Do not read uninitialized memory
	4.4 EXP34-C. Do not dereference null pointers
	4.5 EXP35-C. Do not modify objects with temporary lifetime
	4.6 EXP36-C. Do not cast pointers into more strictly aligned pointer types
	4.7 EXP37-C. Call functions with the correct number and type of arguments
	4.8 EXP39-C. Do not access a variable through a pointer of an incompatible type
	4.9 EXP40-C. Do not modify constant objects
	4.10 EXP42-C. Do not compare padding data
	4.11 EXP43-C. Avoid undefined behavior when using restrict-qualified pointers
	4.12 EXP44-C. Do not rely on side effects in operands to sizeof, _Alignof, or _Generic
	4.13 EXP45-C. Do not perform assignments in selection statements
	4.14 EXP46-C. Do not use a bitwise operator with a Boolean-like operand

	5 Integers (INT)
	5.1 INT30-C. Ensure that unsigned integer operations do not wrap
	5.2 INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data
	5.3 INT32-C. Ensure that operations on signed integers do not result in overflow
	5.4 INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors
	5.5 INT34-C. Do not shift an expression by a negative number of bits or by greater than or equal to the number of bits that exist in the operand
	5.6 INT35-C. Use correct integer precisions
	5.7 INT36-C. Converting a pointer to integer or integer to pointer

	6 Floating Point (FLP)
	6.1 FLP30-C. Do not use floating-point variables as loop counters
	6.2 FLP32-C. Prevent or detect domain and range errors in math functions
	6.3 FLP34-C. Ensure that floating-point conversions are within range of the new type
	6.4 FLP36-C. Preserve precision when converting integral values to floating-point type
	6.5 FLP37-C. Do not use object representations to compare floating-point values

	7 Array (ARR)
	7.1 ARR30-C. Do not form or use out-of-bounds pointers or array subscripts
	7.2 ARR32-C. Ensure size arguments for variable length arrays are in a valid range
	7.3 ARR36-C. Do not subtract or compare two pointers that do not refer to the same array
	7.4 ARR37-C. Do not add or subtract an integer to a pointer to a non-array object
	7.5 ARR38-C. Guarantee that library functions do not form invalid pointers
	7.6 ARR39-C. Do not add or subtract a scaled integer to a pointer

	8 Characters and Strings (STR)
	8.1 STR30-C. Do not attempt to modify string literals
	8.2 STR31-C. Guarantee that storage for strings has sufficient space for character data and the null terminator
	8.3 STR32-C. Do not pass a non-null-terminated character sequence to a library function that expects a string
	8.4 STR34-C. Cast characters to unsigned char before converting to larger integer sizes
	8.5 STR37-C. Arguments to character-handling functions must be representable as an unsigned char
	8.6 STR38-C. Do not confuse narrow and wide character strings and functions

	9 Memory Management (MEM)
	9.1 MEM30-C. Do not access freed memory
	9.2 MEM31-C. Free dynamically allocated memory when no longer needed
	9.3 MEM33-C. Allocate and copy structures containing a flexible array member dynamically
	9.4 MEM34-C. Only free memory allocated dynamically
	9.5 MEM35-C. Allocate sufficient memory for an object
	9.6 MEM36-C. Do not modify the alignment of objects by calling realloc()

	10 Input/Output (FIO)
	10.1 FIO30-C. Exclude user input from format strings
	10.2 FIO32-C. Do not perform operations on devices that are only appropriate for files
	10.3 FIO34-C. Distinguish between characters read from a file and EOF or WEOF
	10.4 FIO37-C. Do not assume that fgets() or fgetws() returns a nonempty string when successful
	10.5 FIO38-C. Do not copy a FILE object
	10.6 FIO39-C. Do not alternately input and output from a stream without an intervening flush or positioning call
	10.7 FIO40-C. Reset strings on fgets() or fgetws() failure
	10.8 FIO41-C. Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects
	10.9 FIO42-C. Close files when they are no longer needed
	10.10 FIO44-C. Only use values for fsetpos() that are returned from fgetpos()
	10.11 FIO45-C. Avoid TOCTOU race conditions while accessing files
	10.12 FIO46-C. Do not access a closed file
	10.13 FIO47-C. Use valid format strings

	11 Environment (ENV)
	11.1 ENV30-C. Do not modify the object referenced by the return value of certain functions
	11.2 ENV31-C. Do not rely on an environment pointer following an operation that may invalidate it
	11.3 ENV32-C. All exit handlers must return normally
	11.4 ENV33-C. Do not call system()
	11.5 ENV34-C. Do not store pointers returned by certain functions

	12 Signals (SIG)
	12.1 SIG30-C. Call only asynchronous-safe functions within signal handlers
	12.2 SIG31-C. Do not access shared objects in signal handlers
	12.3 SIG34-C. Do not call signal() from within interruptible signal handlers
	12.4 SIG35-C. Do not return from a computational exception signal handler

	13 Error Handling (ERR)
	13.1 ERR30-C. Set errno to zero before calling a library function known to set errno, and check errno only after the function returns a value indicating failure
	13.2 ERR32-C. Do not rely on indeterminate values of errno
	13.3 ERR33-C. Detect and handle standard library errors

	14 Concurrency (CON)
	14.1 CON30-C. Clean up thread-specific storage
	14.2 CON31-C. Do not destroy a mutex while it is locked
	14.3 CON32-C. Prevent data races when accessing bit-fields from multiple threads
	14.4 CON33-C. Avoid race conditions when using library functions
	14.5 CON34-C. Declare objects shared between threads with appropriate storage durations
	14.6 CON35-C. Avoid deadlock by locking in a predefined order
	14.7 CON36-C. Wrap functions that can spuriously wake up in a loop
	14.8 CON37-C. Do not call signal() in a multithreaded program
	14.9 CON38-C. Preserve thread safety and liveness when using condition variables
	14.10 CON39-C. Do not join or detach a thread that was previously joined or detached
	14.11 CON40-C. Do not refer to an atomic variable twice in an expression
	14.12 CON41-C. Wrap functions that can fail spuriously in a loop

	15 Miscellaneous (MSC)
	15.1 MSC30-C. Do not use the rand() function for generating pseudorandom numbers
	15.2 MSC32-C. Properly seed pseudorandom number generators
	15.3 MSC33-C. Do not pass invalid data to the asctime() function
	15.4 MSC37-C. Ensure that control never reaches the end of a non-void function
	15.5 MSC38-C. Do not treat a predefined identifier as an object if it might only be implemented as a macro
	15.6 MSC39-C. Do not call va_arg() on a va_list that has an indeterminate value
	15.7 MSC40-C. Do not violate constraints

	Appendix A: Bibliography
	Appendix B: Definitions
	Appendix C: Undefined Behavior
	Appendix D: Unspecified Behavior

