

Using Software Development Tools and
Practices in Acquisition

Harry L. Levinson
Richard M. Librizzi

December 2013

TECHNICAL NOTE
CMU/SEI-2013-TN-017

Software Solutions Division
http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-
tributed in written or electronic form without requesting formal permission. Permission is required for
any other external and/or commercial use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Architecture Tradeoff Analysis Method®, Carnegie Mellon® and CMMI® are registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.

DM-0000791.

mailto:permission@sei.cmu.edu

CMU/SEI-2013-TN-017 | i

Table of Contents

Acknowledgments v

Abstract vii

1 State of Software Acquisition and Development in Large Systems 1
1.1 Increasing Quality and Development Efficiency 1
1.2 Acquisition and Development Challenges 2
1.3 Acquisition and Development Process Improvement 3

2 Software Development Tools 5
2.1 Requirements, Architecture, and Design Overview 5
2.2 Implementation 5

2.2.1 Coding Standards 5
2.2.2 Static Analysis 6

2.3 Testing 8
2.3.1 Dynamic Analysis 9
2.3.2 Use of Static Analysis in Certification 10

3 Overarching Software Development Practices 11
3.1 Challenges of Automation 11

3.1.1 Automatic Code Generation 12
3.1.2 Continuous Integration and Test 13
3.1.3 Test Automation 13

3.2 Peer Review 13
3.3 Common Software Development Processes 14

3.3.1 Configuration Management 14
3.3.2 Defect Management 15
3.3.3 Quality Assurance 15

4 Summary and Concepts for Further Consideration 17
4.1 Justification for Improvement 17
4.2 Acquisition Strategy and Adapting to Change 17
4.3 Acquirers and Developers 18

Bibliography 20

CMU/SEI-2013-TN-017 | ii

CMU/SEI-2013-TN-017 | iii

1 List of Tables

Table 1: Some Types of Defect Detection Possible With Static Analysis 8

CMU/SEI-2013-TN-017 | iv

CMU/SEI-2013-TN-017 | v

Acknowledgments

We would like to thank the following people from the Software Engineering Institute for asking
questions, posing challenges, suggesting solutions, and reviewing this document:

Grady Campbell
Mike Philips
John Foreman
Ted Marz
Bob Ferguson
Pat Place
John Robert
Fred Schenker
Robert Seacord
Jeff Thieret
David Zubrow
Lorraine Adams
Gerald Miller
Eileen Wrubel

This technical note is dedicated to Richard Librizzi, who passed away prior to publication.

CMU/SEI-2013-TN-017 | vi

CMU/SEI-2013-TN-017 | vii

Abstract

Acquiring software-reliant systems from an external resource can be time consuming, costly, and
often unreliable. During independent technical assessments and customer engagements, the Soft-
ware Engineering Institute observed many contractors who are not utilizing mature, readily avail-
able software development tools when creating code for government programs. These tools in-
clude static analysis, test automation, and peer review techniques. In addition to the
aforementioned tools being important for software developers, they offer significant insight and

confidence to customers who acquire software products.

There are many benefits from making these tools and practices integral to software development
and acquisition processes, including:

• reduced risk: programs deliver more predictably

• improved customer satisfaction: products developed experience fewer field defects

• lower cost of ownership: programs experience lower life-cycle maintenance costs when de-
ployed operationally

This technical note provides an introduction to key automation and analysis techniques, the use of
which the authors contend will benefit motivated acquirers and developers.

CMU/SEI-2013-TN-017 | 1

1 State of Software Acquisition and Development in Large
Systems

Increasing demands for more functionality alongside improving important system qualities like
reliability, availability, and security are driving up the complexity of developing software-reliant
systems. Continually striving to reduce cost and schedule is a key requirement for surviving in a
competitive market; often, the result is that low-quality code is rushed to production. For large
mission-critical systems such as military and banking applications, significant delays may occur
and not be fully realized until late in the program development cycle. Although it is not usually
obvious, one of the more effective actions to improve cost and schedule is to improve efficiency
of code development. By doing this, more time can be spent on design and test efforts that further
support the overall quality of the delivered system.

A considerable number of robust and reliable software development tools and practices have been
developed over the years and have been accepted as state of the practice, enabling developers to
deliver quality products on a predictable schedule. The open-source community has created inex-
pensive and effective tools. In addition, many are not complicated and with minimal training can
be used across an organization’s development process. These tools and practices also become crit-
ical to the success of the use of new methodologies such as agile software development. There-
fore, it is not clear to the authors why many acquisition and software development programs we
have encountered do not incorporate the use of these tools into their software development pro-
cesses.

This section explores the current state of software acquisition and development with a focus on
challenges related to large system development. Section 2 describes recommended tools for every
software development project. The Section 3 looks at automation, peer reviews, and some select-
ed management processes that have tools and practices applicable to most phases of software de-
velopment. Section 4 concludes with recommendations as to how acquisition organizations
should apply these development tools and processes.

1.1 Increasing Quality and Development Efficiency

Creating software is a complex process that requires large numbers of people with a diverse range
of technical skills. Making improvements to the software development process has been a chal-
lenge for many years, but throughout the short history of software development, a wide range of
improvements have allowed the industry to increase the functionality, quality, and development
efficiency of delivered systems. This list includes highly structured approaches for process im-
provement like CMMI® and software development processes like Rational Unified Process
(RUP). Somewhat orthogonal to these structured methods are software development models such
as waterfall, spiral, and agile. One can also look at the various design modeling approaches such
as structured decomposition, object oriented, aspect oriented, and others. Additionally, over the
past 25 years or so, a focus has been on software architecture as an impactful way to identify im-
portant quality attributes (QAs) early in the design process. The architecture area also included a
focus on architectural and more detailed design patterns as a way of addressing common issues

CMU/SEI-2013-TN-017 | 2

found during software development. These and other ideas were directed toward addressing the
challenge of how to best deliver quality code on a predictable schedule and cost.

Increased quality earlier in the software development process provides increased productivity, and
software development life cycles often become more predictable and thus more manageable, re-
sulting in lower costs. In both commercial and government acquisitions, the quality of the devel-
oped software is a key factor to the overall cost and schedule of the delivered software system and
software sustainability throughout the lifecycle. Effective software development processes, utiliz-
ing accepted software engineering practices and tools, make for more predictable software devel-
opment.

During the development process there are many opportunities for the injection of defects into the
resulting code. A typical software development process usually consists of these general activi-
ties:

• requirements engineering

• architecture and detailed design

• code and unit test

• integration

• system test

Many of today’s development methodologies encourage the above processes to occur simultane-
ously, often overlapped in time to some extent, and continuously throughout the life cycle of the
product.

A basic tenet of creating quality software is to detect and correct defects close to when they are
introduced. Boehm and Papaccio reported in 1988 that requirements defects found after a system
is fielded cost 50 to 200 times more to rectify than if they had been found and corrected near the
beginning of the development [Boehm 1988].

The current situation is not much different today as industry data still supports the notion that er-
rors in requirements specification are expensive to fix: Wiegers asserts that 50 percent of defects
originate in the requirements phase, and 80 percent of the rework cost on a project can be traced
to defects arising during the requirements specification phase [Wiegers 2001]. Granted that pre-
venting defects in the early phases like requirements and design give the greatest payback, this
paper examines tools and processes that help to find defects injected during the implementation
phase. Quite often these defects are not found until the integration and system test phases. When
the tools and processes recommended in this paper are used throughout the implementation phase,
they can identify many defects that are relatively easy to find and fix.

1.2 Acquisition and Development Challenges

Many large development projects today involve an acquisition team (acquirer) working with a
development team (developer) to create and deliver software-intensive systems. While the acqui-
sition team usually focuses on the financial, business, and political aspects, they also need visibil-
ity into the technical development status and progress, and the quality of the developing system.

CMU/SEI-2013-TN-017 | 3

In the United States Department of Defense (DoD), acquisition of software-intensive solutions is
primarily performed through the use of program offices contracting with defense contractors to
define, develop, and deliver software-intensive systems. In the commercial world, acquisition is
usually done through business and marketing teams working closely with internal or external de-
velopers to deliver the desired products. In both realms, the software development processes are
similar so these tools and practices are applicable in both domains.

Government and commercial acquisitions have historically encouraged the use of process models
and frameworks like CMM/CMMI, ISO9001, and Information Technology Infrastructure Library
(ITIL) for many years in an attempt to gain confidence that the development team can consistently
deliver as promised. Likewise, process methodologies like Total Quality Management (TQM),
Six Sigma, and Lean have been part of the software engineering culture for many years. These
models and methodologies are accepted as good practices, yet they have been slow to be adopted.
While the authors firmly advocate the use of the above models and methodologies, this paper ar-
gues that acquirers can make some basic improvements to their oversight solely by using state-of-
the-art software engineering tools and practices.

The CMMI-ACQ model (Capability Maturity Model-Integrated for Acquisition) discusses objec-
tives that an acquirer should actively manage. The introduction to the CMMI-ACQ states: “The
acquirer owns the project, executes overall project management, and is accountable for delivering
the product or service to the end users. Too often acquirers disengage from the project once the
supplier is hired. Too late they discover that the project is not on schedule, deadlines will not be
met, the technology selected is not viable, and the project has failed” [CMMI Product Team
2010].

In addition, the acquisition technical management process area from CMMI-ACQ focus the ac-
quirer on the following activities [CMMI Product Team 2010]:

• conducting technical reviews of the supplier’s technical solution

• analyzing the development and implementation of the supplier’s technical solution to confirm
technical progress criteria or contractual requirements are satisfied

• managing selected interfaces

There are varied strategies, processes, and methods that the acquirer may leverage to develop an
accurate understanding of developer progress, technical decisions, and the quality of the delivered
product. They range from using formal, documentation-driven processes to including the acquirer
as an active participant in the decision-making process. The more confidence that the acquirer has
in the contractor’s process, the less friction there will be between the two parties.

1.3 Acquisition and Development Process Improvement

Typically, acquisition organizations focus on schedule and cost and, as Watts Humphrey ob-
served,

If the organization is not cost competitive, or if it produces lower quality or less attractive
products, a focus on current performance will not improve the situation. The immediate
problems may be fixed and the burning issues resolved, but the organization will continue
working pretty much as it always has. It will thus continue producing essentially the same

CMU/SEI-2013-TN-017 | 4

results and generating essentially the same problems and issues. This brings us to the defini-
tion of insanity: doing the same thing over and over and expecting a different result [Humph-
rey 2009].

A key reason to improve productivity through the incorporation of software development tools
and practices is to free up engineering talent from non-value-added activities. It is also a way to
improve schedule and cost predictability. The large body of work in process improvement and
change management demonstrates that successful organizations continually reflect on the current
process and identifying opportunities for improvement. In almost any process improvement meth-
odology, a key focus is on avoiding rework. Since humans, and thus software engineers, are not
perfect, finding ways to detect and remove defects early is an important part of all software devel-
opment. As discussed in section 1.1, it is generally less costly to detect and correct an error closer
to the time when it was introduced.

The processes used by the developer to create the software directly affects the quality of the deliv-
ered software product. Mature software development tools and practices can give the acquirer
important indicators and predictors of quality. A key challenge from the acquirer’s point of view
is gaining insight into the progress on and quality of the software being developed. Development
of this insight can take many forms including

• observation of progress measures at key milestone events

• review of process artifacts to gain insight as to how closely the developer followed the de-
fined processes

• review of intermediate work products and metrics

• participation in the actual development processes through active review of code and artifacts

• side-by-side participation of acquisition personnel supplying real-time requirements, peer
review, and verification

The objective of process improvement efforts is to increase the effectiveness of system and soft-
ware development talent. The end game is about producing software intensive systems that are
high quality, within budget and schedule. The authors advocate the redirection of engineering ef-
forts to be focused on higher value activities such as

• focus on deeper understanding of the written and implied requirements

• create and tune the architecture and detailed design of the system to improve the significant
quality attributes including security, usability, flexibility, sustainability, and so forth

• continue process improvements by identifying more places to use tools and add automation

The acquirer should encourage and actively participate in improvements that enable software en-
gineers to focus on requirements, design, and analysis activities that improve the quality of soft-
ware-intensive systems. The next section explores tools recommended for use by both the acquisi-
tion and development teams that can help focus engineering talent to create quality software.

CMU/SEI-2013-TN-017 | 5

2 Software Development Tools

The software engineering community has an ever-increasing set of tools and practices aimed at
improving the quality of developed software. As the development team includes these tools and
processes into its software development methodology (coding, unit tests, integration, etc.), it helps
to improve the development team’s productivity, while at the same time it gives insight and con-
fidence to the acquisition team. This section gives an overview of tools and practices available
with specific details on the tools and practices most effective during the implementation phase.

2.1 Requirements, Architecture, and Design Overview

It is beyond the scope of this report to discuss at length all areas of requirements, architecture
(high-level design), and detailed design, but it is important to point out that there is a vast array of
tools and practices that can improve the effectiveness of the development team during these activ-
ities. Many of these methodologies take discipline to implement and execute, but as described in
the first section, the goal is to get it right early in the project. Included in these are

• Requirements: Management databases to aid in tracking and tracing of requirements through-
out the complete development life cycle

• Software Architecture: Modeling and simulation at a high level with focus on the quality at-
tributes of the system. These visualization and simulation techniques enable software design-
ers to consider the various software architectural tradeoff decisions plus can aid in design de-
cisions such as implementation language, SEI COTS Usage Risk Evaluation methodology,
reuse of code, and related Integrated Development Environment (IDE) environments.

The above activities are therefore important areas in which the acquisition team should participate
and have insight into design and process decisions. Many formal methodologies (such as the
SEI’s Quality Attribute Workshop and Architecture Tradeoff Analysis Method) are available to
help teams review and understand the architectural and design decisions that are made.

2.2 Implementation

As pointed out in many software development models and textbooks, writing code is usually a
small part of the total effort needed to deliver a software product successfully. Yet, writing code
presents the easiest opportunity for defects to be introduced into the product. Many automated
tools exist to instrument code in order to catch and remove defects before allowing the code to
move into integration and test. An important tool area is called static analysis, which often in-
cludes code beautifiers, interface extraction (i.e., reengineering), and documentation extraction.
This type of tool supports the use of coding standards and peer-review processes (to be covered in
the next section).

2.2.1 Coding Standards

The CERT C Secure Coding Standard contains a good description of a coding standard:

CMU/SEI-2013-TN-017 | 6

Coding standards encourage programmers to follow a uniform set of rules and guidelines de-
termined by the requirements of the project and organization, rather than by the program-
mer's familiarity or preference. Once established, these standards can be used as a metric to
evaluate source code (using manual or automated processes) [CERT Secure Coding Stand-
ards 2011].

The objectives of coding standards are to increase the maintainability, reliability, and security of
the code. A coding standard discourages software developers from using practices and behaviors
that may create defective code.

A coding standard usually covers these four areas:

1. Common visualization: includes ways to have common layout, code indentation, and the
usage of spaces

2. Naming standards: requires developers to give variables and functions meaningful names
using a common naming convention (e.g. CamelCase, _under_score, and ALLCAPS)

3. Comment standards: give guidance as to how many and what types of comments are ex-
pected

4. Coding rules: help guide the programmer as to the proper use of common coding patterns
such as if, switch, do, while, variable creation, initialization, and assignment

There are many specific features and automations in this area; some of them include

• code “beautifiers” and “pretty printers” to enforce layout features like indentation, alignment
of structures, spacing, matching parentheses, and brackets

• comment extractors to create stand-alone documentation from pre-formatted comments with-
in the code

• static analysis enforcing the use of code constructs and rules from the coding standard includ-
ing naming standard and comment rules in addition to discourage poor coding practices

The security community has developed coding standards such as Common Weakness Enumera-
tion (CWE) and the aforementioned CERT C Secure Coding Standard. Other communities have
created similar coding standards to deal with safety, performance, and maintenance. These are
published with the goal of making the set of coding guidelines and best practices easily available
to all developers so they can incorporate them into their coding standards. The rules and recom-
mendations in these standards are usually based upon the coding language and how it is used.
They define common, yet poor coding patterns that developers tend to use that affect these soft-
ware attributes.

2.2.2 Static Analysis

Static code analysis is the examination of aspects of the software system implementation that are
available prior to execution. The concepts of the implementation language are brought together
with the coding standard as the metric against which the code is automatically inspected. Static
analysis tools analyze the components and resources of an application without having to run the
application. This contrasts with dynamic analysis, which requires one to run the application. Be-

CMU/SEI-2013-TN-017 | 7

cause of this capability, it can be used at an earlier phase of the development cycle, therefore ex-
posing and correcting problems before entering the integration and test phase.

Static analysis can be viewed as an automation of the coding standard and the peer-review pro-
cess. The objective of these tools is to find defects at machine speeds by removing the burden of
manual syntax checking. Static analysis reviews compare the source code of an application
against a set of coding rules to

• ensure that the source code complies with the selected standards

• find unwanted dependencies

• ensure that the intended structural design of the code is maintained

Static analysis is a mature tool type that, based on SEI customer engagements, is underutilized in
many of today’s software engineering practices. As developers find ways to incorporate the use of
static analysis into their daily development processes, it brings many benefits:

• common coding patterns that lead to defects are found almost instantaneously

• gives developers, their management, and the acquirer confidence that the “simple” defects are
found early

• frees up valuable software engineering time to focus on the tougher challenges

A common comparison in the industry is that static analysis tools should be treated like spell
checkers; human intervention is required to find the important problems. Consequently, static
analysis tools will not answer questions such as:

• Is the code organized so that another developer can read and maintain it?

• Is it a robust and efficient implementation of the appropriate algorithm?

• Does the code work as required and documented?

• Are the unit tests sufficient and correct?

When static analysis is used as part of a software development process, it gives the development
engineers and thus the acquirers confidence that the basic coding, design, and style issues have
been resolved so that they can focus on these more difficult questions.

There are many open source tools along with commercial static analysis tools available in today’s
market. Each has various features, so selecting one for use is a project unto itself. Table 2 below
contains a partial list with brief descriptions of defect detection that can be accomplished by to-
day’s static analysis tools:

Table 2: Some Types of Defect Detection Possible With Static Analysis

Defect Description Resolution

Potential null dereference Code attempts to call a method or
access a field of an object that has
been set to null

Check for failure after memory allo-
cation

Unused variable Variable is never written to or read
from

Remove from code base

Overly broad throw of exception Catching any exception that is de- Understand all exception handling

CMU/SEI-2013-TN-017 | 8

Defect Description Resolution

rived from the top-level Exception
class but treating it like a typical non-
runtime exception masks runtime
errors

and correct using best practice

Logging warnings/errors inconsist-
ently

Logging is not consistent throughout Pick a single logging mechanism
and use it exclusively

Unchecked method return values Returned values of method calls are
ignored

Check all return values

Bypassing of architectural or securi-
ty-based API

APIs that exist to enforce consistent
resource allocation or input valida-
tion are not used in all situations

Enforce use of API to maintain archi-
tectural and security integrity

SQL injection, path manipulation,
command injection, log forging

When querying or commanding a
database or operating system, user
input is used directly to form the
executed instruction

Use parameterized SQL statements
that bind parameters; validate and
whitelist all input used in dynamically
created instructions

Unreleased resource Calls to resource allocations
(memory, threads, etc.) are not
matched up with deallocation calls

Ensure for every resource used that
the appropriate management meth-
ods are used

Use of dangerous functions related
to string management

Some common functions exist that
cannot be used safely or are difficult
to use safely

Use approved functions in the ap-
proved manner

Debug code in released version Debug code can affect security,
performance, and reliability and
should be removed before release to
the user

Remove all unit test and diagnostic
code that is not intended for ongoing
product support

Empty exception catch block Exceptions not handled will lead to
unexplained software failures

Deal with all expected and unex-
pected error situations making sure
the information is available to diag-
nose failures

Quite often today, static analysis tools also include features that help developers visualize the or-
ganization and interfaces of the major components of the software. The ability to analyze and vis-
ualize the structural and architectural features of the developing product allows for early analysis
of design decisions and confidence in the architectural integrity. In addition, these tools also use
various methods and metrics to document the size and complexity of the developing software.
This allows the acquirer and developer to monitor progress and detect changes that will impact
program cost and schedule.

Some of the criteria to look for when deciding on what tool to use

• built-in rules compatible with the project’s standards

• ease of managing the rules (including deleting, creating, and reporting)

• ease of integration with other software development tools being used

• automation of running and reporting of results

2.3 Testing

In addition to the implementation phase of the software development process, static analysis and
other tools are necessary to integrate, verify, validate, and certify the delivered system. The ac-
quirer needs to understand how these processes are executed as the results are quite often key in-
puts to the acquirer’s final acceptance process. Integration and verification (also called integration

CMU/SEI-2013-TN-017 | 9

and test) are quite often planned and executed by the same team of engineers. This sometimes
causes confusion as these are separate processes with a different set of goals.

Integration is the activity after coding when the components are combined to make a working sys-
tem. A good practice here is to build up the system step by step from only a few components to
create a baseline working system. The ability to have a simpler, working baseline version aids in
identifying defect root causes. The key objective of this process is to make sure the interfaces that
were designed on paper and then implemented are working together. If a formal interface tech-
nique like IDL for Common Object Request Broker Architecture (CORBA) or Simple Object Ac-
cess Protocol (SOAP/HTML) for web services is used, then there are static analysis tools availa-
ble to verify the actual implementation by checking that the interface definitions and semantics
are consistent. These tools define the interfaces by using a common definition language; allowing
the components to be built automatically with specialized tools, they can compare models from
the design phase with the actual implementation.

Verification quite often is merely considered the testing phase after integration. This is not true.
Verification includes the testing activities from the start of development and includes test plan-
ning, test procedure development, unit testing, test automation (or not), test coverage, system test-
ing, and more. A challenge that many acquisition programs face is developing testable require-
ments.

Quite often, it turns out that the verification is not clean and leads to various types of rework. A
common practice is to write the requirements without a clear idea as to how they will be verified
at the end of the development process. By using automated tests, the test can be written early in
the development process to help define the requirement and allow it to be run frequently during
the development, integration, and test phases.

The dynamic analysis tools discussed below are used in both integration and verification. Auto-
mation (discussed further in section 3.1) is usually developed and debugged for initial use during
the integration stages of the project and will be further employed during verification and possibly
the certification activities. A key benefit to the acquirer is that these same automated tests become
valuable as regression test suites during the sustainment phase of the product life cycle.

2.3.1 Dynamic Analysis

Dynamic analysis is an important type of tool usually used during integration and verification that
helps to check for various qualities of the code such as performance, security, and availability.
The use of dynamic analysis must be planned for from the beginning of the design phase. Dynam-
ic analysis uses data gathered from additional instrumentation code whose purpose is to capture
the events in real time. While the capability needs to be included early in the design process, the
system needs to be sufficiently integrated for dynamic analysis to be useful. Thus, defects are
found later in the process than those discovered by static analysis tools. Dynamic analysis checks
for

• performance degradation

• memory management issues like leaks, bad allocations, and memory corruption

• threading and interlock conditions that can impact performance or cause run-time failures

CMU/SEI-2013-TN-017 | 10

• race and deadlock conditions

• security vulnerabilities

• code coverage monitoring

These are important features to the acquirer, and the use of dynamic analysis should be planned
for early in the system design phase even though the actual analysis does not occur until late in
the development cycle.

2.3.2 Use of Static Analysis in Certification

Quite often, large acquisition programs face certification challenges by an independent organiza-
tion. This accreditation or authorization to be utilized for the intended purpose happens frequently
in systems intended for government, military, medical, and financial use. Certification is an ap-
proval process for the system or parts of the product, usually with a strong focus on security.
These processes typically involve checking that the code meets selected coding standards either
through manual or automated means.

A key activity of certification usually involves independent static analysis of the code base. If this
analysis is executed against a different coding standard or using a different set of static analysis
rules and patterns than the developer used, it will tend to show a large number of potential defects
—many of which will be later identified as false positives. For each positive, the developer and
certification authority must then negotiate to determine whether the flagged code is in fact in
compliance (false positive), may remain in place as a documented deviation, or requires repair.
According to CERT’s recent Source Code Analysis Laboratory (SCALe) for Energy Delivery Sys-

tems report,

Deviations should only be used infrequently because it is almost always easier to fix a cod-
ing error than it is to provide an argument that the coding error does not result in vulnerabil-
ity…. Depending on the analyzers used, it is not uncommon for code bases to have substan-
tial numbers of false positives in addition to the true positives that caused the software to fail
conformance testing. False positives must be eliminated before a software system can be cer-
tified. However, analyzing the code to determine which diagnostics are false positives is time
consuming and labor intensive. Furthermore, this process needs to be repeated each time the
code base is submitted for analysis. Consequently, preventing the issuance of diagnostics de-
termined to be false positives can reduce the cost and time required for conformance testing
in most cases [Seacord 2010].

The ongoing challenge by the acquisition team is to continually certify new releases of the code.
In attempting to obtain certification in a timely fashion, the certifying organization sometimes
participates early in the acquisition process. Acquirers, security, certification, and test teams
should make sure the right coding standards and specifications are part of the contract and en-
forced by the software developer on a daily basis by using appropriate static analysis tools along
with other system engineering practices.

CMU/SEI-2013-TN-017 | 11

3 Overarching Software Development Practices

When considering many of the various software development process areas, mature tools and
practices with proven techniques are quite often available. Executing the process areas well across
the whole development life cycle is important to the timely delivery of quality software. However,
for the purpose of this technical note, we focus on two practices—automation and peer review.
followed by a quick look at defect management and quality assurance that support the automation
and peer review practices.

Quite frequently automation and peer review practices are skipped or deferred during the devel-
opment process in an attempt to meet cost and schedule. As these practices have been widely rec-
ognized over the years to pay off in terms of quality, they should not be dismissed lightly. From
the acquirer’s point of view, automation and peer review—when executed appropriately—can
supply confidence-building insight into the acquisition.

3.1 Challenges of Automation

Christie et al define automation as “…computer-based support for the flow of work between indi-
vidual tasks. Processes (large or small) are said to be automated if manual control of task initia-
tion or sequencing is transferred to the computer [Christie 1996].” The implementation and com-
plexity of automation changes over time due to new and improved tools and techniques. But in
effect, software development and test automation tools perform what were previously manual
processes and allows them to be completed without human intervention.

The concept of automation can be applied across the implementation, integration, and test pro-
cesses used to develop a software product. COTS tools are available that can quite often easily be
incorporated into most development processes. Common automations include

• automated test frameworks or test harnesses which enable developers to test the code from
unit to integration testing

• user interface automation to enable the repetition of user text and mouse input along with ver-
ification of the expected events from each input

• COTS products geared toward online application testing

Planning for the use of automation early in the life cycle brings several key advantages to both the
developer and acquirer:

• Repeatability of testing allows for consistent regression testing, leading to confidence and
predictability in early and operational releases.

• Automated frameworks can enable the development and/or sustainment team to add new fea-
tures efficiently and simplify the remediation of defects.

CMU/SEI-2013-TN-017 | 12

Deciding whether and how to implement automation tools and techniques is as important as im-
plementation decisions within the product itself. Although there are many opportunities to use
automation within software development processes, the decision to automate a particular technical
process usually involves significant tradeoff analysis. The automation process alone creates the
need for the development organization to develop expertise in the use of any automation tools
they employ, requiring staff training and possibly the hiring of new talent. In addition, creating
and maintaining the automation can become a project unto itself. Maintaining automation scripts
and software has the same types of challenges associated with maintaining other software prod-
ucts and therefore must be considered when deciding to automate. Automation tools themselves
necessitate requirements, design, and documentation with the challenge to keep the code updated
and documented accurately. Quite often, automation objectives also require a make-versus-buy
decision with all of the associated tradeoffs to be considered.

Automated tools are extremely important in creating a high-tempo development process. Auto-
mated check-in and analysis of code bases can quickly point to where changes have caused issues,
and attention can be directed more readily to those areas. After incorporation of basic automation,
further concepts are worthy of pursuit. Automated analysis of higher order issues associated with
component interaction, interface dynamics, and model-driven architecture are some examples. In
most of today’s development methodologies using iterative approaches, the ability to automate is
considered a necessity for success. When automation is planned for and applied early, the benefits
ripple across the product’s life cycle.

3.1.1 Automatic Code Generation

Automatic code generation is used in combination with high- and/or detailed-level design and
modeling tools. Once the design is finalized, the code is generated using the design and imple-
mentation details supplied by the design tool. In the case of a high-level design tool, the skeleton
or outline of the code is automatically generated to allow manual creation of the actual functions
or methods. Depending on the level of detail in the design or modeling tool, the actual software
for the functions or methods may in fact be created.

Many of the activities that a programmer does while writing code offer opportunities for automa-
tion. Detailed design tools allow the developer to specify the software’s parameters and common
algorithms in a format that is easily viewed and maintained. This allows a code generation tool to
produce the code.

A key consideration when generating code is how that code will be sustained. The generated code
can be considered a starting point for manual programmer modifications such as creating a
framework of code modules from an initial high-level design. A better practice is to use the design
or modeling tool to make changes which requires maintenance of the tool and the associated mod-
el throughout the sustainment period. Another good practice is to clearly identify how the gener-
ated code was written to enable future evaluators and sustainers to make effective decisions.

Automatic code generation enables the developer to easily employ a defined, repeatable process
in a consistent coding style. This gives the acquirer confidence that development is done in a re-
peatable fashion, following good programming practices that are geared toward preventing de-
fects.

CMU/SEI-2013-TN-017 | 13

3.1.2 Continuous Integration and Test

Continuous integration can be effective for almost all types of software developments. Continuous
integration is enabled by using a configuration management system with the ability to automate
the build process. Successfully built code is then automatically tested to verify that the newly built
product works correctly. Automating the build and unit test environment is common in many of
today’s software development processes. This enables daily build and integration along with au-
tomated static analysis scans and unit tests. A greater level of automation enables quick discovery
of defects and enables the removal of defects closer to the insertion point.

With some scripting, the code can be generated, compiled, statically analyzed, unit tested, and
delivered into an integration environment automatically within hours. Errors found during these
steps can be sent to the appropriate developer for immediate action. With this kind of response,
the time between implementation and system testing can be made extremely short so that devel-
opers and testers can focus on their primary activities. The development team’s goal should be to
improve this process so that defects are found and removed as soon after writing the code as pos-
sible.

3.1.3 Test Automation

Instituting test automation enables the developer to shorten implementation and system test cy-
cles, giving the acquirer greater insight through the automatic collection of accurate and revealing
feedback into the state of the developing product. As described in previous sections, automation
of the static analysis and unit testing can easily be built into the development process. Tools also
exist to enable automation at a higher level so that regression and functional testing can be done
on a frequent basis. The ability to create a test that is repeatable without human intervention al-
lows both the developer and acquirer to gain confidence in the system more quickly. As described
in the previous section, automation does not come for free. The ongoing maintenance of an auto-
mated test framework can be a project unto itself. There are many books, courses, and tools avail-
able on this subject.

3.2 Peer Review

For the purposes of this technical note, the authors chose a broad definition of peer reviews. Peers
include not only the technical team members but also include stakeholders such as the acquisition
team members and the end users. Widening of the peer review concept beyond the bounds of the
technical team encourages earlier looks by acquirers and customers/end users so functional and
user experiences can be dealt with sooner.

Peer review is the evaluation of creative work or performance by other people in the same
field in order to maintain or enhance the quality of the work or performance in that field.

It is based on the concept that a larger and more diverse group of people will usually find
more weaknesses and errors in a work or performance and will be able to make a more im-
partial evaluation of it than will just the person or group responsible for creating the work or
performance [LINFO.org 2005].

Participation by the acquirer in peer reviews allows for deeper insight into

CMU/SEI-2013-TN-017 | 14

• the development team’s level of understanding of the requirements

• the design decisions that are made by the development team

• the quality and sustainability of the developed software early in the life cycle

• coverage and depth of the planned verification activities

Peer review methodologies encourage getting more eyes looking for problems. As discussed in
section 2.1, various methodologies can be used throughout the development life cycle to review
the architecture, design, and developed code. These techniquesinclude (but are not limited to)
formal inspections, walkthroughs, and pair programming. The concept of peer reviews is to geta
few people in a room to focus on a small section of code. Today there are also some workflow
management tools that allow geographically or time-dispersed teams to hold peer reviews.

These methods are great ways to share the knowledge and increase communication between the
acquisition and development teams. Each of these methods has benefits and weaknesses and relies
on the team’s communication and social capabilities. The use of static analysis tools and code
beautifiers before the peer-review process begins will help the group focus on the tough require-
ments, design, implementation, and defect resolution issues.

3.3 Common Software Development Processes

The tools and practices in addition to automation techniques discussed earlier in the paper are ef-
fective additions to many common software engineering processes. This section explores how
they can be incorporated into configuration management and quality assurance.

3.3.1 Configuration Management

Configuration management (CM) is a very mature area in which the market offers a wide variety
of solutions ranging from those that may be free, open source, and/or commercially marketed.
Acquirers should make sure their development organizations integrate these tools into their daily
work processes to manage the identification and control of the software being created. Some of
the interesting measures that acquirers should consider reviewing are frequency of check-ins,
software size, and version information. Proper use of these tools along with the appropriate re-
ports is a basic confidence builder for the acquisition team that the developer is doing this most
basic software engineering process appropriately.

One of the more recent features available in CM tools is the automation of steps such as check-ins
and other workflow elements (e.g., initiating cycles of static analysis, compiling, and builds upon
check in). A challenge in making automation successful is to use a CM tool that makes the im-
plementation of this automation simple and effective in the contractor’s development environ-
ment, which may mean seeking out easy-to-use interfaces, instantaneous check-in times, and ef-

fective remote access.

The acquisition team relies on the developer to create a CM plan to manage the software-related
work products in addition to developing code according to the plan. Furthermore, remember that
acquirers also bear responsibility for CM on programmatic documents. To enable the acquisition

CMU/SEI-2013-TN-017 | 15

team to participate effectively in peer reviews of the developing system, appropriate remote ac-
cess should be easy and accessible as the product evolves.

A jointly agreed upon CM plan including use of automation features and easy access by both par-
ties is important to gain efficient and effective interaction between the developer and acquirer. For
example, such a plan enables a program manager to understand how the CM system maintains
linkages between technical and programmatic documentation

3.3.2 Defect Management

Defect management processes help answer some of the most common questions that acquisition
teams ask: What is the quality of the product and when will it be finished? Tools range from
homegrown databases to integrated commercial off-the-shelf (COTS) products for tracking de-
fects from start of development, through deployment, and into sustainment. In addition to manag-
ing defects on a daily basis, these tools help gather measurements that help the development and
acquisition teams gauge the quality of the developing product. Data such as defect density and
defect detection/removal efficiency are important for knowing the quality of the system and for
deciding when to release it.

This class of tools enable root cause analysis, which is a key activity that requires the analytical
capabilities of the technical skills of all the team members. Root cause analysis seeks to identify
the source of a problem so that classes of defects can be found and corrected in both technical and
process-related areas. Proper use of defect management tools will help to minimize the engineer-
ing effort needed to gather information, measure, and report patterns in defects.

3.3.3 Quality Assurance

Quality Assurance (QA) takes many forms from company to company. An important element
from the acquirer’s point of view is that the QA processes and methodologies can help the acquir-
er gain insight into the developer’s progress. QA monitors the adherence to the defined develop-
ment process in addition to quality checks of the developed artifacts, supporting the acquisition
team’s goal of a quality product. Since the acquisition team has ultimate responsibility for what is
being developed, they should witness key development team QA activities to gain confidence that
the development team is working to the planned development process. Activities can include

• observation and participation in peer review and evaluation activities

• observation of development team verification and validation activities

• observation and review of process compliance reviews

In addition, the acquisition team can gain confidence that many of these basic software engineer-
ing processes are well-instituted if the tools are used properly on a regular basis. Several examples
include the following:

• requirements management repositories – quickly check and visualize the tracing between par-
ent and child requirements along with tracing to design and test elements

• static analysis – constantly enforce the coding standard

CMU/SEI-2013-TN-017 | 16

• configuration management – quickly check and visualize baselines for all types of design arti-
facts from requirements to design to code to test

All of the tools and practices discussed in this technical note, including automation, enable QA
and the acquisition team to gain insight quickly, thus allowing time to focus on design and deci-
sion activities over rote tasks.

CMU/SEI-2013-TN-017 | 17

4 Summary and Concepts for Further Consideration

The use of the tools and practices discussed in this technical note should be expected and encour-
aged by the acquisition team as they are mature, common tools used in today’s software develop-
ment. As such, the tools supply key insights into the quality of the developing product along with
indicators as to when the product will be completed.

4.1 Justification for Improvement

Unfortunately, quite frequently the tools and practices discussed in this technical note are consid-
ered extra and unnecessary when schedules are tight and limited funding is available. There are
budget and schedule considerations to using these tools and practices such as tool costs including
the number of licenses, ongoing maintenance of the tool, and training costs over the whole soft-
ware development cycle. In addition, the dedicated time to execute many of these practices and to
manage these tools is also perceived as an ineffective use of costs and schedule.

Improved quality is sometimes hard to measure, but it tends to manifest in less effort needed due
to

• deliver the product more predictably, which leads to lower development cost and schedule

• reduced defects in the released product, thus leading to lower maintenance costs

• improved development processes, leading to lower enhancement costs through the ability to
add new features more easily

4.2 Acquisition Strategy and Adapting to Change

A common challenge to large projects and programs is that they usually last many years. This fact
alone is likely to guarantee that requirements, people, tools, and practices will change multiple
times during the development effort. If the acquisition strategy does not account for adapting to
change, then it is setting up the acquisition for failure. While there is the feeling of safety by keep-
ing the development environment constant, not upgrading the tools and practices in a protracted
project forces the development team to work with older, less effective tools on what is typically a
much more complicated system.

Why are opportunities to improve key to process improvement? It is the planning to improve
throughout the project that enables the benefits of process improvement; chiefly, improved quality
of the final product. Process improvement can take place only when tools and practices are al-
lowed to change. If the change cycle takes years for each modification, then very little improve-
ment can happen. This means that the acquirer should find an acquisition strategy that allows for
development tools and practices to occur frequently while measuring the results.

Consider

• frequent update of COTS tools to keep them current and allow the use of the latest efficiency
features

CMU/SEI-2013-TN-017 | 18

• ongoing sustainment of in-house developed tools to keep them useful

• training for new members of the acquisition and developer team in existing tools and practic-
es

• updating and the associated training for new tools and practices

4.3 Acquirers and Developers

As an acquirer, instead of asking your development team typical status-related questions such as
”When will you be done?,” the authors recommend trying some of these questions:

• What is painful about the current software development process?

• What code quality improvement suggestions have you made recently?

• What automation and peer-review improvements are you piloting?

• Is quality assurance verifying adherence to previously agreed upon processes?

Consider these simple example strategies:

• Look for developers to use static analysis on code check-in as part of the software develop-
ment process, and explain the types of analysis that they perform. This process can be auto-
mated so that the impact is minimal and bugs are dealt with before unit and regression-level
testing.

• The use of static and dynamic analysis tools as part of the development process can provide
acquisition and certification organizations with key insights. A close relationship with the de-
velopment team can allow the acquirer and certifier the opportunity to encourage the use of
appropriate coding and testing standards and practices on a continual basis. The execution of
these processes can then be audited and inspected to gain confidence and certify that the
software meets some subset of the required standards. The risk of failing certification at the
end is greatly reduced.

• The acquisition team should receive frequent, interim integration and test reports from the
development team to provide confidence in the expected quality, cost, and schedule. A formal
report that is completed at the time of delivery can be used for the certification process. This
should be a non-event as the interim reporting process will discover problems early in devel-
opment.

Usually the contractor has a variety of tools and practices in their toolkit already—backed up by
corporate investment enabling deep experience and knowledge. An acquirer would do well to
consider asking questions about where in the life cycle the developer employs the available tech-
niques and tools. While the acquirer is rarely in a position to dictate about the tools and practices
used, just asking the question and setting expectations helps to motivate the acquirer into using
and enabling them.

This paper gives to both the acquirer and developer a better understanding of the benefits of using
these tools and practices. There should be obvious justification now for the added cost and effort
in training. The success of using these tools requires close involvement between the acquirer and
developer organizations. In the past, insight by the acquisition team was focused at key mile-

CMU/SEI-2013-TN-017 | 19

stones. The use of automation and analysis tools and practices today allows for a collaborative
environment, which reduces the risk, conflict, and rework that has plagued software developments
in the past.

CMU/SEI-2013-TN-017 | 20

Bibliography

URLs are valid as of the publication date of this document.

[Boehm 1988]
Boehm, Barry W. & Papaccio, Philip N. “Understanding and Controlling Software Costs.” IEEE
Transactions on Software Engineering 14, 10 (October 1988): 1462-1477.

[CERT Secure Coding Standards 2011]
CERT Secure Coding Standards.
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
(2011).

[Christie 1996]
Christie, Alan M., Levine, Linda, Morris, Edwin J., Zubrow, David, Belton, Teresa (Nolan, Nor-
ton and Co.), Proctor, Larry (Nolan, Norton and Co.), Cordelle, Denis (Cap Gemini Segoti), Fero-
tin, Jean-Eloi (Cap Gemini Segoti), Solvay, Jean-Philippe (Cap Gemini Segoti), & Segoti, Jean-
Philippe (Cap Gemini Segoti). Software Process Automation: Experiences from the Trenches
(CMU/SEI-96-TR-013). Software Engineering Institute, Carnegie Mellon University, 1996.

[CMMI Product Team 2010]
CMMI Product Team. CMMI® for Acquisition, Version 1.3 (CMU/SEI-2010-TR-032). Software
Engineering Institute, Carnegie Mellon University, 2010.

[Humphrey 2009]
Humphrey, Watts. The Watts New Collection: Columns by the SEI’s Watts Humphrey (CMU/SEI-
2009-SR-024). Software Engineering Institute, Carnegie Mellon University, 2009.

[LINFO.org 2005]
“Peer Review Definition.” http://www.linfo.org/peer_review.html

[Seacord 2010]
Seacord, Robert, Dormann, Will, McCurley, James, Miller, Philip, Stoddard, Robert W., Svoboda,
David, & Welch, Jefferson. Source Code Analysis Laboratory (SCALe) for Energy Delivery Sys-
tems (CMU/SEI-2010-TR-021). Software Engineering Institute, Carnegie Mellon University,
2010.

[Wiegers 2001]
Wiegers, Karl E. “Inspecting Requirements.” StickyMinds.com Weekly Column.
http://www.stickyminds.com (2001).

https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
http://www.linfo.org/peer_review.html
http://www.stickyminds.com

CMU/SEI-2013-TN-017 | 21

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2013

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Using Software Development Tools and Practices in Acquisition

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Harry Levinson and Richard Librizzi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2013-TN-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Acquiring software-reliant systems from an external resource can be time consuming, costly, and often unreliable. During independent
technical assessments and customer engagements, the Soft-ware Engineering Institute observed many contractors who are not utilizing
mature, readily available software development tools when creating code for government programs. These tools include static analysis,
test automation, and peer review techniques. In addition to the aforementioned tools being important for software developers, they offer
significant insight and confidence to customers who acquire software products.

There are many benefits from making these tools and practices integral to software development and acquisition processes, including:

• reduced risk: programs deliver more predictably

• improved customer satisfaction: products developed experience fewer field defects

• lower cost of ownership: programs experience lower life-cycle maintenance costs when de-ployed operationally

This technical note provides an introduction to key automation and analysis techniques, the use of which the authors contend will benefit
motivated acquirers and developers.

14. SUBJECT TERMS

software acquisition, software development tools, software development practices, static anal-
ysis, automation, peer review, software quality

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgments
	Abstract
	1 State of Software Acquisition and Development in Large Systems
	2 Software Development Tools
	3 Overarching Software Development Practices
	4 Summary and Concepts for Further Consideration
	Bibliography

