
Consistency in Dynamic Reconfiguration

Peter Feiler, Jun Li

Software Engineering Institute/Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
This paper examines issues relating to the impact of

change in real-time control applications. In particular,
Simplex-based systems are being considered, a
technology that supports dependable upgrade of systems
in a fault tolerant manner through the concept of analytic
redundancy [4]. Such systems provide flexibility to real-
time systems for dynamic reconfiguration and dependable
incremental and online upgrade. The paper focuses on
offline analysis to determine inconsistencies in
configurations and identify reconfiguration paths to
recover to consistent configurations. The results are used
by runtime configuration management to avoid such
configurations. Identification of inconsistent
configurations is improved through modeling of
application semantics in the control domain and utilizing
them in the analysis. The same analysis supports design
time analysis of potential impact of changes.

1. Introduction

Computer-based control systems continue to be a
growing trend. The flexibility of software provides an
opportunity to allow these systems to be evolved, adapted,
and tuned in a rapidly changing operating environment.
However, this flexibility also brings liabilities in that such
changes may have unintended side effects that can cause
the system to fail. In particular, real-time systems are quite
sensitive to changes in the timing behavior and the impact
of change on the semantics of the application, i.e., control
system semantics. Consequently, in managing the
execution of a complex real-time system many
dependencies among different components must be
considered. While these dependencies can be easily
understood for a small system, in larger systems they form
complex networks. Manual methods used in practice are
inadequate and error-prone. Thus, technology-based

solutions have to be considered in supporting dependable
upgrade of mission critical systems, i.e., component
upgrade without degradation of the system operation
despite residual errors.

One such solution is the Simplex technology [17].
Simplex supports runtime reconfiguration and component
replacement in a fault tolerant manner. Components may
exist in variants. Each variant executes as a separate
process to provide protection from addressing faults.
Scheduling analysis such as Generalized Rate Monotonic
Analysis [8] and runtime monitoring of execution time
limits protect from timing faults of variants. One variant is
identified as the leader, i.e., its output is passed on as the
output of the component. Leadership can be changed
dynamically, i.e., a component can be reconfigured at
runtime from one variant to another. In addition, variants
can be replaced and new variants can be added online, i.e.,
while the system is operating.

The concept of an analytically redundant component
(ARC) is used to provide protection from application
semantic faults. Variants of a component are considered
analytically redundant if they produce differing, but
semantically acceptable results. This means that the output
may be different, but the effect of the output on the
controlled plant in a control system is within an intended
operational region. One of the variants is a highly reliable
controller variant with a well-known operational region,
known as safety region. It can maintain stability of the
controlled plant within this state space. Other variants may
be given leadership, but their performance is monitored by
checking the output and by checking of the resulting plant
state against the safety region. If a fault is detected,
leadership is changed to another variant, if necessary to
the safety controller. Dependable system upgrades are
supported by allowing new variants of components to be
inserted and leadership given to them.

The basic Simplex fault tolerance approach is reactive in
nature. Faults in individual components and
inconsistencies between components are observed on a
component basis and the system is reconfigured
incrementally. A reconfiguration step may result in an
inconsistent configuration, the effects of which may be
observed by one of the components resulting in further
reconfiguration. The system configuration consisting of all
safety variants is assumed to be a consistent configuration,
generating no further side effects.

 In this paper we discuss how the Simplex fault
tolerance capability can be augmented with proactive fault
avoidance through detection of and recovery from
inconsistent configurations. Our approach is to perform
offline analysis to determine
• whether a given configuration is inconsistent, thus,

should be avoided as a target configuration;
• what a desirable reconfiguration is in case of an

observed fault or inconsistency;
• what the impact of a change is and how it can be

reduced.
The results of the offline analysis are then used by

runtime reconfiguration management support to avoid
switching to configurations that are deemed inconsistent
based on the model description.

The paper proceeds as follows. Section 2 describes a
basic system modeling capability and introduces the
concept of configuration consistency in terms of syntax,
type, resource utilization, and semantics. Section 3
discusses inconsistency of configurations in the context of
analytically redundant, multi-variant components and
approaches to managing such inconsistencies. Section 4
focuses on capturing application semantics, resulting in
recognition of additional inconsistencies. Section 5
discusses the impact of change and ways to reduce the
scope of impact.

2. Consistency of System Configuration
Models

A number of modeling approaches have been pursued in
describing the configuration of systems. In the 70s and
80s emphasis has been placed on modeling source code
configurations and supporting the system build process
based in this system model [6, 21]. The models captured
provision/use dependencies between components. The
concept of well-formed models has been introduced by
Habermann and Perry [7]. In the 80s configuration
languages were developed as a means of modeling of
runtime configurations, and attention was given to
mechanisms for consistently performing runtime
reconfiguration [9]. More recently, architectural
description languages have received research attention
[18]. Their focus is on modeling and analyzing systems as

logical components, their interconnections, and
constraints on components and connectors in terms of type
and behavior. Their initial focus has been on modeling a
single system configuration, though, recently the need for
modeling more dynamic architectural characteristics has
been recognized [2]. Some architectural languages, such
as MetaH [22], specialize in modeling real-time
applications - their toolsets analyzing schedulability and
generating appropriate execution environments.

For modeling Simplex-based applications we build on
the capabilities of such modeling languages. In such
models systems are expressed as compositions of
components and connectors. Components have ports to
which connectors are attached. Ports can be directional
(in, out). Ports can be the source or destination of more
than one connector. The resulting system topology
represents a dependency graph. The destination
component of a connection is referred to as a direct
successor of a (source) component. The source component
of a connection is referred to as a direct predecessor of a
(destination) component. A component can have multiple
direct dependents, and it may be directly dependent on
several other components. A change to a component may
impact its direct dependents as well as their dependents,
i.e., the transitive closure of this dependency relationship.
The paths of these transitive closures are referred to as
dependency chains in [20].

A given composition (configuration) is considered
syntactically well-formed [14], if it is complete and
consistent. A configuration is complete if all component
ports are connected, and all connectors have a source and
destination. A configuration is syntactically consistent if
connectors are attached to component ports and the
direction of the connection matches the direction of the
ports. Components, connectors, and ports may be typed. A
configuration is considered type consistent if it satisfies
type restrictions, e.g., a connector of a certain type may
only accept components of certain types as its source and
destination and port types of the source and destination
ports must match. Configurations that are syntactically
consistent may be type inconsistent.

This concept of configuration consistency can be
extended to include resource utilization and schedulability
- critical for real-time applications. In particular,
schedulability analysis based on particular scheduling
approaches, e.g., Generalized Rate Monotonic Analysis
(GRMA) [8] can determine whether a particular task
configuration is schedulable, i.e., the configuration is
consistent with respect to timing. MetaH, an architectural
language for real-time applications [23], has the capability
of modeling and analyzing multiple task configurations.
Such analyses can be adapted to incorporate resource
knowledge of ARCs.

Finally, configurations may be considered semantically
inconsistent. Interface specifications often do not capture
the application semantics, while components make use of
such knowledge. An example is a higher-level control
system component making assumptions about the
responsiveness of the low-level controller. Such hidden
dependencies can cause problems when systems change.
In short, configurations are analyzed to identify
inconsistencies - the richer the model the more
inconsistencies can be detected.

In the next sections we will first address the notion of
configuration inconsistency in the context of Simplex-
based systems, and then examine how representing
application semantics can improve our ability to detect
inconsistent configurations.

3. Variant Configurations and
Reconfiguration

In systems with ARCs, components have multiple
variants with one variant (the leader) providing the output.
In such a system we have variant configurations, i.e., the
set of leader variants, and execution configurations, i.e.,
the set of variants executing at any one time. Consistency
of each possible configurations can be analyzed statically.
Static analysis determines which configurations are
inconsistent. It also determines, which component variants
must be changed to transition from one consistent
configuration to another. This set is also known as
changeset in traditional configuration management [5].
The system may not be able to perform this transition
atomically, i.e., intermediate reconfiguration steps may
result in temporary inconsistent configurations. In this
section we first discuss the identification of inconsistent
configurations in the context of variants, and then examine
the concept of reconfiguration transaction.

An actual Simplex-based prototype system is used to
illustrate some of the points in the paper. This system
consists of two independent controlled devices that need
to operate in a coordinated manner. In the lab prototype
these devices are highly unstable inverted pendulums that
transport a rod on their tip. The software system is
illustrated in Figure 1. It consists of a device interface
component and a controller component for each pendulum
(PC1, PC2). The pendulum controller is responsible for
balancing the pendulum. In addition, a coordinator
component is responsible for keeping the pendulums
aligned. The software runs on several networked
processors. The pendulum controllers and the coordinator
are ARCs, i.e., consist of a safety, a baseline, and a
upgrade variant. The safety variant of the pendulum
controller together with the monitored safety region
ensures that the pendulum does not fall. The other two
variants move the pendulum to desired positions

(setpoints). The baseline and upgrade variants of the
coordinator move the pendulums at speeds supported by
the respective pendulum controller variant, while the
safety variant handles misalignment of pendulums,
recovering pendulum controllers, and system faults, such
as network communication faults.

Pendulum 1

PC1 PC2

Coordinator

Pendulum 2

Movement Commands

Variants

Figure 1 Coordinated Pendulum System

3.1. Inconsistent Variant Configurations

Static analysis can determine the set of configurations
that are considered inconsistent. A configuration is
inconsistent if the connection between at least one pair of
components is considered inconsistent. Beladi [3] used
this idea to determine inconsistencies in configurations of
operating systems loaded with various patches based on a
specified set of constraints between combinations of patch
sets. Such constraints may be supplied by the developer
based on empirical evidence, even though they may not
know or be able to express the root cause of this
inconsistency. Our consistency analysis can identify such
configuration constraints by checking for syntactic, type,
resource, and semantic inconsistency between connected
component variants. In our example, the baseline and
upgrade variants of the coordinator are inconsistent with
the safety variant of the pendulum controller as they
supply setpoints, which are ignored by the safety variant.

Variants may be considered compatible, i.e.,
interchangeable with respect to their interaction with other
components. The concept of compatibility has been
investigated and formalized previously [21, 15, 12, 14]. In
our context two types of compatibility are of interest:
strict compatibility, and upward compatibility. Two
variants are considered strictly compatible if other
components are only dependent on an interface
specification that is satisfied by both variants. This means
that a reconfiguration between those variants in either
direction has no detectable side effects.

A variant is considered upward compatible with a
second variant, if the first variant can replace the second
and all specified dependencies by connected components
continue to be satisfied, i.e., a reconfiguration from the
first to the second variant has no side effects. This does

not hold for the inverse reconfiguration operation. As with
connection constraint sets, compatibility constraints may
be supplied by the developer based on empirical evidence,
or they may be derived from other specified information.
Compatibility can be determined for each component with
variants, and utilized in determining the set of inconsistent
configurations.

Additional constraints may apply to transitions between
the variants of a component. For example, a safety region
violation may trigger the need for reconfiguration, and the
safety variant is the only acceptable destination variant to
recover from this violation. In case of a failure by a
variant other than safety region violation it is acceptable
to transition to a variant other than the safety variant.
These reconfiguration constraints are monitored at
runtime, but the possible transitions can be validated
offline against the compatibility constraints.

3.2. Consistent Reconfiguration

Given the above analysis information we can determine
whether a configuration is inconsistent, either a
configuration requested by the operator of the system
before it is carried out, or a configuration as a result of an
ARC changing leadership due to an observed fault. Such a
fault is considered hidden because it is observed by
monitoring the safety region rather than detected through
analysis of the model. Instead of waiting for other ARCs
to observe the effects of such a inconsistent configuration
and reconfiguring themselves, we can identify a desirable
reconfiguration transaction, i.e., a set of reconfiguration
steps by different ARCs that lead to a consistent
configuration. To illustrate assume that all ARCs operate
with the baseline variant leading and one pendulum
controller ARC switches to the safety variant. Without
proactive reconfiguration, misalignment is observed and
the coordinator switches to its safety variant to attempt
realignment. This misalignment fault can be avoided by
recognizing that the configuration is inconsistent, i.e., the
coordinator provides setpoints to both pendulum
controllers, one of which ignores them as input. A
desirable consistent configuration is for the coordinator to
have the other pendulum follow the recovering pendulum.

The set of desirable reconfiguration transactions can be
determined through static analysis and constrained by the
statically known transition constraints between variants.
Appropriate subsets of desirable reconfiguration
transactions can be associated with each of the runtime
determined (fault triggered) transitions. Each candidate
transaction containing a reconfiguration step with runtime
constraints will have to be checked at runtime whether it is
eligible. Typically, transactions representing recovery
from faults do not contain runtime constraints, while
transactions intended to include new variants are

constrained at runtime. If more than one desirable
reconfiguration transaction remains, one is selected based
on criteria such as smallest number of reconfiguration
steps, or smallest loss in capability or performance by
choosing the configuration with the largest number of high
performance variants.

It may not be possible to perform a reconfiguration
transaction as an atomic operation, i.e., at a single point in
time. For example, different components may execute at
different periods. A reconfiguration from the task
configuration perspective requires that the tasks must be
aligned with the common hyper-period before switching
task sets - taken into consideration by MetaH in their
realization of mode switching [23]. Fortunately, in the
domain of control systems there is lag [19] in the system
to tolerate temporarily inconsistent configurations, i.e.,
permits the incremental execution of reconfiguration steps
within time bounds. Further fault triggered
reconfigurations of analytically redundant components
may occur during a reconfiguration transaction. Either that
particular variant transition is already part of the
reconfiguration transaction being executed, i.e., has no
further impact, or a reconfiguration transaction that
includes this transition as reconfiguration step has to be
identified.

4. Semantics

Our goal is to make use of semantic information in the
configuration model in order to identify semantically
inconsistent configurations that are syntactically
considered consistent. The more semantic information is
provided in the model the better the analysis capability in
identifying inconsistency. Our approach does not require
complete semantic specification because the fault
tolerance mechanisms of Simplex will catch faults not
discovered through static analysis.

A number of ADLs have focused on capturing behavior
properties (Rapide through POSETs [10], Wright with
event pattern constraints on connectors [1]). Other
notations express properties as predicate constraints. We
are building on Perry’s approach of using predicates in a
light-weight form to determine semantic consistency of
configurations (he refers to them as compositions) [11, 12,
13]. Assumptions about acceptable input to a component
are specified as preconditions, constraints that the output
of a component satisfies are modeled as postconditions,
and assumptions the component makes about further
output processing is referred to as obligations. The
approach is considered light-weight because the focus is
not on a verification of a component implementation
against its specification, but on whether the predicates are
satisfied in the configuration. For preconditions we are
looking for matching postconditions of components earlier

in the dependency graph, while for obligations we are
looking for matching postconditions of successors in the
dependency graph.

We will proceed by first illustrating how such predicates
are used to model application semantics, and then
discussing how these predicate-based models are analyzed
to identify potential inconsistency in configurations.

4.1. Capturing Control Semantics

The application domain of control systems has two
major categories of components: inner loop control, i.e.,
components processing continuous signal streams, and
supervisory control, i.e., managing of various operational
modes as result of discrete events in the system. In the
inner loop control, the emphasis is on continuity,
accuracy, and timeliness of data streams and on the data
stream characteristics as a result of various processing
steps. In supervisory control, the emphasis is on the
coverage of the event space and reachability of different
modes. The latter are typically modeled as state machines
or petrinets and will not be discussed in this paper.

Some of the application semantics can be captured
through the type mechanism of the interface specification.
The representation type (int, real, etc), unit of
measurement (meter, inch), and coordinate system can be
mapped into user defined types. Many applications in the
control system domain deal with multiple coordinate
systems, e.g., avionics systems may use a earth-fixed
coordinate as well as an aircraft body-axis coordinate
system. In our example, the position of the pendulum is
represented as integer in units of centimeters with the
middle of the track being the reference point of a one-
dimensional coordinate system.

Additional semantic constraints can be expressed as
range constraints on the input and output values. A
controller may require the setpoint, i.e., the desired state
of the controlled device, it receives to be within certain
limits for it to operate in a stable manner. The component
may supply setpoint within a specified range. The supplier
range has to be contained in the recipient range. In our
example, range constraints include limits on device state
such as cart position and pendulum angle as well as
voltage values supplied to drive the motor of the device -
reflecting physical constraints of the device. In case of the
motor voltage, the motor device enforces the range
constraint by clipping higher voltages to the acceptable
maximum, in our example 4.95V.

In the control domain we are dealing with data streams
and system events. These have properties such as an
arrival rate, which reflects the sampling rate of a device,
or the maximum allowable difference between two
elements of the data stream. In our example, the
pendulum device is sampled at a rate of 50Hz, while

setpoints are supplied to the low-level controller at a rate
of 5Hz. A setpoint is constrained relative to the previous
setpoint value in the data stream, i.e., limit the delta
between desired positions is to be within the stability
region of the controller. Connections of ports with
different sampling rates results in under- or over-
sampling. Intentional over- or under-sampling may be
specified with an input port, while mismatches in rates are
considered inconsistent.

 Variant baseline_controller is
Input sensor: { pend_state: Device_State } every 20 ms;
Input setpoint: {target_pos: desired.pos } every 200 ms;
Output actuator: {m_volt: motor.voltage } every 20 ms;
Pre target_pos in [+

-(Max_Position - Stability_Range)] delta
+

-Max_Step_Size;
Post m_volt in [+

-4.95];
 Property Stability_Range = 10 cm;
 Property Max_Step_Size = 5 cm;
 Property Speed: slow;

 End Variant;

Figure 2 A Pendulum Controller Variant

Predicates can also be used to model the abstracted
control algorithm as state associated with a data stream,
e.g., whether a signal stream has been filtered or
amplified. Constraints on flow order, i.e., the order in
which data is to be processed can be modeled as
preconditions, postconditions, and obligations associated
with each component (primary use of obligations in
Perry’s examples [11]).

In some cases it is more natural to associate a property
with a component than with the data stream being
processed by a component. For example, different
controllers have different performance characteristics,
e.g., responsiveness or smoothness of movement. The
assumptions made by some components about properties
of other components can be expressed as constraints on
those properties.

Some of the components are time sensitive, i.e., they
make assumptions about the execution behavior of the
application. For example, many controllers have an
estimator element that compensates for the time delay
between the reading of a signal (state of the device) and
the time a response is supplied (to the device in our
example, or as a displayed symbol to an operator, e.g.,
pilot). We can model this as a dependency between the
implementation of a component and properties of the
input or properties of other components.

4.2. Semantic Analysis

Configurations are considered semantically inconsistent
if preconditions and obligations cannot be satisfied by
(matched up with) postconditions by following the
dependency graph. In this section we first focus on how

the value of a predicate is determined through propagation
through the dependency graph, and discuss what are
semantically acceptable matches of interface
specifications.

We apply Perry’s concept of propagation logic in form
of propositional calculus [13] to concurrent applications.
Postconditions are assumed to be true, i.e., the developer
asserts that the implementation satisfied the
postconditions. The possible values for the precondition
and obligation predicates are summarized in table 1.

Value Interpretation
Unknown (U) Nothing is known about the

predicate.
True (T) The predicate holds true.
False (F) The predicate holds false.
Possible (P) Known to be true or false along at

least one path and unknown along
at least one other path.

Table 1 Propositional Values

Initially it is unknown whether preconditions and
obligations of a component are satisfied. For the set of
preconditions the graph is traversed in reverse direction,
while for the set of obligations it is traversed in forward
direction. For each encountered component it is
determined whether its postcondition list contains the
same predicate or its negation. A predicate match
indicates that the precondition is satisfied. The negation
indicates that it cannot be satisfied and the search can be
terminated. Perry refers to the latter as precondition
ceiling and obligation floor [13]. The dependency graph
may be a cyclic directed graph. When encountering a
cycle in the traversal of the graph in order to find
predicate matches, the cycle has to be traversed only once.

Prec or OblcPrec / Oblc

+
Poste

U T F

U U T F
T T T F

Po
st

e

F F T F

Table 2 Predicate Match Operator

The set of preconditions and obligations can be viewed
as a vector Prec or Oblc. The postconditions of the
encountered components can be viewed as vectors
(Poste)of the same size with values true (T) -
postcondition holds, false (F) - negation holds, unknown
(U) - predicate not in postcondition set. We can introduce
two operators on those vectors. The operator "+"
represents matching of Preconditions/Obligations with
Postconditions of encountered components. Table 2
defines how the operator applies to each element of the
vectors. The operator is not commutative.

Components may have multiple direct predecessors or
successors. In this case all paths have to be considered
and the results merged. The merge operator “Π” on
Prec/Oblc is introduced for this reason. Table 3 defines its
value mappings. The propositional value possible is
indicated as PT(at least one True), PF(at least one False),
PT/F(at least one True and False) This operator is
commutative. This merge operator can be interpreted in
two ways: all paths must satisfy the predicate, or at least
one path must satisfy it. In the former case all values U,
PT, PF, and PT/F are interpreted as F. In the latter case PT

and PT/F are interpreted as T, while U and PF are
interpreted as F. Typically the first interpretation of merge
is used, thus, is the default interpretation.

V2V1ΠV2 U T F PT PF PT/F

U U PT PF PT PF PT/F

T PT T PT/F PT PT/F PT/F

F PF PT/F F PT/F PF PT/F

PT PT PT PT/F PT PT/F PT/F

PF PF PT/F PF PT/F PF PT/F

V1

PT/F PT/F PT/F PT/F PT/F PT/F PT/F

Table 3 Merge Operator

In its simplest form the transitive closure of
dependencies in a dependency graph takes into
consideration all outgoing connections (connections
through input ports in reverse traversal and output port
connections in forward traversal). This graph can be
reduced by taking into account the data flow within a
component between input ports and output ports. A data
object in the input port may also be specified in an output
port, or a data object in an output port is affected by it. In
the latter case, the developer may have to explicitly
provide such a dependency, or it can be derived by
utilizing program slicing techniques.

Predicates are matched as follows to determine whether
a postcondition satisfies a precondition or obligation. It is
assumed that the types of the output and input ports
match. The input port may use only a subset of the data
elements provided in a message, but this can indicate a
potential problem if the supplier makes assumptions about
certain data elements being processed, which can be
captured with obligations. For each data element with a
range specification it is assumed that the set of values
supplied are within the range acceptable to the recipient,
i.e., range(out) ⊆ range(in). For predicates on properties
matching of property value is sufficient.

Compatibility can be refined as follows. Elem(port)
indicates the set of data elements required or provided
through ports. Variant B is upward compatible with
variant A, if
elem(A.in) ⊇ elem(B.in) ^ range(A.in) ⊆ range(B.in)

and
elem(A.out) ⊆ elem(B.out) ^ range(A.out) ⊇ range(B.out)

Variants are strictly compatible, if they satisfy a
common interface C as follows:
elem(A/B.in) ⊆ elem(C.in) ^ range(A/B.in) ⊇ range(C.in)

 and
elem(A/B.out) ⊇ elem(C.out) ^ range(A/B.out) ⊆
range(C.out)

A configuration is considered consistent if all predicates
are satisfied, i.e., for all preconditions and obligations of
all components they evaluate to true. A system is
considered well-formed if it is complete and consistent.
Expected inputs must always be supplied, but an output
from one component may not be consumed by any
component. Such an incomplete configuration may be
acceptable, but can also represent a potential problem. In
our example, the pendulum controller may be supplied
with setpoints for all variants while the safety variant
ignores them. If the supplier of setpoints assumes that the
setpoint will have been reached when the next setpoint is
supplied, i.e., operates without feedback, an unstable
situation may occur and have to be recovered at runtime.

For systems with ARCs we can not only check the
consistency of the logical configuration, i.e., variant
configuration, but also the execution configuration. For an
execution configuration to be consistent, its respective
leader variant configuration must be consistent, and at a
minimum any additional input necessary for fault
monitoring must be available. Other variants may only
execute if their inputs are satisfied as well and they make
no assumptions about their output actually affecting the
controlled device, i.e., they do not keep state specific to
their generated output. Thus, static analysis can determine
which variants can execute concurrently at any one time.

Components may be composed into higher-level
components with their own interfaces. We follow Perry’s
example [11] to analyze such hierarchies. Propagation of
preconditions and obligations proceeds to the enclosing
component, determines whether any unmatched predicates
are listed in the interface specification of that component,
and terminates. The preconditions and obligations of the
enclosing component are separately propagated to be
matched.

5. Impact Analysis and Reduction

The algorithm is incremental in that it can be performed
on one component at a time. Therefore, it is amenable to
be used in an interactive tool, where the developer can
make incremental changes to the system model and the
tool provides immediate feedback about the
consequences. A change to a precondition or obligation is
propagated as discussed earlier. A change to a
postcondition needs to be propagated to reevaluate all

components in the transitive closure, whose satisfaction of
a precondition or obligation depended on this predicate.

The set of components to be considered as impacted
based on this dependency graph can be reduced in a
number of ways. First, if the change can be identified as
affecting selected ports, only the dependency relations
emanating from those ports need to be considered.
Second, identification of compatibility between
component variants with respect to a dependency
relationship eliminates further propagation of impact.
Third, identification of a dependency mapping between
input ports and output ports of components reduces the
number of affected indirect dependents. Such a mapping
can be provided by the developer or can be derived from
the implementation through program slicing technology
(see section 4.2). Fourth, component properties can be
subjected to sensitivity analysis. For example, a set of
tasks may be schedulable within a range of execution
times [24], or a controller may maintain stability within a
range of sampling rates [16]. Finally, for certain
properties, such as those related to resource utilization, a
certain value may be specified as allocated to a
component. Only changes in implementations that exceed
these values need to be propagated.

Changes in resource utilization and timing properties of
one component may impact the schedulability of
otherwise unrelated components that share the same
resource. Changes in timing properties may also impact
the application semantics of a component, i.e., those
semantic properties of application components that are
time sensitive, such as the sampling rate of a controller.
This creates property dependencies that must also be
considered in change impact analysis. Some timing
properties specify worst case allocations, e.g., execution
time. Only if changes in actual timing properties exceed
the specified ones or are drastically less, is a change
necessary or desirable and its impact needs to be
considered. Similarly, a change may affect utilization
demands for a shared resource, e.g., change in code size
or change in the amount of data to be communicated.
Again, specified allocations reduce the impact of change
if the actual implementation values stay within the
specified bounds.

6. Summary

In this paper we have examined issues relating to the
impact of change in real-time control application that are
software-intensive systems. We have done so in the
context of systems that are based on Simplex, a
technology solution that supports dependable upgrade of
systems in a fault tolerant manner through the concept of
analytic redundancy. In doing so it provides flexibility to
real-time systems for dynamic reconfiguration of systems

to adapt to changes in the environment or unexpected
behavior of system components and to support
incremental and online upgrade. Several prototypes of
Simplex-based applications are in operation.

We have focused on improving the capabilities of
Simplex-based systems through proactive fault avoidance.
Through offline analysis of system models, inconsistent
configurations and transactions to consistent
configurations are identified. Based on these results, a
runtime configuration manager can avoid configurations
considered inconsistent according to the model. Similarly,
potential impact of changes to component can be
identified at design time and developers supported in
resolving them.

The modeling capability discussed here combines
modeling and analysis ideas from several areas: system
build models, configuration management, and
architectural modeling. Emphasis has been placed on
capturing application semantics through the use of
predicates. Important to real-time applications, scheduling
and resource utilization considerations have been taken
into account.

7. Acknowledgement

Research supported in part by the US Defense
Advanced Research Projects Agency, under contract
F33615-97-C-1012

8. References

[1] R. Allen, D. Garlan, “Formalizing architectural
connection,” Proceedings of the Sixteenth International
Conference on Software Engineering, 1994, pp. 71-80.

[2] R. Allen, R. Douence, D. Garlan, “Specifying dynamism in
software architecture,” submitted for publication, Sept.
1997.

[3] L. A. Beladi, P. M. Merlin, "Evolving Parts and Relations -
A Model of System Families," Program Evolution,
Academic Press, 1985, pp. 221-236.

[4] M. Bodson, J. P. Lehoczky, R. Rajkumar, Lui Sha, M.
Smith, J. Stephan, “Software fault-tolerance for control of
responsive systems,” Proceedings of the Third International
Workshop on Responsive Computer Systems, pp. 133-141,
1993.

[5] P. H. Feiler, "Configuration Management Models in
Commercial Environments," Software Engineering Institute
SEI-91-TR-13, July 1991.

[6] S. I. Feldman, "Make - A Program for Maintaining
Computer Programs," Software - Practice and Experience,
9(3), Mar. 1979, 255-265.

[7] A. N. Habermann, D. E. Perry, "Well Formed System
Composition," Carnegie Mellon University, Technical
Report CMU-CS-80-117. March 1980.

[8] M. Klein, et.al., "A Practitioner's Handbook for Real-time
Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems". Boston: Kluwer, 1993.

[9] J. Kramer, J. Magee, “Dynamic configuration for
distributed systems,” IEEE Trans. Software Eng., vol. 11,
pp. 424-436, 1985.

[10] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D.
Bryan, W. Mann, “Specification and analysis of system
architecture using Rapide,” IEEE Trans. Soft. Eng., Vol.
21, 1995, pp. 336-355.

[11] D. E. Perry, “Software Interconnection models,”
Proceedings of the 9th International Conference on
Software Engineering, pp. 61-69, 1987.

[12] D. E. Perry, "Version Control in the Inscape Environment,”
Proceedings of the 9th International Conference on
Software Engineering, pp. 142-149, 1987.

[13] D. E. Perry, ”The logic of propagation in the Inscape
Environment,” ACM SIGSOFT ’89 Third Symposium on
Software Testing, Analysis and Verification, pp. 114-21,
1989.

[14] D. E. Perry, “System compositions and shared
dependencies,” Software Configuration Management,
ICSE'96 SCM-6 Workshop, pp. 139-153, 1996.

[15] E. Ploedereder, A. Fergany, "A Configuration management
Assistant," Proceedings of the Second International
Workshop on Version and Configuration Control, Oct.
1989, ACM Press.

[16] D. Seto, J. P. Lehoczky, L.Sha, K. G. Shin, “On task
schedulability in real-time control systems,” Proceedings
17th IEEE Real-Time Systems Symposium, 1996, pp. 13-
21.

[17] L. Sha, R. Rajkumar, M. Gagliardi, "Evolving Dependable
Real-Time Systems," Proceedings of the 1996 IEEE
Aerospace Applications Conference. Aspen, CO, Feb.,
1996. New York, NY: IEEE Computer Society Press,
1996. Also published in: “Component-Based Software
Engineering” Selected Papers from the Software
Engineering Institute. Alan Brown Ed. IEEE Computer
Society Press 1996. ISBN 0-8186-7718-X.

[18] M. Shaw, D. Garlan, Software architecture: perspectives on
an emerging discipline, Upper Saddle River, N. J. :
Prentice Hall, 1996.

[19] K. G. Shin, H. Kim, “Derivation and application of hard
deadlines for real-time control systems,” IEEE Trans. on
Systems, Man, and Cybernetics, vol. 22, No.6, 1992, pp.
1403-1412.

[20] J. A. Stafford, D. J. Richardson, and A. L. Wolf,
“Chaining: a software architecture dependence analysis
technique,” Technical Report CU-CS-845-97, Department
of Computer Science, University of Colorado.

[21] W. Tichy, "A Data Model for Programming Support
Environments and Its Application," Automated Tools for
Information System Design. North-Holland Publishing
Company, 1982, 31-48.

[22] S. Vestal, P. Binns, "Scheduling and communication in
MetaH," Proceedings on Real-Time Systems Symposium,
IEEE, 1993, 194-200.

[23] S. Vestal, "Mode Changes in a Real-Time Architecture
Description Language," Second International Workshop on
Configurable Distributed Systems, March 1994.

[24] S. Vestal, "Fixed-Priority Sensitivity Analysis for Linear
Compute Time Models," IEEE Transactions on Software
Engineering, Vol. 20, No. 4, 1994, 308-317.

