

In Search of a Metric for Managing Architectural Technical Debt

Robert L. Nord, Ipek Ozkaya
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, USA

{rn, ozkaya}@sei.cmu.edu

Philippe Kruchten, Marco Gonzalez-Rojas
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

{pbk, marcog}@ece.ubc.ca

Abstract— Practices designed to expedite the delivery of
stakeholder value can paradoxically lead to unexpected rework
costs that ultimately degrade the flow of value over time. This
is especially observable when features are developed based on
immediate value, while dependencies that may slow down
future development efforts are neglected. The technical debt
metaphor conceptualizes this tradeoff between short-term and
long-term value: taking shortcuts to optimize the delivery of
features in the short term incurs debt, analogous to financial
debt, that must be paid off later to optimize long-term success.
In this paper, we describe taking an architecture-focused and
measurement-based approach to develop a metric that assists
in strategically managing technical debt. Such an approach can
be used to optimize the cost of development over time while
continuing to deliver value to the customer. We demonstrate
our approach by describing its application to an ongoing
system development effort.

Keywords: technical debt; software architecture; software
economics; cost of rework; total cost of ownership

I. INTRODUCTION
The term ‘technical debt’ describes an aspect of the

tradeoff between short-term and long-term value in the
development cycle. Recently the concept has gained
increased visibility, advanced mainly by promoters of agile
software development approaches. An ongoing focus on the
management of technical debt is perceived as critical to the
development of high-quality software. While expressing the
value of user-visible features may be straightforward, a key
challenge in iterative development is the ability to quantify
the value of infrastructure and quality-related tasks, which
quite often are architectural. Technical debt also closely
relates to system evolution challenges, as often an
organization finds itself with the need to deal with
accumulated technical debt when upgrading technology or
adding new features to a legacy environment. Left
unmanaged, technical debt causes projects to face significant
technical and financial problems, leading to increased
maintenance and evolution costs. Although agile practices of
refactoring, test-driven development, and software
craftsmanship are often sufficient to manage technical debt
on small-scale projects, sound principles for managing debt
on large-scale, enterprise-level projects are lacking. Project
owners drawn to agile practices by the allure of quicker time
to market and improved responsiveness can find the promise
of agility negated by increasing mountains of technical debt.

Within the last few years technical debt in system
development has received increased attention as a result of a
growing need to manage the degrading quality of software
and avoid costly reengineering and maintenance.
Cunningham introduced the technical debt metaphor in
defense of relentless refactoring as a means of managing
software debt [1].

“Shipping first time code is like going into debt. A little
debt speeds development so long as it is paid back promptly
with a rewrite... The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code counts as
interest on that debt. Entire engineering organizations can
be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or
otherwise.”

Cunningham’s description has served as the starting point
and as a definitional reference in describing technical debt
[2]. Both McConnell [3] and Fowler [4] categorize technical
debt into distinct types, separating issues arising from mere
recklessness from those decisions that are made strategically.
Work to date on technical debt has mainly focused on
uncovering and paying back unintentional or reckless
technical debt, mostly found in the form of degrading code
quality [4]. Underlying the strategic type of technical debt is
the prudent and deliberate aspect of debt that can speed the
development effort [3]. While there is increasing recognition
within the software engineering community that architecting
and the delivery of high-value customer features must go
hand-in-hand, there have not been quantitative approaches
that provide guidance on monitoring technical debt
strategically in order to manage the total cost of ownership
across a project.

In this paper we’ll endeavor to provide a foundation for
incurring and managing prudent, deliberate, intentional
technical debt. In that regard we embrace the following
definition by McConnell:

“Technical debt is a design or construction approach
that’s expedient in the short term, but that creates a
technical context in which the same work will cost more to
do later than it would cost to do now.” [5]

We use software architecture as a means to identify and
monitor architectural technical debt, or architectural debt, so
that re-architecting and refactoring decisions can be made in
a timely manner. We illustrate our approach by describing an
ongoing development effort: the Disaster Response
Network-Enabled Platform (DRNEP). DRNEP system

2012 Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture

978-0-7695-4827-2/12 $26.00 © 2012 IEEE

DOI 10.1109/WICSA-ECSA.212.17

91

integrates a set of independently developed infrastructure
and disaster simulators [6]. The DRNEP system is currently
undergoing major re-architecting efforts. We compare these
efforts’ alternative development paths: one that takes on debt
and one that does not, and we explore their economic
implications. In doing so, we focus on development of a
metric that can provide insights into the accumulating rework
cost that is factored into a debt payback strategy.

The rest of the paper is organized as follows: Section 2
presents our architectural debt rework model. We illustrate
how architectural debt can be elicited and monitored based
on rework in Section 3, using the ongoing system
development effort of DRNEP as an example. We review
related work in strategic technical debt analysis in Section 4.
In Section 5 we discuss the implications of our findings, and
Section 6 concludes the paper.

II. ARCHITECTURAL DEBT: MODELING REWORK
A key enabler to managing architectural debt is the

ability to quantify degrading architecture quality and the
potential for future rework cost during iterative release
planning. Engaging strategic design shortcuts, which can be
interpreted as going into architectural debt, requires effective
characterization of the economics of architectural violations
across a long-term roadmap, rather than enforced compliance
for each release.

A key challenge in agile development is in acquiring the
ability to quantify the value of infrastructure and quality-
related tasks that are quite often architectural. For example,
under the widely adopted Scrum practices, such as managing
a product and sprint backlogs [7], zero value points are
typically assigned to infrastructure development, re-
architecting, and maintenance tasks, including paying back
technical debt, which are all perceived as costs only. This
assignment results largely from an inability to value the
long-term impact of these infrastructure or architectural
elements on customer-visible features and overall system
health as the system grows. These elements appear to have
no customer value—only development cost. Other
approaches aim to adjust this fallacy by calculating
customer-visible-feature percentages based on value points
in order to adjust the overall value assigned. For example if
there are five features with value points 5, 3, 2, 2, 1, then
their overall percentages would be 40%, 23%, 15%, 15%,
7% [8]. This does not capture, however, the impact of
architecting and related rework and maintenance.

The cost models of implementing a design choice today,
versus retrofitting a solution much later, are often wrongly
compared. Consider an internationalization feature of a web
site. The development team may decide to implement full
flexible language support that would enable the system to be
sold, possibly in international markets today, under a given
cost model; let us say the cost is C. Alternatively, the team
may decide to postpone internationalization to a later date
when it becomes absolutely necessary (YAGNI, or “defer to
the last responsible moment”). Until that later date the
system continues to grow. When in fact the time to
absolutely introduce internationalization arrives, the cost is
no longer C, but it is C + R where R represents the impact of

retrofitting the grown system in order to introduce
internationalization. As this canonical example demonstrates,
modeling architectural debt requires modeling the
dependencies between features and architectural elements,
and using that information to calculate the cost of
implementing each feature based on the existing capabilities
of the infrastructure.

A strategic perspective of prudent, deliberate, technical
debt encompasses key aspects of total cost of ownership
management in large-scale, long-term projects:
� Optimizing for the short term puts the long term into

economic and technical jeopardy when debt
accumulates and is unmanaged.

� Design shortcuts can give the perception of success until
their consequences start slowing projects down.

� Development decisions, especially architectural ones,
require active management and continuous quantitative
analysis, as they incur implementation and rework cost
to produce value.

Technical debt management involves making choices
between a focus on value versus on cost throughout the
development cycle as decisions are made (often in the
planning cycle of each iteration or sprint). Some agile
approaches, with a focus on value, result in an
implementation that accumulates debt. Other more phase-
based approaches, with a focus on cost, result in a delay of
value as releasing the product takes longer. These are the
boundaries of the decision space.

Technical debt management is about navigating a path
that considers both value and cost, to focus on overall return
on investment over the lifespan of the product. Within that
path, debt has a lifecycle: the time it is incurred, the time
frame during which it accumulates interest, and the time
required to develop a payback strategy and put it into action.
Managing debt is dependent on knowing the impact of key
requirements and architectural steps.

Our position and experience is that there can be value at
times in making suboptimal decisions to support the overall
goals of the business and the project. This decision-making
process requires creating a metric for debt management that
takes into account the interest as well as repayment of the
borrowed amount. The metric we use to model this metric is
based on architectural rework.

We model rework as an aspect of changing dependencies.
In a previous study, we conducted an exploratory analysis of
a model problem to quantify the technical debt outcomes of
alternate release strategies. We engaged this approach to
establish metrics for quantifying architecture quality where
we used architecture structure metrics based on dependency
analysis [9]. This model computes the rework cost associated
with each new architectural element Ei implemented in
release n.

The Total Cost of release n is a function of the
implementation and rework costs, and :

In this paper, we assume that it is simply the sum.

T
Ci Cr

T � F(Ci,Cr)

92

The implementation cost Ci for release n is computed as

where the implementation cost is given for all
individual architectural elements k.

The rework cost for release n is computed as

and

If is an element implemented in a prior release,

where is the number of dependencies from u to v, Ci
is the implementation cost, and Pc (n - 1) is the change
propagation of release n - 1. Change propagation is a metric
introduced by MacCormack et al. [10] that captures the
percentage of system elements that can be affected, on
average, when a change is made to an element. The change
propagation metric of a system is computed as the density of
the visibility matrix that captures all the direct and indirect
dependencies in the system architecture, or in other words,
the transitive closure of the dependency relationship.

III. ARCHITECTURAL TECHNICAL DEBT IN ONGOING
DEVELOPMENT: A CASE STUDY

The Disaster Response Network-Enabled Platform
(DRNEP) is a system that integrates a set of independently
developed infrastructure and disaster simulators [6] (see Fig.
2). Developed primarily at the University of British
Columbia, with collaborators in various parts of the world,
its purpose is to provide government agencies means to
prepare and respond to large disasters, such as earthquakes,
tsunamis, flooding, or hurricanes. It provides insights into
the interoperation of various critical infrastructures: electrical
grid, transportation, communication, water, and so on. Such
infrastructures often are run by various public or private
organizations that don’t recognize the cascading effects of
major failures or the decisions to remediate them or the
propagation of their impact [11]. The implementation of
DRNEP enables knowledge gathering on the interoperation
of interdependent infrastructures specific to a given area
from expert organizations around the world, in order to assist
local emergency responders. To achieve this end,
organizations rely on simulators that help them to create
disaster scenarios for a geographical zone (e.g., a
municipality, region, or province) and elicit strategies on
how to better respond to them.

DRNEP grew initially with relatively little thought on an
overall architecture. Different simulators were developed by
independent research groups over a period of several years,
each catering to a different concern or a different
infrastructure. Central to DRNEP is the Infrastructure

Interdependency Simulator (I2Sim) [12] [13] as the
integrating simulator that models a given geographical area
in case of disaster. I2Sim interfaces with other specialized
simulators by exchanging information at a given sampling
time. The simulators can interact with transforming
elements, or control points in the model and are able to
model a given physical entity, a human, or set of humans
making decisions. To integrate the simulators in DRNEP,
there are two possible paths: one, which seems easy and
incremental, is to make ad hoc adaptors and translators
between the concepts and data of the simulator and DRNEP.

A second, more ambitious path is to define a standard
architecture with mechanisms to achieve a more systematic
integration, using a mediator pattern, with a common
canonical data model, and using an Enterprise Service Bus
(ESB) for implementation [6].

This second path looks more costly at first. We show
here that it will pay off rapidly with subsequent releases, as
more simulators are integrated in DRNEP. If the project
were to embark on the first path for easy early successes, it
would accumulate heavy architectural technical debt with
high rework costs (55%).

A. Architecture Debt Analysis
The DRNEP system will connect different simulators and

requires the ability to add simulators to work collaboratively;
value increases as more simulators are added. We analyze
two paths:

Path #1: Deliver soon. New simulators are integrated one
by one, and ad hoc translators for data and communications
are built incrementally. Adding a new simulator requires
building a new translator for each existing simulator and
reworking each of the existing simulator adaptors.

Path #2: Reduce rework and enable compatibility. An
Enterprise Service Bus is put in place and a central common
data model is designed. Adding a new simulator requires
building one additional element on top of the common
infrastructure to provide adaption and transition services.

1) Path #1: Deliver soon.
In order to deliver a working version of the system

quickly, the plan calls for making the minimum required
effort at the beginning. This implies that the elements will be
coupled with each other. The emerging architecture in this
minimal architecture version is shown in Fig. 1.

Figure 1. Path #1 dependencies

Ci(Ek)
k
� for all new elements Ek

 Ci(Ek)

Cr

Cr(Ek) for all new elements Ek

k
�

Cr(Ek) � Cr(Ej) for all pre-existing elements Ej

j
�

Ej

Cr(E j) � D(E j ,Ek) � Ci(E j) � Pc(n � 1)

 D(u,v)

MT_I2Sim_Trans

Controller

DataPeristence

Epa_MT_Trans

Epa_I2Sim_Trans

Brahms_I2Sim_Trans

Brahms_MT_Trans

Flood_I2Sim_Trans

Flood_MT_Trans

Flood_EPANet_Trans

Flood_Brahms_TransBrahms_EPANet_Trans

I2SimAdapter EPANetAdapter BrahmsAdapter FloodAdapterMTAdapter

Release 1

Release 2

Release 3

Release 4

Key:

93

Figure 2. DRNEP Network Configuration. Canadian institutions are linked through CANARIE and associated networks’ dedicated light
paths to exchange and distribute data, simulation, and analysis functions. ENEA is in Rome, Italy, and University of New Brunswick (UNB) is in
Fredericton, NB. Thailand is the disaster source for the tsunami exercise. University of Western Ontario (UWO) in London is the disaster source
for the UWO Campus exercise. Sources: [6][11]

Figure 3. Path #2 dependencies

2) Path #2: Reduce rework, enable compatibility.
One of the objectives of DRNEP is to enable

compatibility of simulators and, to achieve this, mediators
are used to decouple elements in the system. This increases
compatibility and reduces maintenance in the subsequent
releases. However, this approach requires an investment in
infrastructure during the first deliveries, and so delays
delivery. The design uses an ESB in order to mediate data
exchange and a common data model in order to decouple
data representation within elements of the system. The
common data model is defined in the service module and

each service has a copy of it to avoid repeating the definition,
this is captured by the dependency of each service into the
service module. The emerging architecture is shown in Fig.
3.

The dependencies shown in Figs. 1 and 3 are depicted as
a design structure matrix (DSM) in Fig. 4 to facilitate a
comparative analysis. A DSM is a matrix that maps
dependencies between items in a given domain [14]. All
elements appear both in the rows and the columns and
dependencies are signaled at the intersection points of the
items in the matrix. For instance, in Fig. 4 the mark at the
intersection of row 3 with column 1 means that element in
column 1 (Controller) depends on element in row 3
(MTAdapter). DSMs are single-domain square matrices,
meaning that relations are defined between instances of the
same type (architectural elements in Fig. 4).

Comparing the two DSMs of the alternative architecting
approaches reveals that the approach that focuses on
delivering sooner incurs more dependencies between the
adapters and translators of the individual simulators of the
DRNEP system. In contrast, the cost reduction approach
results in an architecture with fewer dependencies between
the individual simulators, and those dependencies are well
encapsulated by separating concerns within WASClient,
Service, and Common elements.

I2SimSrv MTSrv

WASClient

Common

EPANetSrv BrahmsSrv FloodSrv

Entities

ServiceBusiness

Service

Controller

Web

Release 1

Release 2

Release 3

Release 4

SimulatorServiceClient

Key:

94

The comparative analysis of the two paths is shown in
Table 1. For our example, value reflects the priority points of
the features as the weighted sum of benefits to the end user
when implemented, and penalties incurred by the end user if
postponed [15].

Cost is the combination of the cost to implement the
architectural elements selected to be added in a current
release, based on an estimate of the effort, plus the cost to
rework pre-existing elements.

Table 2 shows the breakout of the individual costs
summarized in Table 1. Rework cost is incurred when new
elements are added to the system during this release, and one

or more of the pre-existing elements must be modified to
accommodate the new ones. This includes elements that can
be identified with their direct dependencies on the new
elements as well as those with indirect dependencies
represented by the change propagation metric.

Each path issues four releases of the system over the
course of development. Table 3 shows the allocation of
features and architectural elements to releases in each
development path of the DRNEP.

Fig. 5 depicts the data from the Tables as the value of
features delivered over total effort for each of the two paths
over four releases.

Figure 4. Dependency analysis of the two DRNEP paths

TABLE I. COMPARISON OF TWO PATHS FROM THE PERSPECTIVE OF TECHNICAL DEBT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Cost
Controller 1 X 16
I2SimAdapter 2 X X 3
MTAdapter 3 X X 3
MT_I2Sim_Trans 4 X X X 8
EPANetAdapter 5 X X 3
Epa_I2Sim_Trans 6 X X X 8
Epa_MT_Trans 7 X X X 8
BrahmsAdapter 8 X X 3
Brahms_I2Sim_Trans 9 X X X 8
Brahms_MT_Trans 10 X X X 8
Brahms_EPANet_Trans 11 X X X 8
FloodAdapter 12 X X 3
Flood_I2Sim_Trans 13 X X X 8
Flood_MT_Trans 14 X X X 8
Flood_EPANet_Trans 15 X X X 8
Flood_Brahms_Trans 16 X X X 8
Data Persistence 17 X X 5

COST

PATH 1 DELIVER SOON

116

1 2 3 4 5 6 7 8 9 10 11 12 13 Cost

I2SimService 1 X 7
MTService 2 X 9
EPAService 3 X 9
BrahmsService 4 X 9
FloodService 5 X 9
Web 6 X 3
WASClient 7 X X X X X X X 8
Controller 8 X 8
Service 9 X X X X X X X X 6
ServiceBusiness 10 X X X 5
SimulatorServiceClient 11 X X 8
Entities 12 X X 11
Common 13 X X X X X X X X X X X X 2

COST 94

PATH 2 REDUCE REWORK

Release 1 Release 2 Release 3 Release 4
Path #1 Cumulative value 36 81 135 197

% of total value 18% 41% 68% 100%
Cost (Ci + Cr) 35 64 101 145
% of total implementation cost 37% 68% 108% 155%

Path #2 Cumulative value 36 81 135 197
% of total value 18% 41% 68% 100%
Cost (Ci + Cr) 67 76 85 94
% of total implementation cost 71% 81% 90% 100%

95

Figure 5. Value of features delivered over total effort Figure 6. Release Cadence

While the delivered features have the same value at each
release for the two approaches, there are certain trade-offs
taken in each. In path #1, the first release is out of the door
with less cost, also an indicator of quicker delivery. The
impact of this is later realized with increased rework cost that
starts with release 3. In path #2, the initial release takes most
of the implementation cost; after the first release the delta
implementation cost is small and the features can be
developed with less cost starting with release 2. Until release
2, path #1 delivers more value for the cost; starting with
release 3 there is a switch.

Comparing the two paths provides some insight into the
challenge of balancing rapid deployment and long-term
value. Path #1, which is aimed at delivering value soon to the
user, starts creating a debt right after the first release and
incurs 18% more cost than path #2 on release 3. For release
4, the additional cost jumps to 55% and rises higher and
higher with each future increase in functionality.

Figs. 5 and 6 show the impact of rework on each release.
The architectural debt accumulates over time. If this debt is
not repaid by re-architecting the system, new services added
to the system incur increasingly higher implementation costs.
In the case of DRNEP, where the system will continue to
grow with additional services, the increasingly high
cumulative impact of rework is significant. While the delta
cost can initially be neglected, it reaches a significant amount
by release 4. The increasing rework cost also demonstrates
the interest of the unpaid debt piling up as time progresses.
Table 2 provides the details of how implementation cost on
each release significantly decreases on path #2 once a basic
needed infrastructure effort takes place during release 1,
representing most of the implementation cost.

The release cadence is shown in Fig. 6. Given the debt
that is accumulating in path #1, we see the effort increasing
over time after the initial release, since the number of
interconnections among the simulators is exponential. Path
#2 has significant effort in the first release and then settles
into a regular rhythm of releasing features on top of the
infrastructure that’s been put into place.

Revisiting the architectural diagrams of the two
approaches in Figs. 1 and 3 reveals that the pattern
demonstrated with the rework analysis is also observable in
the implementation times of the architectural elements. The
majority of the architectural elements in path #2 are
implemented during the initial release, while in path #1 the
system emerges gradually through the releases. The resulting
architectures differ as well, reflecting the contrasting
approaches taken.

TABLE II. RELEASE REWORK COSTS

It is critical to note that the point of creating a path
comparison is not to find the absolute truth, but to make the
actual trade-offs explicit. Path #1 is representative of the case
when the system is new and in a business value exploration
phase. In such a stage it is critical to get some functionality
out of the door and to test it in the field. As the use of the
system proves valuable, the system begins to grow. In our
example, following the initial strategy created uncontrolled
implementation costs, requiring a significant re-architecting
effort, and was suboptimal for the long-term sustainment of
the system. Performing such analysis on potential rework as

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100% 120% 140% 160%

Cu
m

ul
at

iv
e

V
al

ue
 (

as
 %

)

Cumulative Cost (as %)

Path 1 Ci

Path 1 �Cr

Path 1 T

Path 2 T

0

10

20

30

40

50

60

70

1 2 3 4

Co
st

 p
er

 re
le

as
e

(a
s

%
)

Release

Path 1 Cr

Path 1 Ci

Path 2 Cr

Path 2 Ci

Path #1
Implementation

Cost
Propagation

Cost
Rework

Cost

Release 4 35 0.35 9
Release 3 27 0.33 11
Release 2 19 0.42 10
Release 1 35 0.44 0
Total Ci 116

Path #2
Implementation

Cost
Propagation

Cost
Rework

Cost

Release 4 9 0.56 0
Release 3 9 0.56 0
Release 2 9 0.56 0
Release 1 67 0.35 0
Total Ci 94

96

TABLE III. ALLOCATION OF ARCHITECTURAL ELEMENTS TO RELEASES IN EACH PATH IN DRNEP

Release Feature implemented Path #1 Path #2

1

US01 Two Simulators
Introducing Simulator I2
and MT

Cumulative Value 18%

Architecture Elements:
01 Controller, 02 I2SimAdapter, 03 MTAdapter,
04 MT_I2Sim_Trans, 17 Data Persistence

Cumulative Cost 37%

Architecture Elements:
01 I2SimService, 02 MTService
06 Web, 07WASClient, 08 Controller, 09 Service,
10 ServiceBusiness, 11 SimulatorServiceClient,
12 Entities, 13 Common.

Cumulative Cost 71%

2

US02 Three Simulators
Adding Simulator EPA

Cumulative Value 41%

Rework of the previous elements:
01 Controller, 02 I2SimAdapter, 03 MTAdapter.

New elements: 05 EPANetAdapter,
06 Epa_I2Sim_Trans, 07 Epa_MT_Trans.

Cumulative Cost 68%

New elements:
03 EPAService

Cumulative Cost 81%

3

US03 Four Simulators
Adding Simulator Brahms

Cumulative Value 68%

Rework of the previous elements:
01 Controller, 02 I2SimAdapter, 03 MTAdapter,
05 EPANetAdapter.

New elements:
08 BrahmsAdapter, 09 Brahms_I2Sim_Trans,
10 Brahms_MT_Trans, 11 Brahms_EPANet_Trans.

Cumulative Cost 108%

New elements:
04 BrahmsService

Cumulative Cost 90%

4

US04 Five Simulators
Adding Simulator Flood

Cumulative Value 100%

Rework of the previous elements:
01 Controller, 02 I2SimAdapter, 03 MTAdapter,
05 EPANetAdapter, 08 BrahmsAdapter.

New elements:
12 FloodAdapter, 13 Flood_I2Sim_Trans,
14 Flood_MT_Trans, 15 Flood_EPANet_Trans,
16 Flood_Brahms_Trans

Cumulative Cost 155%

New elements:
05 FloodSimServ.

Cumulative Cost 100%

the system grows can enable timely decisions about when to
start re-architecting the system or when to pay back the
interest on the borrowed time of the earlier design decisions.
Our approach offers considerations for making rework
explicit at each release at the architecture level.

IV. RELATED WORK
We review the related work based on the following three

aspects: (1) foundations of technical debt and approaches to
managing it, (2) metrics to guide the refactoring and re-
architecting process, and (3) tool support that can provide
increased visibility, agility, and timely information for
managing technical debt effectively.

A. Foundations on technical debt
Theoretical foundations for identifying and managing

technical debt have focused mostly on the unintentional debt
that accumulates as a consequence of unexpected
environment changes, suboptimal engineering practices, or
simply unmanaged growth of system size over time. While
Cunningham used the metaphor in reference to coding
practices, today it is applied more broadly across the
software development project lifecycle and may include
structural, requirements, testing, or documentation debt [16].
There is a key difference between debt that results from

employing bad engineering practices and debt that is
incurred through intentional decision-making in pursuit of a
strategic goal. Martin Fowler details this distinction by using
four quadrants to describe technical debt.

TABLE IV. FOWLER’S TECHNICAL DEBT TAXONOMY [4]

 Reckless Prudent

Deliberate
We don’t have
time for design.

We must ship now and deal
with the consequences.

Inadvertent What’s layering? Now we know how we
should have done it.

Technical debt resonates with maintenance and evolution

challenges when it needs to be repaid, especially when
repayment involves refactoring and re-architecting. Lehman
[17] observes that for systems to remain useful they must
change, and that change will increase their complexity,
leading to software decay if refactoring is not done as
needed. (Parnas [18] calls this phenomenon “software
aging,” reflecting the failure of a product owner to modify
software to meet changing needs.) Lehman’s observations
about system evolution are currently applicable to projects
that follow agile software development approaches [19].
While his laws of evolution provide insight into the

97

inevitability and necessity of re-architecting (and the
potential of high debt accumulation), work in this area has
not addressed abstraction between code and architecture
beyond the application of pattern-based approaches [20].
Increased understanding of architectural debt captured with
rework can help in addressing this abstraction.

An empirical study conducted with architects at IBM
concluded that the ability to assess debt does matter. Yet
there exist significant and widespread gaps in the
demonstration of this ability. The interviews found the
following experiences to be common: induced and
unintentional debts created significant challenges, decisions
were managed in an ad-hoc manner, and stakeholders lacked
effective ways to communicate and reason about debt [21].

B. Metrics to guide refactoring and re-architecting process
While there has been significant progress regarding code

quality, existing metrics for providing visibility into overall
system quality are insufficient and unproven, especially for
providing architecture-level analysis. Code-level refactoring
techniques do not scale effectively to support decision-
making at the system architecture level.

Most approaches to debt focus on defect detection and
avoidance, rather than a strategic management of key
infrastructure decisions, especially in the context of
architecture. Concepts like “code smells” and “spaghetti
code” have been used to address code-level technical debt
[22]. Clone and defect detection that infers change patterns
[23] are among concerns relevant to code-level analysis.
Debt accumulation due to such defects is often reckless and
inadvertent, as opposed to prudent, deliberate, and strategic.

Refactoring techniques [22] [24] address paying back
technical debt through local changes to the code base. Work
on defect analysis and software maintainability focus on
metrics-based analysis to uncover such debt. For example,
static analysis tools provide measurement of duplicate code,
cyclomatic complexity, or the use of god classes of the code
base to provide insight into the potential debt the system
might have already incurred. Such analysis aims to focus the
refactoring to improve overall code quality using these
metrics [25] [23].

There are two drawbacks with these approaches. First,
defect analysis, code-quality measurement, and related work
look at analysis of code artifacts after the fact [26], when the
system is delivered or close to being delivered. While such
analysis provides insights about reducing defects over time,
it provides no guidance for adjusting a course of action as the
system is being developed, or for recognizing debt as it
accumulates rather than being surprised by it later. Secondly,
while it is often possible to refactor for small changes, it is
quite difficult to claim legitimately that the system can be
refactored to include a key design concern after the fact,
without significant redesign.

C. Tool support
A little technical debt may not be a problem, but it

becomes a problem when there is “too much” debt. This
implies that there must be some rules about what “too much”
debt looks like, that is, there must be acceptability

thresholds. Static code analysis and plug-ins for supporting
technical debt analysis have started to gain attention in the
tool space for their promise to provide insights into
thresholds of debt. While these tools currently focus on code
analysis and provide an overall uniform debt analysis on all
code quality drawbacks found (as discussed in the previous
section), their rising attraction is due to the promise of
automating the process and improving the visibility of the
system during development.

For example, an existing debt visualization plug-in by
Sonar demonstrates how to monitor coding rules (duplicate
code and cycles) violations and provides measures using an
estimated amount of person-effort that it would take to
correct such violations [27]. While Sonar focuses on static
code, analysis tools such as Lattix and SonarGraph also
provide visualization assistance of the dependencies. Using
SonarGraph, it is possible to organize elements such that one
can define rules among such elements and monitor their
violations. Based on such violations, again along with code
cycles, SonarGraph calculates a structural debt index, SDI
[28]. While not offering an explicit debt calculator, Lattix
enables a dependency view, which can be used to assist
focusing on tasks and avoiding costly decisions [29].

The ability to elicit and improve the visibility of the state
of the project is an area of increased research and practical
interest, both from a project management perspective and as
a system quality perspective. Collective dashboard and
visualization approaches assist managing technical debt in
this regard. Recent approaches also include visualization
techniques that use software maps structured according to the
modularity of the system. Complex files (as indicated by
their McCabe complexity measure) are highlighted in 3D
and by color on the maps. Some challenges in visualization
techniques involve integrating time and making the
technique fully interactive. The ultimate goal is to provide
early warnings to detect costs and risks (e.g., “watch out for
this class, it might be growing too big”) [30].

V. DISCUSSION
The algorithm for rework is directional in nature and

represents an initial attempt to formalize the impact of
architectural dependencies upon effort to address technical
debt. The cost of each architectural element, the number of
dependencies impacted by each architectural change, and the
overall change propagation metric of the system may all be
seen as proxies for complexity, which is assumed to affect
the cost of change. The relative weighting and relationship
between these factors, however, is a subject for future
research efforts. Therefore, within the context of our
analysis, rework cost is interpreted as a relative rather than
an absolute value, used to compare alternative paths and to
provide insight into the improvement or degradation of
architectural quality across releases within a given path.

The Achilles’ heel of our approach is its reliance on
estimates, and in particular estimates for rework effort. But
this is a much wider issue in software engineering that we
are not attempting to resolve here. Providing such estimates
is best done by the people directly involved, based on
experience with previous work, on the same system in prior

98

iterations or some other system of the same nature. This is
how the numbers were derived in Table 1 and Table 2. The
cost values in Figs. 5 and 6 were actual values.

Another potential weakness is the change propagation
metric (Pc) defined by MacCormack [10]. This metric is
probably a bit too crude: it does not reflect the “strength” of
a dependency between modules, nor the likelihood that
modules are affected by successive evolutions of the system;
the DSM we use in Fig. 4, for example, has only a “depend
or not” indicator. We are currently evaluating more
sophisticated alternatives to the change propagation metric
that take into account these two factors, and that possess a
higher predictive power of the potential impact of future
changes across the system.

Change propagation is a modularity metric. Used alone it
suffers from drawbacks, such as treating the existence of
dependencies without any emphasis on their weight or
importance, assuming that a change will propagate when
there is a dependency, and treating all kinds of dependencies
as equal. However, such metrics together with a visual
representation, such as the DSMs, demonstrates the potential
power of the approach and the justification for us to continue
investigating whether (1) such metrics provide insight in
terms of measuring the impact of rework, when we look at
module structures of systems, and (2) such metrics can be
augmented to also account for runtime behavior and the
impact of rework and technical debt.

Questions arise, such as “Do such metrics provide
absolute or relative values across systems? Do they provide
insight for triggering re-architecting activities, that is, for
paying back technical debt? Can they be applied at the
architecture level effectively to reduce the complexity of
required continued empirical analysis?” To date most of such
analysis has been conducted in the context of open source
systems [31], which provides one validation that it can guide
the development effort in reduction of technical debt.

VI. CONCLUSION
In this paper, we argue that a focus on architecture and

architecture-related technical debt can assist in optimizing
releases for agility. As our analysis of the two development
efforts on the DRNEP system demonstrates, a focus on the
immediacy of the short-term value of features to be delivered
must be widened before we can consider their consequences
in ensuring long-term success. In the DRNEP case study, the
two paths are normalized based on the priority of the features
they deliver at each release, but the choice and the cost of the
structural elements implementing the features diverge. At
release 3 the need to pay back the technical debt resulting
from the speedy delivery choices of the previous two
releases is already apparent. Actively monitoring and making
these decisions visible could have resulted in a re-
architecting effort earlier that could still deliver a lower cost
system for the value.

The essence of our approach is thus: the value of the
delivered features and the impact of cost to be incurred must
be taken into account in decision-making related to
delivering a product. Making the architectural debt visible
provides the necessary information for making informed

decisions for managing the potential impact of rework over
time.

Gaining visibility into system development requires a
measurement-focused mindset at the system architecture
level and the willingness to adjust courses of action during
development. We demonstrated calculating rework cost
based on the architecture rather than a focus on static code
analysis. Calculating the rework cost is based on detecting
the changing dependencies of the system that create an
interest payment, which we accounted for with the change
propagation metric. We used this rework cost in combination
with calculating the value of the features delivered in the
case study, to demonstrate how total ownership cost of
system development can be effectively managed.

We posit that rather than viewing technical debt as a
reflection of low code quality in retrospect, it’s possible to
leverage the notion of debt to manage system delivery.
Deliberately borrowing time enables faster delivery and
quicker value. The emerging system architecture must be
visible to the development team to allow for calculating the
accumulating potential rework cost as the system evolves.
The architecture needs to be monitored over the course of
development to support analysis on how debt is building up
with interest and when to pay back the debt, also with
consideration for how the cost and benefit trade off from the
business perspective.

Our future directions in this area include the following.
� Feature and architectural element slicing.

Story slicing in agile development involves determining the
simplest thing the user can do that is of value, and how that
function cuts across the system. Slicing cross-cutting quality
attribute requirements, however, is more challenging than
slicing functional stories because quality attribute
requirements typically support multiple functionality,
whereas realizing the value might take multiple iterations.
Taking on architectural debt on particular slices might speed
realizing the value.
� Extensions to the economic model.
We account for debt at the time it is paid in rework cost. For
prudent and deliberate debt we plan to extend the economic
model to account for the future cost of paying back debt,
making the debt visible, and providing information on the
consequences of payback or carrying the debt. We also plan
to investigate incorporating uncertainty in the economic
framework.
� Managing debt.

This paper’s contribution to the area of technical debt
management is its discussion of analysis and visibility of
dependencies and their implications for technical debt. Next
steps in our research will focus on moving from monitoring
to more actively and strategically incorporating technical
debt into the architectural design process. DRNEP is an
ongoing and long-term project conducted with a consortium
of researchers. We will be able to collect more information
about the trade-offs to be made along the way, including
actual numbers for implementation or rework costs.

Our experience has shown us that organizations have
started building into their software development approaches
active strategies about how debt will be elicited and kept

99

active as needed. To date these approaches are mostly
focused on exposing the fact that particular suboptimal
decisions were made, in order to at least make sure that the
decision is captured; however, payback and monitoring are
still not common practice and techniques for both are
lacking. It is this gap that our ongoing research aims to fill,
contributing to improving the practice of software economics
and software architecture practices with a quantifiable basis.

ACKNOWLEDGEMENTS
This material is based upon work funded and supported

by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center.

REFERENCES
[1] W. Cunningham, “The WyCash portfolio management system,” Proc.

Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’92) (Addendum), ACM Press, Apr. 1993, pp. 29–30, doi:
10.1145/157709.157715.

[2] C. Sterling, Managing Software Debt: Building for Inevitable
Change. Boston: Addison-Wesley Professional, 2010.

[3] S. McConnell, "Technical Debt," Software Best Practices, Nov. 2007.
Available:
http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technic
al-debt-2.aspx (Accessed: Mar. 2012).

[4] M. Fowler, Technical Debt Quadrant, Oct. 2009. Available:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
(Accessed: Mar. 2012).

[5] S. McConnell, Managing Technical Debt [Webinar], Sep. 2011.
Available: http://www.youtube.com/watch?v=lEKvzEyNtbk
(Accessed: Mar. 2012).

[6] M. A. Gonzalez, J. R. Marti, and P. Kruchten, “A canonical data
model for simulator interoperation in a collaborative system for
disaster response simulation,” Can. Conf. Electrical and Computer
Engineering (CCECE 2011), IEEE Press, May 2011, pp. 1519– 1522,
doi: 10.1109/CCECE.2011.6030719.

[7] M. Cohn, Agile Estimating and Planning. Englewood Cliffs, NJ:
Prentice Hall, 2005.

[8] J. Highsmith, Agile Project Management: Creating Innovative
Products. Boston: Addison Wesley Professional, 2004.

[9] N. Brown, R. Nord, I. Ozkaya, and M. Pais, “Analysis and
management of architectural dependencies in iterative release
planning,” 9th Work. IEEE/IFIP Conf. Software Architecture
(WICSA 2011), IEEE Press, Jun. 2011, pp. 103–112, doi:
10.1109/WICSA.2011.22.

[10] A. MacCormack, J. Rusnak, and C. Baldwin, Exploring the Duality
between Product and Organizational Architectures: A Test of the
Mirroring Hypothesis (Version 3.0). Boston: Harvard Business
School, 2008.

[11] P. Kruchten, C. Woo, K. Monu, and M. Sotoodeh, “A conceptual
model of disasters encompassing multiple stakeholder domains,” Int.
J. Emergency Manage., vol. 5, pp. 25–56, 2008.

[12] Infrastructure Interdependencies Simulation Team, Infrastructure
Interdependencies Simulator (I2Sim), 2007. Available:
http://www.i2sim.ca (Accessed: Mar. 2012).

[13] J. R. Marti, J. A. Hollman, C. Ventura, and J. Jaskevitch, “Dynamic
recovery of critical infrastructures: Real-time temporal coordination,”
Int. J. Critical Infrastructures, vol. 4, pp. 17–31, 2008.

[14] M. Danilovic and T. Brown, “Managing complex product
development projects with design structure matrices and domain

mapping matrices,” Int. J. Project Manage., vol. 25, pp. 300–314,
Apr. 2007.

[15] K. E. Wiegers, Software Requirements, 2nd ed. Redmond, WA:
Microsoft Press, 2003.

[16] B. Barton, et al., How to Settle Your Technical Debt: A Manager’s
Guide. Arlington, MA: Cutter Consortium, 2010.

[17] M. M. Lehman, Program Evolution: Processes of Software Change.
San Diego, CA: Academic Press Professional, 1985.

[18] D. L. Parnas, “Software aging,” Proc. 16th Int. Conf. Software
Engineering, ACM Press, May 1994, pp. 279–287.

[19] R. Sindhgatta, N. C. Narendra, and B. Sengupta, “Software evolution
in agile development: A case study,” Companion to the Proc. ACM
Int. Conf. Object-Oriented Programming, Systems, Languages, and
Applications (SPLASH ’10), ACM Press, Oct. 2010, pp. 105–114,
doi: 10.1145/1869542.1869560.

[20] C. J. Neill and P. A. Laplante, “Paying down design debt with
strategic refactoring,” Computer, vol. 39, no. 12, pp. 131–134, Dec.
2006.

[21] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise
perspective on technical debt,” Proc. 2nd Work. Managing Technical
Debt (MTD ’11), ACM Press, May 2011, pp. 35–38, doi:
10.1145/1985362.1985371.

[22] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Boston:
Addison-Wesley Professional, 1999.

[23] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” Proc. 31st Int. Conf. Software Engineering, May
2009, pp. 309–319, doi: 10.1109/ICSE.2009.5070531.

[24] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant'Anna, “From
retrospect to prospect: Assessing modularity and stability from
software architecture,” Proc. Joint 8th Working IEEE/IFIP Conf.
Software Architecture and 3rd Eur. Conf. Software Architecture
(WICSA/ECSA), IEEE Press, Sep. 2009, pp. 269–272, doi:
10.1109/WICSA.2009.5290817.

[25] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,”
Proc. 2010 ACM-IEEE Int. Symp. Empirical Software Engineering
and Measurement, ACM Press, Sep. 2010, pp. 8:1–8:10, doi:
10.1145/1852786.1852797.

[26] R. P. L. Buse and T. Zimmermann, “Analytics for software
development,” Proc. FSE/SDP Work. Future of Software Engineering
Research (FoSER ’10), ACM Press, Nov. 2010, pp. 77–80, doi:
10.1145/1882362.1882379.

[27] O. Gaudin, “Evaluate your technical debt with Sonar,” Sonar, Jun.
2009. Available: http://www.sonarsource.org/evaluate-your-
technical-debt-with-sonar (Accessed: Apr. 2012).

[28] S. Penchikala, “Architecture analysis tool SonarJ 6.0 supports
structural debt index and quality model,” InfoQ, Aug. 2010.
Available: http://www.infoq.com/news/2010/08/sonarj-6.0
(Accessed: Mar. 2012).

[29] C. Hinsman, N. Sangal, and J. Stafford, “Achieving agility through
architecture visibility,” Proc. 5th Int. Conf. Quality of Software
Architectures: Architectures for Adaptive Software Systems (QoSA
’09), ACM Press, Jun. 2009, pp. 116–129, doi: 10.1007/978-3-642-
02351-4_8.

[30] J. Bohnet and J. Dollner, “Monitoring code quality and development
activity by software maps,” Proc. 2nd Work. Managing Technical
Debt (MTD ’11), ACM Press, May 2011, pp. 9–16, doi:
10.1145/1985362.1985365.

[31] R. Milev, S. Muegge, and M. Weiss, “Design evolution of an open
source project using an improved modularity metric,” Proc. Int. Conf.
Open Source Systems (OSS ’09), Springer, Jun. 2009, pp. 20–33, doi
10.1007/978-3-642-02032-2_4.

100

