On the Anonymization and Deanonymization of
NetFlow Traffic

Michalis Foukarakis*, Demetres Antoniades®*,

Spiros Antonatos*, Evangelos P. Markatos*

*Institute of Computer Science (ICS),
Foundation for Research and Technology Hellas (FORTH),
P.O BOX 1385, Heraklion Crete,

GR7-1110, Greece
{mfukar,danton,antonat,markatos } @ics.forth.gr

Abstract—Netflow is an efficient and flexible mechanism to
collect network data and share them to security applications that
require distributed knowledge. As information sharing breeds the
danger of revealing user and network information, anonymiza-
tion of Netflow data has to be applied before they are shared.
To accomodate anonymization needs we have developed anontool.
Anontool allows per-field anonymization up to the NetFlow layer
offering a wide range of primitives to choose from. However,
although we have the tools to perform anonymization, work
needs to be done on the policy part. Some policies may be
proven weak, if a third party can deanonymize the data and
reveal user information. We demonstrate 2 possible attacks on
anonymized traces. The first one is called active fingerprinting,
where a malicious user injects packets that she can identify
in an anonymized trace and thus reveal the mappings of IP
addresses. The second one is the disclosure of web pages that
users access based on the flow sizes recorded in a trace. We also
present solutions to these attacks along with two anonymization
primitives which we have implemented in anontool in order to
defend against such attacks, to the extent possible.

I. INTRODUCTION

As computer networks evolve and grow in size, the need
for distributed network management and monitoring becomes
more important than ever. Network activity log sharing has
gained significant popularity recently, not only among com-
puter security engineers and administrators, but also among
researchers, developers and educators. To accommodate this
increasingly popular need for information sharing as well as
the fundamental lack of trust between members of different
communities, several tools have emerged which enable their
users to anonymize potentially sensitive information within
those logs.

A popular format used by network activity logs is the Cisco
NetFlow [1] format. The NetFlow format is based on the
concept of a flow, which Cisco has defined as a set of packets
that have the following five properties in common: source and
destination IP address, source and destination port numbers, as
well as the IP protocol field value. The most recent evolution
of the Netflow format is version 9, which is currently the
basis of the IETF [2] standard for information export. Given
this fact, NetFlow is likely to gain even more in popularity.

Many diverse tools and techniques have been implemented
for anonymization purposes. Most of them, however, are cus-
tomized for specific purposes or provide limited functionality.

Our approach, anontool, is a general-purpose tool that can
anonymize live or stored traffic. Using Anontool, a user can
choose from a large variety of functions to use on each and
every application field, to implement her anonymization policy
of choice. Anontool supports a number of protocols, but in this
work we will focus on the NetFlow protocol.

Despite what tools one might use, the final result log of
the anonymization process is likely to be publicly available.
There is always the potential for an adversary to be able
to infer a large amount of information from the log, if the
anonymization policy is not chosen carefully. We will describe
a few scenarios where an adversary can manipulate the log
anonymization process in order to deduce useful information
about the original trace. Given those attack scenarios, the
need for techniques to defend against them becomes clear.
We therefore describe two anonymization primitives which
can aid in protecting against such attacks. A proof-of-concept
implementation of them has already been incorporated into the
latest version of Anontool.

II. ANONTOOL DESCRIPTION

Anontool is a command line tool which enables users to
anonymize both live and stored traffic. Its functionality is
based upon the Anonymization API [3], in short AAPI. AAPI
allows users to write their own anonymization applications.
They can define which anonymization function be applied on
any field, having complete freedom in deciding their policy.
It provides a large set of anonymization primitives, from
setting fields to constant values and performing basic mapping
functions to prefix-preserving anonymization and several hash
functions and block ciphers, as well as support for regular
expression matching and replacement. AAPI can operate on
a wide variety of protocols, ranging from Ethernet to HTTP
and FTP in the application layer. All protocol fields are being
made available to the user application.

AAPI has been implemented as a user-level library in the
C language; it provides function calls for creating packet
“streams”, filtering using BPF filters, and of course applying
anonymization functions. One of its main design goals was to
accomodate extensibility, and potential developers are able to
write their own protocol decoders similar to the ones already
available for HTTP or NetFlow protocols, such as SMTP, or



their own anonymization primitives. It is also straightforward
to write code that supports new input sources with few code
additions.

Since the NetFlow format for packet export continuously
gains on popularity [4], [5], [6] we have decided to extend
AAPI, and subsequently Anontool, with support of the Cisco
NetFlow packet export format. We took advantage of AAPI’s
extensibility and implemented decoding and anonymization
functions for both version 5 and the newly defined version
9 of the NetFlow format. We take full advantage of the
template-based nature of the NetFlow v9 format, to accurately
provide the user with complete control of every field made
available from information export nodes, such as Cisco routers
or network monitoring applications that support the NetFlow
export format, even in the event NetFlow templates change
during a monitoring period.

Anontool is a fairly simple C application that makes use of
the AAPI library to support anonymization of packet traces.
It does not implement any anonymization functions in itself;
it is much more transparent and less error prone for all
the anonymization functionality to reside inside the AAPI
implementation. It provides users the choice of protocols and
functions to apply in order to create their anonymization
policy. Anontool also implements some functionality such as
preprocessing a trace to extract information which may be
consequently used in the actual anonymization process; we
will explain in further detail in Section IV.

III. ATTACKS AGAINST NETFLOW ANONYMIZATION
POLICIES

In this section, we describe in detail two attacks against
conventional anonymization policies and outline related work
in both packet traces and flows.

We assume that the anonymization process is applied onto
NetFlow traces, which are, in the general case, generated from
a router at the border of a monitored network, and export
information for traffic entering and exiting this particular
network. The network could be of any size or topology; from a
small home network to larger networks belonging to research
institutes, universities, and so on.

In our threat model, we assume an active adversary that
is able to direct traffic to the monitored network at will,
has knowledge of the address space it occupies and can
potentially compromise hosts inside it. We assume a rational
attacker, for whom it is less costly, or more useful even, to
“probe” and profile the monitored network before mounting
attacks against it. The adversary may also have several external
hosts under her command. She is also able to gain access
to the anonymized traces, which will most likely be publicly
released.

The first attack, which we call “Active Fingerprinting”,
aims to break the mapping algorithm when used on IP ad-
dresses. Mapping takes the set of IP addresses in a trace and
performs a simple mapping function onto another totally dif-
ferent set. The second set may be the output of a deterministic
function seeded by a random quantity, such as the drand48()

family of functions, or a very simple sequential assignment
of unique IP address numbers which results in a one-to-one
mapping.

The second attack aims at using the information about
flow sizes contained inside NetFlow traces in order to deduce
information about either hosts inside the monitored network or
hosts that may be outside it, such as their IP address, network
usage profiles, etc. We name this attack “Statistical Signature
Inference”.

A. Active Fingerprinting

The idea that active fingerprinting exploits is that the map-
ping between real and anonymized IP addresses is one-to-one.
Consequently, if the mapping on one flow is discovered, the
mapping on the whole trace is compromised. This attack has
been described on packet traces in [7], [8] and we demonstrate
its applicability on NetFlow records below.

Using this idea, an adversary can establish flows from a host
under her control, which resides outside the victim network,
to one or more victim hosts inside it. These flows will appear
in the anonymized trace. The challenge for the adversary is to
construct those flows in such a way that they will be easily
distinguished in the final trace. This can be accomplished in
a variety of ways; she can craft a flow with specific attributes
which are known not to be anonymized (the list is as large
as the potential fields listed in a NetFlow record, and may
usually include TCP flags, IP ToS, and so forth), or in the
unlikely scenario where flows are fully anonymized, she can
use temporal patterns which are easy to detect. Even a specific
packet size can be used as an identifier for the packets involved
in a dictionary attack. If the traces from the monitored network
span a wide enough time period, the latter attack is very
feasible as the trace contains a large number of attack packets.

A trivial way an adversary could create these flows is to
perform a SYN scan on the victim network’s address space.
In this case, even if there is a clear temporal pattern which is
easily detectable in the anonymized trace, it can be defeated
in an easy way. Setting only the SYN bit in TCP flags and
setting the number of bytes to a specific quantity makes the
adversary unable to distinguish live hosts from unused address
space.

We discuss a more general measure to defend against this
kind of attack in Section IV.

B. Statistical Signature Inference

The idea behind this kind of attack is that each web page
has a unique and complex enough structure which allows them
to be identifiable despite our best efforts to anonymize their
presence in NetFlow logs and preserve useful information in
them as well.

A naive first effort would be the following. Consider the
web sites interesting.com and newssite.com, and that a web
session with each of them is n and m bytes long, respectively.
The adversary can use one of the hosts under her command
to initiate a web session to these sites and view the NetFlow
records for source and destination IP addresses, port numbers,



and the total size of traffic exchanged. Assuming web page
sizes do not radically differ from one session to another, and
that NetFlow data records TCP traffic in its entirety, it is
possible to filter out the set of web browsing sessions from
an anonymized trace and construct a frequency histogram with
the number of bytes transferred in each flow. According to our
assumptions above, it is possible to see a great deal of flows
around the values of n and m. The adversary can employ
the same tactic to find those flows, and then gather further
information about hosts inside the monitored network, which
can then be used to answer questions such as: “What web
sites does host A visit?”, “Which hosts do frequently visit
www.google.com?”, and make user profiles.

Past work [8] has demonstrated this kind of attack on packet
traces. Recent work [9] has extended and demonstrated this
attack on NetFlow logs as well. We argue that the fundamental
property of web sessions that allows this kind of analysis to
be exploited is the fact that web sessions to different hosts
produce flows with similar characteristics, especially in flow
size. In Section IV we are going to view our proposal of a
primitive which deals with this issue.

IV. COUNTERMEASURES

The previous section described two attacks for revealing
sensitive information from an anonymized NetFlow trace. In
this section, we will describe our proposed ways to deal with
the aforementioned attacks, and evaluate their consistency.

A. Bidirectional Mapping

We propose a way to deal with the issue that does not
iteratively consider all the combination of fields an adversary
may use to craft her flows. Instead, we aim to eliminate
the one-to-one mapping property without losing all of the
information the trace can provide. To this goal, we propose
a bidirectional mapping to be used, that is different mapping
for each traffic direction. Let A be the IP address of a live
host inside the monitored network, and B the IP address of
a host outside the monitored network. Conventional mapping
functions would map a flow (A, B) to (A”, B”) and a flow (B,
A)to (B”, A”). Bidirectional mapping maps a different address
to A according to the direction of the flow that involves it. In
the case of our example, the flow (A, B) would be mapped to
(A”, B”) yet the flow (B, A) would receive a different mapping,
say (C, D).

Using this anonymization scheme we prevent the attacker
from identifying her own network flows inside the anonymized
trace. Thus, it is made impossible to correlate her data with
the trace information and reveal any sensitive data from it.
Also, most of the statistic information derived from the trace
remains the same. We can still gather information about the
incoming and outgoing traffic of the organization and identify
the producers and the consumers of the network. Correlation
of incoming and outgoing traffic for a specific IP address can
not be done, but we argue that this is a general trade-off of
the anonymization process and is up to the organization to

decide whether to sacrifice sensitivity for usability in the data
it makes public.

The implementation of such a primitive is quite easy, and
it is already included in the stable version of Anontool.

B. Random Value Shifting

In order to diminish the viability of a statistical identification
approach, but still be able to calculate some basic representa-
tive statistics about a NetFlow log, we propose a randomized
shifting of values, which we will describe below.

Given a NetFlow data field with a given value range, our
intent is to “scramble” its values across the NetFlow log to
the point that we make an adversary unable to distinguish
between two web sessions with the same web site and two
web sessions with web sites that have similar web pages in
size, but not as much as to destroy all the useful information
a log may provide. More specifically, we intend to preserve
metrics such as arithmetic averages and standard deviation,
as well as other descriptive statistics. On the other hand, we
wish to obfuscate inferential statistics, so that an adversary
would be unable to reach conclusions that extend beyond the
immediate data alone.

For clarity, we are going to use the flow size NetFlow field
as an example from here on.

Our method is to add to the value of the flow size field
a random value. This value is chosen uniformly at random
from a fixed range [-d, d]. One of the basic properties of
our choice is it allows us to directly preserve the arithmetic
average and standard deviation of the original distribution of
flow size values. The parameter d may be chosen arbitrarily,
but we will demonstrate the importance of an educated choice
with an example. Consider, as an elementary example, three
flows with sizes of 15, 17 and 25 bytes, which repeatedly
occur within a NetFlow log. Choosing d to be equal to two,
this is what happens in the anonymized trace: The flows with
the initial size of /5 now occur with flow sizes from thirteen
to seventeen. Flows with the size of /7 bytes now occur with
sizes from fifteen to nineteen. These two groups of flows are
now “mixed up”’; what happens is that the confidence intervals
for the random variables which represent the flow sizes of
each flow are now different, and they overlap. On the other
hand, that is not the case for the flow with size 25 bytes. It
now occurs on the anonymized trace with values from 23 to
27. An adversary is still able to distinguish this flow from
the other two with relative ease. Now we can easily conclude
that a proper choice for the parameter d will have to take
the entirety of the NetFlow log into consideration. This is an
interesting topic for future work, which we will not further
explore in the rest of the paper due to lack of space.

To verify our assumptions about the descriptive statistics of
a NetFlow log being preserved after the application of random
value shifting, we implemented it in Anontool and proceeded
to process a NetFlow packet trace with it. Our choice for the
parameter d was the minimum flow size observed, divided
by 2. As we previously mentioned, this is most likely not
a good choice for real world applications, but it is good



0.8

0.6

CDF

0.4 —

0.2

0 T T T T 1

0 5000 10000 15000 20000 25000
Flow Size (Bytes)
Anonymized data
Non-Anonymized data
Fig. 1. Cumulative distribution function of flow sizes

enough for the experimental evaluation we describe. We then
calculated the arithmetic average and the standard deviation
for both the original and the anonymized trace, which we
present here. The NetFlow trace spanned a time period of three
minutes and a bit more than 150.000 bytes transferred. Table I
presents the values calculated for both traces. We can see
that the average and standard deviation do not largely differ.
This supports our initial hypothesis, that we can preserve
some amount of general information about NetFlows in the
trace even after performing random value shifting. Figure 1
presents the cumulative distribution function of the distribution
of flow sizes in the original, and the anonymized traces, for
comparison and reference. As we can see the distribution
remains, almost, identical after the anonymization process.
This enforces our initial argument that the information that
can be derived by the anonymization process are not affected
by the value scrambling.

Trace Average Flow Size (bytes) | Std. Deviation

Original 1843.69 7336

Anonymized 1845.02 7335.52
TABLE I

SOME BASIC DESCRIPTIVE STATISTICS REGARDING A NETFLOW TRACE
BEFORE, AND AFTER ANONYMIZATION.

Currently, Anontool performs some basic trace pre-
processing when random value shifting is going to be used.
It processes all packets in a trace in order to extract the
information it needs to calculate d. This information is depen-
dent on the field that random value shifting is being applied
on. After the value of d is calculated and chosen according
to the user’s method of choice, the actual anonymization
process takes place. It is possible to estimate d during the
anonymization process, however, as knowledge of the whole
trace is impossible to have until the whole trace has been
processed, we believe the estimated value will not yield as
good a result as when a trace can be preprocessed and the
value of d calculated on it.

V. CONCLUSIONS AND FUTURE WORK

We described two scenarios where an attacker can, by
manipulating the anonymization process, deduce useful infor-
mation about non-a

ation about non-anonymized data in NetFlow traces. Those

attacks have already been carried out in packet traces, and
we have shown their applicability on NetFlow logs as well.
In order to protect against these types of attacks, we have
introduced two anonymization primitives and discussed their
use and parameterization in order to make educated choices
about anonymization policies. We also provided data which
suggest their use still preserves useful data about NetFlow
logs, without exposing inferential statistics to potential adver-
saries.

VI. AVAILABILITY

Anontool can be downloaded from http://dcs.ics.forth.gtr/
Activities/Projects/anontool.html. The application has been
installed and tested on RedHat and Debian distributions of
the Linux operating system.

REFERENCES

[1] Cisco Systems, Inc, “Netflow Specification.”” [Online]. Available:
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml

[2] “Ip flow information export (ipfix).” [Online]. Available: http://www.ietf.
org/html.charters/ipfix-charter.html

[3] D. Koukis, S. Antonatos, D. Antoniades, P. Trimintzios, and E. Markatos,
“A generic anonymization framework for network traffic,” in Proceedings
of the IEEE International Conference on Communications (ICC 2006),
Jun. 2006.

[4] M. P. Collins and M. K. Reiter, “Finding peer-to-peer file-sharing using
coarse network behaviors,” in ESORICS, 2006, pp. 1-17.

[5] H.-J. Kang, M.-S. Kim, and J. W.-K. Hong, “A method on multimedia
service traffic monitoring and analysis,” in DSOM, 2003, pp. 93-105.

[6] B. Nickless, J.-P. Navarro, and L. Winkler, “Combining cisco netflow
exports with relational database technology for usage statistics, intrusion
detection, and network forensics.” pp. 285-290.

[7]1 R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and packet trace
anonymization,” ACM Computer Communication Review, vol. 36, no. 1,
pp. 29-38, Jan. 2006.

[8] D. Koukis, S. Antonatos, and K. G. Anagnostakis, “On the privacy risks
of publishing anonymized ip network traces,” in Communications and
Multimedia Security, 2006, pp. 22-32.

[9] S. Coull, M. Collins, C. Wright, F. Monrose, and M. Reiter, “On web
browsing privacy in anonymized netflows,” in 16th USENIX Security
Symposium, 2007, pp. 339-352.



