
66	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Reducing
Friction in
Software
Development
Paris Avgeriou, University of Groningen

Philippe Kruchten, University of British Columbia

Robert L. Nord and Ipek Ozkaya, Software Engineering Institute

Carolyn Seaman, University of Maryland, Baltimore County

// As the global inventory of software grows, technical

debt does too. Its management is becoming the dominant

driver of software engineering progress. Getting

ahead of the software quality and innovation curve

will involve establishing technical-debt management

as a core software engineering practice. //

MANY LARGE SOFTWARE systems
are, like most of the world’s state
economies, in deep debt. However,
this debt is technical, not financial.
Major software failures—for ex-
ample, the recent United Airlines
failure and New York Stock Ex-
change glitch—are being recognized
in the popular media as the result

of accumulating technical debt.1 In
2012, researchers conservatively es-
timated that for every 100 KLOC,
an average software application had
approximately US$361,000 of tech-
nical debt, the cost to eliminate the
structural-quality problems that se-
riously threatened the application’s
business viability.2 Although you

can assign some numerical value to
technical debt in many ways (still
under debate and highly dependent
on the context), the undeniable mes-
sage is that technical debt is real and
significant.

Steve McConnell defined technical
debt as “a design or construction ap-
proach that is expedient in the short
term but that creates a technical con-
text in which the same work will cost
more to do later than it would cost
to do now.”3 Technical debt’s effect
on software development is roughly
analogous to friction in mechani-
cal devices. The more friction due to
wear and tear, lack of lubrication, or
bad design, the harder the device is to
move, and the more energy you have
to apply to get the same effect. Grady
Booch said, “There is still much fric-
tion in the process of crafting com-
plex software; the goal of creating
quality software in a repeatable and
sustainable manner remains elusive
to many organizations, especially
those who are driven to develop in
Internet time.”4

Technical debt is pervasive; it af-
fects all software engineering aspects,
from how we handle requirements to
how we deploy to the user base, in
how we write code, in what tools we
use to analyze code and modify it,
and to a greater extent in what design
decisions we make at the system and
software architecture level. Technical
debt even manifests in how we run
software development organizations,
such as how teams are formed and
members interact socially. Technical
debt is the mirror image of software
technical sustainability, which is “the
longevity of information, systems,
and infrastructure and their adequate
evolution with changing surrounding
conditions. It includes maintenance,
innovation, obsolescence, data integ-
rity, etc.”5

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

	 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE � 67

We envision the future of software
engineering as revolving around this
friction called technical debt: how
to avoid it by design, how to identify
it, how to cope with it, and how to
wisely and purposely incur it to gain
commercial advantage. The software
development industry has no choice
but to treat technical-debt manage-
ment as a first-class-citizen software
engineering practice.

So, dark clouds are on the soft-
ware industry’s horizon, maybe not
visible from the academic labs but
very menacing from where the CIOs
and CTOs sit. Technical debt must
be managed through dedicated pro-
cess and tooling, must become in-
trinsic in software economics, must
be dealt with at the architecture level
and through empiricism and data
science, and must even be taught in
school. It’s the next big thing, and
it’s messy.

A Watershed Moment
The term “technical debt” isn’t
new—Ward Cunningham intro-
duced it in 1992—and neither are
the concepts it covers. For 35 years,
software engineers have been exam-
ining it under other names: software
maintenance, evolution, aging, de-
cay, reengineering, sustainability,
and so on. But progress has been
piecemeal; the topic wasn’t consid-
ered “sexy” and was rarely taught
in school. Who wants to make a ca-
reer of maintaining massive amounts
of software written by others? New
code in a new programming language
on the latest platform or “stack” is
way more fun and trendier.

Slowly over the last 10 years,
many large companies whose success
depends on software have realized
that technical debt, under any name,
is real and is hurting them badly. It
has started to translate into financial

terms: not just abstract debt but real
costs in the present and the near fu-
ture, which will impact the financial
bottom line. Government organiza-
tions, large buyers of software, are
recognizing that the cost of software
is more than the purchase price.
Now, they need justifications of the
total cost of ownership, not just ini-
tial development costs, from the
software industry.

Five years ago, the community
found a forum to vent its grow-
ing unrest and discuss potential so-
lutions at the First International

Workshop on Managing Technical
Debt (www.sei.cmu.edu/community/
td2015/series). We’re now experienc-
ing a watershed moment, facilitated
not only by growing interest in the
topic but also by a long, productive
history in several software engineer-
ing subdisciplines. These research
streams are all at a unique point at
which they’ve matured to be part
of the answer to the technical-debt
question.6 (For an in-depth discus-
sion on how these streams contrib-
ute to technical-debt management,
see “A Systematic Mapping Study
on Technical Debt and Its Manage-
ment”7 and “The Financial Aspect
of Managing Technical Debt: A Sys-
tematic Literature Review.”8)

For example, program analysis
techniques, although not new, have
only recently become sophisticated
enough to be useful in industrial con-
texts and to be incorporated into de-
velopment environments.6 So, they’re

positioned to play a role in identify-
ing technical debt, in a way that they
weren’t a few years ago. Similarly,
software quality metrics, qualitative
research methods, and software risk
management approaches have pro-
gressed to the point at which they
can contribute to both research in,
and practical approaches to, man-
aging technical debt.7,8 Building on
these streams, scientists are publish-
ing an overwhelming amount of re-
search,7 and a lively discourse is tak-
ing place in industry through blogs,
white papers, and conferences.9

The number of research papers
published on the topic from both
academia and industry has soared
since 2010.7 Despite the initial focus
on source-code-level issues, technical-
debt research now encompasses the
life cycle from requirements to test-
ing and building, as well as horizon-
tal processes such as versioning and
documentation. Several glossaries
and ontologies have been proposed
to explain and exploit the technical-
debt metaphor. The most common
terms (with a certain consensus) are
principal, interest, and risk (see the
sidebar).

To support the aforementioned
approaches, people have proposed
tooling, both research prototypes
and commercial tools. However,
only a handful of these tools are ded-
icated to technical debt, and quanti-
fication remains a challenge. Because
technical debt originated as a meta-
phor borrowed from economics and

Technical debt’s effect on software
development is roughly analogous to

friction in mechanical devices.

68	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

has predominantly financial conse-
quences, many approaches in indus-
try and academia leverage econom-
ics terms as well as theories such as
cost–benefit analysis, portfolio man-
agement, and real options.8,10

The technical-debt concept reso-
nates well with software developers.
Recent results from broad-based in-
dustry studies show that developers
have a deep understanding of what
technical debt is and can articulate
its challenges. More important, de-
velopers in the trenches are looking
for well-defined approaches to help
communicate, identify, and resolve

technical debt throughout the de-
velopment life cycle.11 Research and
industry have rarely come this close
around a common problem, also
supported by tool vendors’ increas-
ing focus and interest. If this water-
shed moment is managed well, it can
only accelerate progress.

Technical Debt’s Role
Here, we envision where technical
debt is headed, from five viewpoints:
technical-debt management and tool-
ing; software economics and sus-
tainability; design, architecture, and
code; an empirical and data science

basis, and evolving the software en-
gineering curriculum.

Technical-Debt Management
and Tooling
Technical-debt management has
five core activities.7 First, iden-
tify the technical debt—for exam-
ple, through static code analysis or
stakeholder workshops on design
decisions.

Second, measure the technical
debt in terms of benefit and cost.
Benefit is usually approximated sub-
jectively, but for cost, many met-
rics exist that translate into effort.

AN ESSENTIAL GLOSSARY
OF SOFTWARE TECHNICAL DEBT

Accruing interest Additional costs incurred by building new software and depending on some element of technical debt—a
nonoptimal solution. These costs accrue over time onto the initial principal, leading to the current principal.

Cause The process, decision, action, lack of action, or external event that creates a technical-debt item.

Consequence Technical-debt items’ effect on the value, quality, or cost of the current or future state of the system.

Cost The financial burden of developing or maintaining the product, which is mostly paying the people working on it.

Current principal The cost of developing a different or “better” solution now.

Initial principal The cost savings gained by taking some initial approach or “shortcut” in development.

Recurring interest Additional costs incurred by the project in the presence of technical debt, owing to reduced productivity (or
velocity) or induced defects or loss of quality (thus reducing maintainability and evolvability). These are sunk costs,
which aren’t recoverable.

Risk The probability or threat that a technical-debt item accumulates such that it hinders system viability.

Quality The degree to which a system, component, or process meets customer or user needs or expectations (from IEEE
Std. 610).

Symptom An observable qualitative or measurable consequence of technical-debt items.

Technical debt The complete set of technical-debt items associated with a software system or product.

Technical-debt item An atomic element of technical debt connecting a set of development artifacts, with consequences for the system’s
quality, value, and cost. It’s triggered by causes related to process, management, context, or business goals.

Value The business value derived from the product’s ultimate consumers—its users or acquirers (the people who are
going to pay good money to use it)—and the product’s perceived utility.

	 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE � 69

Even though such metrics are debat-
able, they can stir discussion among
stakeholders and provide a reference
point for assessing progress.

Third, prioritize the technical
debt—that is, identify the items that
have the highest payoff and should be
repaid first. This is essentially an in-
vestment process that optimally allo-
cates the available limited resources
to the most pressing technical-debt
items. Economic investment theories
such as real options have been used
for prioritization.8

Fourth, repay the technical debt
through refactoring.

Finally, monitor items that aren’t
repaid, because their cost or value
might change over time. This is cru-
cial because certain technical-debt
items might escalate to the point of
becoming unmanageable.

Four orthogonal management ac-
tivities support the core activities.
The documentation of technical-
debt items can take different forms,
such as design documents, backlogs,
or code comments. Communication
of the documented technical debt
should occur among stakeholders,
among engineers, and between tech-
nical and management stakeholders.
Investing in technical-debt repayment
over new features or other customer
needs requires a delicate discussion
with hard evidence. Furthermore,
traceability between technical-debt
items and other software engineer-
ing artifacts is crucial to support re-
payment. For example, repayment
might require either knowledge of
the affected design decisions and ar-
chitecture components or renegotia-
tion of system requirements. Finally,
technical-debt prevention can be pru-
dent when potential debt could ac-
cumulate quickly and ominously or
when incurring technical debt carries
no strategic short-term benefit.

Because of the number of core
and supporting activities, it’s rea-
sonable to ask how much manage-
ment is necessary and feasible. Re-
cent experience in implementing
technical-debt management has
shown that exhaustively follow-
ing such a process is excessively re-
source intensive. Thus, realistically,
only a portion of the technical debt
will be explicitly managed. Rigor-
ously managing selected debt items,
especially large, potentially high-
impact ones, is worthwhile; the rest
can be listed with no further analy-
sis. An alternative is to streamline
debt management: use tools or cut
corners on things such as estimation
and documentation. So, developers
need to prioritize technical-debt-
management activities, which is
somewhat analogous to prioritizing
technical-debt items.

We envision the following future:

•	 Tools will go beyond source code
analysis to help identify and
measure technical debt at the ar-
chitecture level, with user input
but little required effort. Tools
will seamlessly trace technical-
debt items to components, design
decisions, and requirements and
will propose refactorings that
take all these levels into account.
Tools will also apply economic
theories to help stakeholders pri-
oritize technical-debt items and
make investments and business
decisions.

•	 Software repositories will be
mined for code and architecture
smells and refactoring opportu-
nities, and technical-debt items
will be documented automati-
cally to facilitate review and
discussion among stakeholders.
Captured communication within
a development community will

help monitor or even prevent
technical-debt items.

The core and supporting activities
are to some extent part of the daily
practice of software development.
We’ve also seen tool support that’s
effectively integrated in practitioners’
daily work.7 In addition, research-
ers have proposed data-mining tech-
niques that provide smarter ways to
manage technical debt bottom-up
rather than with an overarching top-
down model. More important, in-
dustrial studies are providing strong
evidence of effective processes being
elaborated and gradually becoming
part of industrial practice.10–12

Software Economics
and Sustainability
Software development is a business-
driven investment activity. Usually,
a divide exists between how execu-
tives and managers define and fore-
see value and how developers’ design
decisions accelerate or hinder those
value propositions. Bridging this di-
vide is possible only through a better
understanding of software econom-
ics and sustainability.

The world of financial markets
employs historical and often reliably
collected data. It also has working
machinery, the stock market, that
helps create models on which anal-
ysis can be based. In addition, the
variables and data to be collected are
often proven by experience.

That framework doesn’t translate
easily to software development proj-
ect management and system design
and development. Our current soft-
ware economic models are limited to
either treatment of software produc-
tion as a small percentage of product
development costs or oversimplified
application of basic financial theo-
ries.8 However, with the advances in

70	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

machine learning and software data
analytics, we’ll be able to fine-tune
development decisions’ impact and
move to a model in which collecting
and analyzing software quality data
become seamless. This will bring the
challenge and opportunity of build-
ing software economic models that
help anticipate and plan for how to

take on and pay back technical debt.
As a result, the future will hold

these advances:

•	 We’ll see the concrete applica-
tion of technical debt as an
investment activity based on the
prioritization of technical-debt
items. This will be supported
by known software product
development timeline strategies
for assigning business value to
intrinsic system qualities such as
maintainability and evolvability.

•	 There will be widespread ap-
plication of software economic
theories and models to software
development activities. Instead
of shying away from the divide
between technical and business
stakeholders, we’ll develop and
employ data-driven approaches
that incorporate a deep under-
standing of the software busi-
ness’s complexities.

•	 Software development data
will be widely available. We’re
already seeing more and better
data as a natural byproduct of
improved tools and ecosystems.
Easier access and availability of

data such as change requests,
commit histories, capability
planning, and velocity tracking
will enable better fine-tuning of
economic models.

Earlier software economics re-
search had similar aspirations; how-
ever, it failed to be relevant to both

technical and managerial stakehold-
ers. Evidence from the field demon-
strates that both types of stakehold-
ers relate to technical debt and the
underlying technical and managerial
issues, providing an avenue for en-
hanced communication and an op-
portunity for success.11 In addition,
recent case studies demonstrated
how to incorporate such thinking
into software development—for
example, to manage modifiability
decisions.12

Design, Architecture, and Code
Software development is an engineer-
ing activity. Technical debt’s original
definitions led us to think of it as sim-
ply bad code quality, and low inter-
nal code quality is possibly the prev-
alent kind of debt. Tools, including
static code analyzers, help identify
these types of problems and related
documentation and testing issues.

Recent technical-debt studies have
identified a relationship between ar-
chitectural shortcuts and potentially
higher maintenance and evolution
costs.12 Understanding how to objec-
tively manage architectural concerns
and make architectural decisions to

avoid debt accumulation is a lead-
ing topic in software architecture re-
search. Industry studies showed that
practitioners’ main concerns also
tend to stem from architectural de-
sign.11 Research in this area has tried
to devise architectural measures,
identify architectural dependencies,
and examine pattern drift and decay,
as well as provide an uncertainty-
based approach to prioritizing archi-
tectural refactoring opportunities. A
key difference between architectural-
level and code-based technical debt
is that the former is hard to detect
just with tools and usually requires
interaction with the architects.

Although large intentional archi-
tectural debt wasn’t what Cunning-
ham had in mind when he proposed
the metaphor, we know that such
debt can considerably speed up time-
to-market and let organizations put
their code in users’ hands earlier, get
feedback, and evolve it. For startup
ventures, preserving capital in the
early stages is key. The major issue is
to clearly identify the corresponding
debt and plan for its repayment.

Furthermore, technical debt can’t
be seen as one big problematic blob
in the system. It must be broken
down into items connecting devel-
opment artifacts, with consequences
for the system’s quality, cost, and
value. Each item has a unique loca-
tion, such as a code or design smell
or an architecture decision violation.
So, each item has a specific type (for
example, a design smell indicates de-
sign debt). Such debt must be part of
the release planning strategy, at the
same level as defects or new features.
Failure to do so is what leads to the
crippling of some software develop-
ment efforts.

Solid architectural approaches
that take into account short- and
long-term quality goals will push

Technical debt occurs constantly, right from
the start of a software project.

	 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE � 71

technical-debt management forward
in the life cycle:

•	 Researchers and tool vendors
will bridge the gap between
implementation environments
and architectural models. This
will improve communication of
architectural decisions and bring
architecture closer to implemen-
tation, thus linking architecture-
level technical debt with source
code.

•	 Looking at multiple views of the
architecture, especially views
mined from source code and
development and deployment in-
frastructure, will result in earlier
recognition of technical debt.

•	 Using architectural approaches
to exploit technical debt as a de-
sign strategy will be a conscious,
mainstream approach. Architec-
ture evaluations will regularly
discuss trade-offs involving
technical debt. Reusable archi-
tecture refactorings will mitigate
risks related to technical-debt
accumulation.

Earlier work was manual and er-
ror prone. Developers today have
access to powerful tools to describe
and analyze software development
artifacts of all kinds, not only static
class structures but also runtime and
deployment perspectives.

An Empirical and Data Science Basis
Well-defined benchmarks provide a
basis for evaluating new approaches
and ideas. Technical debt’s evolving
definition and its sensitivity to con-
text have inhibited the development
of benchmarks so far. An ideal bench-
mark for technical-debt research
would consist of a code base, archi-
tectural models (perhaps with several
versions), and known technical-debt

items. New approaches to identify
technical debt could be run against
these artifacts to see how many
technical-debt items the approaches
reveal.

Similarly, although small-scale
case studies are emerging and or-
ganizations are developing internal
technical-debt initiatives,6 the ob-
served advances must be shared as
case studies. This will help establish
better foundations and an empirical
basis for technical-debt research to
progress.

To claim success, the future must
focus on empirical foundations and
data science approaches for analyz-
ing development artifacts and pro-
viding inputs to software economic
models. We expect the following
developments:

•	 Analysis techniques will incre-
mentally improve to focus on
gaps observed in industry—for
example, repurposing code qual-
ity and metrics to help alleviate
architectural issues.

•	 Tool vendors will support col-
lection of software development
data seamlessly without burden-
ing software developers.

•	 Software economic models and
software development data
collection and analytics activi-
ties will be designed and tooled
to integrate easily with soft-
ware development practices.
These models and activities will
mimic the financial industry’s
data-focused approaches and
facilitate improved software eco-
nomic models for technical-debt
management.

Recent secondary studies have
shown an increasing trajectory of
case studies (as well as other types of
empirical work) that will help build

consensus and guide the choice of
benchmarks.7–9 We’re already seeing
increased collaboration between re-
searchers and industry, leading to a
coming heyday of empirical-research
progress.10,11 Initial efforts to inte-
grate data collection and analysis
into usable tools (for example, So-
narQube) have seen some success as
well, indicating that progress toward
our ambitious vision is under way.

Evolving the Software
Engineering Curriculum
The IEEE/ACM software engineer-
ing curriculum identifies a software
evolution knowledge area, with two
knowledge units: evolution processes
(six hours) and evolution activities
(four hours).13 This doesn’t provide
the full context for introducing the
technical-debt concept because it fo-
cuses on evolving an existing body
of code. Technical debt occurs con-
stantly, right from the start of a soft-
ware project, and the processes and
activities involved in evolution aren’t
completely distinct or separate from
software development processes and
activities.

We can’t simply add yet another
course on technical debt or software
evolution. We should progressively
introduce students to technical debt
throughout the curriculum, by in-
serting related concepts in courses,
exercises, and projects.

Exercises and projects should fo-
cus on not only developing new,
greenfield applications but also evolv-
ing or adding features to existing
applications (taking, for example,
some open source software), and
not necessarily the nicest and clean-
est examples. The primary outcome
wouldn’t be “it runs” or “we can’t
find any bug.” We need to teach a
broader range of evaluation criteria
in terms of internal software quality,

72	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

potential technical-debt items, cost
or feature tradeoffs taken, and re-
source allocation as an investment.

Introducing technical debt pro-
gressively throughout the curriculum
will help students in these ways:

•	 They’ll be able to explain real-
istic tradeoffs. Students need to
realize early on that there’s no
one best path forward and that
all design choices, even at the
code level, must be compromises
among multiple tensions, involv-
ing different stakeholders.

•	 Students will be able to use
interactive tools to improve soft-
ware. We have powerful tools
for static code analysis; they can
assist in developing better code
and refactoring code. Getting
the program to compile and run
once isn’t the end, but the start.

•	 Students will be able to apply
estimation models and economic
models. Cost versus value drives
many decisions; we can use this
as an incentive for employing
estimation models, not just once
but multiple times to feed some
of the decision making. Simi-
larly, for economic models, we
can show net present value or
real options in action.

So, technical debt will add to ex-
isting content in courses. We should
explicitly introduce economic con-
cepts into the curriculum because
the software engineers we train need
to be more aware of economic issues
and reasoning.

P ractitioners, tool develop-
ers, researchers, and educa-
tors need to work together

toward the following multifaceted
vision.

New processes and tools that
manage technical debt holistically
throughout the life cycle will be put
into place, enabling communication
between stakeholders by evaluating
intrinsic quality attributes. As an ini-
tial step toward that goal, software
development teams should start ag-
gressive initiatives to bring visibility
to their existing technical debt.

The marriage between software
engineering and economics implied
by technical debt will stimulate a
fresh wave of research on software
economics and sustainability. The
vision of a successful technical-debt
management initiative implies using
technical debt as a strategic software
development approach. As an initial
step toward the marriage of software
engineering and economics, develop-
ment teams should make economic
and business tradeoffs that explicitly
influence technical decisions.

The initial focus on the source
code level will give way to manag-
ing technical debt at the level of ar-
chitecture decisions and associated
tradeoffs and risks. Developers and
management shouldn’t treat soft-
ware architecture as an after-the-
fact documentation activity but as
concretely related to development,
testing, and operations activities.

Using software development data
for technical-debt analysis will be-
come mainstream, with improved
tools targeting developer productiv-
ity and efficiency. Validated mod-
els will provide an empirical basis
for decision making. Instrumenting
small changes in development activi-
ties can easily enable data collection
without overhead for development
teams. Such information is essential
to establishing an empirical basis for
technical-debt management.

Technical debt will become an in-
tegral part of the curriculum, not as

a separate course but as a learning
thread permeating the course work.
As we mentioned before, educators
should include discussions of techni-
cal debt across the curriculum.

The convergence of efforts on
these multiple fronts is necessary to
make software development techni-
cally and economically sustainable.
Otherwise, the friction that slows
down the machinery of software
evolution will threaten the disci-
pline’s ability to maintain the code
base on which society depends.

Acknowledgments
This article is based on research that

the US Department of Defense funded

and supported under contract FA8721-

05-C-0003 with Carnegie Mellon Uni-

versity for the operation of the Software

Engineering Institute, a federally funded

R&D center. This material has been ap-

proved for public release and unlimited

distribution. DM-0002511

References
	 1.	Z. Tufekci, “Why the Great Glitch

of July 8th Should Scare You,” The

Message, 8 July 2015; https://

medium.com/message/why-the-great

-glitch-of-july-8th-should-scare-you

-b791002fff03.

	 2.	B. Curtis, J. Sappidi, and A. Szyn

karski, “Estimating the Principal of

an Application’s Technical Debt,”

IEEE Software, vol. 29, no. 6, 2012,

pp. 34–42.

	 3.	S. McConnell, “Technical Debt,”

blog, Construx, 1 Nov. 2007; www

.construx.com/10x_Software

_Development/Technical_Debt.

	 4.	G. Booch, “The Future of Software”

(presentation abstract), Proc. 22nd

Int’l Conf. Software Eng. (ICSE 00),

2000, p. 3.

	 5.	C. Becker et al., “The Karlskrona

Manifesto for Sustainability Design,”

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 73

2015; http://sustainabilitydesign.org

/karlskrona-manifesto.

 6. F. Shull et al., “Technical Debt:

Showing the Way for Better Transfer

of Empirical Results,” Perspectives on

the Future of Software Engineering, J.

Münch and K. Schmid, eds., Springer,

2013, pp. 179–190.

 7. Z. Li, P. Avgeriou, and P. Liang, “A

Systematic Mapping Study on Tech-

nical Debt and Its Management,”

J. Systems and Software, Mar. 2015,

pp. 193–220.

 8. A. Ampatzoglou et al., “The Finan-

cial Aspect of Managing Techni-

cal Debt: A Systematic Literature

Review,” Information and Software

Technology, Aug. 2015, pp. 52–73.

 9. E. Tom, A. Aurum, and R. Vidgen,

“An Exploration of Technical Debt,”

J. Systems & Software, vol. 86, no. 6,

2013, pp. 1498–1516.

 10. R. Kazman et al., “A Case Study in

Locating the Architectural Roots of

Technical Debt,” Proc. 37th IEEE

Int’l Conf. Software Eng. (ICSE 15),

2015, pp. 179–188.

 11. N. Ernst et al., “Measure It? Manage

It? Ignore It? Software Practitioners

and Technical Debt,” Proc. 10th Joint

Meeting Foundations of Software

Eng., 2015, pp. 50–60.

 12. A. Martini, J. Bosch, and M.

Chaudron, “Investigating Archi-

tectural Technical Debt Accumula-

tion and Refactoring over Time: A

Multiple-Case Study,” Information

and Software Technology, Nov.

2015, pp. 237—253.

 13. Software Engineering 2004: Curricu-

lum Guidelines for Undergraduate

Degree Program in Software Engi-

neering, ACM/IEEE, 2004; http://

sites.computer.org/ccse.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

PARIS AVGERIOU is a professor of software engineering at

the University of Groningen. His research interest is software

architecture, especially architecture modeling, knowledge,

metrics, and technical debt. Avgeriou received a PhD in

software engineering from the Technical University of Athens.

He’s on the IEEE Software editorial board. Contact him at

paris@cs.rug.nl.

PHILIPPE KRUCHTEN is a professor of software engineering

at the University of British Columbia. His research interests

are software architecture, the software development process,

and the technical debt at their intersection. Kruchten received

a doctorate in information systems from Ecole Nationale Su-

périeure des Télécommunications. He’s on the IEEE Software
editorial board. Contact him at pbk@ece.ubc.ca.

ROBERT L. NORD is a principal researcher at the Software

Engineering Institute. His activities focus on agile methods

and software architecture at scale; he works to develop and

communicate effective methods and practices for software

architecture. Nord received a PhD in computer science from

Carnegie Mellon University. Contact him at rn@sei.cmu.edu.

IPEK OZKAYA is a principal researcher at the Software

Engineering Institute. Her most recent research focuses on

building the theoretical and empirical foundations of managing

technical debt in large-scale, complex software-intensive

systems. Ozkaya received a doctorate in computational design

from Carnegie Mellon University. She’s on the IEEE Software

advisory board. Contact her at ozkaya@sei.cmu.edu.

CAROLYN SEAMAN is an associate professor of information

systems at the University of Baltimore, Maryland County and

a research fellow at Fraunhofer USA. Her interests encompass

software maintenance, metrics, management, and teams. Sea-

man received a PhD in computer science from the University of

Maryland, College Park. Contact her at cseaman@umbc.edu.
Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

