
Software Assurance for Systems of Systems
 John Goodenough

Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213-2612
+1 412-268-6391

jbg@sei.cmu.edu

 Linda Northrop
Software Engineering Institute

4500 Fifth Avenue
Pittsburgh, PA 15213-2612

+1 412-268-7638

lmn@sei.cmu.edu

ABSTRACT

Justified confidence in system and SoS behavior requires software
assurance theories and principles that don’t exist today. Using
such theories and principles, organizations would have a better
basis for confidence in deployed system behavior, and at the same
time, these theories and principles could be used to make the as-
surance process more efficient and effective.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –

reliability, validation. F.3.1 [Theory of Computation]: Logics
and Meanings of Programs – logics of programs, invariants.

General Terms

Reliability, Security, Verification.

Keywords

software assurance, systems of systems, ultra-large-scale systems,
failure modes, argumentation, FMECA, FTA

1. INTRODUCTION
Because of the increasing size and interdependent/interconnected
nature of today’s large information technology (IT) systems and
systems of systems (SoSs), achieving an acceptable and justified
level of confidence is becoming more difficult. Moreover, today’s
approach to assuring the behavior of such software-reliant systems
takes too long. For example, integration and acceptance testing
(the typical approach used today to demonstrate acceptable SoS
functionality) can take months and may have to be completely
redone when changes are made, causing undesirable delays in
fielding needed capability. To make the assurance process more
efficient (and effective), we need to answer foundational questions
such as the following:

• Which assurance activities provide the biggest increase
in justified confidence that a system will behave accept-
ably when fielded?

• Can some assurance activities be curtailed without re-
ducing justified confidence in deployed system beha-

vior? For example, when is it reasonable to stop testing
a system, and why?

• What insights do assurance activities yield into the resi-
dual risks that are present in a deployed system?

• What evidence is most probative in deciding whether a
system should be released?

• What is a principled theoretical basis for asserting that
sufficient confidence has been obtained in software-
reliant behavior?

• What types of justification are more or less acceptable?

• Is a proposed confidence level well justified by sound
principles and theories?

Adequate answers to these and similar questions do not exist to-
day. And although the above questions apply to all kinds of soft-
ware-reliant systems, they are becoming more important as an
increasing number of these systems are systems of systems and
ultra-large-scale systems [5].

Because system of systems (SoS) constituents are decisionally
autonomous and interact independently, special assurance prob-
lems arise when considering SoS assurance. In particular, accept-
able interaction depends on commitments that each constituent
provides to others and commitments on which it depends.1 The
relevant assurance questions are: (1) is the set of commitments
sufficient to ensure a desired SoS behavior or quality attribute,
and (2) what is the impact if a commitment is not kept? For exam-
ple, consider information that is shared across constituents of IT
systems of systems. In some cases, this information is time sensi-
tive and should not be used when it is no longer current. How do
we gain justified confidence that the performance commitments
made among system constituents collectively guarantee that a
constituent will always2 receive information in a timely manner;
or alternatively, if timeliness can be guaranteed only probabilisti-
cally (which is likely in a SoS), how do we gain justified confi-
dence that a constituent will not act unwittingly on outdated in-
formation? How do we gain justified confidence that such devia-

1 Depending on the nature of the constituent and the nature of the

interaction, a commitment might be called an interface specifi-
cation, a service-level agreement, a memorandum of under-
standing, a guarantee enforced by the system architecture (e.g., a
constraint on bandwidth utilization), etc. In general, “commit-
ments” characterize the nature of interactions among SoS con-
stituents. The extent to which commitments are enforced or
monitored depends on the SoS, the constituents involved, and
the nature of the commitment. The impact of failing to live up to
a commitment is a subject for assurance analysis.

2 “Sufficiently often” would be a better criterion than “always,”
but is even harder to demonstrate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 Carnegie Mellon University 978-1-4503-0427-
6/10/11...$10.00.

tions from desired behavior (failure modes) have been adequately
mitigated?

Assurance of timely delivery is an SoS-level property. If the
commitments are not correct, each constituent could live up to its
commitment for timely delivery and yet, some recipient could
occasionally receive information that is outdated. How do we
analyze system commitments and interactions to uncover such
SoS failure modes? Field testing may uncover some of them, but
can such exercises give sufficient confidence that something criti-
cal will never be missed?

In general, if we are to have justified confidence in system and
SoS behavior, we need better software-assurance theories and
principles. Using such theories and principles, organizations will
have a better basis for confidence in deployed system behavior,
and at the same time, these theories and principles can be used to
make the assurance process more efficient and effective.

2. CURRENT LIMITATIONS

2.1 IT SoS Assurance Today
Today, extensive testing is the primary method for obtaining con-
fidence in the behavior of IT systems of systems. But testing, by
itself, is a weak method of assuring that systems of systems will
behave acceptably under unusual conditions. In part, this is be-
cause most testing effort is devoted to examining system behavior
under “sunny day” conditions (i.e., demonstrating that required
functionality is present under normal conditions), and in part it is
because testing is inherently weak as a method of finding software
defects that occur only rarely, e.g., only under heavy loads. Be-
cause the current approach usually gives little insight into the
behavior of an SoS under untested conditions, systems are re-
leased on the basis that testing has (probably) been sufficiently
thorough that no severe errors will occur in fielded systems, and
that even if they do occur, the system will be sufficiently func-
tional that these errors can be tolerated. The inherent weakness of
testing is significant for assuring SoS functional behavior, but it is
even more significant for security aspects. The inability to have
sufficiently justified confidence in the security of SoS behavior
sometimes means that user convenience and capability have to be
restricted to satisfy security concerns.

To develop justified confidence in system behavior, one must
integrate various types of evidence (such as test results, proofs,
modeling and simulation results, architectural analyses, etc.) into
an argument demonstrating that a system not only delivers in-
tended functionality and has appropriate security properties but
that its failure modes are sufficiently unlikely and are not cata-
strophic. When the property of interest is reliability, this collec-
tion of evidence and argument has been called a reliability case in
the hardware engineering community [6]. When the property of
interest is safety, a different collection of evidence and argument
is called a safety case by the safety-critical community [7]. When
the system is critically dependent on software however, there is
little agreement on what constitutes a valid or sound argument for
demonstrating that the software will behave acceptably.

A significant deficiency in current assurance practice is that we
have only a weak understanding of what makes one software as-
surance argument stronger than another. For example, we intui-
tively understand that when a proof of a system property is com-
bined with test evidence, the argument is stronger than if just one

of these elements is provided. But what is the theoretical basis for
this intuition? More generally, what is the theoretical basis for
showing that one combination of argument and evidence is
stronger than another?

One approach that has been taken to answer this question is the
application of Bayesian reasoning to assurance cases [3]. Assur-
ance cases are a mode of structured argument in which top-level
claims about system properties are repeatedly decomposed into
subclaims until finally evidence is presented showing that a sub-
claim is true. In a Bayesian analysis of an assurance case argu-
ment, conditional probabilities are associated with subclaims and
evidence, and Bayes’ Theorem is used to generate a conditional
probability that the top-level claim is true. While theoretically
interesting, there are practical obstacles that have prevented its
use (e.g., obtaining robust estimates of a priori probabilities).

Another approach has been to develop an operational profile [4]
representing how often certain demands on a system are expected
to occur. Tests are prepared that mirror the operational profile.
Depending on the rate of errors discovered by the tests, one can
draw a statistically sound conclusion about the likelihood of fail-
ure in the operational environment. The advantage of this ap-
proach is that the most frequently used parts of the system are
exercised the most often, and this makes it more likely that latent
defects in common system uses will be detected. Consequently, if
no defects are detected, one can justifiably argue (from a statistic-
al point of view) that the likelihood of a defect being revealed in
actual system operation is lower than some statistically derived
value. The disadvantage of this approach is that it is hard to estab-
lish an accurate operational profile. Perhaps more importantly,
errors that rarely have a critical effect will not necessarily be re-
vealed by this approach, especially if the defect causing the error
is difficult to reveal through testing. (Such errors include race
conditions, memory leaks, and vulnerabilities targeted by attack-
ers.)

Another approach commonly used in safety-critical systems or in
high-assurance applications (e.g., spacecraft software) [2] is to
combine testing with detailed analyses and proofs of critical parts
of a system, looking for failure modes and the potential impact of
possible defects. The argument showing that all critical aspects of
a system design have been adequately addressed is documented on
a best-effort basis, with more effort being spent on eliminating or
mitigating potentially catastrophic failure modes. The quality of
the argument and evidence is typically determined by inspection,
experience, and consensus. No particular reasoning is used to
argue how much additional “justification” is provided by a partic-
ular piece of evidence or argument. This approach has not typical-
ly been used for IT systems, in part because these assurance ap-
proaches are currently time-consuming and expensive and in part
because the consequences of IT system failure have not been con-
sidered significant enough to warrant their use.

2.2 Developing Justified Confidence for SoSs
Current assurance approaches and research have neglected the
special problems posed by systems-of-systems assurance. Because
such systems consist of independently interacting entities, it is
difficult to ensure that their mutual commitments lead to SoS
behavior that is acceptable. Some SoS properties can, in principle,
be assured today through analysis. For example, if certain infor-
mation is time sensitive, architectural performance modeling can

develop upper bounds on end-to-end performance behavior. Of-
ten, however, these bounds are unduly pessimistic because they
assume worst-case behavior on the part of each constituent. When
using replicated databases, one can apply mathematical theories to
determine how long it will take to ensure that all replicants have
consistent data [8]. But no similar theories are available to assess
the integrity and confidentiality of information exchanged among
constituents having different abilities and commitments to main-
tain originator restrictions on use and further dissemination. De-
veloping trust that information will be handled appropriately is
not too difficult when it is being used within a security enclave,
but the problem becomes much more difficult when critical in-
formation is used across organizational units, or across Services,
or with coalition partners.

Although agent-based modeling and simulation have been used to
gain insights into the collective effect of various types of coordi-
nation failures among independently interacting entities, this kind
of analysis has not been much applied to IT systems of systems.
Consequently, relatively little is understood today about how to
impose design constraints that limit or reduce such SoS failure
modes.

The current practice is to understand, develop, assure, and then
finally field systems. In the understanding and developing phases,
software and system engineers often fail to recognize that accept-
able behavior of software-reliant systems depends not just on
acceptable functionality but also on non-functional properties
such as security, reliability, openness, adaptability, and so on.
Failure to address these non-functional properties, or quality
attributes, early in system development or evolution results in
frequent unacceptable system behavior and delays in fielding.
There are too few early architectural tradeoff analyses based on
quality attribute reasoning.

3. RESEARCH NEEDS
Suggested research falls in two parts: developing theories and
principles for determining which assurance activities and argu-
ments contribute most to obtaining justified confidence in a sys-
tem’s behavior, and developing valid assurance arguments to
ensure that SoS failure modes are adequately addressed.

3.1 Assurance Argumentation
Failure Mode, Effects, and Criticality Analysis (FMECA) and
Fault Tree Analysis (FTA) are standard techniques used to find
design errors in hardware systems. The notion of doing FMECAs
and FTAs for software systems has been proposed by others
(Haapanen 2002) but given how software systems are architected
and documented today, it was never quite clear how to trace out
the effects. But a structured argument (demonstrating some prop-
erty of a system) captures the reasons why the system is believed
to work. One could use an FMECA/FTA approach on such an
argument structure. For example, one could hypothesize that some
claim is false or only partially true or only true some of the time
(i.e., a “fault” in the argument structure). The next step would be
to analyze the effect of this defect on higher level claims in the
argument, deciding how the failure might be manifested in actual
system operation, how critical the effect of this failure would be
on system behavior, how often it would occur, etc. In short, de-
velop an estimate of the impact of falsity of the claim. Effort de-
voted to demonstrating that the claim is true will “buy down” the

impact of its being false. This then becomes a measure of value of
each claim in the argument structure and a way to allocate assur-
ance resources based on buy-down of risk.

The above approach identifies the impact of a claim’s being false.
A complementary approach is to look at what argumentation defi-
ciencies might make the claim false (i.e., what oversights or mis-
takes might exist in the supporting argument). For example, sup-
pose a proof has been provided that some system property holds.
What would make this proof irrelevant to the actual system? Any
such defect would mean that the proof has no value in demonstrat-
ing that the hypothesized system property holds, and so the over-
all argument would be weakened. Given this impact, we would
look at the various ways in which proofs can be irrelevant (e.g.,
by being based on an incorrect model of the system’s actual im-
plementation) and see what assurance efforts have been performed
to eliminate these possible sources of proof irrelevancy. Based on
experience, we can estimate how often experienced engineers
make these kinds of mistakes, and we then have an estimate of the
likelihood that this kind of assurance deficiency is present. This
leads to an estimate of the value of gathering assurance evidence
showing that the deficiency is not present.

Both approaches provide a new way of evaluating the soundness
of structured arguments. Both approaches are likely to be success-
ful because they are based on the standard FMECA and FTA ap-
proaches to reasoning about design errors in hardware systems.

3.2 SoS Failure Modes
If we are going to achieve increased confidence in the behavior of
a system of systems under all circumstances, we need to under-
stand the ways in which such systems fail, and in particular, the
failure modes that are distinct from those of monolithic systems
(whose evolution and content is completely under control of a
central authority). For example, because SoS constituents evolve
independently, it is possible for the collective set of evolutions to
gradually degrade some desired overall SoS quality, e.g., end-to-
end performance for certain threads. How can such degradation be
detected and mitigated, or what constraints can be placed on con-
stituent evolution that help to ensure maintenance of desired SoS
properties under all (and changing) operational conditions? If SoS
constituents fail to adapt to changing operational conditions be-
cause no individual change can satisfy the collective need, then
failure to adapt because of failure to collaborate might be consi-
dered a particular type of SoS failure mode or failure mechanism.

4. CONCLUSION
Our goal is to make the assurance process more efficient and more
effective. By establishing methods for evaluating the soundness of
an assurance argument, we will be able to establish criteria for
determining which elements of the assurance process contribute
most to establishing justified confidence in system behavior. With
this information, organizations can begin to intelligently make
choices from among assurance techniques, concentrating on those
that are most efficient. By addressing SoS failure modes, we can
begin to identify patterns of failure that will be increasingly im-
portant in a world in which systems are increasingly interdepen-
dent. The identification of underlying patterns of SoS failure will
lead to quicker identification and mitigation of such failure modes
in SoS design, construction, and evolution.

5. ACKNOWLEDGEMENTS
The ideas in this paper are the result of the research and ongoing
discussion of the members of the System of Systems Software
Assurance Initiative of the Research, Technology, and System
Solutions Program of the Carnegie Mellon University’s Software
Engineering Institute. The authors are technical leaders of that
organization and are greatly indebted to their colleagues.

6. REFERENCES
[1] P. Haapanen and A. Helminen. Failure Mode and Effects

Analysis of Software-Based Automation Systems. Helsinki:
STUK, 2002.

[2] T. P. Kelly and R. A. Weaver. "The Goal Structuring Nota-
tion—A Safety Argument Notation." Proceedings of the De-
pendable Systems and Networks 2004 Workshop on Assur-
ance Cases. IEEE, 2004.

[3] B. Littlewood and D. Wright. "The use of multi-legged ar-
guments to increase confidence in safety claims for software
based systems: a study based on a BBN analysis of an idea-
lised example." IEEE Transactions on Software Engineering
33, no. 5 (May 2007): 347–365.

[4] J. D. Musa. "Operational Profiles in Software-Reliability
Engineering." IEEE Software 10, no. 2 (March 1993): 14-32.

[5] Northrop, L. et al. 2006. Ultra-Large-Scale Systems: The

Software Challenge of the Future. Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, PA.

[6] SAE International. SAE JA1002, Software Reliability Pro-
gram Standard. SAE International, 2003.

[7] UK Ministry of Defence DEF STAN 00-55 Requirements for
Safety Related Software in Defence Equipment. 1997.

[8] W. Vogels. "Eventually Consistent." CACM 52, no. 1 (Janu-
ary 2009): 40-44.

