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Abstract— Practices designed to expedite the delivery of 
stakeholder value can paradoxically lead to unexpected rework 
costs that ultimately degrade the flow of value over time. This 
is especially observable when features are developed based on 
immediate value, while dependencies that may slow down 
future development efforts are neglected. The technical debt 
metaphor conceptualizes this tradeoff between short-term and 
long-term value: taking shortcuts to optimize the delivery of 
features in the short term incurs debt, analogous to financial 
debt, that must be paid off later to optimize long-term success. 
In this paper, we describe taking an architecture-focused and 
measurement-based approach to develop a metric that assists 
in strategically managing technical debt. Such an approach can 
be used to optimize the cost of development over time while 
continuing to deliver value to the customer. We demonstrate 
our approach by describing its application to an ongoing 
system development effort. 

Keywords: technical debt; software architecture; software 
economics; cost of rework; total cost of ownership 

I.  INTRODUCTION  
The term ‘technical debt’ describes an aspect of the 

tradeoff between short-term and long-term value in the 
development cycle. Recently the concept has gained 
increased visibility, advanced mainly by promoters of agile 
software development approaches. An ongoing focus on the 
management of technical debt is perceived as critical to the 
development of high-quality software. While expressing the 
value of user-visible features may be straightforward, a key 
challenge in iterative development is the ability to quantify 
the value of infrastructure and quality-related tasks, which 
quite often are architectural. Technical debt also closely 
relates to system evolution challenges, as often an 
organization finds itself with the need to deal with 
accumulated technical debt when upgrading technology or 
adding new features to a legacy environment. Left 
unmanaged, technical debt causes projects to face significant 
technical and financial problems, leading to increased 
maintenance and evolution costs. Although agile practices of 
refactoring, test-driven development, and software 
craftsmanship are often sufficient to manage technical debt 
on small-scale projects, sound principles for managing debt 
on large-scale, enterprise-level projects are lacking. Project 
owners drawn to agile practices by the allure of quicker time 
to market and improved responsiveness can find the promise 
of agility negated by increasing mountains of technical debt. 

Within the last few years technical debt in system 
development has received increased attention as a result of a 
growing need to manage the degrading quality of software 
and avoid costly reengineering and maintenance. 
Cunningham introduced the technical debt metaphor in 
defense of relentless refactoring as a means of managing 
software debt [1]. 

“Shipping first time code is like going into debt. A little 
debt speeds development so long as it is paid back promptly 
with a rewrite... The danger occurs when the debt is not 
repaid. Every minute spent on not-quite-right code counts as 
interest on that debt. Entire engineering organizations can 
be brought to a stand-still under the debt load of an 
unconsolidated implementation, object-oriented or 
otherwise.”  

Cunningham’s description has served as the starting point 
and as a definitional reference in describing technical debt 
[2]. Both McConnell [3] and Fowler [4] categorize technical 
debt into distinct types, separating issues arising from mere 
recklessness from those decisions that are made strategically. 
Work to date on technical debt has mainly focused on 
uncovering and paying back unintentional or reckless 
technical debt, mostly found in the form of degrading code 
quality [4]. Underlying the strategic type of technical debt is 
the prudent and deliberate aspect of debt that can speed the 
development effort [3]. While there is increasing recognition 
within the software engineering community that architecting 
and the delivery of high-value customer features must go 
hand-in-hand, there have not been quantitative approaches 
that provide guidance on monitoring technical debt 
strategically in order to manage the total cost of ownership 
across a project. 

In this paper we’ll endeavor to provide a foundation for 
incurring and managing prudent, deliberate, intentional 
technical debt. In that regard we embrace the following 
definition by McConnell:  

“Technical debt is a design or construction approach 
that’s expedient in the short term, but that creates a 
technical context in which the same work will cost more to 
do later than it would cost to do now.” [5] 

We use software architecture as a means to identify and 
monitor architectural technical debt, or architectural debt, so 
that re-architecting and refactoring decisions can be made in 
a timely manner. We illustrate our approach by describing an 
ongoing development effort: the Disaster Response 
Network-Enabled Platform (DRNEP). DRNEP system 
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integrates a set of independently developed infrastructure 
and disaster simulators [6]. The DRNEP system is currently 
undergoing major re-architecting efforts. We compare these 
efforts’ alternative development paths: one that takes on debt 
and one that does not, and we explore their economic 
implications. In doing so, we focus on development of a 
metric that can provide insights into the accumulating rework 
cost that is factored into a debt payback strategy.  

The rest of the paper is organized as follows: Section 2 
presents our architectural debt rework model. We illustrate 
how architectural debt can be elicited and monitored based 
on rework in Section 3, using the ongoing system 
development effort of DRNEP as an example. We review 
related work in strategic technical debt analysis in Section 4. 
In Section 5 we discuss the implications of our findings, and 
Section 6 concludes the paper.  

II. ARCHITECTURAL DEBT: MODELING REWORK 
A key enabler to managing architectural debt is the 

ability to quantify degrading architecture quality and the 
potential for future rework cost during iterative release 
planning. Engaging strategic design shortcuts, which can be 
interpreted as going into architectural debt, requires effective 
characterization of the economics of architectural violations 
across a long-term roadmap, rather than enforced compliance 
for each release. 

A key challenge in agile development is in acquiring the 
ability to quantify the value of infrastructure and quality-
related tasks that are quite often architectural. For example, 
under the widely adopted Scrum practices, such as managing 
a product and sprint backlogs [7], zero value points are 
typically assigned to infrastructure development, re-
architecting, and maintenance tasks, including paying back 
technical debt, which are all perceived as costs only. This 
assignment results largely from an inability to value the 
long-term impact of these infrastructure or architectural 
elements on customer-visible features and overall system 
health as the system grows. These elements appear to have 
no customer value—only development cost. Other 
approaches aim to adjust this fallacy by calculating 
customer-visible-feature percentages based on value points 
in order to adjust the overall value assigned. For example if 
there are five features with value points 5, 3, 2, 2, 1, then 
their overall percentages would be 40%, 23%, 15%, 15%, 
7% [8]. This does not capture, however, the impact of 
architecting and related rework and maintenance.    

The cost models of implementing a design choice today, 
versus retrofitting a solution much later, are often wrongly 
compared. Consider an internationalization feature of a web 
site. The development team may decide to implement full 
flexible language support that would enable the system to be 
sold, possibly in international markets today, under a given 
cost model; let us say the cost is C. Alternatively, the team 
may decide to postpone internationalization to a later date 
when it becomes absolutely necessary (YAGNI, or “defer to 
the last responsible moment”). Until that later date the 
system continues to grow. When in fact the time to 
absolutely introduce internationalization arrives, the cost is 
no longer C, but it is C + R where R represents the impact of 

retrofitting the grown system in order to introduce 
internationalization. As this canonical example demonstrates, 
modeling architectural debt requires modeling the 
dependencies between features and architectural elements, 
and using that information to calculate the cost of 
implementing each feature based on the existing capabilities 
of the infrastructure. 

A strategic perspective of prudent, deliberate, technical 
debt encompasses key aspects of total cost of ownership 
management in large-scale, long-term projects: 
� Optimizing for the short term puts the long term into 

economic and technical jeopardy when debt 
accumulates and is unmanaged. 

� Design shortcuts can give the perception of success until 
their consequences start slowing projects down. 

� Development decisions, especially architectural ones, 
require active management and continuous quantitative 
analysis, as they incur implementation and rework cost 
to produce value. 

Technical debt management involves making choices 
between a focus on value versus on cost throughout the 
development cycle as decisions are made (often in the 
planning cycle of each iteration or sprint). Some agile 
approaches, with a focus on value, result in an 
implementation that accumulates debt. Other more phase-
based approaches, with a focus on cost, result in a delay of 
value as releasing the product takes longer. These are the 
boundaries of the decision space.  

Technical debt management is about navigating a path 
that considers both value and cost, to focus on overall return 
on investment over the lifespan of the product. Within that 
path, debt has a lifecycle: the time it is incurred, the time 
frame during which it accumulates interest, and the time 
required to develop a payback strategy and put it into action. 
Managing debt is dependent on knowing the impact of key 
requirements and architectural steps.  

Our position and experience is that there can be value at 
times in making suboptimal decisions to support the overall 
goals of the business and the project. This decision-making 
process requires creating a metric for debt management that 
takes into account the interest as well as repayment of the 
borrowed amount. The metric we use to model this metric is 
based on architectural rework.  

We model rework as an aspect of changing dependencies. 
In a previous study, we conducted an exploratory analysis of 
a model problem to quantify the technical debt outcomes of 
alternate release strategies. We engaged this approach to 
establish metrics for quantifying architecture quality where 
we used architecture structure metrics based on dependency 
analysis [9]. This model computes the rework cost associated 
with each new architectural element Ei implemented in 
release n.  

The Total Cost of release n is a function of the 
implementation and rework costs, and : 

 
 

 
In this paper, we assume that it is simply the sum. 

T
Ci Cr

T � F(Ci,Cr)
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The implementation cost Ci for release n is computed as 

       
where the implementation cost  is given for all 
individual architectural elements k. 
 
The rework cost for release n is computed as 

 
and 

 
If  is an element implemented in a prior release, 

 
where  is the number of dependencies from u to v, Ci 
is the implementation cost, and Pc (n - 1) is the change 
propagation of release n - 1. Change propagation is a metric 
introduced by MacCormack et al. [10] that captures the 
percentage of system elements that can be affected, on 
average, when a change is made to an element. The change 
propagation metric of a system is computed as the density of 
the visibility matrix that captures all the direct and indirect 
dependencies in the system architecture, or in other words, 
the transitive closure of the dependency relationship. 

III. ARCHITECTURAL TECHNICAL DEBT IN ONGOING 
DEVELOPMENT: A CASE STUDY 

The Disaster Response Network-Enabled Platform 
(DRNEP) is a system that integrates a set of independently 
developed infrastructure and disaster simulators [6] (see Fig. 
2). Developed primarily at the University of British 
Columbia, with collaborators in various parts of the world, 
its purpose is to provide government agencies means to 
prepare and respond to large disasters, such as earthquakes, 
tsunamis, flooding, or hurricanes. It provides insights into 
the interoperation of various critical infrastructures: electrical 
grid, transportation, communication, water, and so on. Such 
infrastructures often are run by various public or private 
organizations that don’t recognize the cascading effects of 
major failures or the decisions to remediate them or the 
propagation of their impact [11]. The implementation of 
DRNEP enables knowledge gathering on the interoperation 
of interdependent infrastructures specific to a given area 
from expert organizations around the world, in order to assist 
local emergency responders. To achieve this end, 
organizations rely on simulators that help them to create 
disaster scenarios for a geographical zone (e.g., a 
municipality, region, or province) and elicit strategies on 
how to better respond to them. 

DRNEP grew initially with relatively little thought on an 
overall architecture. Different simulators were developed by 
independent research groups over a period of several years, 
each catering to a different concern or a different 
infrastructure. Central to DRNEP is the Infrastructure 

Interdependency Simulator (I2Sim) [12] [13] as the 
integrating simulator that models a given geographical area 
in case of disaster. I2Sim interfaces with other specialized 
simulators by exchanging information at a given sampling 
time. The simulators can interact with transforming 
elements, or control points in the model and are able to 
model a given physical entity, a human, or set of humans 
making decisions. To integrate the simulators in DRNEP, 
there are two possible paths: one, which seems easy and 
incremental, is to make ad hoc adaptors and translators 
between the concepts and data of the simulator and DRNEP. 

A second, more ambitious path is to define a standard 
architecture with mechanisms to achieve a more systematic 
integration, using a mediator pattern, with a common 
canonical data model, and using an Enterprise Service Bus 
(ESB) for implementation [6].  

This second path looks more costly at first. We show 
here that it will pay off rapidly with subsequent releases, as 
more simulators are integrated in DRNEP. If the project 
were to embark on the first path for easy early successes, it 
would accumulate heavy architectural technical debt with 
high rework costs (55%). 

A. Architecture Debt Analysis 
The DRNEP system will connect different simulators and 

requires the ability to add simulators to work collaboratively; 
value increases as more simulators are added. We analyze 
two paths: 

Path #1: Deliver soon. New simulators are integrated one 
by one, and ad hoc translators for data and communications 
are built incrementally. Adding a new simulator requires 
building a new translator for each existing simulator and 
reworking each of the existing simulator adaptors. 

Path #2: Reduce rework and enable compatibility. An 
Enterprise Service Bus is put in place and a central common 
data model is designed. Adding a new simulator requires 
building one additional element on top of the common 
infrastructure to provide adaption and transition services. 
 

1) Path #1: Deliver soon.  
In order to deliver a working version of the system 

quickly, the plan calls for making the minimum required 
effort at the beginning. This implies that the elements will be 
coupled with each other. The emerging architecture in this 
minimal architecture version is shown in Fig. 1. 

 

 
Figure 1.  Path #1 dependencies 
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Figure 2.  DRNEP Network Configuration. Canadian institutions are linked through CANARIE and associated networks’ dedicated light 
paths to exchange and distribute data, simulation, and analysis functions. ENEA is in Rome, Italy, and University of New Brunswick (UNB) is in 
Fredericton, NB. Thailand is the disaster source for the tsunami exercise. University of Western Ontario (UWO) in London is the disaster source 
for the UWO Campus exercise. Sources: [6][11] 

 

 
Figure 3.  Path #2 dependencies  

2) Path #2: Reduce rework, enable compatibility.  
One of the objectives of DRNEP is to enable 

compatibility of simulators and, to achieve this, mediators 
are used to decouple elements in the system. This increases 
compatibility and reduces maintenance in the subsequent 
releases. However, this approach requires an investment in 
infrastructure during the first deliveries, and so delays 
delivery. The design uses an ESB in order to mediate data 
exchange and a common data model in order to decouple 
data representation within elements of the system. The 
common data model is defined in the service module and 

each service has a copy of it to avoid repeating the definition, 
this is captured by the dependency of each service into the 
service module. The emerging architecture is shown in Fig. 
3. 

The dependencies shown in Figs. 1 and 3 are depicted as 
a design structure matrix (DSM) in Fig. 4 to facilitate a 
comparative analysis. A DSM is a matrix that maps 
dependencies between items in a given domain [14]. All 
elements appear both in the rows and the columns and 
dependencies are signaled at the intersection points of the 
items in the matrix. For instance, in Fig. 4 the mark at the 
intersection of row 3 with column 1 means that element in 
column 1 (Controller) depends on element in row 3 
(MTAdapter). DSMs are single-domain square matrices, 
meaning that relations are defined between instances of the 
same type (architectural elements in Fig. 4).  

Comparing the two DSMs of the alternative architecting 
approaches reveals that the approach that focuses on 
delivering sooner incurs more dependencies between the 
adapters and translators of the individual simulators of the 
DRNEP system. In contrast, the cost reduction approach 
results in an architecture with fewer dependencies between 
the individual simulators, and those dependencies are well 
encapsulated by separating concerns within WASClient, 
Service, and Common elements. 
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The comparative analysis of the two paths is shown in 
Table 1. For our example, value reflects the priority points of 
the features as the weighted sum of benefits to the end user 
when implemented, and penalties incurred by the end user if 
postponed [15].  

Cost is the combination of the cost to implement the 
architectural elements selected to be added in a current 
release, based on an estimate of the effort, plus the cost to 
rework pre-existing elements.  

Table 2 shows the breakout of the individual costs 
summarized in Table 1. Rework cost is incurred when new 
elements are added to the system during this release, and one 

or more of the pre-existing elements must be modified to 
accommodate the new ones. This includes elements that can 
be identified with their direct dependencies on the new 
elements as well as those with indirect dependencies 
represented by the change propagation metric. 

Each path issues four releases of the system over the 
course of development. Table 3 shows the allocation of 
features and architectural elements to releases in each 
development path of the DRNEP. 

Fig. 5 depicts the data from the Tables as the value of 
features delivered over total effort for each of the two paths 
over four releases.  

 

  
Figure 4.  Dependency analysis of the two DRNEP paths  

 

TABLE I.  COMPARISON OF TWO PATHS FROM THE PERSPECTIVE OF TECHNICAL DEBT 

 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Cost
Controller 1 X 16
I2SimAdapter 2 X X 3
MTAdapter 3 X X 3
MT_I2Sim_Trans 4 X X X 8
EPANetAdapter 5 X X 3
Epa_I2Sim_Trans 6 X X X 8
Epa_MT_Trans 7 X X X 8
BrahmsAdapter 8 X X 3
Brahms_I2Sim_Trans 9 X X X 8
Brahms_MT_Trans 10 X X X 8
Brahms_EPANet_Trans 11 X X X 8
FloodAdapter 12 X X 3
Flood_I2Sim_Trans 13 X X X 8
Flood_MT_Trans 14 X X X 8
Flood_EPANet_Trans 15 X X X 8
Flood_Brahms_Trans 16 X X X 8
Data Persistence 17 X X 5

COST

PATH 1 DELIVER SOON

116

1 2 3 4 5 6 7 8 9 10 11 12 13 Cost

I2SimService 1 X 7
MTService 2 X 9
EPAService 3 X 9
BrahmsService 4 X 9
FloodService 5 X 9
Web 6 X 3
WASClient 7 X X X X X X X 8
Controller 8 X 8
Service 9 X X X X X X X X 6
ServiceBusiness 10 X X X 5
SimulatorServiceClient 11 X X 8
Entities 12 X X 11
Common 13 X X X X X X X X X X X X 2

COST 94

PATH 2 REDUCE REWORK

Release 1 Release 2 Release 3 Release 4 
Path #1 Cumulative value 36 81 135 197

% of total value 18% 41% 68% 100%
Cost (Ci + Cr) 35 64 101 145
% of total implementation cost 37% 68% 108% 155%

Path #2 Cumulative value 36 81 135 197
% of total value 18% 41% 68% 100%
Cost (Ci + Cr) 67 76 85 94
% of total implementation cost 71% 81% 90% 100%
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Figure 5.  Value of features delivered over total effort Figure 6.  Release Cadence 

While the delivered features have the same value at each 
release for the two approaches, there are certain trade-offs 
taken in each. In path #1, the first release is out of the door 
with less cost, also an indicator of quicker delivery. The 
impact of this is later realized with increased rework cost that 
starts with release 3. In path #2, the initial release takes most 
of the implementation cost; after the first release the delta 
implementation cost is small and the features can be 
developed with less cost starting with release 2. Until release 
2, path #1 delivers more value for the cost; starting with 
release 3 there is a switch. 

Comparing the two paths provides some insight into the 
challenge of balancing rapid deployment and long-term 
value. Path #1, which is aimed at delivering value soon to the 
user, starts creating a debt right after the first release and 
incurs 18% more cost than path #2 on release 3. For release 
4, the additional cost jumps to 55% and rises higher and 
higher with each future increase in functionality. 

Figs. 5 and 6 show the impact of rework on each release. 
The architectural debt accumulates over time. If this debt is 
not repaid by re-architecting the system, new services added 
to the system incur increasingly higher implementation costs. 
In the case of DRNEP, where the system will continue to 
grow with additional services, the increasingly high 
cumulative impact of rework is significant. While the delta 
cost can initially be neglected, it reaches a significant amount 
by release 4. The increasing rework cost also demonstrates 
the interest of the unpaid debt piling up as time progresses. 
Table 2 provides the details of how implementation cost on 
each release significantly decreases on path #2 once a basic 
needed infrastructure effort takes place during release 1, 
representing most of the implementation cost.  

The release cadence is shown in Fig. 6. Given the debt 
that is accumulating in path #1, we see the effort increasing 
over time after the initial release, since the number of 
interconnections among the simulators is exponential. Path 
#2 has significant effort in the first release and then settles 
into a regular rhythm of releasing features on top of the 
infrastructure that’s been put into place.   

Revisiting the architectural diagrams of the two 
approaches in Figs. 1 and 3 reveals that the pattern 
demonstrated with the rework analysis is also observable in 
the implementation times of the architectural elements. The 
majority of the architectural elements in path #2 are 
implemented during the initial release, while in path #1 the 
system emerges gradually through the releases. The resulting 
architectures differ as well, reflecting the contrasting 
approaches taken.  

TABLE II.  RELEASE REWORK COSTS 

 
 
It is critical to note that the point of creating a path 
comparison is not to find the absolute truth, but to make the 
actual trade-offs explicit. Path #1 is representative of the case 
when the system is new and in a business value exploration 
phase. In such a stage it is critical to get some functionality 
out of the door and to test it in the field. As the use of the 
system proves valuable, the system begins to grow. In our 
example, following the initial strategy created uncontrolled  
implementation costs, requiring a significant re-architecting 
effort, and was suboptimal for the long-term sustainment of 
the system. Performing such analysis on potential rework as 
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TABLE III.   ALLOCATION OF ARCHITECTURAL ELEMENTS TO RELEASES IN EACH PATH IN DRNEP 

Release Feature implemented Path #1 Path #2 

1 

US01 Two Simulators  
Introducing Simulator I2 
and MT 
 
 
 
Cumulative Value 18% 

Architecture Elements: 
01 Controller, 02 I2SimAdapter, 03 MTAdapter, 
04 MT_I2Sim_Trans, 17 Data Persistence 
 
 
 
Cumulative Cost 37% 

Architecture Elements:  
01 I2SimService,  02 MTService 
06 Web, 07WASClient, 08 Controller, 09 Service,  
10 ServiceBusiness, 11 SimulatorServiceClient,  
12 Entities, 13 Common.  
 
Cumulative Cost 71% 

2 

US02 Three Simulators  
Adding Simulator EPA 
 
 
 
 
Cumulative Value 41% 

Rework of the previous elements:  
01 Controller, 02 I2SimAdapter, 03 MTAdapter. 
 
New elements: 05 EPANetAdapter,  
06 Epa_I2Sim_Trans, 07 Epa_MT_Trans. 
 
Cumulative Cost 68% 

New elements:  
03 EPAService 
 
 
 
 
Cumulative Cost 81% 

3 

US03 Four Simulators  
Adding Simulator Brahms 
 
 
 
 
 
 
Cumulative Value 68% 

Rework of the previous elements:  
01 Controller, 02 I2SimAdapter, 03 MTAdapter,  
05 EPANetAdapter. 
 
New elements:  
08 BrahmsAdapter, 09 Brahms_I2Sim_Trans,  
10 Brahms_MT_Trans, 11 Brahms_EPANet_Trans. 
 
Cumulative Cost 108% 

New elements:  
04 BrahmsService 
 
 
 
 
 
 
Cumulative Cost 90% 

4 

US04 Five Simulators 
Adding Simulator Flood 
 
 
 
 
 
 
 
Cumulative Value 100% 

Rework of the previous elements:  
01 Controller, 02 I2SimAdapter, 03 MTAdapter,  
05 EPANetAdapter,  08 BrahmsAdapter. 
 
New elements:  
12 FloodAdapter, 13 Flood_I2Sim_Trans,  
14 Flood_MT_Trans, 15 Flood_EPANet_Trans,   
16 Flood_Brahms_Trans 
 
Cumulative Cost 155% 

New elements:  
05 FloodSimServ. 
 
 
 
 
 
 
 
Cumulative Cost 100% 

the system grows can enable timely decisions about when to 
start re-architecting the system or when to pay back the 
interest on the borrowed time of the earlier design decisions. 
Our approach offers considerations for making rework 
explicit at each release at the architecture level. 

IV. RELATED WORK 
We review the related work based on the following three 

aspects: (1) foundations of technical debt and approaches to 
managing it, (2) metrics to guide the refactoring and re-
architecting process, and (3) tool support that can provide 
increased visibility, agility, and timely information for 
managing technical debt effectively.  

A. Foundations on technical debt 
Theoretical foundations for identifying and managing 

technical debt have focused mostly on the unintentional debt 
that accumulates as a consequence of unexpected 
environment changes, suboptimal engineering practices, or 
simply unmanaged growth of system size over time. While 
Cunningham used the metaphor in reference to coding 
practices, today it is applied more broadly across the 
software development project lifecycle and may include 
structural, requirements, testing, or documentation debt [16]. 
There is a key difference between debt that results from 

employing bad engineering practices and debt that is 
incurred through intentional decision-making in pursuit of a 
strategic goal. Martin Fowler details this distinction by using 
four quadrants to describe technical debt.  

TABLE IV.  FOWLER’S TECHNICAL DEBT TAXONOMY [4] 

 Reckless Prudent 

Deliberate 
We don’t have 
time for design. 

We must ship now and deal 
with the consequences. 

Inadvertent What’s layering? Now we know how we 
should have done it. 

 
Technical debt resonates with maintenance and evolution 

challenges when it needs to be repaid, especially when 
repayment involves refactoring and re-architecting.  Lehman 
[17] observes that for systems to remain useful they must 
change, and that change will increase their complexity, 
leading to software decay if refactoring is not done as 
needed. (Parnas [18] calls this phenomenon “software 
aging,” reflecting the failure of a product owner to modify 
software to meet changing needs.) Lehman’s observations 
about system evolution are currently applicable to projects 
that follow agile software development approaches [19]. 
While his laws of evolution provide insight into the 
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inevitability and necessity of re-architecting (and the 
potential of high debt accumulation), work in this area has 
not addressed abstraction between code and architecture 
beyond the application of pattern-based approaches [20]. 
Increased understanding of architectural debt captured with 
rework can help in addressing this abstraction.  

An empirical study conducted with architects at IBM 
concluded that the ability to assess debt does matter. Yet 
there exist significant and widespread gaps in the 
demonstration of this ability. The interviews found the 
following experiences to be common: induced and 
unintentional debts created significant challenges, decisions 
were managed in an ad-hoc manner, and stakeholders lacked 
effective ways to communicate and reason about debt [21]. 

B. Metrics to guide refactoring and re-architecting process 
While there has been significant progress regarding code 

quality, existing metrics for providing visibility into overall 
system quality are insufficient and unproven, especially for 
providing architecture-level analysis. Code-level refactoring 
techniques do not scale effectively to support decision-
making at the system architecture level.  

Most approaches to debt focus on defect detection and 
avoidance, rather than a strategic management of key 
infrastructure decisions, especially in the context of 
architecture. Concepts like “code smells” and “spaghetti 
code” have been used to address code-level technical debt 
[22]. Clone and defect detection that infers change patterns 
[23] are among concerns relevant to code-level analysis. 
Debt accumulation due to such defects is often reckless and 
inadvertent, as opposed to prudent, deliberate, and strategic.  

Refactoring techniques [22] [24] address paying back 
technical debt through local changes to the code base. Work 
on defect analysis and software maintainability focus on 
metrics-based analysis to uncover such debt. For example, 
static analysis tools provide measurement of duplicate code, 
cyclomatic complexity, or the use of god classes of the code 
base to provide insight into the potential debt the system 
might have already incurred. Such analysis aims to focus the 
refactoring to improve overall code quality using these 
metrics [25] [23].  

There are two drawbacks with these approaches. First, 
defect analysis, code-quality measurement, and related work 
look at analysis of code artifacts after the fact [26], when the 
system is delivered or close to being delivered. While such 
analysis provides insights about reducing defects over time, 
it provides no guidance for adjusting a course of action as the 
system is being developed, or for recognizing debt as it 
accumulates rather than being surprised by it later. Secondly, 
while it is often possible to refactor for small changes, it is 
quite difficult to claim legitimately that the system can be 
refactored to include a key design concern after the fact, 
without significant redesign. 

C. Tool support 
A little technical debt may not be a problem, but it 

becomes a problem when there is “too much” debt. This 
implies that there must be some rules about what “too much” 
debt looks like, that is, there must be acceptability 

thresholds. Static code analysis and plug-ins for supporting 
technical debt analysis have started to gain attention in the 
tool space for their promise to provide insights into 
thresholds of debt. While these tools currently focus on code 
analysis and provide an overall uniform debt analysis on all 
code quality drawbacks found (as discussed in the previous 
section), their rising attraction is due to the promise of 
automating the process and improving the visibility of the 
system during development. 

For example, an existing debt visualization plug-in by 
Sonar demonstrates how to monitor coding rules (duplicate 
code and cycles) violations and provides measures using an 
estimated amount of person-effort that it would take to 
correct such violations [27]. While Sonar focuses on static 
code, analysis tools such as Lattix and SonarGraph also 
provide visualization assistance of the dependencies. Using 
SonarGraph, it is possible to organize elements such that one 
can define rules among such elements and monitor their 
violations. Based on such violations, again along with code 
cycles, SonarGraph calculates a structural debt index, SDI 
[28]. While not offering an explicit debt calculator, Lattix 
enables a dependency view, which can be used to assist 
focusing on tasks and avoiding costly decisions [29].   

The ability to elicit and improve the visibility of the state 
of the project is an area of increased research and practical 
interest, both from a project management perspective and as 
a system quality perspective. Collective dashboard and 
visualization approaches assist managing technical debt in 
this regard. Recent approaches also include visualization 
techniques that use software maps structured according to the 
modularity of the system. Complex files (as indicated by 
their McCabe complexity measure) are highlighted in 3D 
and by color on the maps. Some challenges in visualization 
techniques involve integrating time and making the 
technique fully interactive. The ultimate goal is to provide 
early warnings to detect costs and risks (e.g., “watch out for 
this class, it might be growing too big”) [30]. 

V. DISCUSSION 
The algorithm for rework is directional in nature and 

represents an initial attempt to formalize the impact of 
architectural dependencies upon effort to address technical 
debt. The cost of each architectural element, the number of 
dependencies impacted by each architectural change, and the 
overall change propagation metric of the system may all be 
seen as proxies for complexity, which is assumed to affect 
the cost of change. The relative weighting and relationship 
between these factors, however, is a subject for future 
research efforts. Therefore, within the context of our 
analysis, rework cost is interpreted as a relative rather than 
an absolute value, used to compare alternative paths and to 
provide insight into the improvement or degradation of 
architectural quality across releases within a given path. 

The Achilles’ heel of our approach is its reliance on 
estimates, and in particular estimates for rework effort. But 
this is a much wider issue in software engineering that we 
are not attempting to resolve here. Providing such estimates 
is best done by the people directly involved, based on 
experience with previous work, on the same system in prior 

98



 
 

iterations or some other system of the same nature. This is 
how the numbers were derived in Table 1 and Table 2. The 
cost values in Figs. 5 and 6 were actual values. 

Another potential weakness is the change propagation 
metric (Pc) defined by MacCormack [10]. This metric is 
probably a bit too crude: it does not reflect the “strength” of 
a dependency between modules, nor the likelihood that 
modules are affected by successive evolutions of the system; 
the DSM we use in Fig. 4, for example, has only a “depend 
or not” indicator. We are currently evaluating more 
sophisticated alternatives to the change propagation metric 
that take into account these two factors, and that possess a 
higher predictive power of the potential impact of future 
changes across the system. 

Change propagation is a modularity metric. Used alone it 
suffers from drawbacks, such as treating the existence of 
dependencies without any emphasis on their weight or 
importance, assuming that a change will propagate when 
there is a dependency, and treating all kinds of dependencies 
as equal. However, such metrics together with a visual 
representation, such as the DSMs, demonstrates the potential 
power of the approach and the justification for us to continue 
investigating whether (1) such metrics provide insight in 
terms of measuring the impact of rework, when we look at 
module structures of systems, and (2) such metrics can be 
augmented to also account for runtime behavior and the 
impact of rework and technical debt.  

Questions arise, such as “Do such metrics provide 
absolute or relative values across systems? Do they provide 
insight for triggering re-architecting activities, that is, for 
paying back technical debt? Can they be applied at the 
architecture level effectively to reduce the complexity of 
required continued empirical analysis?” To date most of such 
analysis has been conducted in the context of open source 
systems [31], which provides one validation that it can guide 
the development effort in reduction of technical debt.  

VI. CONCLUSION 
In this paper, we argue that a focus on architecture and 

architecture-related technical debt can assist in optimizing 
releases for agility. As our analysis of the two development 
efforts on the DRNEP system demonstrates, a focus on the 
immediacy of the short-term value of features to be delivered 
must be widened before we can consider their consequences 
in ensuring long-term success. In the DRNEP case study, the 
two paths are normalized based on the priority of the features 
they deliver at each release, but the choice and the cost of the 
structural elements implementing the features diverge. At 
release 3 the need to pay back the technical debt resulting 
from the speedy delivery choices of the previous two 
releases is already apparent. Actively monitoring and making 
these decisions visible could have resulted in a re-
architecting effort earlier that could still deliver a lower cost 
system for the value.  

The essence of our approach is thus: the value of the 
delivered features and the impact of cost to be incurred must 
be taken into account in decision-making related to 
delivering a product. Making the architectural debt visible 
provides the necessary information for making informed 

decisions for managing the potential impact of rework over 
time. 

Gaining visibility into system development requires a 
measurement-focused mindset at the system architecture 
level and the willingness to adjust courses of action during 
development.  We demonstrated calculating rework cost 
based on the architecture rather than a focus on static code 
analysis. Calculating the rework cost is based on detecting 
the changing dependencies of the system that create an 
interest payment, which we accounted for with the change 
propagation metric. We used this rework cost in combination 
with calculating the value of the features delivered in the 
case study, to demonstrate how total ownership cost of 
system development can be effectively managed.  

We posit that rather than viewing technical debt as a 
reflection of low code quality in retrospect, it’s possible to 
leverage the notion of debt to manage system delivery. 
Deliberately borrowing time enables faster delivery and 
quicker value. The emerging system architecture must be 
visible to the development team to allow for calculating the 
accumulating potential rework cost as the system evolves. 
The architecture needs to be monitored over the course of 
development to support analysis on how debt is building up 
with interest and when to pay back the debt, also with 
consideration for how the cost and benefit trade off from the 
business perspective.  

Our future directions in this area include the following. 
� Feature and architectural element slicing.  

Story slicing in agile development involves determining the 
simplest thing the user can do that is of value, and how that 
function cuts across the system. Slicing cross-cutting quality 
attribute requirements, however, is more challenging than 
slicing functional stories because quality attribute 
requirements typically support multiple functionality, 
whereas realizing the value might take multiple iterations. 
Taking on architectural debt on particular slices might speed 
realizing the value. 
� Extensions to the economic model. 
We account for debt at the time it is paid in rework cost. For 
prudent and deliberate debt we plan to extend the economic 
model to account for the future cost of paying back debt, 
making the debt visible, and providing information on the 
consequences of payback or carrying the debt. We also plan 
to investigate incorporating uncertainty in the economic 
framework. 
� Managing debt.  

This paper’s contribution to the area of technical debt 
management is its discussion of analysis and visibility of 
dependencies and their implications for technical debt. Next 
steps in our research will focus on moving from monitoring 
to more actively and strategically incorporating technical 
debt into the architectural design process. DRNEP is an 
ongoing and long-term project conducted with a consortium 
of researchers. We will be able to collect more information 
about the trade-offs to be made along the way, including 
actual numbers for implementation or rework costs. 

Our experience has shown us that organizations have 
started building into their software development approaches 
active strategies about how debt will be elicited and kept 
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active as needed. To date these approaches are mostly 
focused on exposing the fact that particular suboptimal 
decisions were made, in order to at least make sure that the 
decision is captured; however, payback and monitoring are 
still not common practice and techniques for both are 
lacking. It is this gap that our ongoing research aims to fill, 
contributing to improving the practice of software economics 
and software architecture practices with a quantifiable basis.  
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