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Overview 
Cyber-physical systems (CPS) are “engineered systems that are built from, and depend upon, the seam-
less integration of computational algorithms and physical components” (NSF). Our objective is to ena-
ble efficient development of high-confidence distributed CPSs whose nodes operate in a provably cor-
rect manner in terms of functionality and timing (synchronicity between physical and software 
components), leading to predictable and reliable behavior of the entire system. To this end, we develop 
scalable algorithms for functional analysis of real-time software, techniques for controlling and analyz-
ing the effects of multicore memory access on CPS real-time behavior, and techniques for assuring 
coordination strategies. We also target both deterministic and stochastic CPSs. In addition, we develop, 
analyze, and validate portable architecture and middleware to support user-directed groups of autono-
mous sensors and systems. Accordingly, our research includes a number of mutually reinforcing threads. 

1. Timing Verification to guarantee that tasks in real-time systems complete within their dead-
lines. For instance, the airbag of a car must completely inflate within 20 minutes; otherwise, 
the driver can hit the steering wheel with fatal consequences. We are developing schedulability 
techniques for multicore platforms, where new challenges of shared resources, such as 
memory, invalidate previous assumptions in single core. We are also developing scheduling 
techniques for mixed-criticality systems. In addition, we want to incorporate elements of the 
physical processes to improve qualities of the system such as resilience and performance. 

2. Functional Verification to ensure that software behaves as required. We are developing new 
model checking algorithms for periodic real-time software to ensure logical correctness prop-
erties, such as absence of race conditions, deadlocks, and other concurrency errors that may 
lead to unsafe or undesired behavior. We also use model checking and code generation to pro-
duce high-assurance distributed software. 

3. Probabilistic Verification to maximize the likelihood that a CPS will meet its desired goals. 
We are exploring probabilistic analysis techniques to estimate, with high accuracy, the chances 
of a desired goal being achieved (or an undesired outcome being avoided). In particular, we are 
investigating two analysis techniques: (a) numerical approaches based on probabilistic model 
checking of Markov chains and Markov decision processes, and (b) techniques based on Monte 
Carlo simulation such as statistical model checking and importance sampling. 

4. Collaborative Autonomy to optimize scalability, performance, and extensibility for autono-
mous systems by creating a portable, open-sourced, decentralized operating environment. We 
integrate this environment into unmanned autonomous systems (UAS) platforms, smartphones, 

http://www.nsf.gov/pubs/2014/nsf14542/nsf14542.htm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/timing-verification/multicore-scheduling.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/timing-verification/multicore-scheduling.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/timing-verification/zero-slack-scheduling.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/timing-verification/zero-slack-scheduling.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/start.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/distributed-software.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/distributed-software.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/distributed-software.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/probabilistic-verification/index.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/collaborative-autonomy/index.cfm
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tablets, and other devices and design algorithms and tools to perform mission-oriented tasks. 
We also design user interfaces to help single human operators control and understand a swarm 
of UAS, devices, and sensors.  

5. Self-Adaptation to address the challenge of having cyber-physical systems that can quickly 
adapt to a variety of situations including environment changes, and malfunctions. A self-adap-
tive system is a system capable of changing its behavior and structure to adapt to changes in 
itself and its operating environment without human intervention. We are developing architec-
ture-based self-adaptation approaches that take into account the latency of the available adap-
tation strategies when deciding how to adapt. Furthermore, our techniques leverage short term 
predictions of the environment evolution to enable proactive adaptation. 

How We Can Help 

The SEI helps organizations to 

• apply formal verification techniques and tools to assure critical system properties 

• apply real-time analysis techniques to determine if critical system timing properties will be 
satisfied 

• provide design and implementation guidance for real-time, cyber-physical systems 

• support user-directed groups of autonomous sensors and systems 

Research 
The goal of High-Confidence Cyber-Physical Systems work is to enable efficient development of 
autonomous CPSs. To ensure that the collective behavior of distributed elements is predictable and 
reliable, we must demonstrate  

• scalable algorithms for functional analysis of real-time software  

• techniques for controlling effects of multicore memory access on CPS real-time behavior 

• techniques for assuring distributed autonomous coordination 

• techniques for developing architecture and middleware to support user-directed groups of au-
tonomous sensors and systems 

Accordingly, our current research includes a number of mutually reinforcing threads. 

Our research in high-confidence cyber-physical systems involves developing 

• new real-time scheduling theories to ensure predictable timing behavior 

http://csauth-sei.sei.cmu.edu/cyber-physical/research/self-adaptation/index.cfm
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• new representations of the concurrency aspects of systems that account for the intimate rela-
tionship between physical and computational realms 

• new techniques for ensuring predictable collaboration among autonomous agents 

• new static-analysis techniques for efficiently ensuring safety assertions of concurrent system 

Functional Verification 
The goal of functional verification is to ensure that the behavior of CPS software respects its specifica-
tion when executing in a given environment. We are targeting both deterministic and stochastic systems. 
The specification expresses a safety condition, (e.g.,  no deadlocks, no violations of user-specified as-
sertions) that must be satisfied in all possible executions of the software (for deterministic systems) or 
with some required minimum likelihood (for stochastic systems). The environment captures details of 
software (e.g., number of threads and their priorities), the operating system (e.g., scheduling policy), 
and the nature of communication (e.g., shared memory, message passing). We have two main research 
directions in functional verification: 

1. Model Checking Periodic Real-Time Software 
 

2. Model Checking Distributed Systems 

Our solutions are based on automated and exhaustive techniques (such as model checking and proba-
bilistic model checking). We publish our results in peer-reviewed venues, and implement our algorithms 
in prototype tools, which are validated on examples guided by real-life systems and scenarios. 

Real-Time Software 

The goal of the Static Analysis of Real-Time Systems (START) project is to verify functional correct-
ness of real-time embedded software (RTES). The current focus is on model checking periodic RTES 
with Rate-Monotonic scheduling, a.k.a, periodic programs. Such programs are widely used in the auto-
motive and avionics domains. Specifically, we verify whether an assertion Spec can fail when the RTES 
is executed from an initial state Init. We assume that the RTES is written in C and consists of a set of 
periodic tasks with rate monotonic scheduling. We also assume that the RTES is schedulable and that 
the user knows the priority and worst-case execution time of each task. The user specifies the assertion 
Spec, and initial state Init. In past work, we also required a user-supplied time bound Bound that limits 
the execution of the software. In ongoing work, we are eliminating this requirement (i.e., we will verify 
correctness of a periodic program even if it executes for unbounded time). 

Case Study: The LEGO Turing Machine 

A Turing machine is the simplest form of computer. It is composed of a ribbon of paper called a tape, 
which stores data on a head that can read symbols on the tape, write a new symbol, and move left or 

http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/start.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/start.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/functional-verification/distributed-software.cfm
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right a list of transitions that tells the machine what to do next. Soonho Kong, a PhD student at Carnegie 
Mellon University, interned at the SEI in the summer of 2012 and built a Turing machine from LEGO 
components to demonstrate the START verification tool. Kong began by implementing a single task, 
and then added more features incrementally to create a multitasking machine. First, Kong programmed 
the Turing machine to perform Read, Write, and Move operations one at a time. You can see it in action 
in the following video: https://youtu.be/teDyd0d5M4o [Kong 2012]. 

 

The LEGO Turing Machine Performs Single-Task, Unary Addition 

This sequential-operation performance wastes time because the machine could perform some operations 
simultaneously. To implement simultaneous movements, Kong programmed multiple tasks along with 
their constraints. For example, the head can move toward the tape while the tape advances to the next 
position, but then the tape must hold still so the color sensor can read it. The writer lever and the head 
can move simultaneously, but they must avoid physical collision. This multitasking with constraints 
provided an application for the START program to test the verification tool to ensure that an implemen-
tation has all the desired concurrency properties. 

Distributed Software 

Distributed systems are becoming an important part of safety-critical and mission-critical systems. They 
are also being endowed with more autonomy and coordination capabilities to increase effectiveness and 
reduce operator overload. They often operate in uncertain environments and must meet both guaranteed 
(e.g., collision avoidance) and best effort (e.g., area coverage within deadline) requirements. We are 
pursuing two research directions in functional verification of such systems: 

1. Probabilistic Verification of Distributed Coordinated Multi-Agent Systems: This project 
explores analytic methods for predicting the quality of coordination mechanisms for multi-

http://www.cs.cmu.edu/%7Esoonhok/programming-turing-machines.html
https://youtu.be/teDyd0d5M4o
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agent systems in uncertain environments (e.g., robots in a minefield). In previous work, we 
have developed, implemented, and validated highly scalable, compositional, probabilistic 
model checking algorithms for such systems with limited coordination. Our current focus is on 
probabilistic model checking to make predictions about teams of agents with more complex 
coordination. Our approach is to first build Discrete Time Markov Chain (DTMC) models for 
each agent, based on running and observing them individually. Next these models are composed 
and verified, using the probabilistic model checker PRISM to obtain the prediction. We have 
proved the correctness of this approach formally and implemented it. We have also developed 
a way to quantify the error in our predictions. Such errors are unavoidable, due to the fact that 
our models are constructed from a finite number of observations. 

2. Model Checking Distributed Applications: This project is exploring the use of domain-spe-
cific languages, software model checking, and code generation to produce verified distributed 
applications. 

http://www.contrib.andrew.cmu.edu/%7Eschaki/discover/index.html
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Timing Verification 

Real-Time Scheduling for Timing Verification 

In Cyber-Physical Systems, the software must execute in sync with the physical processes it interacts 
with. For instance, in a car airbag system, the software must finish the evaluation of a crash and trigger 
the inflation of the airbag in order to complete the process in less than 20 milliseconds; otherwise the 
driver can be seriously injured. This completion time limit for the software is known as a real-time 
deadline. Guaranteeing these deadlines—even in the worst-case scenario (as when all tasks arrive sim-
ultaneously) —has been the study of real-time scheduling theory.  

 

Airbag deployment is an example of a real-time deadline that is critical for passenger safety.  To view a video that 
shows the consequences of late airbag deployment, visit https://youtu.be/YAwrq9-1oQQ [Todd Tracey Law 
Firm 2012] 

In recent years, two trends have imposed new challenges to the timing verification for real-time systems: 
(i) the functional consolidation of tasks of different criticalities in shared processors--these are called 
mixed-criticality real-time systems, and (ii) the advent of multicore processors. The SEI has been re-
searching these two areas.   

Zero-Slack Scheduling 

In complex military systems such as airplanes and UAVs, there is an increasing need to consolidate 
more and more functions into a single processor. This consolidation imposes a challenge when these 
functions have different criticalities. For instance, one function may be controlling the stability of the 
airplane while another may be processing video for a surveillance mission. While the function that con-
trols the stability of the flight is safety-critical (i.e., a failure in this function can crash the airplane) the 
video processing function is not. The difference in criticality poses a challenge for the verification, 

https://youtu.be/YAwrq9-1oQQ
http://csauth-sei.sei.cmu.edu/cyber-physical/research/timing-verification/zero-slack-scheduling.cfm
http://csauth-sei.sei.cmu.edu/cyber-physical/research/timing-verification/multicore-scheduling.cfm
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validation, and certification of whole systems because functions of different criticality are held to dif-
ferent standards of certification. In particular, while a complex and expensive verification process may 
be used for safety-critical functions, a simplified and cheaper process must be applied to non-safety-
critical functions in order to keep the cost under control. Unfortunately, if functions from different crit-
icalities share a processor, failures in a low-critical function may propagate to a higher critical one--for 
example, because the faulty function may hold execute longer than expected, delaying the execution of 
the critical task beyond its tolerance (unable to compensate for cross winds). This means that if we want 
to preserve the quality of the verification of the safety-critical functions, we would need to apply the 
same complex verification process to the lower criticality functions, given the failure propagation pos-
sibility. Fortunately, if we can ensure that high-criticality tasks are protected against failures in lower 
criticality tasks, then we can still apply different verification processes to functions of different critical-
ities. 

The Air Force Research Laboratory (AFRL) has recognized these challenges and created an initiative 
called the "Mixed-Criticality Architecture Requirements" (MCAR) to investigate the technology re-
quired to implement these protection mechanisms.  

The Zero-Slack Mixed Criticality Scheduling is a scheduler that implements temporal protection (i.e., 
ensures that tasks are not delayed) of high-criticality tasks against lower criticality ones. In particular, 
during an overload, we ensure that higher criticality tasks are able to finish on time (meet their deadline) 
even at the expense of lower criticality ones. 

Zero-Slack QRAM 

Zero-slack scheduling is a scheduling framework for real-time systems of mixed criticality. Specifically, 
it targets systems where the utilization-based scheduling priorities are not aligned with the criticality of 
the tasks. With this framework, we implemented a family of schedulers, resource-allocation protocols, 
and synchronization protocols to support the scheduling of mixed-criticality systems. 

The zero-slack QoS resource-allocation model (Q-RAM) combines zero-slack rate monotonic schedul-
ing and Q-RAM to enable overbooking, in which the same CPU cycles are allocated to more than one 
task. Zero-slack Q-RAM allows overbooking not only between tasks of different criticality but also 
among tasks with different utility to the mission of the system. In a given cycle, if a more critical task 
must execute, that task uses the cycle; otherwise, a task of lower criticality will execute. 

We developed several experiments to determine the effects of this scheduler in a drone mission. First, 
we demonstrated how the wrong scheduling can actually crash a drone. The following video shows how 
the increasing demands of lower-criticality tasks decrease flight safety: https://youtu.be/7OuF9foutlQ 
[DroneRKwiki 2011a]. 

https://youtu.be/7OuF9foutlQ
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As background task utilization rises, the drone becomes more difficult to control. 

Second, we show that in a full mission, zero-slack Q-RAM not only preserves the safety of the flight 
but also maximizes the utility of the mission. The demo in the following video shows a surveillance 
mission in which a video-streaming task and an object-recognition task are dynamically adjusted ac-
cording to their utility to the mission.  To view the video, visit https://youtu.be/hznBzKKf3lo 
[DroneRKwiki 2011b].  

 

Zero-slack Q-RAM makes the drone more controllable. 

https://youtu.be/hznBzKKf3lo
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Multicore Scheduling 

While scheduling in multiprocessor real-time systems is an old problem, multicore processors have 
brought a renewed interest, along with new dimensions, to the challenge. For instance, there is a need 
to tradeoff different levels of migration cost, different degrees of inter-core hardware sharing (e.g. 
memory bandwidth), and so on. Our research is aimed at providing new knobs to perform these tradeoffs 
with additional application information. 

Beyond real-time systems, general-purpose systems are now faced with the fact that they need to paral-
lelize their work in order to get the expected performance increment from additional cores in the new 
processors. However, partitioning the work into parallel pieces is a necessary but not sufficient condi-
tion. Equally important is the allocation of CPU cycles to these parallel pieces (tasks). In the extreme, 
if we run all the tasks of the parallel pieces in the same core, such parallelism is completely wiped out. 
Hence, the task-to-core allocation and the scheduling of hardware resources between core (e.g., cache, 
memory bandwidth) can change completely the performance of these systems. We are working on new 
ways to take advantage of application knowledge to use them as parameter in the scheduling algorithms 
at all levels of the computer system.  

Inter-core Memory Interference in Multicore Processors 

Multicore processors are quite different from multi-processors. This is due to the fact that cores within 
a processor share resources. One of the most critical shared resources is the memory system. This in-
cludes both shared cache and shared RAM memory. The effect of the memory interference that one task 
running on one core has on another running on a different core can be highly significant. We have seen 
extreme cases of 12X increases in the execution time due to memory interference (as the figure below 
illustrates), and some practitioners have observed 3X increases. This 3X basically means that in a dual 
core processor I am better off shutting down a core to avoid a decrease in the execution speed. 

 

Impact of memory interference. 
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Once we solve the interference problem we have another challenge. Due to shared resources, we must 
support new tasks with parallelized jobs that require more than one core to complete before the deadline. 
New scheduling algorithms are necessary to schedule these tasks and must be combined with memory 
partitions to maximize their utilization and guarantee their time predictability. 

At the SEI, we have been working with the CMU Real-Time and Multimedia Systems Laboratory to 
address the shared memory challenge by creating partitioning mechanisms to eliminate or reduce inter-
ference, along with analysis algorithms to take into account residual effects. 

Partitions with Page Coloring 

A key mechanism we use is page coloring. Page coloring takes advantage of the virtual memory system 
that translates virtual memory addresses to physical addresses. This mechanism assigns physical ad-
dresses that do not interfere with each other to different tasks running on different cores. Page coloring 
works in combination with characteristics of the memory hardware that divides the memory into areas 
that do not interfere with each other. Different mechanisms exist for cache and main memory.  

Cache Partitions (Cache Coloring) 

Cache is fast memory that is used in the memory system to speed up the access to frequently used data 
(e.g. variables). Specifically, when a variable is first accessed, it is loaded into cache so that subsequent 
accesses to the same variable are performed from the cache instead of from main memory much faster. 
However, caches are much smaller than main memory, and as the program executes it will stop using 
some variables. The cache system knows how frequently each variable is accessed, so when the cache 
must add a newly accessed variable but the cache is full, the system clears the least frequently accessed 
cache block to make room. Accessing that cleared variable will take additional time because it must be 
loaded back from the slower main memory, as it was the first time it was loaded.  

Most cache hardware divides the cache into sets of cache blocks in what is known as set-associativity. 
Each set is restricted to be used for certain area of the physical memory and cannot be used by any other. 
We take advantage of this restriction and ensure that the physical memory used by one task in one core 
belongs to one of these regions, while the memory of another task running on a different core belongs 
to a different one. This is known as cache coloring, which effectively creates cache partitions.   

Memory Bank Partitions (Bank Coloring) 

While cache coloring provides a great benefit to reduce the interference across cores, it's not sufficient 
to solve the problem. Main memory is another source of significant interference. In fact, the experi-
mental results shown in the figure above are due to memory interference, not cache interference. Main 
memory is divided into regions called banks, and these banks are organized into rows and columns. 
When a task running in a core tries to access a memory address in main memory, this address first is 
analyzed to extract three pieces of information (from specific bits in the memory address): (i) the bank 
number, (ii) the row number, (iii) the column number. The bank memory is used to select the bank 
where the memory block is located. Then the memory controller loads the row from that bank into a 
row buffer within the bank for faster access. Finally the memory block is accessed in the column indi-
cated by the column number from the row buffer. This is illustrated in the figure below. 
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Memory bank partitioning 

Because the memory controller is optimized to improve the number of memory accesses per second, it 
takes advantage of the row buffer and favors the memory accesses that go to the same row. Unfortu-
nately, this means that when a task 1 in one core is accessing a row (already loaded in the row buffer) 
while a task 2 running in another core is trying to access another row in the same bank, the access from 
task 2 can be moved back in the memory access queue by another, more recent access from task 1 to 
the already-loaded row multiple times, creating an important delay for task 1.  

Memory bank partitions are created by mapping the memory of the different tasks to different memory 
banks. In this way each task can have its own bank and row buffer, and no other task will modify that 
buffer or the queue of memory accesses to this bank.   

Combined Cache and Bank Partitions 

Because caches and memory banking technologies were not developed together, their partitions often 
intersect each other. In other words, it is not possible to select a bank color independently from a cache 
color because the selection of a cache color may limit the number of bank colors available. This occurs 
because, in some processor architectures, the address bits used to select a bank and the bits used to select 
a cache set share some elements. To illustrate this idea, consider a memory system with four banks and 
four cache sets. In this case, we need two address bits to select a bank and two bits to select a cache set. 
If they were independent, we could select four cache colors for each selectable bank color for a total of 
16 combinations. We can visualize this as a matrix (a color matrix) where rows are cache colors and 
columns are bank colors. However, if cache and bank colors share one bit, then in reality we only have 
23=8 colors. This means that in the color matrix some of the cells will not be real. The figure below 
illustrates this concept. 
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Combined cache and bank positions 

Coordinated Cache, Bank, and Processor Allocation 

We developed a coordinated approach to allocate cache and bank colors, along with processor, to tasks 
in order to avoid the cache/bank color conflicts. Our approach also maximizes the effectiveness of the 
memory partitions, by taking into account the difference between inter- and intra-core interference.  

We developed memory reservations with cache and memory partitions in the Linux/RK OS.  

Limited Number of Partitions 

Unfortunately, the number of partitions obtainable through page coloring is limited. For instance, for an 
Intel i7 2600 processor, it is possible to obtain 32 cache colors and 16 bank colors. Given that, in prac-
tice, we may have a larger number of tasks (say 100), this number of partitions may prove insufficient 
for a real system. As a result, it is important to also enable the sharing of partitions whenever the memory 
bandwidth requirements of tasks allow it. However, this sharing must be done in a predictable way to 
ensure we can guarantee meeting task deadlines. At the same time, it is important to avoid pessimistic 
over-approximations, in order not to waste the processor cycles that we are trying to save in the first 
place. For this case, we developed an analysis algorithm that allows us to verify the timing interference 
of private and shared memory partitions.  

Parallelized Tasks Scheduling 

Beyond solving the resource-sharing problem, we also need to enable the execution of parallelized tasks. 
For this we have developed a global EDF scheduling algorithm for parallelized tasks with staged exe-
cution. These tasks generate jobs composed of a set of sequential stages. These stages are further com-
posed of a set of parallel segments. These segments are allowed to run in parallel to each other, provided 
that all the segments from the previous stage have completed, or the task has arrived for the first seg-
ments of the first stage. Our algorithm allows us to verify the schedulability of these tasks with a global 
EDF scheduler. Beyond EDF, it is possible to use this algorithm with a global fixed priority scheduler 
with synchronous start, harmonic periods, and implicit deadlines, a common configuration used by prac-
titioners.  
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Probabilistic Verification 
Many CPSs operate in uncertain environments. From the software perspective, this means that some of 
its inputs are random variables. Given this randomness, the natural way to frame the verification prob-
lem is to compute the likelihood that the software satisfies a safety specification (e.g., the likelihood 
that a periodic real-time task never misses its deadline five times in a row, or the likelihood that the 
destination is reached with a preset deadline). We are exploring two main techniques for verification of 
stochastic CPSs: 

1. Probabilistic Model Checking: In this approach, the system is modeled as a Markov Chain 
and the likelihood of a property is computed by constructing a set of equations and solving 
them numerically. We are exploring the use of probabilistic model checking to evaluate the 
quality of coordination schemes in distributed multi-agent systems.  For more information, see 
the section on Functional Verification. 

2. Statistical Model Checking: In this approach, each execution of the system is treated as a 
Bernoulli trial and the likelihood of a property is computed via Monte Carlo simulations. A key 
challenge is to get a high-precision result with a small number of simulations, which is non-
trivial for properties whose violations are rare events. We are exploring novel importance sam-
pling techniques to achieve this goal for stochastic CPS software. 
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Collaborative Autonomy 
Collaborative Autonomy for Mobile Systems architects, designs, analyzes, and validates portable archi-
tecture and middleware to support user-directed groups of autonomous sensors and systems. The current 
focus is on  

• middleware that creates a decentralized, distributed operating environment for swarms of sen-
sors and robots, guided by a human user 

• area coverage techniques that specialize in prioritized zones and mission objectives 

• algorithms that prioritize information flows and route mobile sensors/drones/robots into loca-
tions that best serve mission utility 

 

GAMS MAPE Loop 

Collaborative Autonomy Challenges 

• Autonomy focus is on single unit control. 

• Focus is on centralized controllers (prone to failure/attack). 

• Autonomy frameworks tend to be targeted at homogeneous platforms and algorithms. 
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• Blocking communications are prone to faults/attacks/ outages/loss-of-control. GPS is highly 
inaccurate for precise maneuvers. 

• There is a lack of standardization for autonomous collaboration. 

 

Interactions between GAMS platform and algorithm 

Our Approach to Collaborative Autonomy  

1. Create a portable, open-sourced, decentralized operating environment for autonomous control 
and feedback. Focus on scalability, performance, and extensibility. 

2. Integrate the operating environment into unmanned autonomous systems (UAS), platforms, 
smartphones, tablets, and other devices. Focus on portability. 
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3. Design algorithms and tools to perform mission-oriented tasks such as area coverage and net-
work bridging between squads. 

4. Design user interfaces to help single human operators control and understand a swarm of UAS, 
devices, and sensors (human-in-the-loop autonomy). 

 

Further interactions between GAMS platform and algorithm 
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Self-Adaptation 
One of the challenges for CPSs is that they must be able to adapt to anomalies in themselves and in their 
environments, such as a degraded or failed sensor, and problems with systems to which they connect, 
including the infrastructure they use. Because CPSs will be ubiquitous, it will not be possible to have 
human operators continuously monitoring and managing them. Consequently, CPSs will be required to 
monitor themselves and take corrective actions as needed, either to fix problems or to improve their 
behavior. 

Although CPSs of today have some ability to deal with changes in the environment, the approaches used 
to do so have several drawbacks. As an example, the adaptation code is typically entangled with the 
application code in the form of exception handling or conditionals. This low-level handling of the ad-
aptation may result in taking inadequate actions that are based only on information local to that partic-
ular component. For example, one component may decide to retry sending a request to another compo-
nent, assuming that the previous request was lost, when the appropriate action would be to stop sending 
requests until the target component, which had failed in this case, is restarted. In order to be able to 
make the appropriate decision in situations like this, it is necessary to have a more comprehensive and 
higher level view of the system to reason about the problem and the required adaptation to deal with it. 
The system's architecture provides the high-level perspective required to reason about the system itself 
and the adaptations. 

In architecture-based self-adaptation, a model of the architecture of the running system is maintained at 
runtime and used to reason about the changes that should be made to the system to achieve the desired 
quality attributes. Several existing techniques for analyzing software architectures can be used to reason 
about the current system configuration and the possible alternatives to which it could adapt. For exam-
ple, the recent self-diagnosis approaches can identify the architectural element most likely to have 
caused a failure, and the performance of different alternative architectures can be analyzed by trans-
forming their architecture models into performance models that can be evaluated. 

We are developing approaches to improve architecture-based self-adaptation so that adaptations can be 
done proactively rather than as reaction to changes. Achieving this requires explicitly considering the 
time it takes for adaptation strategies to be executed. Furthermore, we are using probabilistic model 
checking to quantitatively verify properties of the self-adaptive system. 
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