SEI WEBINAR SERIES | Keeping you informed of the latest solutions
This video and all related information and materials ("materials") are owned by Carnegie Mellon University. These materials are provided on an "as-is" "as available" basis without any warranties and solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of viewing the video, or using referenced websites, and/or for any consequences or the use by you of such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Four Valuable Data Sources for Network Security Analytics

Timothy Shimeall, Ph.D.
Overview

Four data sources
Analytic process
Analytic examples
Discussion
Four Valuable Data Sources for Network Security Analytics

Data and Process Description
Polling Question 1

What information sources do your organization use to inform network security?

a. Mostly intrusion detection/prevention alerts
b. Mostly network packet monitoring
c. Mostly network flow collection (or traffic traces)
d. Mostly third-party reports (Threat intelligence)
e. Mostly vulnerability scanning
f. Mostly host-based logs
g. A balanced mix of sources
Domain Resolution Data

Domain Name System (DNS) Records
 Passive DNS
 Polled active DNS
Host name or domain
Record result (success, no such domain, server fail)
Request type (A, AAAA, PTR, …)
Date/time
Collector location
Network Device Inventory/Configuration Data

Security Content Automation Protocol (SCAP) – Periodic report

Common Vulnerability Enumeration
- Identity
- Severity score (CVSS)
- Systems affected per network

Common Checklist Enumeration
- Identity
- Checklist items
- Systems affected per network

Common Platform Enumeration
- Identity
- Systems affected per network

http://nvd.nist.gov/
Network Flow Data

Identifying information:
- Source address
- Source port
- Destination address
- Destination port
- Transport protocol
- Sensor

Aggregate information:
- Bytes
- Packets
- Communication flags
- Start time
- End time
Network Intrusion Detection/Prevention Alerts

Source
Destination
Alert identity
Confirming information
Sensor location
Alert time
Process

Explore
Model
Test
Analyze
Refine
Explore

Needs analysis – is there a prior analytic that addresses this?

Research analytic
 • vendor documentation
 • published papers
 • data feeds

Identify unique attributes
 • ports
 • protocols
 • associations
 • behaviors
Model

Lessons learned from prior analytics

Build model
• identified behavior
• similar behavior

Program model
• Shell
• Python
• other
Test

Execute programmed model
 • Monitor progress
 • Debug

Save test results
 • ‘raw’ files
 • ‘set’ files
 • ‘bag’ files
 • Other formats
Analyze

Review test results.
Reduce false positives.
Reduce false negatives.
Identify improvements.
Refine

Apply improvements
Update programs
Repeat
Mature the process
• Templates
• Regression testing
• Code reuse / Analytics libraries
Polling Question 2

What is a difficult step for your organization in developing security analytics?

a. Getting dependable data
b. Handling large data volumes
c. Turning data into behavior observations
d. Prioritizing significance on behavior observations
e. Matching behaviors with threats
f. Automating the process with the tools available
g. Communicating efficiently with management
Four Valuable Data Sources for Network Security Analytics

Analytic Examples
Example: Co-located Generated Domains

Explore: Scan DNS queries for computer-generated domains (several algorithms), couple with network flow data looking for propagation attempts, and intrusion detection alerts for compromise attempts.

Model: Identify timeframe from DNS queries. Identify sources from IDS alerts or from scanning / service probe detection through network flow.

Test: Apply at several scattered points throughout day (early workday, morning peak, noon, afternoon peak, end-of-workday, late evening). Watch for recurring sites and ongoing activity

Analyze: Correlate against third party reporting; remove contracted or internal security scanning

Refine: Revise model to improve throughput and to whitelist sources
Example: Assessing Patch Efficiency

Explore: Patch efficiency – mitigations are applied for significant (serious and exploitable) vulnerabilities prior to exploitation. Couple detected responses to scanning against reported vulnerability patching and detected changes in behavior.

Model: Use inventory data to identify decreasing vulnerability, then query network flow data for responses to identified scans on previously-vulnerable services. Apply more in-depth flow analysis to profile and contrast service behavior before and after patching.

Test: Apply for very common services (web, email, DNS) and less common (database, file transfer) services.

Analyze: Compare changes in behavior for patched services against those for non-patched services.

Refine: Revise model to distinguish significant vs. coincidental changes.

Example: Quantifying Vulnerability Exposure

Explore: Vulnerability exposure – probable loss associated with vulnerabilities in a given network service. Identify services with increasing vulnerabilities and pivot to associate with critical missions, characteristic behaviors, and threat activity.

Model: Profile reported vulnerabilities with new reports or increasing counts of affected systems. Identify intrusion detection reports for associated services in appropriate timeframe. Pivot against network flow data for overall traffic levels in these services, changes in behavior profile, and service timelines.

Test: Apply for very common services (web, email, DNS) and less common (database, file transfer) services.

Analyze: Compare changes in behavior for more vulnerable services against those for all services or less-vulnerable services.

Refine: Revise model to distinguish significant vs. coincidental changes.
Four Valuable Data Sources for Network Security Analytics

Understanding and Improving Security
Understanding and Improving

Understanding:
• Data overload
• Observer bias
• Incomplete observation

Improving:
• Response to change
• Associating threat and risk
• Focusing on what can be improved
Contact Information

Tim Shimeall, Ph.D.
Netsa-contact@cert.org
Software Engineering Institute
4500 Fifth Ave
Pittsburgh PA 15213

www.flocon.org