
TECHNICAL REPORT
CMU/SEI-2000-TR-022

ESC-TR-2000-022

The Personal
Software
ProcessSM (PSPSM)

Watts S. Humphrey

November 2000

Pittsburgh, PA 15213-3890

The Personal
Software
ProcessSM (PSPSM)

CMU/SEI-2000-TR-022
ESC-TR-2000-022

Watts S. Humphrey

November 2000

Team Software Process Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Joanne E. Spriggs
Contracting Office Representative

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2000-TR-022 i

Table of Contents

Acknowledgements vii

Abstract ix

1 Software Quality 1

2 How the PSP Was Developed 3

3 The Principles of the PSP 5

4 The PSP Process Structure 7
4.1 PSP Planning 11
4.2 Size Estimating with PROBE 12
4.3 Calculation 12
4.4 Resource Estimating with PROBE 12

5 PSP Data Gathering 15
5.1 Time Measures 15
5.2 Size Measures 15

5.2.1 Lines of Code (LOC) 15
5.2.2 Size Categories 16
5.2.3 Size Accounting 16

5.3 Quality Measures 17

6 PSP Quality Management 23
6.1 Defects and Quality 23
6.2 The Engineer’s Responsibility 23
6.3 Early Defect Removal 24
6.4 Defect Prevention 24

7 PSP Design 25

8 PSP Discipline 27

9 Introducing the PSP 29

ii CMU/SEI-2000-TR-022

10 PSP Results 31

11 The PSP and Process Improvement 35

12 PSP Status and Future Trends 37

References 39

CMU/SEI-2000-TR-022 iii

List of Figures

Figure 1: PSP Process Flow 7

Figure 2: PSP Process Elements 9

Figure 3: Project Planning Process 11

Figure 4: Development vs. Usage Defects
(IBM Release 1 (r=.9644) 18

Figure 5: PSP/TSP Course Structure 29

Figure 6: Effort Estimation Accuracy 31

Figure 7: Defect Level Improvement 32

Figure 8: Productivity Results 32

iv CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 v

List of Tables

Table 1: PSP1 Project Plan Summary 8

Table 2: PSP1 Process Script 10

Table 3: C++ Object Size Data 12

Table 4: PSP Defect Injection and Removal Data19

Table 5: Example Defects Removed 20

Table 6: Example Defects Injected and
Removed 21

Table 7: Yield Calculations 21

Table 8: Object Specification Structure 25

Table 9: PSP Template Structure 25

vi CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 vii

Acknowledgements

Contributing reviewers for this report were Noopur Davis, Frank Gmeindl, Marsha Pomeroy
Huff, Alan Koch, Don McAndrews, Jim McHale, Julia Mullaney, Jim Over, and Bill Peter-
son.

viii CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 ix

Abstract

The Personal Software ProcessSM (PSPSM) provides engineers with a disciplined personal
framework for doing software work. The PSP process consists of a set of methods, forms, and
scripts that show software engineers how to plan, measure, and manage their work. It is in-
troduced with a textbook and a course that are designed for both industrial and academic use.
The PSP is designed for use with any programming language or design methodology and it
can be used for most aspects of software work, including writing requirements, running tests,
defining processes, and repairing defects. When engineers use the PSP, the recommended
process goal is to produce zero-defect products on schedule and within planned costs. When
used with the Team Software ProcessSM (TSPSM), the PSP has been effective in helping engi-
neers achieve these objectives.

This report describes in detail what the PSP is and how it works. Starting with a brief discus-
sion of the relationship of the PSP to general quality principles, the report describes how the
PSP was developed, its principles, and its methods. Next is a summary of the PSP courses,
the strategy used for teaching the PSP, selected data on PSP experience, PSP adoption in uni-
versity curricula, and the status of PSP introduction into industry. The report concludes with
comments on likely future trends involving the PSP.

SM Personal Software Process, PSP, Team Software Process, and TSP are service marks of Carnegie

Mellon University.

x CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 1

1 Software Quality

Until shortly after World War II, the quality strategy in most industrial organizations was
based almost entirely on testing. Groups typically established special quality departments to
find and fix problems after products had been produced. It was not until the 1970s and 1980s
that W. Edwards Deming and J.M. Juran convinced U.S. industry to focus on improving the
way people did their jobs [Deming 82, Juran 88]. In the succeeding years, this focus on
working processes has been responsible for major improvements in the quality of automo-
biles, electronics, or almost any other kind of product. The traditional test-and-fix strategy is
now recognized as expensive, time-consuming, and ineffective for engineering and manu-
facturing work.

Even though most industrial organizations have now adopted modern quality principles, the
software community has continued to rely on testing as the principal quality management
method. For software, the first major step in the direction pioneered by Deming and Juran
was taken by Michael Fagan when in 1976 he introduced software inspections [Fagan 76,
Fagan 86]. By using inspections, organizations have substantially improved software quality.
Another significant step in software quality improvement was taken with the initial introduc-
tion of the Capability Maturity Model (CMM) for software in 1987 [Humphrey 89, Paulk
95]. The CMM’s principal focus was on the management system and the support and assis-
tance provided to the development engineers. The CMM has had a substantial positive effect
on the performance of software organizations [Herbsleb 97].

A further significant step in software quality improvement was taken with the Personal Soft-
ware Process (PSP) [Humphrey 95]. The PSP extends the improvement process to the people
who actually do the work—the practicing engineers. The PSP concentrates on the work prac-
tices of the individual engineers. The principle behind the PSP is that to produce quality
software systems, every engineer who works on the system must do quality work.

The PSP is designed to help software professionals consistently use sound engineering prac-
tices. It shows them how to plan and track their work, use a defined and measured process,
establish measurable goals, and track performance against these goals. The PSP shows engi-
neers how to manage quality from the beginning of the job, how to analyze the results of each
job, and how to use the results to improve the process for the next project.

 Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.

2 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 3

2 How the PSP Was Developed

After he led the initial development of the CMM for software, Watts Humphrey decided to
apply CMM principles to writing small programs. Many people had been asking how to ap-
ply the CMM to small organizations or to the work of small software teams. While the CMM
principles applied to such groups, more guidance was needed on precisely what to do. Hum-
phrey decided to personally use CMM principles to develop module-sized programs both to
see if the approach would work and to figure out how to convince software engineers to
adopt such practices.

In developing module-sized programs, Humphrey personally used all of the software CMM
practices up through Level 5. Shortly after he started this project in April 1989, the Software
Engineering Institute (SEI) made Humphrey an SEI fellow, enabling him to spend full time
on the PSP research. Over the next three years, he developed a total of 62 programs and de-
fined about 15 PSP process versions. He used the Pascal, Object Pascal, and C++ program-
ming languages to develop about 25,000 lines of code. From this experience, he concluded
that the Deming and Juran process management principles were just as applicable to the work
of individual software engineers as they were to other fields of technology.

Humphrey next wrote a textbook manuscript that he provided to several associates who
planned to teach PSP courses. In September 1993, Howie Dow taught the first PSP course to
four graduate students at the University of Massachusetts (Lowell). Humphrey also taught the
PSP course during the winter semester of 1993-1994 at Carnegie Mellon University, as did
Nazim Madhavji at McGill University and Soheil Khajanoori at Embry Riddle Aeronautical
University. Based on the experiences and data from these initial courses, Humphrey revised
the PSP textbook manuscript and published the final version in late 1994 [Humphrey 95]. At
about the same time, Jim Over and Neil Reizer of the SEI and Robert Powels of Advanced
Information Services (AIS) developed the first course to train instructors to teach the PSP in
industry. Watts Humphrey and the SEI have continued working on PSP development and in-
troduction by applying the same principles to the work of engineering teams. This work is
called the Team Software Process.

4 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 5

3 The Principles of the PSP

The PSP design is based on the following planning and quality principles:

• Every engineer is different; to be most effective, engineers must plan their work and they
must base their plans on their own personal data.

• To consistently improve their performance, engineers must personally use well-defined
and measured processes.

• To produce quality products, engineers must feel personally responsible for the quality of
their products. Superior products are not produced by mistake; engineers must strive to
do quality work.

• It costs less to find and fix defects earlier in a process than later.

• It is more efficient to prevent defects than to find and fix them.

• The right way is always the fastest and cheapest way to do a job.

To do a software engineering job in the right way, engineers must plan their work before
committing to or starting on a job, and they must use a defined process to plan the work. To
understand their personal performance, they must measure the time that they spend on each
job step, the defects that they inject and remove, and the sizes of the products they produce.
To consistently produce quality products, engineers must plan, measure, and track product
quality, and they must focus on quality from the beginning of a job. Finally, they must ana-
lyze the results of each job and use these findings to improve their personal processes.

6 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 7

4 The PSP Process Structure

The structure of the PSP process is shown conceptually in Figure 1. Starting with a require-
ments statement, the first step in the PSP process is planning. There is a planning script that
guides this work and a plan summary for recording the planning data. While the engineers are
following the script to do the work, they record their time and defect data on the time and
defect logs. At the end of the job, during the postmortem phase (PM), they summarize the
time and defect data from the logs, measure the program size, and enter these data in the plan
summary form. When done, they deliver the finished product along with the completed plan
summary form. A copy of the PSP1 plan summary is shown in Table 1.

Figure 1: PSP Process Flow

Planning

Design review

Code

Requirements

Project and process data
summary report

Compile

Test

Postmortem

Scripts Logs

Plan
summary

Finished product

Guide

Plan

Time
Defects

Results

Code review

Design

8 CMU/SEI-2000-TR-022

Table 1: PSP1 Project Plan Summary
Student Date
Program Program #
Instructor Language

Summary Plan Actual To Date
LOC/Hour

Program Size (LOC): Plan Actual To Date
Base(B)

(Measured) (Measured)

 Deleted (D)
(Estimated) (Counted)

 Modified (M)
(Estimated) (Counted)

 Added (A)
(N − M) (T − B + D − R)

 Reused (R)
(Estimated) (Counted)

Total New & Changed (N)
(Estimated) (A + M)

Total LOC (T)
(N + B − M − D + R) (Measured)

Total New Reused

Total Object LOC (E)

Time in Phase (min.) Plan Actual To Date To Date %
 Planning
 Design
 Code
 Compile
 Test
 Postmortem
 Total

Defects Injected Actual To Date To Date %
 Planning
 Design
 Code
 Compile
 Test
 Total Development

Defects Removed Actual To Date To Date %
 Planning
 Design
 Code
 Compile
 Test
 Total Development
 After Development

CMU/SEI-2000-TR-022 9

Since the PSP process has a number of methods that are not generally practiced by engineers,
the PSP methods are introduced in a series of seven process versions. These versions are la-
beled PSP0 through PSP3, and each version has a similar set of logs, forms, scripts, and stan-
dards, as shown in Figure 2. The process scripts define the steps for each part of the process,
the logs and forms provide templates for recording and storing data, and the standards guide
the engineers as they do the work.

PSP0
PSP0.1

PSP1
PSP1.1

PSP2
PSP2.1

PSP3

PSP
Script

families

Issue tracking

PSP
logs

Defects

PSP
logs

PROBE estimating

PSP
forms

Time

PSP
logs

Plan summaries

PSP
forms

Review checklists

PSP
forms

Design templates

PSP
forms

PIP

PSP
forms

LOC counting

PSP
standards

Defects

PSP
standards

Coding

PSP
standards

Figure 2: PSP Process Elements

An example PSP script is shown in Table 2. A PSP script is what Deming called an opera-
tional process [Deming 82]. In other words, it is a process that is designed to be used. It is
constructed in a simple-to-use format with short and precise instructions. While scripts de-
scribe what to do, they are more like checklists than tutorials. They do not include the in-
structional materials that would be needed by untrained users. The purpose of the script is to
guide engineers in consistently using a process that they understand. The next several sec-
tions of this report describe the various methods that the PSP uses for planning, estimating,
data gathering, quality management, and design.

10 CMU/SEI-2000-TR-022

Table 2: PSP1 Process Script
Phase
Number Purpose To guide you in developing module-level programs

Entry Criteria • Problem description
• PSP1 Project Plan Summary form
• Size Estimating Template
• Historical estimate and actual size data
• Time and Defect Recording Logs
• Defect Type Standard
• Stop watch (optional)

1 Planning • Produce or obtain a requirements statement.
• Use the PROBE method to estimate the total new and

changed LOC required.
• Complete the Size Estimate Template.
• Estimate the required development time.
• Enter the plan data in the Project Plan Summary form.
• Complete the Time Recording Log.

2 Development • Design the program.
• Implement the design.
• Compile the program and fix and log all defects found.
• Test the program and fix and log all defects found.
• Complete the Time Recording Log.

3 Postmortem Complete the Project Plan Summary form with actual
time, defect, and size data.

Exit Criteria • A thoroughly tested program
• Completed Project Plan Summary form with estimated

and actual data
• Completed Size Estimating Template
• Completed Test Report Template
• Completed PIP forms
• Completed Defect and Time Recording Logs

CMU/SEI-2000-TR-022 11

4.1 PSP Planning
The PSP planning process is shown in Figure 3. The following paragraphs describe the tasks
in this figure.

Figure 3: Project Planning Process

Requirements. Engineers start planning by defining the work that needs to be done in as
much detail as possible. If all they have is a one-sentence requirements statement, then that
statement must be the basis for the plan. Of course, the accuracy of the estimate and plan is
heavily influenced by how much the engineers know about the work to be done.

Conceptual Design. To make an estimate and a plan, engineers first define how the product
is to be designed and built. However, since the planning phase is too early to produce a com-
plete product design, engineers produce what is called a conceptual design. This is a first,
rough guess at what the product would look like if the engineers had to build it based on what
they currently know. Later, during the design phase, the engineers examine design alterna-
tives and produce a complete product design.

Estimate Product Size and Resources. The correlation of program size with development
time is only moderately good for engineering teams and organizations. However, for individ-

Define the
requirements

Produce the
conceptual

design

Estimate the
product size

Estimate the
resources

Produce the
schedule

Develop the
product

Analyze the
process

Resources
available

Historical
productivity

database

Historical
size

database

Size,
resource
schedule

data

Management

Items

Tasks

Tracking
reports

Customer
need

Delivered
product

Customer

The PROBE Method

12 CMU/SEI-2000-TR-022

ual engineers, the correlation is generally quite high. Therefore, the PSP starts with engineers
estimating the sizes of the products they will personally develop. Then, based on their per-
sonal size and productivity data, the engineers estimate the time required to do the work. In
the PSP, these size and resource estimates are made with the PROBE method.

4.2 Size Estimating with PROBE
PROBE stands for PROxy Based Estimating and it uses proxies or objects as the basis for
estimating the likely size of a product [Humphrey 95]. With PROBE, engineers first deter-
mine the objects required to build the product described by the conceptual design. Then they
determine the likely type and number of methods for each object. They refer to historical data
on the sizes of similar objects they have previously developed and use linear regression to
determine the likely overall size of the finished product. The example object size data in Ta-
ble 3 show the five size ranges the PSP uses for objects. Since object size is a function of
programming style, the PROBE method shows engineers how to use the data on the pro-
grams they have personally developed to generate size ranges for their personal use. Once
they have estimated the sizes of the objects, they used linear regression to estimate the total
amount of code they plan to develop. To use linear regression, the engineers must have his-
torical data on estimated versus actual program size for at least three prior programs.

4.3 Calculation
Table 3: C++ Object Size Data1

C++ Object Sizes in LOC per Method
Category Very Small Small Medium Large Very Large

Calculation 2.34 5.13 11.25 24.66 54.04
Data 2.60 4.79 8.84 16.31 30.09
I/O 9.01 12.06 16.15 21.62 28.93
Logic 7.55 10.98 15.98 23.25 33.83
Set-up 3.88 5.04 6.56 8.53 11.09
Text 3.75 8.00 17.07 36.41 77.66

4.4 Resource Estimating with PROBE
The PROBE method also uses linear regression to estimate development resources. Again,
this estimate is based on estimated size versus actual effort data from at least three prior proj-
ects. The data must demonstrate a reasonable correlation between program size and develop-
ment time. The PSP requires that the 2r for the correlation be at least 0.5.

1 Reprinted from A Discipline for Software Engineering, page 117, by Watts S. Humphrey, Addison

Wesley Publishing Co., 1995, Permission Required.

CMU/SEI-2000-TR-022 13

Once they have estimated the total time for the job, engineers use their historical data to esti-
mate the time needed for each phase of the job. This is where the column ToDate% in the
project plan summary in Table 1 is used. ToDate% keeps a running tally of the percentage of
total development time that an engineer has spent in each development phase. Using these
percentages as a guide, engineers allocate their estimated total development time to the plan-
ning, design, design review, code, code review, compile, unit test, and postmortem phases.
When done, they have an estimate for the size of the program, the total development time,
and the time required for each development phase.

Produce the Schedule. Once engineers know the time required for each process step, they
estimate the time they will spend on the job each day or week. With that information, they
spread the task time over the available scheduled hours to produce the planned time for com-
pleting each task. For larger projects, the PSP also introduces the earned-value method for
scheduling and tracking the work [Boehm 81, Humphrey 95].

Develop the Product. In the step called Develop the Product, the engineers do the actual
programming work. While this work is not normally considered part of the planning process,
the engineers must use the data from this process to make future plans.

Analyze the Process. After completing a job, the engineers do a postmortem analysis of the
work. In the postmortem, they update the project plan summary with actual data, calculate
any required quality or other performance data, and review how well they performed against
the plan. As a final planning step, the engineers update their historical size and productivity
databases. At this time, they also examine any process improvement proposals (PIPs) and
make process adjustments. They also review the defects found in compiling and testing, and
update their personal review checklists to help them find and fix similar defects in the future.

14 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 15

5 PSP Data Gathering

In the PSP, engineers use data to monitor their work and to help them make better plans. To
do this, they gather data on the time that they spend in each process phase, the sizes of the
products they produce, and the quality of these products. These topics are discussed in the
following sections.

5.1 Time Measures
In the PSP, engineers use the time recording log to measure the time spent in each process
phase. In this log, they note the time they started working on a task, the time when they
stopped the task, and any interruption time. For example, an interruption would be a phone
call, a brief break, or someone interrupting to ask a question. By tracking time precisely, en-
gineers track the effort actually spent on the project tasks. Since interruption time is essen-
tially random, ignoring these times would add a large random error into the time data and
reduce estimating accuracy.

5.2 Size Measures
Since the time it takes to develop a product is largely determined by the size of that product,
when using the PSP, engineers first estimate the sizes of the products they plan to develop.
Then, when they are done, they measure the sizes of the products they produced. This pro-
vides the engineers with the size data they need to make accurate size estimates. However,
for these data to be useful, the size measure must correlate with the development time for the
product. While lines of code (LOC) is the principal PSP size measure, any size measure can
be used that provides a reasonable correlation between development time and product size. It
should also permit automated measurement of actual product size.

5.2.1 Lines of Code (LOC)
The PSP uses the term “logical LOC” to refer to a logical construct of the programming lan-
guage being used. Since there are many ways to define logical LOC, engineers must precisely
define how they intend to measure LOC [Park 92]. When engineers work on a team or in a
larger software organization, they should use the team’s or organization’s LOC standard. If
there is no such standard, the PSP guides the engineers in defining their own. Since the PSP
requires that engineers measure the sizes of the programs they produce, and since manually
counting program size is both time consuming and inaccurate, the PSP also guides engineers
in writing two automated LOC counters for use with the PSP course.

16 CMU/SEI-2000-TR-022

5.2.2 Size Categories
To track how the size of a program is changed during development, it is important to consider
various categories of product LOC. These categories are

• Base. When an existing product is enhanced, base LOC is the size of the original product
version before any modifications are made.

• Added. The added code is that code written for a new program or added to an existing
base program.

• Modified. The modified LOC is that base code in an existing program that is changed.

• Deleted. The deleted LOC is that base code in an existing program that is deleted.

• New and Changed. When engineers develop software, it takes them much more time to
add or modify a LOC than it does to delete or reuse one. Thus, in the PSP, engineers use
only the added or modified code to make size and resource estimates. This code is called
the New and Changed LOC.

• Reused. In the PSP, the reused LOC is the code that is taken from a reuse library and
used, without modification, in a new program or program version. Reuse does not count
the unmodified base code retained from a prior program version and it does not count any
code that is reused with modifications.

• New reuse. The new reuse measure counts the LOC that an engineer develops and con-
tributes to the reuse library.

• Total. The total LOC is the total size of a program, regardless of the source of the code.

5.2.3 Size Accounting
When modifying programs, it is often necessary to track the changes made to the original
program. These data are used to determine the volume of product developed, the engineer’s
productivity, and product quality. To provide these data, the PSP uses the size accounting
method to track all the additions, deletions, and changes made to a program [Humphrey 95].

To use size accounting, engineers need data on the amount of code in each size category. For
example, if a product of 100,000 LOC were used to develop a new version, and there were
12,000 LOC of deleted code, 23,000 LOC of added code, 5,000 LOC of modified code, and
3,000 LOC of reused code, the New and changed LOC would be

N&C LOC = Added + Modified

28,000 = 23,000 + 5,000

When measuring the total size of a product, the calculations are as follows:

Total LOC = Base – Deleted + Added + Reused

CMU/SEI-2000-TR-022 17

Neither the modified nor the “new reuse” LOC are included in the total. This is because a
modified LOC can be represented by a deleted and an added LOC, and the “new reuse” LOC
are already accounted for in the added LOC. Using this formula, the total LOC for the above
example would be

Total = 100,000 – 12,000 + 23,000 + 3,000 = 114,000 LOC

This is 114 KLOC, where KLOC stands for 1,000 LOC.

5.3 Quality Measures
The principal quality focus of the PSP is on defects. To manage defects, engineers need data
on the defects they inject, the phases in which they injected them, the phases in which they
found and fixed them, and how long it took to fix them. With the PSP, engineers record data
on every defect found in every phase, including reviews, inspections, compiling, and testing.
These data are recorded in the defect recording log.

The term defect refers to something that is wrong with a program. It could be a misspelling, a
punctuation mistake, or an incorrect program statement. Defects can be in programs, in de-
signs, or even in the requirements, specifications, or other documentation. Defects can be
found in any process phase, and they can be redundant or extra statements, incorrect state-
ments, or omitted program sections. A defect, in fact, is anything that detracts from the pro-
gram’s ability to completely and effectively meet the user’s needs. Thus a defect is an objec-
tive thing. It is something that engineers can identify, describe, and count.

With size, time, and defect data, there are many ways to measure, evaluate, and manage the
quality of a program. The PSP provides a set of quality measures that helps engineers exam-
ine the quality of their programs from several perspectives. While no single measure can ade-
quately indicate the overall quality of a program, the aggregate picture provided by the full
set of PSP measures is a generally reliable quality indicator. The principal PSP quality meas-
ures are

• Defect density

• Review rate

• Development time ratios

• Defect ratios

• Yield

• Defects per hour

• Defect removal leverage

• Appraisal to failure ratio (A/FR)

18 CMU/SEI-2000-TR-022

Each of these measures is described in the following paragraphs.

Defect Density. Defect density refers to the defects per new and changed KLOC found in a
program. Thus, if a 150 LOC program had 18 defects, The defect density would be

1000*18/150 = 120 defects/KLOC

Defect density is measured for the entire development process and for specific process
phases. Since testing only removes a fraction of the defects in a product, when there are more
defects that enter a test phase, there will be more remaining after the test phase is completed.
Therefore, the number of defects found in a test phase is a good indication of the number that
remain in the product after that test phase is completed.

Figure 4 shows IBM data on a major product that demonstrates this relationship [Kaplan 94].
These data imply that when engineers find relatively fewer defects in unit test, assuming that
they have performed a competent test, their programs are of relatively higher quality. In the
PSP, a program with five or fewer defects/KLOC in unit test is considered to be of good
quality. For engineers who have not been PSP trained, typical unit test defect levels range
from 20 to 40 or more defects/KLOC.

0

20

40

60

80

100

120

140

0 100 200 300 400

Development Defects by Component

U
sa

ge
 D

ef
ec

ts
 b

y
C

om
po

ne
nt

Figure 4: Development vs. Usage Defects; IBM Release 1 (r2=.9267)

CMU/SEI-2000-TR-022 19

Review Rate. In the PSP design and code reviews, engineers personally review their pro-
grams. The PSP data show that when engineers review designs or code faster than about 150
to 200 new and changed LOC per hour, they miss many defects. With the PSP, engineers
gather data on their reviews and determine how fast they should personally review programs
to find all or most of the defects.

Development Time Ratios. Development time ratios refer to the ratio of the time spent by an
engineer in any two development phases. In the PSP, the three development time ratios used
in process evaluation are design time to coding time, design review time to design time, and
code review time to coding time.

The design time to coding time measure is most useful in determining the quality of an engi-
neer’s design work. When engineers spend less time in designing than in coding, they are
producing most of the design while coding. This means that the design is not documented, the
design cannot be reviewed or inspected, and design quality is probably poor. The PSP guide-
line is that engineers should spend at least as much time producing a detailed design as they
do in producing the code from that design.

The suggested ratio for design review time to design time is based on the PSP data shown in
Table 4. In the PSP courses, engineers injected an average of 1.76 defects per hour in detailed
design and found an average of 2.96 defects per hour in design reviews. Thus, to find all the
defects that they injected during the design phase, engineers should spend 59% as much time
in the design review as they did in the design. The PSP guideline is that engineers should
spend at least half as much time reviewing a design as they did producing it.

Table 4: PSP Defect Injection and Removal Data
Phase Injected/Hour Removed/Hour

Design 1.76 0.10
Design Review 0.11 2.96
Coding 4.20 0.51
Code Review 0.11 6.52
Compile 0.60 15.84
Unit Test 0.38 2.21
Note: These data are from PSP courses where the exercises produced 2,386 programs with
308,023 LOC, 15,534 development hours, and 22,644 defects.

The code review time to coding time ratio is also a useful measure of process quality. During
coding, engineers injected an average of 4.20 defects per hour and they found an average of
6.52 defects per hour in code reviews. Therefore, based on the PSP data in Table 4, engineers
should spend about 65% as much time in code reviews as they do in coding. The PSP uses
50% as an approximate guideline for the code review time to coding time ratio.

20 CMU/SEI-2000-TR-022

Defect Ratios. The PSP defect ratios compare the defects found in one phase to those found
in another. The principal defect ratios are defects found in code review divided by defects
found in compile, and defects found in design review divided by defects found in unit test. A
reasonable rule of thumb is that engineers should find at least twice as many defects when
reviewing the code as they find in compiling it. The number of defects found while compiling
is an objective measure of code quality. When engineers find more than twice as many de-
fects in the code review as in compiling, it generally means that they have done a competent
code review or that they did not record all the compile defects. The PSP data also suggest that
the design review to unit test defect ratio be two or greater. If engineers find twice as many
defects during design review as in unit test, they have probably done acceptable design re-
views.

The PSP uses these two measures in combination with time ratios and defect density meas-
ures to indicate whether or not a program is ready for integration and system testing. The
code review to compile defect ratio indicates code quality, and the design review to unit test
defect ratio indicates design quality. If either measure is poor, the PSP quality criteria suggest
that the program is likely to have problems in test or later use.

Yield. In the PSP, yield is measured in two ways. Phase yield measures the percentage of the
total defects that are found and removed in a phase. For example, if a program entered unit
test with 20 defects and unit testing found 9, the unit test phase yield would be 45%. Simi-
larly, if a program entered code review with 50 defects and the review found 28, the code
review phase yield would be 56%. Process yield refers to the percentage of the defects re-
moved before the first compile and unit test. Since the PSP objective is to produce high qual-
ity programs, the suggested guideline for process yield is 70% better.

The yield measure cannot be precisely calculated until the end of a program’s useful life. By
then, presumably, all the defects would have been found and reported. When programs are of
high quality, however, reasonably good early yield estimates can usually be made. For exam-
ple, if a program had the defect data shown in Table 5, the PSP guideline for estimating the
yield is to assume that the number of defects remaining in the program is equal to the number
found in the last testing phase. Thus, in Table 5, it is likely that seven defects remain after
unit testing.

Table 5: Example Defects Removed
Phase Defects Removed

Design Review 11
Code Review 28
Compile 12
Unit Test 7
Total 58

CMU/SEI-2000-TR-022 21

To calculate yield, engineers use the data on the phases in which the defects were injected.
They also need to assume that the defects remaining after unit test were injected in the same
phases as those found during unit test. The data in Table 6 include one such defect in coding
and six in detailed design.

Table 6: Example Defects Injected and Removed
Phase Defects Injected Defects Removed

Detailed Design 26 0
Design Review 0 11
Code 39 0
Code Review 0 28
Compile 0 12
Unit Test 0 7
After Unit Test 0 7
Total 65 65

As shown in Table 7, the total defects injected, including those estimated to remain, is 65. At
design review entry, the defects present were 26, so the yield of the design review was
100*11/26 = 42.3%. At code review entry, the defects present were the total of 65 less those
removed in design review, or 65 – 11 = 54, so the code review yield was 100*28/54 = 51.9%.
Similarly, the compile yield was 100*12/(65-11-28) = 46.2%. Process yield is the best overall
measure of process quality. It is the percentage of defects injected before compile that are
removed before compile. For the data in Table 7, the process yield is 100*39/65 = 60.0%.

Table 7: Yield Calculations
Phase Defects In-

jected
Defects Re-

moved
Defects at

Phase Entry
Phase Yield

Detailed Design 26 0 0
Design Review 0 11 26 42.3%
Code 39 0 15
Code Review 0 28 54 51.9%
Compile 0 12 26 46.2%
Unit Test 0 7 14 50.0%
After Unit Test 0 7 7
Total 65 65

Defects per Hour. With the PSP data, engineers can calculate the numbers of defects they
inject and remove per hour. They can then use this measure to guide their personal planning.
For example, if an engineer injected four defects per hour in coding and fixed eight defects
per hour in code reviews, he or she would need to spend about 30 minutes in code reviews
for every hour spent in coding. It would take this long to find and fix the defects that were

22 CMU/SEI-2000-TR-022

most likely injected. The defects per hour rates can be calculated from the data in the project
plan summary form.

Defect Removal Leverage (DRL). Defect removal leverage measures the relative effective-
ness of two defect removal phases. For instance, from the previous examples, the defect re-
moval leverage for design reviews over unit test is 3.06/1.71 = 1.79. This means that the en-
gineer will be 1.79 times more effective at finding defects in design reviews as in unit testing.
The DRL measure helps engineers design the most effective defect removal plan.

A/FR. The appraisal to failure ratio (A/FR) measures the quality of the engineering process,
using cost-of-quality parameters [Juran 88]. The A stands for the appraisal quality cost, or the
percentage of development time spent in quality appraisal activities. In PSP, the appraisal
cost is the time spent in design and code reviews, including the time spent repairing the de-
fects found in those reviews.

The F in A/FR stands for the failure quality cost, which is the time spent in failure recovery
and repair. The failure cost is the time spent in compile and unit test, including the time spent
finding, fixing, recompiling, and retesting the defects found in compiling and testing.

The A/FR measure provides a useful way to assess quality, both for individual programs and
to compare the quality of the development processes used for several programs. It also indi-
cates the degree to which the engineer attempted to find and fix defects early in the develop-
ment process. In the PSP course, engineers are told to plan for A/FR values of 2.0 or higher.
This ensures that they plan adequate time for design and code reviews.

CMU/SEI-2000-TR-022 23

6 PSP Quality Management

Software quality is becoming increasingly important and defective software is an increasing
problem [Leveson 95]. Any defect in a small part of a large program could potentially cause
serious problems. As systems become faster, increasingly complex, and more automatic,
catastrophic failures are increasingly likely and potentially more damaging [Perrow 84]. The
problem is that the quality of large programs depends on the quality of the smaller parts of
which they are built. Thus, to produce high-quality large programs, every software engineer
who develops one or more of the system's parts must do high-quality work. This means that
all engineers must manage the quality of their personal work. To help them do this, the PSP
guides engineers in tracking and managing every defect.

6.1 Defects and Quality
Quality software products must meet the users’ functional needs and perform reliably and
consistently. While software functionality is most important to the program’s users, the func-
tionality is not usable unless the software runs. To get the software to run, however, engineers
must remove almost all of its defects. Thus, while there are many aspects to software quality,
the engineer’s first quality concern must necessarily be on finding and fixing defects. PSP
data show that even experienced programmers inject a defect in every seven to ten lines of
code [Hayes 97]. Although engineers typically find and fix most of these defects when com-
piling and unit testing programs, traditional software methods leave many defects in the fin-
ished product.

Simple coding mistakes can produce very destructive or hard-to-find defects. Conversely,
many sophisticated design defects are often easy to find. The mistake and its consequences
are largely independent. Even trivial implementation errors can cause serious system prob-
lems. This is particularly important since the source of most software defects is simple pro-
grammer oversights and mistakes. While design issues are always important, newly devel-
oped programs typically have few design defects compared to the large number of simple
mistakes. To improve program quality, PSP training shows engineers how to track and man-
age all of the defects they find in their programs.

6.2 The Engineer’s Responsibility
The first PSP quality principle is that engineers are personally responsible for the quality of
the programs they produce. Because the software engineer who writes a program is most fa-
miliar with it, that engineer can most efficiently and effectively find, fix, and prevent its de-
fects. The PSP provides a series of practices and measures to help engineers assess the quality

24 CMU/SEI-2000-TR-022

of the programs they produce and to guide them in finding and fixing all program defects as
quickly as possible. In addition to quality measurement and tracking, the PSP quality man-
agement methods are early defect removal and defect prevention.

6.3 Early Defect Removal
The principal PSP quality objective is to find and fix defects before the first compile or unit
test. The PSP process includes design and code review steps in which engineers personally
review their work products before they are inspected, compiled, or tested. The principle be-
hind the PSP review process is that people tend to make the same mistakes repeatedly. There-
fore, by analyzing data on the defects they have made and constructing a checklist of the ac-
tions needed to find those mistakes, engineers can find and fix defects most efficiently.

PSP-trained engineers find an average of 6.52 defects per hour in personal code reviews and
2.96 defects per hour in personal design reviews. This compares with 2.21 defects found per
hour in unit testing [Humphrey 98]. By using PSP data, engineers can both save time and im-
prove product quality. For example, from average PSP data, the time to remove 100 defects in
unit testing is 45 hours while the time to find that number of defects in code reviews is only
15 hours.

6.4 Defect Prevention
The most effective way to manage defects is to prevent their initial introduction. In the PSP,
there are three different but mutually supportive ways to prevent defects. The first is to have
engineers record data on each defect they find and fix. Then they review these data to deter-
mine what caused the defects and to make process changes to eliminate these causes. By
measuring their defects, engineers are more aware of their mistakes, they are more sensitive
to their consequences, and they have the data needed to avoid making the same mistakes in
the future. The rapid initial decline in total defects during the first few PSP course programs
indicates the effectiveness of this prevention method.

The second prevention approach is to use an effective design method and notation to produce
complete designs. To completely record a design, engineers must thoroughly understand it.
This not only produces better designs; it results in fewer design mistakes.

The third defect prevention method is a direct consequence of the second: with a more thor-
ough design, coding time is reduced, thus reducing defect injection. PSP data for 298 experi-
enced engineers show the potential quality impact of a good design. These data show that
during design, engineers inject an average of 1.76 defects per hour, while during coding they
inject 4.20 defects per hour. Since it takes less time to code a completely documented design,
by producing a thorough design, engineers will correspondingly reduce their coding time. So,
by producing thorough designs, engineers actually inject fewer coding defects [Humphrey
98].

CMU/SEI-2000-TR-022 25

7 PSP Design

While the PSP can be used with any design method, it requires that the design be complete.
The PSP considers a design to be complete when it defines all four of the dimensions shown
in the object specification structure shown in Table 8 [De Champeaux 93]. The way that these
four templates correspond to the object specification structure is shown in Table 9. The PSP
has four design templates that address these dimensions.

Table 8: Object Specification Structure
Object Specification Internal External
Static Attributes

Constraints
Inheritance
Class Structure

Dynamic State Machine Services
Messages

Table 9: PSP Template Structure
Object Specification
Templates

Internal External

Static Logic Specification Template Function Specification Template
(Inheritance Class Structure)

Dynamic State Machine Template Functional Specification Tem-
plate (User Interaction)
Operational Scenario Template

• The operational scenario template defines how users interact with the system.

• The function specification template specifies the call-return behavior of the program’s
objects and classes as well as the inheritance class structure.

• The state specification template defines the program’s state machine behavior.

• The logic specification template specifies the program’s internal logic, normally in a
pseudocode language.

For a complete description of these templates and how to use them, consult the reference
[Humphrey 95].

26 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 27

8 PSP Discipline

A principal problem in any engineering field is getting engineers to consistently use the
methods they have been taught. In the PSP, these methods are: following a defined process,
planning the work, gathering data, and using these data to analyze and improve the process.
While this sounds simple in concept, it is not easy in practice. This is why a principal focus
of PSP introduction is on providing a working environment that supports PSP practices. This
is the main reason that the SEI developed the Team Software Process: to provide the disci-
plined environment that engineers need to consistently use the PSP methods in practice.

28 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 29

9 Introducing the PSP

PSP introduction in universities starts with a PSP course in which students write 10 programs
and complete 5 data analysis reports [Humphrey 95]. The university course typically takes a
full semester, during which the students follow the PSP process shown in Figure 5 to com-
plete 10 exercise programs. Students start with the PSP0 process, where they use their current
programming practices, record the time they spend in each process phase, and log all the de-
fects they find. The PSP process is enhanced through seven process versions, with students
writing one or two programs with each PSP version. For each program, they use the process
methods just introduced, as well as all of the methods introduced with the previous process
versions. By the end of the course, the students have written 10 programs and have learned to
use all of the PSP process methods. This course is designed for graduate and advanced un-
dergraduate students.

P S P 0
•C urren t p rocess
•B asic m easures

P S P 1
•S ize estim atin g

•T est repo rt

P S P 2
•C o de rev iew s

•D esig n review s

P S P 3
C yclic d evelop m ent

P S P 2.1
 D esig n tem pla tes

P S P 1.1
•Task p lan n in g

• Schedu le p lan n in g

P S P 0.1
•C o ding stand ard

•P rocess im p ro vem en t
p ro po sa l

•S ize m easurem ent

Figure 5: PSP/TSP Course Structure

30 CMU/SEI-2000-TR-022

There is also a PSP course for beginning university students [Humphrey 97]. While this in-
troductory course teaches the same basic PSP principles as the advanced course, it is not as
rigorous and students typically do not learn how to practice the full set of PSP methods.
However, they do start using sound engineering practices with their first programming as-
signments. Then they are more likely to develop sound personal practices, and it is easier to
teach them rigorous engineering practices when they later take the full PSP course.

When introducing the PSP in industry, engineers complete the full PSP course and write all
10 of the A-series of programming exercises in the PSP textbook [Humphrey 95]. This
course takes about 120 to 150 engineering hours, and it is generally spread over 14 working
days. After engineers are PSP trained, experience has shown that they must be properly man-
aged and supported to consistently use the PSP in their work [Ferguson 97]. To help working
engineers, teams, and managers consistently use the PSP methods, the SEI has developed the
Team Software Process (TSP).

CMU/SEI-2000-TR-022 31

10 PSP Results

Hayes and Over have shown that the PSP course substantially improves engineering perform-
ance in estimating accuracy and early defect removal while not significantly affecting pro-
ductivity [Hayes 97]. Typical results for estimating accuracy are shown in Figure 6. When
engineers take the PSP course, they write 10 programs and gather data on their work. In Fig-
ure 6 and the following charts, performance on program 1 is shown at the left and the results
achieved with program 10 are on the right. Since the students are using their prior program-
ming practices with program 1 and the full set of PSP methods with program 10, the pre-
sumption is that the improvements result from the PSP methods. In writing these 10 exercise
programs, defect levels also improved as shown in Figure 7. The productivity results are
shown in Figure 8. All these data are averages for 298 students in SEI industrial courses on
the PSP.

Figure 6: Effort Estimation Accuracy

109876543210 1098765432100.2

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

Mean Time Misestimation
PSP Level Average
Mean Time Misestimation
PSP Level Average

Effort Estimation Accuracy Trend

Program Number

32 CMU/SEI-2000-TR-022

10987654321
0

10

20

30

40

50

60

70

80

90

100

110

120

Mean Compile + Test
PSP Level Mean Comp
+ Test

Defects Per KLOC Removed in Compile and Test

Program Number

Figure 7: Defect Level Improvement

10987654321
20

22

24

26

28

30

Mean LOC/Hour
PSP Level Average

 Lines of (New and Changed) Code
Produced Per Hour of Total Development Time

Program Number

Figure 8: Productivity Results

CMU/SEI-2000-TR-022 33

While the PSP is relatively new, early industry results are becoming available [Ferguson 97,
Seshagiri 00].

No controlled studies have yet compared the results obtained when students wrote identical
programs, with an experimental group using the PSP methods and a control group not using
the PSP. However, when taught by qualified instructors, student results consistently show
significant improvement. Industrial data also show that engineering performance after PSP
training is substantially better than before [Ferguson 97, Seshagiri 00]. It thus appears likely
that PSP training was responsible for much of the improvement found in the PSP courses.

34 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 35

11 The PSP and Process Improvement

The PSP is one of a series of three complementary process-improvement approaches. These
are

• The Capability Maturity Model (CMM), which addresses software management issues
[Humphrey 89, Paulk 95].

• The PSP, which is described in this report.

• The Team Software Process (TSP), which guides PSP-trained engineers, teams, and man-
agers in developing software-intensive products.

While these methods are all related, they address different aspects of organizational capabil-
ity.

First, to produce superior products, the organization’s management must have a sound busi-
ness strategy and plan as well as a set of products that meet a market need. Without these,
organizations cannot be successful, regardless of their other characteristics.

Second, to produce superior products, management must obtain superior performance from
their engineers. This requires that they hire capable people and provide them with suitable
leadership, processes, and support.

Third, the engineers must be able to work together effectively in a team environment and
know how to consistently produce quality products.

Fourth, the engineering teams must be properly trained and capable of doing disciplined en-
gineering work.

Without any one of these conditions, organizations are not likely to do superior work. In the
above list, the CMM is designed to provide the second capability, the TSP the third, and the
PSP the fourth. Unless engineers have the capabilities provided by PSP training, they cannot
properly support their teams or consistently and reliably produce quality products. Unless
teams are properly formed and led, they cannot manage and track their work or meet sched-
ules. Finally, without proper management and executive leadership, organizations cannot
succeed, regardless of their other capabilities.

36 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 37

12 PSP Status and Future Trends

In the future, software engineering groups will increasingly be required to deliver quality
products, on time, and for their planned costs. Guaranteed reliability and service levels, war-
ranted security, and contract performance penalties will be normal and engineering staffs that
cannot meet such commitments will not survive.

While superior technical work will continue to be required, the performance of each individ-
ual engineer will be recognized as important. Quality systems require quality parts, and un-
less every engineer strives to produce quality work, the team cannot do so. Quality manage-
ment will be an integral part of software engineering training. Engineers will have to learn
how to measure the quality of their work and how to use these measures to produce essen-
tially defect free work.

The PSP is designed to provide the disciplined practices software professionals will need in
the future. While some industrial organizations are introducing these methods, broader intro-
duction of disciplined methods must start in universities. Academic introduction of the PSP is
currently supported with courses at both introductory and advanced levels [Humphrey 95,
Humphrey 97]. Several universities in the U.S., Europe, and Australia now offer the PSP, and
several institutions in Asia are considering its introduction. The SEI, in conjunction with
various universities, also supports a one-week summer workshop for faculty who teach or
wish to teach the PSP.

Industrial PSP introduction is also supported by the SEI with a PSP course for engineers and
instructors. This course is offered several times a year in a condensed format tailored to in-
dustrial needs. The SEI also qualifies PSP instructors to assist organizations in introducing
the PSP and it maintains a registry of qualified PSP instructors [SEI 00].

While the PSP is relatively new, the early results are promising. Both industrial use and aca-
demic adoption are increasing. Assuming that these trends continue, the future should see a
closer integration of the PSP, TSP, and CMM methods and a closer coupling of the PSP aca-
demic courses with the broader computer science and software engineering curricula.

38 CMU/SEI-2000-TR-022

CMU/SEI-2000-TR-022 39

References

[Boehm 81] Boehm, B. Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[De Champeaux
93]

De Champeaux, D., Lea, D., and Faure, P. Object-Oriented System
Development, Reading MA: Addison-Wesley, 1993.

[Deming 82] Deming, W. E. Out of the Crisis. MIT Center for Advanced Engi-
neering Study, Cambridge, MA, 1982.

[Fagan 76] Fagan, M. “Design and Code Inspections to Reduce Errors in Pro-
gram Development.” IBM Systems Journal, 15, 3 (1976).

[Fagan 86] Fagan, M. “Advances in Software Inspections.” IEEE Transactions
on Software Engineering, SE-12, 7, (July 1986).

[Ferguson 97] Ferguson, P., Humphrey, W., Khajenoori, S., Macke, S., and Mat-
vya, A. “Introducing the Personal Software Process: Three Industry
Case Studies,” IEEE Computer, 30, 5 (May 1997): 24-31.

[Hayes 97] Hayes, W. and Over, J. The Personal Software Process: An Empiri-
cal Study of the Impact of PSP on Individual Engineers (CMU/SEI-
97-TR-001), Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 1997 <http://www.sei.cmu.edu
/pub/documents/97.reports/pdf/97tr001.pdf>.

[Herbsleb 97] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., and
Paulk, M. “Software Quality and the Capability Maturity
Model,” Communications of the ACM, 40, 6 (June 1997): 30-
40.

[Humphrey 89] Humphrey, W. Managing the Software Process. Reading, MA:
Addison-Wesley, 1989.

[Humphrey 95] Humphrey, W. A Discipline for Software Engineering. Reading,
MA: Addison-Wesley, 1995.

[Humphrey 97] Humphrey, W. Introduction to the Personal Software Process.

40 CMU/SEI-2000-TR-022

Reading MA: Addison-Wesley, 1997.

[Humphrey 98] Humphrey, W. “The Software Quality Index,” Software Quality
Professional, 1, 1 (December 1998):. 8-18.

[Juran 88] Juran, J. and Gryna, F. Juran's Quality Control Handbook, Fourth
Edition. New York: McGraw-Hill Book Company, 1988.

[Kaplan 94] Kaplan, C., Clark, R., and Tang, V. Secrets of Software Quality, 40
Innovations from IBM. New York, N.Y.: McGraw-Hill, Inc., 1994.

[Leveson 95] Leveson, N. Safeware, System Safety and Computers. Reading,
MA: Addison Wesley, 1995.

[Park 92] Park, R. Software Size Measurement: A Framework for Counting
Source Statements (CMU/SEI-92-TR-20, ADA258304). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University
(Sept. 1992) <http://www.sei.cmu.edu/pub/documents/92.reports
/pdf/tr20.92.pdf>.

[Paulk 95] Paulk, M., et al. The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison Wesley,
1995.

[Perrow 84] Perrow, C. Normal Accidents, Living with High-Risk Technologies.
New York, NY: Basic Books, Inc., 1984.

[SEI 00] “Building High Performance Teams Using Team Software Process
(TSP) and Personal Software Process (PSP).” Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University
<http://www.sei.cmu.edu/tsp>.

[Seshagiri 00] Seshagiri, G. “Making Quality Happen: The Managers’ Role, AIS
Case Study,” Crosstalk (June 2000).

CMU/SEI-2000-TR-022 41

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

November 2000
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

The Personal Software ProcessSM (PSPSM)
5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Watts S. Humphrey
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2000-TR-022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2000-022

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Personal Software ProcessSM (PSPSM) provides engineers with a disciplined personal framework for doing software
work. The PSP process consists of a set of methods, forms, and scripts that show software engineers how to plan,
measure, and manage their work. It is introduced with a textbook and a course that are designed for both industrial and
academic use. The PSP is designed for use with any programming language or design methodology and it can be used
for most aspects of software work, including writing requirements, running tests, defining processes, and repairing de-
fects. When engineers use the PSP, the recommended process goal is to produce zero-defect products on schedule
and within planned costs. When used with the Team Software ProcessSM (TSPSM), the PSP has been effective in help-
ing engineers achieve these objectives.

This report describes in detail what the PSP is and how it works. Starting with a brief discussion of the relationship of
the PSP to general quality principles, the report describes how the PSP was developed, its principles, and its methods.
Next is a summary of the PSP courses, the strategy used for teaching the PSP, selected data on PSP experience, PSP
adoption in university curricula, and the status of PSP introduction into industry. The report concludes with comments
on likely future trends involving the PSP.

14. SUBJECT TERMS

Personal Software Process, PSP, Team Software Process, TSP, software develop-
ment, software engineering

15. NUMBER OF PAGES

54

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Table of Contents
	List of Figures
	List of Tables
	Software Quality
	How the PSP Was Developed
	The Principles of the PSP
	The PSP Process Structure
	PSP Planning
	Size Estimating with PROBE
	Calculation
	Resource Estimating with PROBE

	PSP Data Gathering
	Time Measures
	Size Measures
	Lines of Code (LOC)
	Size Categories
	Size Accounting

	Quality Measures

	PSP Quality Management
	Defects and Quality
	The Engineer’s Responsibility
	Early Defect Removal
	Defect Prevention

	PSP Design
	PSP Discipline
	Introducing the PSP
	PSP Results
	The PSP and Process Improvement
	PSP Status and Future Trends

