SEI WEBINAR SERIES | Keeping you informed of the latest solutions
This video and all related information and materials (“materials”) are owned by Carnegie Mellon University. These materials are provided on an “as-is” “as available” basis without any warranties and solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of viewing the video, or using referenced websites, and/or for any consequences or the use by you of such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2017 Carnegie Mellon University

All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM17-0593
Agile Metrics:
Three Secrets to Success

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Agile In Government
Bottom Line Up Front

1. Exercise Due Care
 • The level of discipline and rigor applied must match the context served by the work
 • Metrics give voice to things we want to hear about, we are responsible to choose
 • Some very important things will lack high-resolution measures to inform us

2. Consider Systems’ Perspectives
 • A scrum team is its own system, and rich metrics to serve the team exist
 • The enterprise consists of many other systems, which bring different perspectives
 • Boundaries of generalizability exist among these systems

3. (Ruthlessly) Automate Basic Indicators and Analyses
 • Wield tools in service of your needs, and do not limit the sphere of focus artificially
 • Make metrics routine and boring – not episodic and authority-focused
 • Tool chains and visualization techniques offer new opportunities
A Familiar Problem

Data can shine a light on important things.

If we don’t focus on the right thing, we won’t get what we need.

Due Care is context-dependent, and should not be left up to the advocate of a particular methodology.
Barriers to Automation

Metrics often focus exclusively on:
• Appeasing an authority role
• Demonstrating competence
• Validating the chosen path

This may engender trust concerns, and often conflicts with the concept of an empirical process – one where we learn from looking at facts that inform tactical/strategic options.
Polling Question #2

Your Role
1. Government employee working in a program office
2. Contractor working in a government program office
3. Employee of a firm serving a government program
4. Employee of a firm doing commercial work
5. Coach/Advisor/Consultant for government
6. Coach/Advisor/Consultant for industry
7. None of the above
Taking a Deterministic View

Three Numeric Examples
Basic Example

- Waiting: 18
- Working: 5
- Testing: 4
- Done: 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
IT Modernization
IT Modernization Example

These are 30 RICE* objects that define the scope of work for one or our vendors. They will be folded into a series of three releases, which will integrate the work of multiple vendors.

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Count</th>
<th>L</th>
<th>M</th>
<th>S</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Interfaces</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Conversions</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancements</td>
<td>20</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

* note: CEMLI might be more familiar for those in this domain. RICE was chosen for the sake of brevity...
Managing Three Planned Releases

Goal:
• Predict release performance

Questions:
• Is the work larger/smaller than estimated?
• Is the work taking more/less effort than we estimated?
• Will the quality of the delivered products be acceptable?

Metrics:
• Estimated vs. actual effort
• Planned vs. delivered products
• Estimated vs. actual size of products
• Defect counts and profiles
• Measures of performance

Common Focus for Metrics
• Size
• Effort
• Quality
Understanding Benefit of IT Modernization

What combination of choices leads to improvements in things like:

- Amount of exception-handling
- Users finding the correct path through the system on the first try
- User migration to a new system

Can we iterate and experiment with functional changes as well as technological changes, to improve performance of the IT-enabled service?
Sustaining Embedded Systems
These are 30 *Must-Fix Defects* which limit the operational utility of the system in the field today.

There is a strategy for patching the fielded system based on logical groupings of the defects.

Sample of Fields in the Defect Database

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FindActivity</td>
<td>lifecycle or mission activity that uncovered the defect</td>
</tr>
<tr>
<td>FindDateTime</td>
<td>date and time when the defect was discovered</td>
</tr>
<tr>
<td>TestID</td>
<td>If found in test, the ID# of the test that exposed the defect</td>
</tr>
<tr>
<td>FeatureBlocked</td>
<td>user capability that does not function due to the defect</td>
</tr>
<tr>
<td>SysComponent</td>
<td>configuration item or other component containing the defect</td>
</tr>
</tbody>
</table>
Fixing Fielded Defects

Common Focus for Metrics
• Cycle Time per Fix
• System Availability/Function
• Quality

Goal:
• Timely resolution of known defects

Questions:
• How many defects remain to fix?
• How many defects have been fixed?
• How many fixes have been deployed?
• How many fixes had to be redone?
• How fast are we fixing things?
• What functionality remains blocked?

Metrics:
• Tally of defects remaining/fixed
• Number of fixes per month
• First pass fix rate
• System down time
• Revenue/mission loss due to quality
Enabling Mission Threads with DR Fixes

Mission Impacts Addressed

--- Scope of Impacts --- Fielded Fixes

The impact of fixing defects is charted for six (6) mission threads.

Looking at the area inside the **blue dotted line**:
- Epsilon has the greatest number of DR impacts
- Zeta has the lowest

Looking at the area inside the **red line**:
- Fielded fixes have benefitted Delta the most
- Zeta the least

DR = Deficiency Report
R&D Pathfinder Projects
These are 30 **requirements** to meet in order to establish a proof of concept for a new product offering.

A prototype satisfying most, if not all, of the requirements will be used to assess the potential market for the concept.

<table>
<thead>
<tr>
<th>ID#</th>
<th>Priority</th>
<th>Requirement Text</th>
<th>Success Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>... text statements</td>
<td>... text statements</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>... text statements</td>
<td>... text statements</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>... text statements</td>
<td>... text statements</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>30</td>
<td>L</td>
<td>... text statements</td>
<td>... text statements</td>
</tr>
</tbody>
</table>
Building a Proof of Concept

Goal:
• Effective demonstration of capability

Questions:
• Is each requirement achievable?
• Which are the most challenging?
• How confident can we be about production feasibility?
• What are the bases for estimating total lifecycle cost for this product?

Metrics:
• Count (or %) of objectives achieved
• Number of business case questions answered
• Effort expended

Common Focus for Metrics
• Requirements Satisfaction
• Test Cases Passed/Failed
• Technical Performance Attributes
Understanding User Value with KANO Analysis*

* Adapted from the work of Professor Noriaki Kano
Polling Question #3

Which of the examples is the best match for your context?

1. IT Modernization
2. Sustaining Embedded Systems
3. R&D Pathfinder Projects
4. More than one of the above
5. None of the above
Flow Metrics Examples

Cumulative Flow Diagram
Constructing a Cumulative Flow Diagram

Here we have a Pie Chart showing the status of 30 ‘work packages’

This is a snapshot for a single point in time.
Constructing a Cumulative Flow Diagram

Same data, but presented in a stacked column chart

For a single point in time.
Constructing a Cumulative Flow Diagram

... adding the next 7 times
Constructing a Cumulative Flow Diagram

... now we are looking at the flow from “Waiting” to “Done”... This view starts to show patterns a little easier...
Theoretical Basis

Little’s Law

\[L = \lambda W \]

...the long-term average number \(L \) of customers in a stationary system is equal to the long-term average effective arrival rate \(\lambda \) multiplied by the average time \(W \) that a customer spends in the system...

http://mitsloan.mit.edu/faculty-and-research/faculty-directory/detail/?id=41432
Little’s Law in Agile Metrics

Three Metrics Emphasized*:

1. **Work In Progress** (the number of items that we are working on at any given time),

2. **Cycle Time** (how long it takes each of those items to get through our process), and

3. **Throughput** (how many of those items complete per unit of time).

* Excerpted from page 13 of the book depicted on the right.
Utility of Little’s Law
Exercise: What is Going on Here?

Waiting
In Process
Done
Exercise: What *MIGHT BE* Happening

At time 2, and then again at time 4, the number of items "In Process" goes to zero.

- Have we lost the resource(s) performing the work due to rework demands from elsewhere?
- Is this intentional scheduling of work to occur only during time periods 1, 3, and 5?
Exercise: What *MIGHT BE* Happening

The number of items that are “In Process” is growing over time.

- The rate at which things enter “In Process” is greater than the rate at which things leave “In Process.”
- Are people moving onto new items without completing their work?
- Are new resources being added, who start new work at each time period?
- Are things moving into the “Done” state quickly enough?
Polling Question #4

Cumulative Flow Diagrams and Little’s Law – Your Opinion

1. Interested and would like to learn more
2. That’s enough information for me, thanks
3. Not sure how to answer right now…
Cumulative Flow Diagrams – Beyond Basics

Vacanti elaborates on Little’s Law and “Flow Debt*” using CFDs.

*Page 144

Hyman Minsky popularized these terms for types of debtors:

- Hedge,
- Speculative, and
- Ponzi.

Patterns of flow can help you identify which category best describes the prevalent decision making style in your project.

Ever been on a project that was trying to do so many things that none of them ever got finished? Is that a Ponzi project?
Economies of Batch Size

Specify, build test & ship a SINGLE requirement

Specify, then implement, then test & then ship ALL requirements

U-Curve optimization problem as described in Principles of Product Development Flow, by Don Reinertsen
Metrics for Flow-based Product Development

Queues
- Design-in-Process Inventory
- Queue Size
- Trends in Queue Size
- Cost of Queues
- Aging of Items in Queues

Batch Size
- Batch Size
- Trends in Batch Size
- Transaction Cost per Batch
- Trends in Transaction Cost

Cadence
- Processes Using Cadence
- Trends in Cadence

Capacity Utilization
- Capacity Utilization Rate

Feedback
- Feedback Speed
- Decision Cycle Time
- Aging of Problems

Flexibility
- Breadth of Skill Sets
- Number of Multipurpose Resources
- Number of Processes with Alternate Routes

Flow
- Efficiency of Flow
- DIP Turns

Page 235: Principles of Product Development Flow: Don Reinertsen
Polling Question #5

Experience with flow-based metrics?
1. Never heard of it before
2. Yes, I’ve read about it or seen it before
3. Yes, I have used them in my own work
Clash of Mind-Sets

Deterministic Plans for an Uncertain World
Value Flow: Utilization is the Wrong Goal

100% Utilization:
- Magnifies the impact of variation
- Maximizes task-switching overhead
- Assures slower overall progress

Change is inevitable, plan to learn

Multi-tasking is a myth we don’t accurately comprehend
Diagnostic Metrics

Helping Teams Deliver
Batch Size Analysis – Story Size Focus

Splitting stories requires engineering judgment
Potential Story Granularity Indicator?

Sprints with many small stories

Sprints with a few large stories
Coefficient of Variation – Analysis of Velocity

<table>
<thead>
<tr>
<th>Sprint Number</th>
<th>Story Points Delivered by the Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Average = 30

Standard Deviation = 4.84

Coefficient of Variation = 16.13

Average = 30

Standard Deviation = 3.38

Coefficient of Variation = 11.27
Diagnostic Metrics

Understanding Program Performance
Indicator Examples

Essential Process Attributes
• Cadence
• Synchronization
• Short Learning Cycles
• Reduction in Batch Size
• Iterative and Incremental Delivery
Indicator Examples

- How Often Do We Postpone Planned Stories?
- First-Pass Fix Rate for Defects: 82%
- Post-Sprint Defect Open Rate
 - Must Fix
 - Deferrable
Adopting New Approaches

Assessing Engagement
Simple Indicator, Powerful Analysis

Subset/aggregate data to look for trends across:

- Particular event types
 - Are ‘standups’ not working?
- Pockets of staff
 - Have we alienated ‘release managers’?
In Closing…
Bottom Line

1. Exercise Due Care
 • The level of discipline and rigor applied must match the context served by the work
 • Metrics give voice to things we want to hear about, we are responsible to choose
 • Some very important things will lack high-resolution measures to inform us

2. Consider Systems’ Perspectives
 • A scrum team is its own system, and rich metrics to serve the team exist
 • The enterprise consists of many other systems, which bring different perspectives
 • Boundaries of generalizability exist among these systems

3. (Ruthlessly) Automate Basic Indicators and Analyses
 • Wield tools in service of your needs, and do not limit the sphere of focus artificially
 • Make metrics routine and boring – not episodic and authority-focused
 • Tool chains and visualization techniques offer new opportunities