Introducing Software Architecture Development Methods into a TSP-Based Development Company

Humberto Cervantes (UAM-I)
Isaac Martinez Aceves (Quarksoft)
Jaime Castillo (Quarksoft)
Carlos Montes de Oca (CIMAT/Quarksoft)

Outline

- About the authors and Quarksoft
- TSP and architecture
- Quarksoft’s TSP and architecture
- Introducing architectural development methods into Quarksoft’s TSP
- Lessons learnt and conclusion
About the authors

- Humberto Cervantes
 - Professor and researcher at Universidad Autónoma Metropolitana – Iztapalapa
- Isaac Martinez Aceves
 - Software architect at Quarksoft
- Jaime Castillo
 - Corporate training leader at Quarksoft
- Carlos Montes de Oca
 - Professor and researcher at CIMAT
 - On sabbatical at Quarksoft, innovation department leader

About Quarksoft

- Quarksoft is a leading software development company in Mexico City
 - Founded in 2001
 - Around 280 people distributed over 3 sites
- Rated at CMMi level 3 since 01/2006
 - Development based on the Team Software Process (TSP)
TSP Overview

TSP Project Structure

- **Launch**
 - Requirements phase

- **Relaunch**
 - High Level Design phase

- **Relaunch**
 - Implementation phase

- **Relaunch**
 - Integration and test phase

Products
- Software Requirements Specification
- System tests and user manual outline
- System Design Specification
- Performance and integration test specs.
- The system’s components designed and built using PSP. Unit and product test specs and draft documentation
- Completed product
- Final documentation

TSP Overview

TSP and PSP

Each component is developed individually using PSP

- Requirements phase
- High Level Design phase
- Implementation phase
- Integration and test phase

- Component plan
- Detailed Design (DLD)
- DLD Review & Inspection
- Coding
- Code Review & Inspection
- Compile
- Unit test
- Post Mortem
TSP and Software Architecture

- TSP does not give detailed guidance with respect to architectural concerns
 - Quality attributes
 - How to design the architecture
 - What is the granularity of a “component”
 - No “architect” role (the closest may be Design and Implementation Managers)
 - No concept of architectural evaluation (only HLD inspection).

Development context at Quarksoft

- Quarksoft develops custom software for customers in several different sectors
 - Insurance, Manufacture, Telecommunication, Retail, Government, Healthcare

- Some particularities
 - Typically, Quarksoft customers require the company to provide a cost and time estimate very early, before the project is approved
 - Requirements are completely specified and then become contractual
 - A core team is usually designed at the beginning of the project (leader, architect, some engineers) and then development may be performed by teams that are spread among the different sites
 - The company is currently in a growth phase
TSP at Quaksoft

Quarksoft’s TSP Project Structure

- **Launch**
 - Preliminary analysis
 - Requirements phase
- **Relaunch**
 - High Level Design phase
- **Relaunch**
 - Implementation and integration phase
- **Relaunch**
 - Test phase

- Project time and cost estimate based on high level requirements
- All requirements are specified in one or more cycles (~ 6 weeks on average)
- High level design is completed in one or more cycles. Ideally **ALL** components are specified. Sometimes system is re-estimated
- The system is built incrementally over several cycles. Unit and integration tests
- System tests
- Final documentation

Software architecture at Quarksoft

- Before this project started, a 2-month study was conducted to understand the state of the practice

- The study involved
 - Reviewing process scripts, artifact templates, checklists and other process artifacts
 - Reviewing existing HLD documents
 - Observing a team in the HLD phase
Study results

The study uncovered many “common” issues related to software architecture:

- Business goals specified inappropriately (too vague)
- Quality attributes specified inappropriately (not measurable, not aligned to business goals)
- Poorly documented architecture designs (not always UML, huge diagrams, too high level, underspecified component interfaces)
- Design focused on satisfying functional requirements
- Excessive focus on technology (lack of pattern usage)

Study results (2)

Other issues were more specific to (Quarksoft’s) TSP

- Process scripts and templates did not provide guidance to help capturing and documenting quality attributes and perform design in a systematic way
- HLD inspection, which is performed by team members, took place too late in the HLD phase

Also some issues were specific to Quarksoft’s context

- Preliminary analysis constrains development time and cost
- Requirements and HLD phases are performed sequentially
- Lack of architects and available ones lack strong theoretical foundations on software architecture
Proposal

- To overcome these problems, a strategy focused on introducing architecture development methods was defined.

- The original idea was to directly introduce SEI’s methods: QAW, ADD, VaB and ATAM
 - An initial study led us to conclude that we could not introduce them directly, the methods had to be adapted (and simplified) to the particular problem’s context.
 - Furthermore, they had to be introduced into Quarksoft’s TSP.

Method introduction overview

- Architecture development methods are introduced in the Requirements (REQ) and High Level Design (HLD) phases of TSP.

- HLD activities are divided into two:
 - Architectural design
 - Other HLD activities
Architectural requirements

The goal is to produce a list of prioritized quality attributes which are documented in the SRS document.

Requirements method

- Standard QAW was not chosen primarily because of the perceived difficulty of involving customers in scenario related activities
 - The essence of QAW which involves identifying quality attribute scenarios aligned to business goals is maintained
- Quality attribute related activities were integrated inside standard requirements activities of the existing process

- Obtaining quality attribute categories from interviews
- Deriving quality attribute categories from business goals
- Identifying metrics
- Identifying “raw” scenarios
- Studying rationale and impact
- Specification of scenarios
- Revision using checklist
- Prioritization according to: importance to customer and difficulty of implementation
Requirements method and TSP

- Software architects already participate in project requirement activities as other project members
 - The idea was to maintain the architects participation but to focus their activities on quality attributes

- Process elements created to support the method
 - Quality attribute process script
 - Quality attribute template
 - Quality attribute checklist

- Changes in existing requirements script

Architectural design

The goal is to produce a documented architectural design which has been evaluated by other architects. This design must both satisfy quality attributes and serve as a guide during implementation.
The design method that was introduced is ADD
- Iterative design method, starting with domain model
- Not only “conceptual” design (based on patterns and tactics), but also technological choices are made during design iterations

Integration with TSP
- One iteration is specifically focused on defining the list of components that will be developed independently using PSP in the implementation phase (work assignment)
- Design time has to be planned at the beginning of the HLD phase
- Process elements: Design script, changes in HLD script
Documentation method

<table>
<thead>
<tr>
<th>Evaluation committee</th>
<th>Architect</th>
<th>Developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform quality attr.</td>
<td>Perform architectural design</td>
<td>Document architectural design</td>
</tr>
<tr>
<td>Evaluation report</td>
<td>Evaluation report</td>
<td>Submit documents to system baseline</td>
</tr>
<tr>
<td>Documentation Script</td>
<td>View Template</td>
<td>View Checklist</td>
</tr>
</tbody>
</table>

Documentation method and TSP

- Documentation is based on the VaB templates, but limited to a number of views to ease migration from 4+1 and to help in planning activities
 - Logical
 - Physical
 - Runtime
 - Work assignment

- Process elements: Documentation Script, View Template, View Checklist
A scenario-based evaluation method based on ACDM was introduced:

- Short evaluation (1/2 to 1 day)
- No driver discovery (as opposed to ATAM), use of an “evaluation package” composed of drivers + views
- Evaluation committee is composed by other architects from the company

Integration with TSP:

- Defects identified during evaluation are collected
- Risks can be used in next re-launch
- Evaluation script
One of the goals is to define an external specification for all the work-assignment components that will be developed independently during implementation using PSP.

External specification:

<table>
<thead>
<tr>
<th>Evaluation committee</th>
<th>Architect</th>
<th>Developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLD Document</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform quality attribute capture, documentation and prioritization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform architectural design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document architectural design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform architectural design evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define integration and test strategies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document system design specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform design walkthrough and design inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submit documents to system baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postmortem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction strategy

- The proposed introduction strategy considers starting with changes in requirements
 - Start with new projects
 - “Just in time” training: before REQ and before architectural design

- Hopefully, the introduction of changes in HLD will be smoother for these projects
 - They start with clarity with respect to drivers

Evaluating the results

- Only one pilot project so far…
 - The collected data does not allow conclusions to be made yet but the project artifacts show significant differences with respect to what was observed in the initial study

- Metrics that we will be studying
 - Defect data from evaluation will be a very valuable source of information
 - Quantify the benefits of the approach
 - It can help focus training activities
 - Time data is also important
 - Greater time in architectural design should show reduction in integration and (system) test time
Lessons learnt

• Requirements
 ▪ Business goals must be correctly specified
 ▪ Metrics to specify quality attributes may be hard to identify

• Design
 ▪ The architect must really have clarity with respect to architectural drivers before starting design
 ▪ A bridge must be made between “conceptual” (pattern-based) design and frameworks
 ▪ A work assignment structure is fundamental to guide development and also very helpful for re-estimation
 ▪ Best ways to use case tools to support design must be identified
 ▪ Estimating design time is not straightforward

Lessons learnt

• Documentation
 ▪ Documentation activities take a long time so moving design from CASE tools to documents must be straightforward

• Evaluation
 ▪ Doing evaluations in a short time is difficult but longer evaluation can be a logistics challenge
 ▪ It can be hard for the architect to effectively communicate drivers and design decisions in a short time
 ▪ Architects are not automatically good evaluators
 ▪ Defect data gathered from evaluation is extremely valuable
Lessons learnt

- The introduction of architecture development methods into Quarksoft’s TSP has required considerable time and work
 - There is an impact on several process elements: Scripts, Templates, Checklists (mainly from REQ and HLD)
 - The introduction of development methods must also consider training and technology issues
 - A complete course covering the methods has been created
 - Software engineers must also receive some training as they participate in related activities

- Other aspects must be considered
 - Integration with CMMi for example: Decision Analysis and Resolution (DAR)

Lessons learnt

- Preliminary analysis imposes many constraints on software architecture

- A subset of architecture tasks need to be performed during this phase to improve estimates

- The amount of information and limited time make this difficult
Conclusion

- Architecture development methods can be integrated into TSP without requiring significant changes to the process

- However, the biggest challenges are at the organization level
 - Process elements changes, training development, technology…
 - A gradual introduction strategy may be undertaken

- The data collection framework of TSP should provide us with data that will help to understand the benefits of the approach in a measurable way

Thank you

- Contact:
 Humberto Cervantes
 hcm@xanum.uam.mx