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Abstract 

 

Organizations rely on valid data to make informed decisions. When data integrity is compro-
mised, the veracity of the decision-making process is likewise threatened. Detecting data anoma-
lies and defects is an important step in understanding and improving data quality. The study de-
scribed in this report investigated statistical anomaly detection techniques for identifying potential 
errors associated with the accuracy of quantitative earned value management (EVM) data values 
reported by government contractors to the Department of Defense. 

This research demonstrated the effectiveness of various statistical techniques for discovering 
quantitative data anomalies. The following tests were found to be effective when used for EVM 
variables that represent cumulative values: Grubbs’ test, Rosner test, box plot, autoregressive in-
tegrated moving average (ARIMA), and the control chart for individuals. For variables related to 
contract values, the moving range control chart, moving range technique, ARIMA, and Tukey box 
plot were equally effective for identifying anomalies in the data. 

One or more of these techniques could be used to evaluate data at the point of entry to prevent 
data errors from being embedded and then propagated in downstream analyses. A number of rec-
ommendations regarding future work in this area are proposed in this report.  
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1 Introduction 

1.1 The Problem of Poor Quality Data 

Organizations rely on valid data. They use the data to manage programs, make decisions, priori-
tize opportunities, and guide strategy and planning. But how reliable are the data organizations 
collect and use? The problem with poor data quality is that it leads to poor decisions. In addition, 
the rework required to correct data errors can be quite costly.  

Existing evidence suggests that poor data quality is a pervasive and rampant problem in both in-
dustry and government. According to a report released by Gartner in 2009, the average organiza-
tion loses $8.2 million annually because of poor data quality. The annual cost of poor data to U.S. 
industry has been estimated to be $600 billion [Gartner 2009]. Research indicates the Pentagon 
has lost more than $13 billion due to poor data quality [English 2009]. 

1.2 Data Quality Defined 

Data are of high quality if “they are fit for their intended uses in operations, decision making, and 
planning” [Juran 1951]. This definition implies that data quality is both a subjective perception of 
the individuals involved with the data and the quality associated with the objective measurements 
based on the data set in question. A number of studies have indeed confirmed that data quality is a 
multi-dimensional concept [Ballou 1985, Ballou 1998, Huang 1999, Redman 1996, Wand 1998, 
Wang 1996]. An international standard data quality model identifies 15 data quality characteris-
tics: completeness, consistency, credibility, currentness, accessibility, compliance, confidentiality, 
efficiency, precision, traceability, understandability, availability, portability, and recoverability 
[ISO 2008]. 

1.3 Data Defects vs. Data Anomalies 

A data defect is defined as a data value that does not conform to its quality requirements.1 Larry 
English defines it similarly as an item that does not conform to its quality standard2 or customer 
expectation [English 2011]. 

Data defects come about in a variety of different ways, including human errors and errors created 
by faulty processing of the data. Examples of data defects include missing data, errors caused by 
typos, incorrectly formatted data, data that are outside the range of acceptable values for an attrib-
ute, and other similar problems. English has developed a classification of data defects that is 
summarized in Appendix A. 

Some data defects are easier to detect than others. For example, a missing data value can be readi-
ly identified through simple algorithms that check for null values within a data field. Likewise, 

 
1  A quality requirement is an application requirement that eliminates or prevents data errors, including require-

ments for domain control, referential integrity constraints, and edit and validation routines. 

2  A quality standard is a mandated or required quality goal, reliability level, or quality model to be met and main-
tained [English 2011]. 
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values that are clearly out of range of acceptable values for a datum can be detected using simple 
value checking methods (e.g., a living person’s birth date that is incorrectly entered so that it ap-
pears that the person is 300 years old). However, there is a class of defects that are more difficult 
to pinpoint. These are the data values that are referred to as anomalies.  

A data anomaly is not the same as a data defect. A data anomaly might be a data defect, but it 
might also be accurate data caused by unusual, but actual, behavior of an attribute in a specific 
context. Data anomalies have also been referred to as outliers, exceptions, peculiarities, surprises, 
and novelties [Lazarevic 2008].  

Chandola and colleagues refer to data anomalies as patterns in data that do not conform to a well-
defined notion of normal behavior [Chandola 2009]. This is similar to how Hawkins defines an 
outlier as “an observation that deviates so much from other observations as to arouse suspicion 
that it was generated by a different mechanism” [Hawkins 1980]. Johnson defines an outlier as 
“an observation in a data set which appears to be inconsistent with the remainder of that set of 
data” [Johnson 1992]. In this report, we use the term “anomaly” to refer to outliers, exceptions, 
peculiarities, and similarly unusual values.  

Anomaly detection techniques have been suggested for numerous applications such as credit card 
fraud detection, clinical trials, voting irregularity analysis, data cleansing, network intrusion, geo-
graphic information systems, athlete performance analysis, and other data-mining tasks [Hawkins 
1980, Barnett 1998, Ruts 1996, Fawcett 1997, Johnson 1998, Penny 2001, Acuna 2004, Lu 2003].  

1.4 Current State of Practice 

A bourgeoning industry has developed to address the problem of data quality. Software applica-
tions are available that detect and correct a broad spectrum of data defects that exist in enterprise 
databases. Losses due to data quality issues would be higher than they are if not for the adoption 
of these data quality tools. According to Gartner, the data quality tools market grew by 26% in 
2008, to $425 million [Gartner 2009]. These tools are geared toward customer relationship man-
agement (CRM), materials, and to a lesser degree, financial data. Of the companies that use data 
quality tools, the Gartner survey found that 50% of survey respondents said they are using data 
quality tools to support master data management (MDM) initiatives, and more than 40% are using 
data quality technologies to assist in systems and data migration projects.  

According to Ted Friedman, an analyst with The Gartner Group, data quality tools have been 
most often used in an offline, batch mode to cleanse data outside the boundaries of operational 
applications and processes [Kelly 2009]. Figure 1 provides an example of a typical CRM data 
identification/correction algorithm. 
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Figure 1: Example of Data Defect and Correction Algorithm for CRM Data3 

Chen and colleagues state that “there is much prior work on improving the quality of data that 
already resides in a database. However, relatively little attention has been paid to improved tech-
niques for data entry” [Chen 2009]. Friedman notes, “Gartner advises clients to consider perva-
sive data quality controls throughout their infrastructure, ensuring conformance of data to quality 
rules at the point of capture and maintenance, as well as downstream…Companies should invest 
in technology that applies data quality rules to data at the point of capture or creation, not just 
downstream” [Kelly 2009]. 

Much of the current work on data quality in the Department of Defense (DoD) is limited to identi-
fying missing or duplicate data and discrepancies in recorded values from multiple sources. Other 
work at the DoD focuses on identifying business rules to screen for defects in repository data. 
Work is also ongoing in the DoD to apply automated data screening techniques to identify de-
fects. 

 
3  Figure 1 was adapted from Rademacher and Harter [Rademacher 2009]. 
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1.5 Our Research Focus 

In our data quality research, SEMA is focusing on the accuracy characteristic of the International 
Organization for Standardization (ISO) 25012 quality model. Within the model, accuracy is de-
fined as “the degree to which data has attributes that correctly represent the true value of the in-
tended attribute of a concept or event in a specific context of use” [ISO 2008]. 

Specifically, the objective of the study described in this report was to evaluate statistical tech-
niques that could be used proactively to identify more and varied kinds of data anomalies than 
have thus far been recognized in the DoD.  

1.6 Collaborators and Data Source for this Research 

To accomplish our objectives, we collaborated with the Office of the Under Secretary of Defense 
for Acquisition, Technology, and Logistics (OUSD (AT&L)), Acquisition Visibility (AV). As 
part of this collaboration, our research group was given access to data that are reported to the 
Earned Value Management (EVM) Central Repository (CR) by government contractors [DCARC 
2011]. The EVM–CR provides and supports the centralized reporting, collection, and distribution 
for key acquisition EVM data, such as  

• contract performance reports (CPRs)  

• contract funds status reports (CFSRs) 

• integrated master schedules (IMSs) for acquisition category (ACAT) 1C & 1D major defense 
acquisition programs and ACAT 1A major automated information system programs 

The data used in this study was extracted from monthly EVM progress reports that follow the 
CPR format [OUSD 2011]. 

1.7 What is Earned Value Management? 

Earned value management is a program or project management method for measuring perfor-
mance and progress in an objective manner. EVM combines measurements of scope, schedule, 
and cost in a single integrated system.  

Figure 2 summarizes some of the key concepts and data items of the EVM system. A detailed dis-
cussion of EVM is beyond the scope of this paper. For a detailed description, see the resources 
available from the Defense Acquisition University [DAU 2011].  

For our data anomaly detection research, we selected several EVM variables:  

• budgeted cost of work scheduled (BCWS)  

• budgeted cost of work performed (BCWP)  

• actual cost of work performed (ACWP) 

• negotiated contract cost (NCC)  

• contract budget base (CBB)  

BCSW, BCWP, and ACWP are shown in Figure 2 and are used together to measure performance 
in the EVM system. NCC and CBB are figures associated with government contracts that remain 
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constant unless formally changed and hence are not routinely part of the EVM system of 
measures. 

 

 

 

 

Figure 2: Key Concepts of Earned Value Management 
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2 Methodology 

2.1 High-Level Approach 

Our research approach used the following steps: 

1. Conduct literature research. 

2. Select data source. 

3. Select test cases and establish anomalous data values. 

4. Select anomaly detection techniques. 

5. Analyze results. 

Activities 1 through 4 are discussed in Sections 2.1.1 to 2.1.4. Section 2.2 describes each of the 
anomaly detection techniques and how they were applied to the EVM data. 

2.1.1 Conduct Literature Search 

Our literature research focused on the analytical strengths and limitations of existing anomaly 
detection techniques and their potential appropriateness for use in this research. Our team also 
reviewed the capabilities of some of the leading commercial data quality software tools to better 
understand the techniques that they incorporate. A brief summary of the review is presented in 
Appendix D.  

Over 210 journal articles, web sites, and reference books were collected and catalogued for initial 
scanning by team members. The references were rated based on relevancy and items of high rele-
vance were assigned to team members for in-depth review.  

The techniques that were investigated can be grouped into the categories suggested by Chandola 
and his colleagues [Chandola 2009]. Their typology includes a wide-ranging set of techniques, 
including ones that are 

• classification-based 

• nearest-neighbor-based 

• clustering-based 

• statistical 

• information theoretic 

• spectral 

Other useful sources reviewed include work by Kriegel and his colleagues [Kriegel 2010] and 
Hodge and Austin [Hodge 2004]. Kriegel and colleagues group the methods under the following 
categories: 

•  statistical tests 

• depth-based approaches 

• deviation-based approaches 
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• distance-based approaches 

• density-based approaches 

• high-dimensional approaches 

Hodge and Austin partition their discussion of outlier detection methodologies under three overall 
categories: statistical models, neural networks, and machine learning. They also distinguish be-
tween clustering, classification, and recognition. There is no single definitive typology of anomaly 
detection techniques, and the techniques sometimes overlap several of these proposed categories. 
However, Chandola and colleagues provide a useful starter set to establish a high-level landscape 
of the techniques. All three papers, particularly the one by Chandola and colleagues, cite many 
references where these kinds of anomaly detection techniques have been used.  

All of the techniques of anomaly detection that we describe in this document rely on the existence 
of patterns of “normal” behavior, from which the anomalies can be differentiated. Some of the 
techniques are limited to univariate data distributions while others consider anomalies based on 
atypical deviations from statistical relationships among two or more variables.  

2.1.2 Select Data Source 

During the latter part of 2010, our research team conducted two site visits to meet with data ana-
lysts from the DoD Acquisition Visibility (AV) organization. AV is responsible for providing 
accurate, authoritative, and reliable information supporting acquisition oversight, accountability, 
and decision making throughout the DoD. A key outcome of the meetings was the selection of the 
EVM-CR as the source of data for evaluating anomaly detection techniques. This repository 
source was selected based on several criteria, including: the ability to obtain access privilege to 
the data, the abundance and richness of the data, and existing reports of errors in the data submit-
ted to the repository. This evidence was drawn from analyses conducted by AV analysts as they 
were preparing reports to support executive decision making. 

Program performance information is reported to the EVM-CR on a monthly basis. The massive 
volume of EVM data reported each month is staggering. Using valuable analysts to do tedious, 
manual inspections of the data is impractical. For this reason, the development of an automated 
method for identifying potential data errors would be extremely beneficial since it would relieve 
the analyst from searching for needles in the proverbial haystack. 

The EVM data was provided in MS-Excel workbook format. After receiving the data for this re-
search study, the data set was organized for analysis and the contents characterized. It consisted of 
6211 records associated with 359 program tasks. A program task is made up of multiple records in 
a time series. Each record in the data set contained 167 columns. Most of these columns were text 
fields containing descriptive and administrative details about the record, such as who submitted it, 
files that were submitted, when it was submitted, the contract under which it was being submitted, 
and so on. Given our focus on statistical techniques that apply to quantitative measures, most of 
the content in a record was not used. 

2.1.3 Select Test Cases and Establish Anomalous Data Values 

The research team decided it would be most efficient to focus on a sample of the data and chose to 
examine the time series profiles of the 359 program tasks. From these, the research team selected 
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four program tasks to use as test cases for evaluating the efficacy of the anomaly detection tech-
niques. Criteria considered to select the cases included the number of records available and their 
completeness in terms of the variables of interest (i.e., BCWP, ACWP, BCWS, NCC, and CBB) 
As described further in Section 2.1.4, the nature of the data also influenced the techniques that 
could be used. The objective was to obtain an effective sample for evaluation purposes. 

To establish the anomalous data values in the test cases, the team asked an OSD EVM subject 
matter expert (SME) to review them; this SME had extensive experience reviewing and analyzing 
data from the EVM-CR. This was necessary because the actual disposition of the data was un-
known, and the research focus was on detecting anomalies that had a high probability of being 
defects. 

We presented both the actual data values and graphical representations of the data and asked the 
SME to identify anomalies that should be investigated as possible data errors. One example of the 
results of the SME review is illustrated in Figure 3. The arrows indicate the values that the SME 
identified as data points that should be investigated as possible data errors. All test cases used in 
this research study are presented in Appendix B. 

 

Figure 3: Example Test Case Used to Evaluate Effectiveness of Anomaly Detection Techniques 

Figure 4 illustrates the evaluation scheme for the results of our analysis. Using the example illus-
trated in Figure 3, if an anomaly detection technique correctly identified values 18 and 30 as 
anomalies, then they would be tallied within the True Positive cell of Figure 4. For example, if a 
technique failed to identify 18 as an anomaly, that occurrence would be tallied as a False Nega-
tive. Similarly, if a technique identified a data point other than 18 and 30 as an anomaly, that val-
ue would be tallied as a False Positive. Values that are correctly not flagged as anomalies would 
be tallied as True Negatives. 

$0

$1,000,000

$2,000,000

$3,000,000

$4,000,000

$5,000,000

$6,000,000

$7,000,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

Cost

Th
ou

sa
nd

s

Month



 

CMU/SEI-2011-TR-027 | 10  

 

Figure 4: Scheme for Evaluating Effectiveness of Anomaly Detection Techniques 

To evaluate the effectiveness of each anomaly detection technique, the team considered two key 
measures: ݊݋݅ݐܿ݁ݐ݁ܦ	݁ݐܴܽ = ݏ݁ݒ݅ݐ݅ݏ݋ܲ	݁ݑݎܶݏ݁ݒ݅ݐ݅ݏ݋ܲ	݁ݑݎܶ +  ݏ݁ݒ݅ݐܽ݃݁ܰ	݁ݏ݈ܽܨ

݁ݐܴܽ	݁ݒ݅ݐ݅ݏ݋ܲ	݁ݏ݈ܽܨ = ݏ݁ݒ݅ݐ݅ݏ݋ܲ	݁ݏ݈ܽܨݏ݁ݒ݅ݐ݅ݏ݋ܲ	݁ݏ݈ܽܨ +  ݏ݁ݒ݅ݐܽ݃݁ܰ	݁ݑݎܶ
The intent was to use the results of the SME review to determine the effectiveness of each anoma-
ly detection technique that was to be investigated.  

2.1.4 Select Anomaly Detection Techniques 

To determine which anomaly detection technique is appropriate for a given situation, the nature of 
the data being assessed and the type of anomaly being searched for should be considered. 

The team’s research focus was to identify techniques for finding specific types of data anomalies 
associated with accuracy. Data profiling methods and tools are already available for identifying 
and correcting the following: 

• missing data 
• incomplete data 
• improper formats 
• violations of business rules 

• redundancy  

Therefore, the team purposely ignored these basic types of data anomalies and focused on the ac-
curacy attribute of five variables: 

1. budgeted cost of work scheduled (BCWS) 

2. budgeted cost of work performed (BCWP) 

3. actual cost of work performed (ACWP) 
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False
Positive

False
Negative

True
Negative

Confirmed Anomaly

Test 
Result
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4. negotiated contract cost (NCC) 

5. contract budget base (CBB) 

The first three variables are cumulative cost values that are reported on a monthly basis. NCC and 
CBB are not cumulative. Based on our initial profiling of these variables, we believed that statisti-
cal analysis approaches would be fruitful as a means of identifying anomalous data that could be 
caused by error. The assumption was that a normal datum belongs to a grouping or a patterned 
distribution of other data points. When the grouping or distribution is understood, a model can be 
developed that will establish the boundaries of what constitutes a region of normalcy outside of 
which a datum is considered as being anomalous. 

2.2 Anomaly Detection Techniques Investigated 

As part of the literature review, we identified a number of statistical anomaly detection approach-
es that looked promising. These techniques were specifically developed to identify anomalous 
data. They included the following: 

• statistical control chart techniques, including the control chart for individuals, moving range 
(mR) control chart, exponentially weighted moving average chart, and moving average chart  

• Grubbs’, Rosner, and Dixon tests 

• Tukey box plots 

• auto regressive moving average (ARIMA) modeling  

We also investigated the following control-chart-related techniques: 

• 3-sigma outlier  

• moving range  

• SPI/CPI outlier  

The approaches used for these techniques are summarized in Sections 2.2.1 to 2.2.5. 

2.2.1 Statistical Control Chart Techniques 

A control chart is a statistical device principally used for the study and control of repetitive pro-
cesses. It is a line graph that displays variation in a time-ordered fashion. A center line and control 
limits (based on ± 3 standard deviations) are placed on the graph to help analyze the patterns in 
the data. Common cause variation occurs randomly and behaves like a constant system of chance 
causes that are predictable. While individual values are all different, as a group, they tend to form 
a pattern that can be described by a probability distribution. A process that experiences only 
common cause variation is said to be in statistical control. A process that experiences special 
cause variation is said to be out of statistical control. Special cause variation refers to any factors 
causing variation that cannot be adequately explained by any single probability distribution of the 
output. 

Walter Shewhart introduced the first control chart system during the 1930s [Shewhart 1931]. 
Since then, a large number and wide variety of control chart schemes have been developed for 
specific applications and objectives. For example, some control chart schemes are effective for 
detecting anomalies in a data set, while others are effective for detecting a subtle shift in the aver-
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age value of a key characteristic measure. Some control chart implementations assume continu-
ous-scaled measurement data, while other chart schemes assume the use of discrete data (such as 
defect counts). 

Based on our research, we selected several control charts that held potential for identifying anom-
alies in the data. These are listed in Table 1. While the appearance of the different control charts is 
similar, the parameters of the charts themselves are very different. Parameter calculations for each 
of the control charts are accessible in the references provided in Table 1.  

Table 1: Statistical Control Chart Techniques Used 

Name  References – Control Chart Technique 

Control Chart for Individuals [Florac 1999, NIST 2011b, Wheeler 2000,Wheeler 2010, 
Keen 1953] 

Moving Range Control Chart [Florac 1999, NIST 2011b, Wheeler 2000,Wheeler 2010, 
Keen 1953] 

Exponentially Weighted Moving Average Chart [NIST 2011b, Crowder 1989, Montgomery 2005] 

Moving Average Chart [StatSoft 2011, Roberts 1959] 

We explored the efficacy of each control chart on each of the EVM variables under study. For the 
EVM variables BCWS, BCWP, and ACWP, the following approach was taken (both for control 
chart and other techniques described in the following sections): 

1. Filter EVM data based on task name of interest. 

2. Calculate the month-to-month difference for the time series:4 

BCWS-Diff  =  BCWS(Month i) – BCWS(Month i-1) 

BCWP-Diff  =  BCWP(Month i) – BCWP(Month i-1)  

ACWP-Diff  =  ACWP(Month i) – ACWP(Month i-1)  

3. Paste calculated values in Minitab5 and generate a control chart (or run other tests). 

4. Analyze the results by comparing the generated control chart to the relevant time series test 
case and compile results.  

For the EVM variables NCC and CBB, the above steps were followed, with the exception of step 
2, which was eliminated since NCC and CBB are non-cumulative variables. 

An example of this type of control chart analysis is illustrated in Figure 5. The time series cumu-
lative profile of ACWP is indicated in the chart at the right of the diagram. The control chart for 
the data is on the left. Two data anomalies are detected in the control chart as indicated by the 
values’ positions above the upper control limit.  

 
4  BCWS, BCWP, and ACWP are cumulative values. The indicated calculations transform the data into monthly 

cost values. 

5  Minitab is a statistical software package developed at Pennsylvania State University. See the Minitab website 
for more information (http://www.minitab.com). 

http://www.minitab.com
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Figure 5: Example of Control Chart Comparison to Corresponding Test Case Profile 

2.2.2 Grubbs’ Test 

Grubbs’ test is a statistical test developed by Frank E. Grubbs to detect anomalies in a univariate 
data set [Grubbs 1969]. Grubbs’ test is also known as the maximum normed residual test  
[Stefansky 1972]. Grubbs’ test is defined for the statistical hypothesis: 

H0: The data set does not contain any anomalies. 

Ha: There is at least one anomaly in the data set. 

The test statistic is the largest absolute deviation from the data set mean in units of the data set 
standard deviation and is defined as 

ܩ = max௜ୀଵ,௡| ௜ܺ − തܺ|ݏ  

where തܺ is the sample mean of the data set  

s is the standard deviation of the data set 
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The hypothesis, H0, is rejected at the significance level, α, if 

ܩ > ݊ − 1√݊ ඨ ఈݐ ଶ௡,௡ିଶ⁄ଶ݊ − 2 + ఈݐ ଶ௡,௡ିଶ⁄ଶ  

where ݐఈ ଶ௡,௡ିଶ⁄ଶ  denotes the upper critical value of the t distribution with (n-2) degrees of  
freedom and a significance level of ߙ 2݊ൗ   

Grubbs’ test detects one anomaly at a time as illustrated in Figure 6. Multiple iterations are exe-
cuted until no anomalies are discovered. 

 

Figure 6: Grubbs’ Test Algorithm 

The approach described in Section 2.2.1 was used to implement Grubbs’ test for the EVM varia-
bles BCWS, BCWP, and ACWP. Grubbs’ test is a statistical test based on the assumption that the 
data are approximated by a normal distribution. Therefore, in our research, when suspected anom-
alies are removed from the transformed values of BCWS, BCWP, and the resultant data reasona-
bly approximates a normal distribution. However, the NCC and CBB datasets are very different 
from BCWS, BCWP, and ACWP, making Grubbs’ test ineffective for detecting anomalies for 
those variables. 

2.2.3 Rosner Test 

Rosner developed a parametric test designed to detect 2 to 10 anomalies in a sample composed of 
25 or more cases [Rosner 1975, Rosner 1983]. The test assumes that the data are normally distrib-
uted after the suspected anomalies are removed. As described above for the other tests, the Rosner 
test is performed on the monthly non-cumulative values. The test requires that the suspected 
anomalies be identified by inspecting the data beforehand. Once the maximum number of possible 
anomalies is identified, then they are ordered from most extreme to least extreme.  

Using ordered data, the following steps are performed for the Rosner test: 

Execute Grubb’s Test

Flag value as anomaly

Anomaly
detected

?

Remove anomaly from dataset

Test complete

Yes

No



 

CMU/SEI-2011-TR-027 | 15  

1. The sample mean and standard deviation are calculated based on the n sample values. k 
equals the number of suspected anomalies. 

2. The sample value with the largest deviation from the mean is used to calculate the test statis-
tic Ri as follows: 

ܴ(ଵ) = หݔଵ − (ଵ)ݏห(ଵ)ݔ̅  

X(i) is the value with the largest deviation from the mean but can be either the 
largest or smallest value in the sample. 

3. The sample value X(1) is then removed from the sample, and the mean X(2), S(2), and R(2) 
are calculated from the n-1 values. 

4. The previous steps are repeated until all k suspected anomalies have yielded corresponding 
R(k) test statistics.  

5. Each R(i) is compared in sequentially reverse order to a table of critical values for Rosner’s 
test [EPA 2000]. If the computed statistic R(i) is greater than the table value, then there are I 
number of anomalies. 

The Rosner test is best illustrated with an example. For our example, 37 data entries were ordered 
by magnitude and used for the Rosner calculations. 

Looking at the data, which represents a time series of month-to-month differences, the team hy-
pothesized that there could be four anomalous entries. These are displayed in Table 2 as Ys. 
Choosing to test for four anomalies, the first iteration calculated the mean of the entire sample and 
the largest deviation from the mean to calculate the R value as described in the steps above. As 
the iterations progressed, the sample mean and the standard deviation were reduced as the entries 
with the largest deviations were dropped from each successive calculation. When four iterations 
were performed, the test of the R statistic failed for the fourth entry, but was positive for the third. 
This means that the Rosner test confirmed that there are three anomalies in this data set. 

Table 2: Rosner Example 

 

 

 

 

The calculated R(i) is bolded where it exceeds the tabled critical value. For completeness, the 
three data records (Y) identified as anomalies in this example are shown. 

2.2.4 Dixon Test 

The Dixon test (sometimes referred to as Dixon’s extreme test or Dixon’s Q test) was designed 
for identifying anomalies when the sample size is less than or equal to 30 [Dixon 1951]. Recent 
research has extended its applicability to samples up to 100 and improved the precision and accu-
racy of the critical values for judging the test results [Verma 2006]. The test measures the ratio of 

 Mean Std Deviation Y R 

R(1) 323,350 204,601 1,031,831 3.46 

R(2) 303,108 167,056 878,047 3.44 

R(3) 286,198 135,801 701,373 3.06 

R(4) 273,617 116,054 540,379 2.30 
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difference between an anomaly and its nearest neighbor to the range of the sample (see Table 2). 
The tests do not rely on the use of the mean or standard deviation of the sample. 

Dixon initially posited a series of six calculations to test for anomalies. Which test to use depends 
on the sample size and whether the test is for a single anomaly or pairs of anomalies. The tests for 
pairs of anomalies were designed to account for masking effects when there is more than one ex-
treme anomaly present in the data [Barnett 1998]. The data are tested for normality and, if neces-
sary, transformed to fit a normal distribution. For our data, we used either a Box-Cox transfor-
mation or a Johnson transformation n the earned value data, the negotiated contract cost (NCC) 
and the contract budget base (CBB) variables could not be normalized, so the Dixon test was not 
appropriate and was not used.  

The data are then ordered, and the largest or smallest extreme values are tested by calculating the 
following appropriate statistic. 

Table 3: Dixon Calculations for Identification of Anomalies 

Sample Size n Test Statistic To Test for Smallest To Test for Largest 

3 ≤	n	≤ 7 r10 
ଶݔ  − ௡ݔଵݔ − ௡ݔ  ଵݔ − ௡ݔ௡ିଵݔ − ଵݔ  

8 ≤	n	≤ 13 r21 
ଷݔ  − ௡ିଵݔଵݔ − ௡ݔ  ଵݔ − ௡ݔ௡ିଶݔ − ଶݔ  

n ≥	14 r22 
ଷݔ  − ௡ିଶݔଵݔ − ௡ݔ  ଵݔ − ௡ݔ௡ିଶݔ − ଷݔ  

The value of the calculated rn is then compared to a table of critical values. If the calculated rn is 
greater than the corresponding critical value, the value can be characterized as an outlier. In this 
research, the critical values at the 95% confidence level were used.6  

The Dixon test is meant to identify one extreme outlier, although the r21 and r22 statistics have been 
shown to be robust in the presence of more than one anomaly [Ermer 2005]. For our purposes, we 
were interested in the performance of the Dixon test compared to other anomaly detection tech-
niques using the monthly differences for the earned value variables BCWS, BCWP, and ACWP.  

To judge the efficacy of the Dixon test in identifying anomalies, a series of rolling brackets was 
imposed on the data for each of the three earned value variables. That is, when testing r10 for a 
large extreme datum, the statistic was calculated by using three consecutive data records at a time. 
For r21, we used 8 consecutive cases and for r22, we used 14 consecutive cases. Both the largest 
and smallest values were tested. The anomalous data records identified using this technique are 
shown in Appendix C. 

 
6  ISO 57255 suggests that if the test result is significant at the 95% level but not at 99%, the datum should be 

characterized as a straggler and requires further examination [Huah 2005]. 
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2.2.5 Tukey Box Plot 

Originally developed by John Tukey for exploratory data analysis, box plots have become widely 
used in many fields. As described earlier, the test is performed on the monthly non-cumulative 
values. 

Figure 7 contains an image from the JMP statistical package’s help file on outlier box plots.7 The 
box runs from the 1st through the 3rd quartile (25th and 75th percentiles) of the entire data distribu-
tion; the distance between the two ends of the box is called the interquartile range. The whiskers 
stretch to the outermost data points both above and below the box, in each of which lie another 
1.5*(interquartile range) of the data points. Any dots above or below the whiskers are classified as 
anomalies. 

The bracket to the left of the box is the range in which the densest 50% of those data lie. The con-
fidence diamond represents the confidence interval in which a sample’s mean most likely lies, 
which may not be the same as the median as represented in the example.  

Box plots as originally envisaged by Tukey make no assumption of statistical normality. They are 
simply based on distribution of the data by percentiles. The region between the ends of the whisk-
ers contains 99.3% of the observations, which makes box plots equivalent to the 3σ technique for 
Gaussian data, although it is slightly more generous than Shewhart’s rule of approximately 99.7% 
for identifying anomalies for statistical process control methods [Shewhart 1931]. As a result, a 
few more data points may be classified as anomalies using box plot techniques than in techniques 
using more stringent criteria. 

  

Figure 7: Interpreting Tukey Outlier Box Plots 

2.2.6 Autoregressive Integrated Moving Average (ARIMA) Models 

ARIMA models are widely used for both short- and long-term extrapolation of economic trends 
[Box 1970]. A particular strength of ARIMA is that it encompasses many related statistical time 
series methods in one general framework. While ARIMA models were originally intended (and 
continue to be used most widely) for modeling time series behavior and forecasting, they have 

 
7  A similar figure can be found in Release 8 of the JMP Statistics and Graphics Guide 

(http://www.jmp.com/support/downloads/pdf/jmp8/jmp_stat_graph_guide.pdf). 

http://www.jmp.com/support/downloads/pdf/jmp8/jmp_stat_graph_guide.pdf
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been used by others for anomaly detection as well [Bianco 2001, Chen 2005, Galeano 2004, Tsay 
2000].  

Many time series patterns can be modeled by ARIMA, but all such patterns amenable to ARIMA 
would have an autocorrelation or partial autocorrelation element to the model (that is, the value of 
any particular data record is related to earlier values). Differencing the data (calculating the dif-
ferences between data values) is the step that simplifies the correlation pattern in the data.8 Often 
a cyclic or seasonal pattern must be accounted for in the model. Once the proper order of differ-
encing has been identified, the observations are integrated to characterize the overall trend in the 
original time series data (which accounts for the “I” in ARIMA). Autoregressive (AR) and/or 
moving average (MA) terms may be necessary to correct for any over- or under-differencing. An 
AR term or terms may be necessary if a pattern of positive autocorrelation still exists after the 
integration. An MA term or terms may be necessary if any negative autocorrelation has been in-
troduced by the integration; this is likely to happen if there are step jumps where the original se-
ries mean increases or decreases at some thresholds over time. The goal of ARIMA is to account 
for all factors that determine the values in the time series so that any residual variation is attribut-
able to “noise.” Obviously, the best fit accurately models the values in the series while minimiz-
ing noise. Statistical software handles all the needed calculations and produces an array of visual 
outputs to guide the selection of an appropriate model. 

Fortunately, the EVM time series that we analyzed tends to have much simpler best model fits 
than are sometimes required for more complex time series with  seasonal cycles. ARIMA models 
can be quite varied in their construction; for our data, a nonseasonal ARIMA is appropriate. Such 
a model is classed as an ARIMA (p,d,q) model where 

• p is the number of autoregressive terms 

• d is the number of nonseasonal differences 

• q is the number of lagged forecast errors in the prediction equation 

Since ARIMA models often are nonlinear, the best fits are displayed by line and curve segments. 
An example is shown in Figure 8, which displays one of the 20 time series that we used to com-
pare the anomaly detection methods described in this report. The actual data values are represent-
ed as dots, some of which are identified as anomalies using the Tukey box plots that are described 
below. The most extreme anomalies appear clearly outside of the confidence intervals displayed 
around the best fit in the figure. Using many of the existing statistical packages, any data point 
can be identified simply by mousing over it. 

 
8  The non-cumulative series are first-differenced series in mathematical terms. The transformation is done by 

subtracting the numerical value of its immediately preceding data point from the numerical value of each suc-
ceeding data point. The difference between the two will be positive if the prior value was smaller, negative if the 
succeeding value is smaller, and zero if they are the same. Statistical software packages do the same transfor-
mation automatically for as many time lags of integration as are necessary to find the best model fit (e.g., se-
cond differences, which are simply the differences between consecutive first differenced values). 
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Figure 8: An Example ARIMA Best Fit of an EVM Distribution 

Simple first difference (e.g., Xt – Xt-1) fits are sufficient in instances that we analyzed in doing our 
comparisons of anomaly detection methods. In addition, an ARIMA model can almost always be 
fit for variables that other anomaly detection methods do not handle well (e.g., for EVM man-
agement reserve). 

The analysis of the model’s residuals also plays a key role in determining the suitability of any 
particular model. We used Tukey box plots as part of the residual analysis to avoid making as-
sumptions about normality of the data distributions as well as for their intuitive interpretation of 
what constitutes an anomaly (see Section 2.2.5).  

2.2.7 3-Sigma Outlier 

Many of the techniques discussed thus far operate on the data of a single program task and use all 
of the data within the program task data set as part of the anomaly detection technique. The 3-
sigma outlier test is an automated algorithm that we developed as a way to evaluate the entire 
EVM data set, including all program tasks within the data set. The algorithm was implemented in 
a Microsoft Excel application. Rather than use the entire task data, the algorithm evaluated accu-
mulated data beginning at month three (i.e., with three data values) and then carried out iterations 
for months four to n (where n is the total number of values in the program task). When a new pro-
gram task ID was encountered, the calculations and counters were reset to initiation. A summary 
of the algorithm is depicted in Figure 9. 

This technique simulates the real-world situation of monitoring data as it is being recorded in a 
database, rather than the retrospective inspection of data once the entire data set is available.  
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Figure 9: 3-Sigma Outlier Algorithm 

2.2.8 Moving Range Technique 

We developed the moving range technique following the control chart analyses listed in Table 1. 
Based on the efficacy of the mR control chart for detecting anomalies in NCC and BCC data, the 
moving range technique is an adaptation of this particular control chart scheme.  

As in the 3-sigma outlier test, we used a Microsoft Excel application that evaluates accumulated 
data beginning at month three (i.e., with three data values) and then carries out iterations for 
months four to n (where n is the total number of values in the program task). When a new pro-
gram task ID was encountered, the calculations and counters were reset to initiation. 
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The general flow of the algorithm is the same as that shown in Figure 9 except for the anomaly 
detection test, which is depicted in the third box from the top of the diagram. The anomaly detec-
tion test for the moving range technique is as follows: ܴ݉௜ = | ௜ܺ − ௜ܺିଵ| തܴ = ∑ ܴ݉௜௜ୀ௞௜ୀଶ݇ − 1 ܮܥܷ  = ସܦ തܴ 
where 

௜ܺ is the value of NCC or CBB for record i  

k is the number of data values in the program task; for k individual values, there are k-1 
ranges ܦସ is the sample-size-specific anti-biasing constant for n=2 observations that are used in cal-
culating mRi [Montgomery 2005] 

A value is flagged as an anomaly if ܴ݉௜ >   ܮܥܷ

2.2.9 SPI/CPI Outlier  

In the earned value management system, the schedule performance index (SPI) and cost perfor-
mance index (CPI) are defined as ܵܲܫ =  ܹܵܥܤܹܲܥܤ

ܫܲܥ =  ܹܲܥܣܹܲܥܤ

Our research team explored the use of these variables as a way to normalize the entire data set 
(i.e., the multiple program data available in the data set) so that anomaly detection analysis was 
not constrained to a program task by program task evaluation. This approach was explored be-
cause there was a possibility that anomalous SPI and CPI values could be detected across the en-
tire data set (that is, across multiple program tasks). 

The SPI/CPI outlier technique was implemented as follows for SPI: 

1. Calculate ܵܲܫ஽௜௙௙ = ௜ܫܲܵ −  ௜ିଵ for i=2 to n where n is the total number of records in theܫܲܵ

EVM data set. 

2. Calculate the average value, തܺ, of the ܵܲܫ஽௜௙௙	values. 
3. Calculate the standard deviation (sd) of the ܵܲܫ஽௜௙௙ values. 

4. Calculate ௎ܶ = തܺ + (3 ∗ and ௅ܶ (݀ݏ = തܺ − (3 ∗  .(݀ݏ
5. If ܵܲܫ஽௜௙௙ > ௎ܶ, flag the value as an anomaly; if ܵܲܫ஽௜௙௙ < ௅ܶ, flag the value as anomaly 

and investigate the corresponding EVM measures. 
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The SPI/CPI outlier technique was implemented as follows for CPI: 

1. Calculate ܫܲܥ஽௜௙௙ = ௜ܫܲܥ −  ௜ିଵ for i=2 to n where n is the total number of records in theܫܲܥ

EVM data set. 

2. Calculate the average value, തܺ, of the ܫܲܥ஽௜௙௙ values. 

3. Calculate the standard deviation (sd) of the ܫܲܥ஽௜௙௙ values. 

4. Calculate ௎ܶ = തܺ + (3 ∗ and ௅ܶ (݀ݏ = തܺ − (3 ∗  .(݀ݏ
5. If ܫܲܥ஽௜௙௙ > ௎ܶ then flag the value as an anomaly; if ܫܲܥ஽௜௙௙ < ௅ܶthen flag the value as an 

anomaly and investigate the corresponding EVM measures. 
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3 Results and Discussion 

3.1 Comparison of Techniques 

In this research study, we evaluated the following anomaly detection techniques:  

• control chart for individuals 

• moving range (mR) control chart 

• exponentially weighted moving average (EWMA) control chart* 

• moving average control chart* 

• Grubbs’ test  

• Rosner test 

• Dixon test  

• autoregressive integrated moving average (ARIMA) 

• Tukey box plot  

• 3-sigma outlier 

• moving range technique 

• SPI/CPI outlier* 

 * These techniques were found to be completely ineffective for detecting anomalies in the EVM 
data. Therefore, they are not discussed further in this report. 

We found that some techniques were effective for discovering anomalies in the variables BCWS, 
BCWP, and ACWP, but proved ineffective for detecting anomalies in the NCC and CBB varia-
bles. This is because the variables behave in fundamentally different manners. BCWS, BCWP, 
and ACWP are cumulative variables whose typical time series profile is curvilinear. NCC and 
CBB are reported values tied to the contract and do not typically change on a month-to-month 
basis. When these variables do change over time, the resultant time series appears as a step func-
tion. We partitioned the analysis results into two sections to reflect the different character of these 
two groups of variables and the techniques that were used to detect anomalies within the varia-
bles. 

3.2 Performance of Techniques Applied to BCWS, BCWP, and ACWP 
Figure 10 provides a graphical summary of the performance of the techniques that were found to 
be effective for BCWS, BCWP, and ACWP when the results of all test cases were combined. Ta-
ble 4 shows the same results in tabular format, and a further breakdown of the results is presented 
in Appendix C. 

With respect to detection rate, it may appear that Grubbs’ test outperformed all other tests (with 
the highest detection rate of 85.4%). However, the differences in detection rates among the five 
top performers (i.e., Grubbs’ test, Rosner test, box plot, ARIMA, and control chart for individu-
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als) are not statistically significant. These techniques as a group did perform better than the four 
remaining techniques, and this outcome is statistically significant.9 A probable explanation for 
this difference is that the top performers benefited from the use of the entire set of data in each 
test case data set to construct the statistical parameters of the anomaly detection technique. How-
ever, the four techniques represented on the right of Figure 10 were implemented in such a way as 
to simulate the monthly accumulation of EVM data over time. These techniques evaluated the 
existence of anomalies sequentially, without using all information in the data set to evaluate 
whether the new incoming data was anomalous. For example, at month six, the variable value was 
tested using only the available six data values. Then, the next record was read and value seven 
was evaluated using n=7. But, for the five techniques on the left of the graph, the entire data set 
(e.g., 73 values in some cases) was used to evaluate the month six value to determine whether it 
was anomalous. Having the benefit of all the information in the data set likely led to the detection 
rate effectiveness of the five top performing techniques. 

 

Figure 10: Anomaly Detection Effectiveness for EVM Variables BCWS, BCWP, and ACWP Across All 
Four Test Cases 

  

 
9  A Chi-Square test for equalities of proportions and significance tests for two proportions were used to establish 

statistical significance of the differences between techniques. See Appendix C for the details of these tests. 
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Table 4: Anomaly Detection Effectiveness for EVM Variables BCWS, BCWP, and ACWP Across All 
Four Test Cases 

Grubbs Rosner Box plot ARIMA I-CC 
Dixon 
n=8 

3-Sigma 
Meth. 

Dixon 
n=14 

Dixon 
n=3 

Detection 
rate 

86.5% 83.8% 83.8% 78.4% 75.7% 51.4% 45.9% 45.9% 35.1% 

False 
positive 
rate 

2.2% 2.4% 2.6% 3.6% 1.5% 2.7% 0.2% 2.0% 4.8% 

Having established that these five techniques perform similarly with respect to anomaly detection 
rate (i.e., those that appear in the top row, starting in the left-most column of Table 4), the false 
alarm rates were compared among them. These appear in the bottom row of Table 4. The differ-
ences in false alarm rate among the five top performers were statistically insignificant, based on the 
outcome of the Chi-square test for equalities of proportions.10 Therefore, based on our two 
measures of effectiveness (that is, detection rate and false alarm rate), our analysis suggests that 
Grubbs’ test, Rosner test, box plot, ARIMA, and the control chart for individuals (I-CC) all per-
formed at the same level. 

Sections 3.2.2 through 3.3.4 describe some of the qualitative factors associated with each of the 
five techniques that performed well with respect to detection rate. These qualitative factors are 
summarized in Table 5. 

Table 5: Qualitative Criteria Used to Evaluate High Performance Anomaly Detection Techniques 

Qualitative  
Criterion 

Definition Indicators 

Efficiency The extent to which time is well used for 
the intended task. 

The number of times human intervention is required 
(for the purpose of decision-making) before the tech-
nique can execute to completion. 

The amount of human intervention time required by a 
technique to complete the evaluation of the data set. 

Flexibility Susceptible to modification or adapta-
tion. The ability of a technique to re-
spond to potential changes affecting its 
value delivery in a timely and cost-
effective manner. 

The validity of results when data are from a non-
Gaussian distribution. 

Effectiveness of technique for small and large sample 
sizes. 

Ease with which the sensitivity of the anomaly detec-
tion technique can be adjusted. 

Simplicity Freedom from complexity, intricacy, or 
division into parts. 

Amount of burden put on someone to understand the 
technique or to try to explain it to a measurement and 
analysis novice. 

Extensibility The ability of a technique to be opera-
tionalized in a production environment 
with minimal effort or disruption of the 
existing system. 

The level of effort required to extend technique to 
implementation in production environment. 

 
10  See Appendix C for the details of the significance test results. 
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In the following sections, each of the high-performing anomaly detection techniques are discussed 
with respect to the qualitative criteria listed in Table 5. 

3.2.1 Control Chart for Individuals 

The control chart for individuals was a top performer as determined by the two measures of effec-
tiveness used in this study: it had a detection rate of 75.7% and a false alarm rate of 1.5%. This 
control chart is a popular tool for understanding variation in a process and system and is particu-
larly well-suited for identifying anomalies in a data set. Anomalies are identified by their appear-
ance above the upper control limit or below the lower control limit of the control chart. The cen-
terline and control limits of the chart are calculated using the available data. Therefore, the control 
chart operates best when there is sufficient data to generate an accurate portrayal of the average 
and standard deviation of the data set. For small data sets (n<10), the control limits ( തܺ ±  may (ߪ3
generate additional false alarms due to an inflated standard deviation caused by the contribution 
of even a single deviant data value. As n increases, the calculations of the control limits become 
more reliable in terms of representing the true standard deviation of the data set. In practice, con-
trol limits based on n<10 are typically referred to as trial limits until additional data become avail-
able. 

With respect to sensitivity, the upper and lower control limits can be adjusted for increased or 
decreased sensitivity. While the typical application is based on 3ߪ limits, these can be adjusted up 
or down to change the sensitivity of the detection scheme. For example, under certain conditions, 
this adjustment is implemented when control charts are used to monitor industrial processes. Here, 
they are sometimes referred to as warning limits [Montgomery 2005]. 

Incorporating the control chart for individuals scheme into a data collection stream of activities 
would not be difficult. The implementation of the tool in a production environment would be rela-
tively straightforward and practical to accomplish. 

3.2.2 Grubbs’ Test 

Grubbs’ test was also a top performer with a high detection rate of 86.5% and a relatively low 
false alarm rate of 2.2%. With regard to efficiency, Grubbs’ test is not difficult to apply when us-
ing a statistical package such as Minitab for the analysis. A macro has been developed for Minitab 
that implements Grubbs’ test for a specific alpha [Griffith 2007]. When the test is performed 
manually, the calculations are compared to a look-up table that provides critical values. Grubbs’ 
test works well for small n as well as large n. Tables of Grubbs’ test critical values are available 
for n=3 to 100 [Lohninger 2011].The computations are straightforward, as is the comparison of 
the Grubbs’ test statistic to a table of critical values that are available in many statistics books and 
reference sources [Lohninger 2011, Dunkl 2007]. 

While empirical results using Grubbs’ test were impressive, the test assumes an approximate 
normal distribution. In cases where there is a large departure from normality, false alarms may be 
generated due to non-normality, rather than the presence of anomalies. 

The sensitivity of Grubbs’ test can be adjusted by changing the value of alpha. The alpha used in 
this research study was set to ߙ = 0.05.  
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3.2.3 Rosner Test 

The Rosner test detected 83.8% of the anomalies with a false positive rate of 2.4%, making it the 
second best performer among the techniques presented here. Unfortunately, the Rosner test suf-
fers several unique drawbacks that make its implementation problematic. First, the test is not gen-
erally available in statistical software packages. Although the algorithm involved is not complex, 
the iterative nature of the technique complicates the programming requirements such that it may 
be beyond the skills of a normal user. Any organization seeking to implement the Rosner test 
would need to devote resources to develop such software. A second major drawback is the maxi-
mum limitation of 10 anomalies and a minimum of 25 data records. Analysis of a long-term data 
series might exceed the limit of 10 anomalies, particularly when investigating programs with life 
cycles that span decades. The minimum of 25 data records also means that a program task would 
have to produce more than two years of data before the Rosner test could be used. Third, the Ros-
ner test requires the analyst to identify the suspected anomalies before initiating the test. Although 
this might be done visually, it means additional time and effort on the part of an analyst in order 
to implement the test. 

Like the Grubbs’ and Dixon tests, the Rosner test assumes an approximate normal distribution of 
the non-anomalous data (those data records remaining after the anomalies are removed). This 
makes it susceptible to false positives when there is a departure from normality. The Rosner test 
also produces a test statistic, which is compared to a table of critical values that is widely availa-
ble [U.S. Army 2008, Barnett 1998, EPA 2000, Gibbons 2001, Rosner 1983]. The sensitivity of 
the Rosner test is also adjustable; the alpha used in this research study was set to ߙ = 0.05 and 
critical values are available for ߙ = 0.01 and ߙ = 0.005. 

3.2.4 Tukey Box Plot 

The Tukey box plot technique for non-cumulative distributions was also a top performer, with a 
high detection rate of 83.8% and a relatively low false alarm rate of 2.6%. Box plots can be gen-
erated easily and efficiently using many readily available statistical packages. Transformation of 
the time series into non-cumulative format is easily done in a spreadsheet and can be done with a 
single mouse click in many statistical packages. Box plots make no assumptions about normality 
or other statistical properties, and the results are easy to interpret and describe intuitively. The cut-
off points for determining what constitutes an anomaly can be easily adjusted based on historical 
experience and the judgment of domain experts in validating the statistical results. The anomalies 
can be identified for validation by domain experts with a simple copy and paste from the data ta-
bles in any good statistical package. The necessary procedures could be easily automated for use 
in a production environment. 

3.2.5 ARIMA 

The ARIMA technique was also a top performer, with a high detection rate of 78.4% and a rela-
tively low false alarm rate of 3.6%. For someone experienced with statistical packages, ARIMA 
techniques are relatively straightforward to use for anomaly detection in relatively simple univari-
ate time series, such as the EVM data that we analyzed. There is no need to transform the time 
series data into non-cumulative series, which saves time and may be helpful for EVM analysts 
who are accustomed to visualizations of cumulative time series. Semi-automated software tools 
and relatively painless guidance for finding the best ARIMA model fit can be made available to 
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EVM domain experts in a production environment. Anomalies can be easily determined by im-
porting the residuals from an ARIMA model into existing box plot software. 

A particular strength of ARIMA is that it subsumes many related statistical time series techniques 
into one general framework, and it may prove to be more widely applicable for EVM and other 
time series data that are more complex than those we used to compare statistical anomaly detec-
tion techniques thus far. A potential drawback is over-fitting to the data, potentially causing the 
number of false negatives to increase. 

3.3 Performance of Techniques Applied to NCC and CBB 

Selection of an anomaly detection scheme is dependent on the characteristics of the data. The time 
series behavior of the EVM variables NCC and CBB is fundamentally different than the behavior 
of the variables BCWS, BCWP, and ACWP. NCC and CBB are non-cumulative variables whose 
time series profiles typically (but not always) appear as step functions (see Appendix B). Tech-
niques that performed well for detecting anomalies in BCWS, BCWP, and ACWP did not neces-
sarily work well for NCC and CBB. 

The following four techniques effectively identified anomalies in NCC and CBB: 

• mR control chart (CC) 

• moving range technique  

• ARIMA 

• Tukey box plot 

Figure 11 summarizes the ability of these techniques to discover anomalies in the NCC and CBB 
variables of the four test cases. Table 6 presents the results in tabular format. 

All four proved to be 100% effective in discovering data anomalies in the test cases. With respect 
to false alarm rates, some techniques performed better than others; however the differences were 
statistically insignificant (see Appendix C). 
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Figure 11: Anomaly Detection Effectiveness for EVM Variables NCC and CBB Across All Four Test 
Cases 

 

Table 6: Anomaly Detection Effectiveness for EVM Variables NCC and CBB  

Across All Test Cases 

mR CC mR Technique ARIMA Box Plot 

Detection rate 100.0% 100.0% 100.0% 100.0% 

False positive rate 3.0% 6.3% 7.6% 12.9% 

In Sections 3.3.1 through 3.3.4 we discuss some of the qualitative factors associated with each of 
the four techniques that performed well with respect to detection rate. These qualitative factors are 
summarized in Table 5 on page 25. 

3.3.1 Moving Range Control Chart 

The mR control chart performed well for detecting anomalies in NCC and CBB variables, with a 
detection rate of 100% and a false positive rate of 3%. When used in the industrial domain, the 
mR control chart is paired with the control chart for individuals to monitor the variation of a pro-
cess [Montgomery 2005]. However, for our purposes, the mR control chart was used solely for 
detecting anomalies for these variables. 

This technique can be easily automated and does not require human judgments or interaction to 
execute the sequence of steps required for anomaly identification. The approach is straightfor-
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ward. As with all control charts, anomalies are indicated by the appearance of a data point above 
the upper control limit or below the lower control limit. 

3.3.2 Moving Range Technique 

The moving range technique was essentially a direct implementation of the moving range chart 
within a Microsoft Excel spreadsheet application. The difference between the two was that the 
moving range chart relied on the entire data set for analysis of anomalies, while the moving range 
technique considered only the available subset of data available when the EVM data was reported. 
Using only a subset of the data for anomaly evaluation led to additional false alarms as compared 
to the mR control chart. 

Implementing this technique confirmed that it would not be difficult to automate the mR control 
chart within a production environment. 

3.3.3 ARIMA 

The ARIMA technique performed well for the NCC and CBB variables, with a high detection rate 
of 100% and a relatively low false alarm rate of 7.6%. ARIMA is equally applicable to cumula-
tive and non-cumulative series, including series with step jumps such as NCC and CBB. The same 
semi-automated software tools and relatively painless guidance for finding the best ARIMA mod-
el fit could be available to EVM domain experts in a production environment, and the anomalies 
could be easily determined by importing the residuals from an ARIMA model into existing box 
plot software. 

3.3.4 Tukey Box Plot 

The Tukey box plot technique did well, with a detection rate of 100%. The false alarm rate of 
12.9% is relatively higher for the NCC and CBB series, although not statistically significantly so. 
As noted for the comparisons of the BCWS, BCWP, and ACWP time series, box plots are equally 
easy to use and interpret for any time series, and the cut-off points for determining what consti-
tutes an anomaly can be easily adjusted based on experience. The necessary procedures could be 
easily automated for use in a production environment. 
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4 Conclusion 

4.1 Summary of Results 

In this research study, we investigated the efficacy of anomaly detection techniques on earned 
value management data submitted on a monthly basis by government contractors to the EVM-CR. 
Five variables from the data set were analyzed for anomalies. Based on their time series behavior 
(see Appendix B), the variables fell into two categories as shown in Table 7. 

Table 7: Summary of EVM variables investigated in this study. 

Group 1  Group 2 

Budgeted Cost of Work Scheduled (BCWS) Negotiated Contract Cost (NCC) 

Budgeted Cost of Work Performed (BCWP) Contract Budget Base (CBB) 

Actual Cost of Work Performed (ACWP)  

4.1.1 Summary of Results – BCWS, BCWP, ACWP 

Of the various techniques we analyzed in this study, we found that five techniques were equally 
effective for identifying anomalies in BCWS, BCWP, and ACWP. These techniques were: 

• Grubbs’ test 

• Rosner test 

• Tukey box plot 

• ARIMA 

• control chart for individuals 

The Grubbs’ and Rosner tests are better suited for addressing anomaly detection in small sample 
sizes as well as large sample sizes. On the other hand, the effectiveness of Tukey box plot, 
ARIMA, and the control chart for individuals rely on the existence of larger sample sizes (approx-
imately n>10).  

The Grubbs’ and Rosner tests assume that the data are from an approximate normal distribution. 
In cases of non-normal data, there is a chance that anomalies will escape detection. However, 
Tukey box plot, ARIMA, and control chart for individuals are more robust in that they are not as 
sensitive to departures from normality. 

In production environments, some techniques will require more human judgments than others. We 
believe that Grubbs, Rosner, Tukey box plot, and control chart for individuals could all be imple-
mented in an automated environment without significant effort or disruption. However, ARIMA 
would require significant software programming to address the logic required to implement the 
technique in a fully automated way.  

Therefore, when choosing among the top performers in this group, the conditions and trade-offs 
must be considered. Given the simplicity and robustness in situations of non-normality, the Tukey 
box plot appears to be a stand-out performer when sample sizes are greater than 10, while either 
Grubbs’ or Rosner tests should be used when the sample size is small. 
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4.1.2 Summary of Results – NCC, CBB 

Three techniques were found to be effective for discovering anomalies in the NCC and CBB vari-
ables. The techniques are 

• ARIMA 

• mR control chart 

• moving range technique 

These techniques performed at 100% effectiveness for identifying data anomalies in our test cas-
es. The differences in the false alarm rate among the techniques were insignificant. 

The moving range technique is an adaptation of the mR control chart. The techniques are essen-
tially the same except that the moving range technique evaluated the data one record at a time (for 
n>3), while the mR control chart used the entire data set of values.  

As stated in Section 4.1.1, ARIMA is somewhat complex because it requires human judgment as 
part of the method. Implementing a fully automated ARIMA method would be more costly than 
implementing a method based on the moving range of the data. The calculations and anomaly de-
tection rules associated with the moving range technique are simple and would be easy to imple-
ment as an automated stand-alone anomaly detection system. Therefore, moving range is recom-
mended as the technique of choice for the detection of anomalies in variables whose time series 
behave similarly to NCC or CBB.  

4.2 Challenges Encountered During This Research 

We encountered a number of challenges during the course of this research project. First, we were 
not able to test our techniques against data that had been previously verified as error free. We 
dealt with this issue by involving an EVM subject matter expert to identify probable defects that 
we used as test cases in our analysis.  

A second challenge involved distinguishing data errors from accurate data that depicted anoma-
lous program behavior. Data anomalies are detected by measuring the departure of values from 
what they are expected to be. The expectation in this research was based on statistical and proba-
bilistic models and distributions. When a value is within an expected range, it is treated as valid 
and accurate. However, when it is a measurable departure from what is expected, it is treated as 
anomalous. Defining a normal region that minimizes the number of false positive and false nega-
tive anomalies can be difficult. The boundary between valid and anomalous values is often impre-
cise. Thus, an anomalous observation that lies close to the boundary distinguishing valid and 
anomalous values can actually be valid, and vice-versa [Chandola 2009]. 

A third challenge was the nature of EVM-type data, as it represents actual performance and is not 
from a stochastic process that can be modeled. Human intervention is at play as program manag-
ers make adjustments to the allocation of resources based on the current state of the program. This 
redistribution of resources throughout the program causes the performance indicator to change in 
ways that may not be predictable. 

Finally, an additional concern associated with this factor is the process for resolving whether a 
defect is caused by an error or by actual program performance. In all cases, when an anomaly is 
discovered, the only reliable way to determine its true nature is to trace the data value back to the 
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source to conduct root cause analysis. In this study, we were unable to obtain traceability back to 
the source (individual or authoritative record) that could resolve the nature of the anomaly. As in 
the previously identified challenge, we mitigated this issue by consulting with EVM subject mat-
ter experts to distinguish anomalies (identified in our test cases; see Appendix B) resulting from 
probable data defects vs. anomalies attributable to actual program performance.  

4.3 Implications of This Research 

Because the cost of poor data quality is a significant problem in government and commercial in-
dustry, the National Resource Council (NRC) report, Critical Code: Software Producibility for 
Defense, Recommendation 2-2 states: “The DoD should take steps to accumulate high-quality 
data regarding project management experience and technology choices” [NRC 2010]. But com-
mitting errors is part of the human condition. We all do it, no matter how careful we are. We rely 
on quality checks, peer reviews, and inspections to weed out errors in the final product. Without 
these safeguards defects are injected into the product and processes and remain there.  

Information is the product of the data life cycle. As noted in Figure 12, the potential for errors is 
significant because errors can be injected whenever human beings touch the data through pro-
cessing and analysis activities as the data are transformed into information that supports decision 
making. Correcting the data errors represents costly rework to determine the source of the error 
and fix it. When errors go undetected, flawed analysis leads to potentially flawed decisions that 
are based on the derived information. Also, since many information systems involve multiple 
shared repositories, data errors are replicated and propagate uncontrollably. This is why it is im-
portant to focus on correcting data errors at the time of entry rather than downstream in the data 
life cycle where the errors become embedded. 
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Figure 12: The Data Life Cycle 

Many organizations are flooded with data, and error detection methods are ad hoc or non-existent. 
While some errors are detected through manual “sanity” checks of the data, many types of errors 
escape detection due to the volume of data and the difficulty and tediousness of manual inspec-
tion.  

The purpose of this research study was to investigate the efficacy of methods that detect potential 
data errors through automated algorithms. The development of automated support would improve 
data quality by reducing data defects and release the analysts from the tedious and repetitive task 
of manual inspection so they can focus their efforts more productively.  

4.4 Recommendations 

This research demonstrates that statistical techniques can be implemented to discover potential 
data anomalies that would have otherwise gone undetected. We believe that it would be technical-
ly feasible and potentially very practical to codify the high performing statistical techniques into 
automated procedures that would scan and screen data anomalies when data are being entered into 
a repository. Such a capability could be coupled to and preceded by more basic types of error 
checking that would initially screen basic types of errors from the data based on business rules. 
There also may be significant potential for improving anomaly detection based on multivariate 
approaches. 

Future research should focus on the cost/benefit analysis to determine the economic advantages of 
automating a data anomaly detection capability that could serve as the front end of a data collec-
tion system. While it appears there will be a need for back-end checks that use all of the available 
records for a program, it may be that highly effective front-end checking would eventually elimi-
nate the need for such a process. 
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Appendix A Data Defect Taxonomy 

This table was adapted from the work of Larry English [English 2009]. 

Table 8: Data Defect Taxonomy 

Data Defect Description 

Definition conformance Data values are consistent with the attribute definition. 

Existence Each process has all the information it requires. 

Record existence A record exists for every real-world object or event the enterprise needs to 
know about. 

Value existence A given data element has a full value stored for all records that should have a 
value. 

Completeness Each process or decision has all the information it requires. 

Value completeness A given data element (fact) has a full value stored for all records that should 
have a value. 

Validity Data values conform to the information product specifications. 

Value validity A data value is a valid value or is within a specified range of valid values for 
this data element. 

Business rule validity Data values conform to the specified business rules. 

Derivation validity A derived or calculated data value is produced correctly according to a speci-
fied calculation formula or set of derivation rules. 

Accuracy The data value correctly represents the characteristic of the real-world object 
or event it describes. 

Accuracy to reality The data correctly reflects the characteristics of a real-world object or event 
being described. Accuracy and precision represent the highest degree of in-
herent information quality possible. 

Accuracy to surrogate source The data agree with an original, corroborative source record of data, such as 
a notarized birth certificate, document, or unaltered electronic data received 
from a party outside the control of the organization that is demonstrated to be 
a reliable source. 

Precision Data values are correct to the right level of detail or granularity, such as price 
to the penny or weight to the nearest tenth of a gram. 

Non-duplication There is only one record in a given data store that represents a single real-
world object or event. 

Source quality and security war-
ranties or certifications 

The source of information (1) guarantees the quality of information it provides 
with remedies for non-compliance; (2) documents its certification in its Infor-
mation Quality Management capabilities to capture, maintain, and deliver 
Quality Information; (3) provides objective and verifiable measures of the qual-
ity of information it provides in agree-upon quality characteristics; and (4) 
guarantees that the information has been protected from unauthorized access 
or modification. 

Equivalence of redundant or dis-
tributed data 

Data about an object or event in one data store is semantically equivalent to 
data about the same object or event in another data store. 
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Data Defect Description 

Concurrency of redundant of dis-
tributed data 

The information float or lag time is acceptable between (a) when data are 
knowable (created or changed) in one data store to (b) when it is knowable in 
a redundant or distributed data store, and concurrent queries to each data 
store produce the same result. 

Currency The “age” of the data are correct for the knowledge workers’ purpose or pur-
poses. 
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Appendix B Test Cases: Earned Value Management Data 

This appendix presents the test cases we used to evaluate the effectiveness of the anomaly detec-
tion methods investigated as part of this research study. The arrows on each graph indicate values 
that were identified as possible data errors by and OSD subject matter expert. 

 

Figure 13: Time Series Plots of Case #1 BCWS Data 

 

Table 9: Date and Error Values for Case #1 BCWS Data 

Month ID Possible Error Value 

17 1,940,676,000 

20 1,444,025,000 

30 2,148,585,000 

32 2,873,670,000 

65 4,775,742,000 

70 6,238,964,000 
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Figure 14: Time Series Plots of Case #1 BCWP Data 

 

Table 10: Date and Error Values for Case #1 BCWP Data 

Month ID Possible Error Value 

17 1,909,818,000 

20 1,423,075,000 

30 2,091,860,000 

32 2,761,025,000 

65 4,745,235,000 

70 6,171,406,000 
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Figure 15: Time Series Plots of Case #1 ACWP Data 

 

Table 11: Date and Error Values for Case #1 ACWP Data 

Month ID Possible Error Value 

17 1,879,200,000 

20 1,432,706,000 

30 2,163,096,000 

32 2,873,672,000 

65 4,931,343,000 

70 6,459,977,000 
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Figure 16: Time Series Plots of Case #1 NCC Data 

 

Table 12: Date and Error Values for Case #1 NCC Data 

Month ID Poss. Error Value 

42 5,017,373,000 

43 4,105,475,900 

45 4,369,780,800 
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Figure 17: Time Series Plots of Case #1 CBB Data 

 

Table 13: Date and Error Values for Case #1 CBB Data 

Month ID Poss. Error Value 

42 5,017,373,000 
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Figure 18: Time Series Plots of Case #2 BCWS Data 

 

Table 14: Date and Error Values for Case #2 BCWS Data 

Month ID Poss. Error Value 

21 8,999,568 
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Figure 19: Time Series Plots of Case #2 BCWP Data 

 

Table 15: Date and Error Values for Case #2 BCWP Data 

Month ID Poss. Error Value 

n/a n/a 
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Figure 20: Time Series Plots of Case #2 ACWP Data 

 

Table 16: Date and Error Values for Case #2 ACWP Data 

Month ID Poss. Error Value 

n/a n/a 
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Figure 21: Time Series Plots of Case #2 NCC Data 

 

Table 17: Date and Error Values for Case #2 NCC Data 

Month ID Poss. Error Value 

n/a n/a 
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Figure 22: Time Series Plots of Case #2 CBB Data 

 

Table 18: Date and Error Values for Case #2 CBB Data 

Month ID Poss. Error Value 

n/a n/a 
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Figure 23: Time Series Plots of Case #3 BCWS Data 

 

Table 19: Date and Error Values for Case #3 BCWS Data 

Month ID Poss. Error Value 

13 299,778 

14 432,306 

18 302,882 

19 417,285 

32 869,116 

33 1,041,546 

36 1,117,395 
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Figure 24: Time Series Plots of Case #3 BCWP Data 

 

Table 20: Date and Error Values for Case #3 BCWP Data 

Month ID Poss. Error Value 

18 301,159 

19 417,285 

28 749,861 

33 1,022,003 
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Figure 25: Time Series Plots of Case #3 ACWP Data 

 

Table 21: Date and Error Values for Case #3 ACWP Data 

Month ID Poss. Error Value 

18 333,775 
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Figure 26: Time Series Plots of Case #3 NCC Data 

 

Table 22: Date and Error Values for Case #3 NCC Data 

Month ID Poss. Error Value 

13 950,311 

18 831,202 

23 1,181,208 

24 1,377,971 

32 1,181,208 

36 1,378,253 

42 1,700,921 

48 1,813,922 
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Figure 27: Time Series Plots of Case #3 CBB Data 

 

Table 23: Date and Error Values for Case #3 CBB Data 

Month ID Poss. Error Value 

13 950,311 

18 831,202 

23 1,181,208 

24 1,377,971 

32 1,181,208 

36 1,378,253 

42 1,700,921 

48 1,813,922 
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Figure 28: Time Series Plots of Case #4 BCWS Data 

 

 

Table 24: Date and Error Values for Case #4 BCWS Data 

Month ID Poss. Error Value 

18 4,595,154,254 

30 5,145,641,276 
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Figure 29: Time Series Plots of Case #4 BCWP Data 

 

Table 25: Date and Error Values for Case #4 BCWP Data 

Month ID Poss. Error Value 

18 4,608,395,985 

30 5,151,418,521 

 

 

  

$0

$1,000,000

$2,000,000

$3,000,000

$4,000,000

$5,000,000

$6,000,000

$7,000,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

Cost
Th

ou
sa

nd
s

Month



 

CMU/SEI-2011-TR-027 | 55  

 

Figure 30: Time Series Plots of Case #4 ACWP Data 

 

Table 26: Date and Error Values for Case #4 ACWP Data 

Month ID Poss. Error Value 

29 5,033,355,639 
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Figure 31: Time Series Plots of Case #4 NCC Data 

 

Table 27: Date and Error Values for Case #4 NCC Data 

Month ID Poss. Error Value 

n/a n/a 
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Figure 32: Time Series Plots of Case #4 CBB Data 

 

Table 28: Date and Error Values for Case #4 CBB Data 

Month ID Poss. Error Value 

n/a n/a 
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Appendix C Detailed Tabular Results 

This appendix presents a detailed summary of results by EVM Variable for each of the four test 
cases illustrated in Appendix B. 
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Table 29: Anomaly Detection Method Performance for EVM Variable BCWS 

  I-CC Grubbs 3-Sigma 
Dixon 
n=3 

Dixon 
n=8 

Dixon 
n=14 

Rosner ARIMA 
Box 
plot 

Case #1 

Total # records 73 73 73 73 73 73 73 73 73 

# Total Defects 6 6 6 6 6 6 6 6 6 

# True Positives 6 6 4 4 6 6 6 6 6 

# False Negatives 0 0 2 2 0 0 0 0 0 

# True Negatives 67 65 67 60 65 66 65 64 65 

# False Positives 0 2 0 7 2 1 2 3 2 

Detection rate 100.0% 100.0% 66.7% 66.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

False positive rate 0.0% 3.0% 0.0% 10.4% 3.0% 1.5% 3.0% 4.5% 3.0% 

Case #2 

Total # records 39 39 39 39 39 39 39 39 39 

# Total Defects 1 1 1 1 1 1 1 1 1 

# True Positives 1 1 1 1 1 1 1 1 1 

# False Negatives 0 0 0 0 0 0 0 0 0 

# True Negatives 38 38 38 36 36 36 38 37 38 

# False Positives 0 0 0 2 2 2 0 1 0 

Detection rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

False positive rate 0.0% 0.0% 0.0% 5.3% 5.3% 5.3% 0.0% 2.6% 0.0% 

Case #3 

Total # records 59 59 59 59 59 59 59 59 59 

# Total Defects 7 7 7 7 7 7 7 7 7 

# True Positives 3 4 0 2 6 5 4 3 5 

# False Negatives 4 3 7 5 1 2 3 4 2 

# True Negatives 52 52 52 45 50 52 52 52 52 

# False Positives 0 0 0 7 2 0 0 0 0 

Detection rate 42.9% 57.1% 0.0% 28.6% 85.7% 71.4% 57.1% 42.9% 71.4% 

False positive rate 0.0% 0.0% 0.0% 13.5% 3.8% 0.0% 0.0% 0.0% 0.0% 

Table continues on next page 
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Table 29, continued 

  I-CC Grubbs 3-Sigma 
Dixon 
n=3 

Dixon 
n=8 

Dixon 
n=14 

Rosner ARIMA 
Box 
plot 

Case #4 

Total # records 37 37 37 37 37 37 37 37 37 

# Total Defects 2 2 2 2 2 2 2 2 2 

# True Positives 2 2 0 2 1 2 2 2 2 

# False Negatives 0 0 2 0 1 0 0 0 0 

# True Negatives 34 34 35 33 33 33 34 34 34 

# False Positives 1 1 0 2 2 2 1 1 1 

Detection rate 100.0% 100.0% 0 100.0% 50.0% 100.0% 100.0% 100.0% 100.0% 

False positive rate 2.9% 2.9% 0 5.7% 5.7% 5.7% 2.9% 2.9% 2.9% 

Totals 

Total # records 208 208 208 208 208 208 208 208 208 

# Total Defects 16 16 16 16 16 16 16 16 16 

# True Positives 12 13 5 9 14 14 13 12 14 

# False Negatives 4 3 11 7 2 2 3 4 2 

# True Negatives 191 189 192 174 184 187 189 187 189 

# False Positives 1 3 0 18 8 5 3 5 3 

Detection rate 75.0% 81.3% 31.3% 56.3% 87.5% 87.5% 81.3% 75.0% 87.5% 

False positive rate 0.5% 1.6% 0.0% 9.4% 4.2% 2.6% 1.6% 2.6% 1.6% 
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Table 30: Anomaly Detection Method Performance for EVM Variable BCWP 

  I-CC Grubbs 3-Sigma 
Dixon 
n=3 

Dixon 
n=8 

Dixon 
n=14 

Rosner ARIMA 
Box 
plot 

Case #1 

Total # records 73 73 73 73 73 73 73 73 73 

# Total Defects 6 6 6 6 6 6 6 6 6 

# True Positives 5 6 4 2 2 1 6 6 6 

# False Negatives 1 0 2 4 4 5 0 0 0 

# True Negatives 67 65 67 66 67 66 65 65 65 

# False Positives 0 2 0 1 0 1 2 2 2 

Detection rate 83.3% 100.0% 66.7% 33.3% 33.3% 16.7% 100.0% 100.0% 100.0% 

False positive rate 0.0% 3.0% 0.0% 1.5% 0.0% 1.5% 3.0% 3.0% 3.0% 

Case #2 

Total # records 39 39 39 39 39 39 39 39 39 

# Total Defects 0 0 0 0 0 0 0 0 0 

# True Positives 0 0 0 0 0 0 0 0 0 

# False Negatives 0 0 0 0 0 0 0 0 0 

# True Negatives 38 39 39 34 38 39 39 37 39 

# False Positives 1 0 0 5 1 0 0 2 0 

Detection rate n/a n/a n/a n/a n/a n/a n/a n/a n/a 

False positive rate 2.6% 0.0% 0.0% 12.8% 2.6% 0.0% 0.0% 5.1% 0.0% 

Case #3 

Total # records 59 59 59 59 59 59 59 59 59 

# Total Defects 4 4 4 4 4 4 4 4 4 

# True Positives 3 3 3 0 0 0 2 1 1 

# False Negatives 1 1 1 4 4 4 2 3 3 

# True Negatives 55 55 55 52 53 54 55 55 55 

# False Positives 0 0 0 3 2 1 0 0 0 

Detection rate 75.0% 75.0% 75.0% 0.0% 0.0% 0.0% 50.0% 25.0% 25.0% 

False positive rate 0.0% 0.0% 0.0% 5.5% 3.6% 1.8% 0.0% 0.0% 0.0% 

Table continues on next page 
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Table 30, continued 

  I-CC Grubbs 3-Sigma 
Dixon 
n=3 

Dixon 
n=8 

Dixon 
n=14 

Rosner ARIMA 
Box 
plot 

Case #4 

Total # records 37 37 37 37 37 37 37 37 37 

# Total Defects 2 2 2 2 2 2 2 2 2 

# True Positives 2 2 0 1 1 1 2 2 2 

# False Negatives 0 0 2 1 1 1 0 0 0 

# True Negatives 34 34 35 35 34 32 34 34 34 

# False Positives 1 1 0 0 1 3 1 1 1 

Detection rate 100.0% 100.0% 0.0% 50.0% 50.0% 50.0% 100.0% 100.0% 100.0% 

False positive rate 2.9% 2.9% 0.0% 0.0% 2.9% 8.6% 2.9% 2.9% 2.9% 

Totals 

Total # records 208 208 208 208 208 208 208 208 208 

# Total Defects 12 12 12 12 12 12 12 12 12 

# True Positives 10 11 7 3 3 2 10 9 9 

# False Negatives 2 1 5 9 9 10 2 3 3 

# True Negatives 194 193 196 187 192 191 193 191 193 

# False Positives 2 3 0 9 4 5 3 5 3 

Detection rate 83.3% 91.7% 58.3% 25.0% 25.0% 16.7% 83.3% 75.0% 75.0% 

False positive rate 1.0% 1.5% 0.0% 4.6% 2.0% 2.6% 1.5% 2.6% 1.5% 
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Table 31: Anomaly Detection Method Performance for EVM Variable ACWP 

  I-CC Grubbs 3-Sigma 
Dixon 
n=3 

Dixon 
n=8 

Dixon 
n=14 

Rosner ARIMA 
Box 
plot 

Case #1 

Total # records 73 73 73 73 73 73 73 73 73 

# Total Defects 7 7 7 7 7 7 7 7 7 

# True Positives 5 7 4 1 2 1 7 7 7 

# False Negatives 2 0 3 6 5 6 0 0 0 

# True Negatives 66 65 66 65 66 65 65 63 65 

# False Positives 0 1 0 1 0 1 1 3 1 

Detection rate 71.4% 100.0% 57.1% 14.3% 28.6% 14.3% 100.0% 100.0% 100.0% 

False positive rate 0.0% 1.5% 0.0% 1.5% 0.0% 1.5% 1.5% 4.5% 1.5% 

Case #2 

Total # records 39 39 39 39 39 39 39 39 39 

# Total Defects 0 0 0 0 0 0 0 0 0 

# True Positives 0 0 0 0 0 0 0 0 0 

# False Negatives 0 0 0 0 0 0 0 0 0 

# True Negatives 38 37 39 39 39 39 36 36 36 

# False Positives 1 2 0 0 0 0 3 3 3 

Detection rate n/a n/a n/a n/a n/a n/a n/a n/a n/a 

False positive rate 2.6% 5.1% 0.0% 0.0% 0.0% 0.0% 7.7% 7.7% 7.7% 

Case #3 

Total # records 59 59 59 59 59 59 59 59 59 

# Total Defects 1 1 1 1 1 1 1 1 1 

# True Positives 1 1 1 0 0 0 1 1 1 

# False Negatives 0 0 0 1 1 1 0 0 0 

# True Negatives 56 57 57 58 55 57 57 56 56 

# False Positives 2 1 1 0 3 1 1 2 2 

Detection rate 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0% 

False positive rate 3.4% 1.7% 1.7% 0.0% 5.2% 1.7% 1.7% 3.4% 3.4% 

Table continues on next page 
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Table 31, continued 

  I-CC Grubbs 3-Sigma 
Dixon 
n=3 

Dixon 
n=8 

Dixon 
n=14 

Rosner ARIMA 
Box 
plot 

Case #4 

Total # records 37 37 37 37 37 37 37 37 37 

# Total Defects 1 1 1 1 1 1 1 1 1 

# True Positives 0 0 0 0 0 0 0 0 0 

# False Negatives 1 1 1 1 1 1 1 1 1 

# True Negatives 33 33 36 36 35 36 33 33 33 

# False Positives 3 3 0 0 1 0 3 3 3 

Detection rate 0.0% 0.0% 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

False positive rate 8.3% 8.3% 0 0.0% 2.8% 0.0% 8.3% 8.3% 8.3% 

Totals 

Total # records 208 208 208 208 208 208 208 208 208 

# Total Defects 9 9 9 9 9 9 9 9 9 

# True Positives 6 8 5 1 2 1 8 8 8 

# False Negatives 3 1 4 8 7 8 1 1 1 

# True Negatives 193 192 198 198 195 197 191 188 190 

# False Positives 6 7 1 1 4 2 8 11 9 

Detection rate 66.7% 88.9% 55.6% 11.1% 22.2% 11.1% 88.9% 88.9% 88.9% 

False positive rate 3.0% 3.5% 0.5% 0.5% 2.0% 1.0% 4.0% 5.5% 4.5% 
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Table 32: Anomaly Detection Method Performance for EVM Variable NCC 

  mR-CC Moving Range ARIMA 
Box 
plot 

Case #1 

Total # records 73 73 73 73 

# Total Defects 3 3 3 3 

# True Positives 0 3 3 3 

# False Negatives 3 0 0 0 

# True Negatives 70 69 69 66 

# False Positives 0 1 1 4 

Detection rate 0.0% 100.0% 100.0% 100.0% 

False positive rate 0.0% 1.4% 1.4% 5.7% 

Case #2 

Total # records 39 39 39 39 

# Total Defects 0 0 0 0 

# True Positives 0 0 0 0 

# False Negatives 0 0 0 0 

# True Negatives 39 36 36 36 

# False Positives 0 3 3 3 

Detection rate n/a n/a n/a n/a 

False positive rate 0.0% 7.7% 7.7% 7.7% 

Case #3 

Total # records 59 59 59 59 

# Total Defects 8 8 8 8 

# True Positives 0 8 8 8 

# False Negatives 8 0 0 0 

# True Negatives 51 51 51 48 

# False Positives 0 0 0 3 

Detection rate 0.0% 100.0% 100.0% 100.0% 

False positive rate 0.0% 0.0% 0.0% 5.9% 

Table continues on next page 
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Table 32, continued 

  mR-CC Moving Range ARIMA 
Box 
plot 

Case #4 

Total # records 37 37 37 37 

# Total Defects 0 0 0 0 

# True Positives 0 0 0 0 

# False Negatives 0 0 0 0 

# True Negatives 37 34 29 32 

# False Positives 0 3 8 5 

Detection rate n/a n/a n/a n/a 

False positive rate 0.0% 8.1% 21.6% 13.5% 

Totals 

Total # records 208 208 208 208 

# Total Defects 11 11 11 11 

# True Positives 0 11 11 11 

# False Negatives 11 0 0 0 

# True Negatives 197 193 185 182 

# False Positives 0 4 12 15 

Detection rate 0.0% 100.0% 100.0% 100.0% 

False positive rate 0.0% 2.0% 6.1% 7.6% 
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Table 33: Anomaly Detection Method Performance for EVM Variable CBB 

  mR-CC Moving Range ARIMA 
Box 
plot 

Case #1 

Total # records 73 73 73 73 

# Total Defects 3 3 3 3 

# True Positives 3 3 3 3 

# False Negatives 0 0 0 0 

# True Negatives 69 65 65 53 

# False Positives 1 5 5 17 

Detection rate 100.0% 100.0% 100.0% 100.0% 

False positive rate 1.4% 7.1% 7.1% 24.3% 

Case #2 

Total # records 39 39 39 39 

# Total Defects 0 0 0 0 

# True Positives 0 0 0 0 

# False Negatives 0 0 0 0 

# True Negatives 39 34 32 32 

# False Positives 0 5 7 7 

Detection rate n/a n/a n/a n/a 

False positive rate 0.0% 12.8% 17.9% 17.9% 

Case #3 

Total # records 59 59 59 59 

# Total Defects 8 8 8 8 

# True Positives 8 8 8 8 

# False Negatives 0 0 0 0 

# True Negatives 51 51 51 51 

# False Positives 0 0 0 0 

Detection rate 100.0% 100.0% 100.0% 100.0% 

False positive rate 0.0% 0.0% 0.0% 0.0% 

Table continues on next page 
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Table 33, continued 

 

  mR-CC Moving Range ARIMA 
Box 
plot 

Case #4 

Total # records 37 37 37 37 

# Total Defects 0 0 0 0 

# True Positives 0 0 0 0 

# False Negatives 0 0 0 0 

# True Negatives 34 34 34 34 

# False Positives 3 3 3 3 

Detection rate n/a n/a n/a n/a 

False positive rate 8.1% 8.1% 8.1% 8.1% 

Totals 

Total # records 208 208 208 208 

# Total Defects 11 11 11 11 

# True Positives 11 11 11 11 

# False Negatives 0 0 0 0 

# True Negatives 193 184 182 170 

# False Positives 4 13 15 27 

Detection rate 100.0% 100.0% 100.0% 100.0% 

False positive rate 2.0% 6.6% 7.6% 13.7% 
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Appendix D Analysis Results – Significance Tests 

This section presents the significance tests that are referred to in the Results and Discussion Sec-
tion of the document. 

Table 34 presents the anomaly detection results for the combined variables BCWS, BCWP, and 
ACWP for all four tests cases. 

Table 34: Anomaly Detection Effectiveness Results for BCWS, BCWP, and ACWP (n = 208) 

True 
Positives 

False 
Negatives 

True 
Negatives 

False 
Positives 

Detection 
Rate 

False Positive
Rate 

I-CC 28 9 578 9 75.7% 1.5% 

Grubbs 32 5 574 13 86.5% 2.2% 

3-Sigma Meth. 17 20 586 1 45.9% 0.2% 

Dixon (n=3) 13 24 559 28 35.1% 4.8% 

Dixon (n=8) 19 18 571 16 51.4% 2.7% 

Dixon (n=14) 17 20 575 12 45.9% 2.0% 

Rosner 31 6 573 14 83.8% 2.4% 

ARIMA 31 6 573 14 83.8% 2.4% 

Box plot 31 6 572 15 83.8% 2.6% 

 

Table 35: Chi-Square Goodness-of-Fit Test for Observed Counts in True Positives 

True 
Positives 

Test 
Proportion 

Expected 
Contrib. to 
Chi-Square 

N DF 
Chi-
Squ. 

p 
Value 

I-CC 28 0.11 24.33 0.55251 219 8 19.32 0.013 

Grubbs 32 0.11 24.33 2.41553     

3-Sigma Meth. 17 0.11 24.33 2.21005     

Dixon (n=3) 13 0.11 24.33 5.27854     

Dixon (n=8) 19 0.11 24.33 1.16895     

Dixon (n=14) 17 0.11 24.33 2.21005     

Rosner 31 0.11 24.33 1.82648     

ARIMA 31 0.11 24.33 1.82648     

Box plot 31 0.11 24.33 1.82648     

A p value of 0.013 demonstrates that there is a significant difference in the effectiveness of the 
listed techniques in Table 35. 
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Table 36: Test of Two Proportions (Dixon (n=8) and I-CC) 

Technique 
True 

Positives 
Sample 
Percent 

Estimate for
Difference 

95% Upper 
Bound for Diff. 

Z 
p Value 

(Fisher’s Exact Text) 

Dixon (n=8) 19 0.514 -0.243 -0.065 -2.25 0.026 

I-CC 28 0.757     

The test of two proportions demonstrates a significant difference between the Dixon (n=8) tech-
nique and the I-CC technique for detecting anomalies (p value = 0.025). This implies that I-CC, 
Grubbs, Rosner, Box plot, and ARIMA are all significantly different in effectiveness from the 
techniques Dixon (n=8), 3-sigma Meth., Dixon (n=3), and Dixon (n=14) techniques. 

 

Table 37: Chi-Square Goodness-of-Fit Test for Observed Counts in False Positives 

True 
Positives 

Test 
Proportion 

Expected 
Contrib. to 
Chi-Square 

N DF 
Chi-
Squ. 

p 
Value 

I-CC 9 0.11 13.56 1.5310 122 8 29.377 0.000 

Grubbs 13 0.11 13.56 0.0228     

3-Sigma Meth. 1 0.11 13.56 11.6293     

Dixon (n=3) 28 0.11 13.56 15.3916     

Dixon (n=8) 16 0.11 13.56 0.4408     

Dixon (n=14) 12 0.11 13.56 0.1785     

Rosner 14 0.11 13.56 0.0146     

ARIMA 14 0.11 13.56 0.0146     

Box plot 15 0.11 13.56 0.1539     

A p-value of 0.000 (listed in Table 37) demonstrates a significant difference in false positives 
generated by the techniques. 

 

Table 38: Test of Two Proportions (3-Sigma and I-CC) 

Technique 
False 

Positives 
Sample 
Percent 

Estimate for
Difference 

95% Upper 
Bound for Diff. 

Z 
p Value 

(Fisher’s Exact Text) 

3-Sigma 1 0.002 -0.014 -0.005 -2.55 0.005 

I-CC 9 0.015     

The test summarized in Table 38 demonstrates that the 3-sigma method generates fewer false pos-
itives than all other techniques, and this difference is statistically significant. Other test of propor-
tions for false positives did not show significant differences. 
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Table 39 presents the anomaly detection results for the combined variables NCC and CBB for all 
four tests cases. 

Table 39: Anomaly Detection Effectiveness Results for NCC and CBB (n = 208) 

True 
Positives 

False 
Negatives 

True 
Negatives 

False 
Positives 

Detection 
Rate 

False Positive
Rate 

Moving Range 22 0 369 25 100% 6.3% 

mR-CC 22 0 382 12 100% 3.0% 

ARIMA 22 0 364 30 100% 7.6% 

Box plot 22 0 343 51 100% 12.9% 

 

Table 40: Chi-Square Goodness-of-Fit Test for Observed Counts in False Positives (NCC and CBB) 

True 
Positives 

Test 
Proportion 

Expected 
Contrib. to 
Chi-Square 

N DF 
Chi-
Squ. 

p 
Value 

Moving Range 25 0.25 29.5 0.6864 118 3 26.746 0.000 

mR-CC 12 0.25 29.5 10.3814     

ARIMA 30 0.25 29.5 0.0085     

Box plot 51 0.25 29.5 15.6695     

A p value of 0.000 demonstrates a significant difference in the generation of false positives by the 
techniques listed in Table 40. 

Table 41: Test of Two Proportions (mR CC and Moving Range) 

Technique 
True 

Positives 
Sample 
Percent 

Estimate for
Difference 

95% Upper 
Bound for Diff. 

Z 
p Value 

(Fisher’s Exact Text) 

mR CC 30 0.076 -0.053 -0.017 -2.47 0.009 

Moving 
Range 

51 0.129     

The test of two proportions demonstrates a significant difference between the mR CC method and 
the moving range technique. The mR CC method generates fewer false positives and the differ-
ence is significant (p value = 0.009).  

Other tests to two proportions failed to show significant differences in performance. 
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Appendix E Summary of Leading Enterprise Data Quality 
Platforms 

This appendix provides summaries of six enterprise data quality platforms that were highlighted 
in The Forrester Wave: Enterprise Data Quality Platforms, Q4 2010 [Karel 2010]. The focus of 
the summary for each tool is on data profiling capabilities associated with the platform. 

 
Vendor Tool 

DataFlux Data Management Studio 

Harte Hanks Trillium Software Trillium Software System 

IBM Info Sphere Foundation Tools 

Informatica Data Explorer 
Informatica Analyst 
Informatica Developer 
Informatica Administrator 

Pitney Bowes Business Insight Spectrum 

SAP BusinessObjects Data Quality Management 

 

DataFlux  

Tool: Data Management Studio 
 
http://www.dataflux.com/Products/Data-Management-Studio.aspx  

The DataFlux software product, Data Management Studio, is an integrated framework that allows 
users to plan, implement, and monitor data across multiple processes and technology components 
from a single user interface. 

Data Management Studio addresses the data quality management features listed in this table be-
low. 

 
Tool feature Description 

data profiling To execute a complete assessment of organization's data, examining the structure, 
completeness, and suitability of information assets 

metadata analysis To understand what data resources exist and extract and organize metadata from 
any source throughout the enterprise 

data quality To correct data problems, standardize data across sources and create an integrated 
view of corporate information 

data integration Create workflows to consolidate and migrate data from multiple data sources 

data monitoring Enforce business rules for quality, providing a foundation for an ongoing, highly-
customized data governance program 

data enrichment Enrich address data with geographic, demographic, or other details, as well as 
standardize and augment data on products, materials, and services 

entity resolution Identify and resolve disparate data on customers and products 

 

http://www.dataflux.com/Products/Data-Management-Studio.aspx
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Data Profiling 

The data profiling feature is used to analyze the structure, completeness, and suitability of infor-
mation assets by  

• developing a complete assessment of the scope and nature of data quality issues 

• creating an inventory of data assets 

• inspecting data for errors, inconsistencies, redundancies, and incomplete information 

 
This table below lists the capabilities provided in the data profiling feature. 
 
Data profiling capability Description 

Business rule validation Ensure data meets organizational standards for data quality and business pro-
cesses by validating data against standard statistical measures as well as custom-
ized business rules 

Relationship discovery Uncover relationships across tables and databases – and across different source 
applications 

Anomaly detection Detect data that falls outside of predetermined limits and gain insight into source 
data integrity 

Data validation Verify that data in tables matches its appropriate description 

Pattern analysis Ensure that your data follows standardized patterns to analyze underlying data 
and build validation rules 

Statistical analysis Establish trends and commonalities in corporate information and examine numeri-
cal trends via mean, median, mode, and standard deviation 

 

Harte-Hanks Trillium Software 

Software Tool: Trillium Software System 

http://www.trilliumsoftware.com/home/products/TrilliumSoftware.aspx  

The Trillium Software System is an integrated data quality suite that delivers a single user experi-
ence for complete, global, data quality life-cycle management across the enterprise. Built for 
seamless movement to and from views related to each phase of the data quality management life 
cycle, the Trillium Software System emphasizes upfront and ongoing investigation and improve-
ment during process design, development, and test phases. 

 
Tool compo-
nent 

Purpose Description 

TS Discovery Automated data dis-
cover and data profiling 

Provides a complete view of enterprise data assets; uncovers the true 
content, structure, rules, relationships, and quality of the data; and 
reveals issues that otherwise might remain hidden 

TS Quality Parsing, standardizing, 
and cleansing global 
data 

Cleanses, matches, and unifies data across multiple data sources and 
data domains including customer, product, sales, and financial. TS 
Quality delivers data parsing, standardization, and cleansing solutions 
and the ability to implement data quality processes in high-
performance, real-time environments 

TS Insight For scoring and track-
ing enterprise data 
quality 

A data quality dashboard that provides visibility into the status of data 
quality enabling analysts to monitor, manage, and view trends of data 
quality metrics through intuitive scorecards, charts, and graphs 

http://www.trilliumsoftware.com/home/products/TrilliumSoftware.aspx
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Director For deploying and 
managing real-time 
data quality processes 

A complete data quality application server, Director delivers data 
cleansing and matching services across multiple platforms, servers, 
and applications. Using Director, organizations can integrate and de-
ploy batch and real-time data quality projects in multiple environments. 

Data Profiling 

TS Discovery is the automated data profiling and data discovery component of the Trillium Soft-
ware System. Automated profiling capabilities provide valuable insight about the current state of 
the data. Early discovery highlights issues, anomalies, and previously unknown data problems by 
exposing: 

• data content and context 

• data structure and patterns 

• data integrity and business rules 

• relationships and referential integrity  

TS Discovery routinely assesses data to ensure that high quality is maintained and monitors pro-
duction systems for anomalies.  

IBM 

Software Tool: InfoSphere Foundation Tools 

http://www-01.ibm.com/software/data/integration/info_server/  

http://www-01.ibm.com/software/data/infosphere/foundation-tools/index.html  

 
Tool  

Component 

Purpose Description 

Information 
Analyzer 

To assess data quality Deep profiling capabilities—provides a comprehensive understanding 
of data at the column, key, source, and cross domain levels 

Data Architect To design enterprise 
models 

A collaborative data design solution used to discover, model, visual-
ize, relate, and standardize diverse and distributed data assets 

Fast Track To capture design speci-
fications 

Streamlines collaboration between business analysts, data modelers, 
and developers by capturing and defining business requirements in a 
common, familiar format 

Business Glos-
sary 

To manage business 
terms 

Enables creating and managing an enterprise vocabulary and classifi-
cation system, with ready-to-use industry standard terms and defini-
tions 

Metadata 
Workbench 

To monitor business 
flows 

Provides a window to a unified data integration platform, with insight 
into data source analysis, ETL (extract, transformation, load) process-
es, data quality rules, business terminology, data models, and busi-
ness intelligence reports. 

Discovery To understand data 
relationships 

Identifies and documents existing data, where it is located, and how it 
is linked across systems by intelligently capturing relationships and 
determining applied transformations and business rules 

Data Profiling 

IBM InfoSphere Information Analyzer is intended to help analysts understand data by offering 
data quality assessments, flexible data rules design and analysis, and quality monitoring capabili-
ties. Capabilities include the following: 

http://www-01.ibm.com/software/data/integration/info_server/
http://www-01.ibm.com/software/data/infosphere/foundation-tools/index.html
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• deep profiling capabilities—provide a comprehensive understanding of data at the column, 
key, source, and cross domain levels 

• multi-level rules analysis (by rule, record, or pattern) unique to the data quality space—
provides the ability to evaluate, analyze, and address multiple data issues by record rather 
than in isolation 

• shared metadata foundation—integrates the modules across IBM InfoSphere Information 
Server and IBM InfoSphere Information Server in support of the enterprise 

• native parallel execution for enterprise scalability—enables high performance against massive 
volumes of data 

• supports data governance initiatives through auditing, tracking, and monitoring of data quality 
conditions over time 

• enhanced data classification capabilities help to focus attention on common personal identifi-
cation information to build a foundation for data governance, 

• used to proactively identify data quality issues, find patterns, and set up baselines for imple-
menting quality monitoring efforts and tracking data quality improvements 

Informatica 

http://www.informatica.com/products_services/Pages/index.aspx#page=page-8  

Informatica offers a number of products that share various capabilities related to data profiling 
and data quality. The software product Data Explorer is its primary product for data profiling. 
However, additional products are available that provide data profiling capabilities but are geared 
for specific roles within the organization, as shown in the table below. 

 
Software Tool Purpose 

Data Explorer Business analysts, data stewards, IT developers 

Informatica Analyst Line-of-business managers, data stewards, and business 
analysts 

Informatica Developer IT developers 

Informatica Administrator IT administrator 

 

Software Tool: Data Explorer 

Data profiling capabilities include the following: 

• analyze data to automatically profile the content, structure, and quality of highly complex 
data structures 

• discover hidden inconsistencies and incompatibilities between data sources and target appli-
cations 

• easily customize new rules to automatically profile new data entries 

Data mapping capabilities include the following: 

• generate accurate source-to-target mapping between different data structures and define the 
necessary transformation specifications 

http://www.informatica.com/products_services/Pages/index.aspx#page=page-8
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• compare actual data and metadata sources to target application requirements 

• find data gaps, redundancies, and inaccuracies to resolve before moving data 

• identify data anomalies and create a normalized schema capable of supporting data 

Connectivity capabilities include the following: 

• profile all data types in a wide variety of applications, systems, and databases, including  

− .csv and flat files  

− RDBMS files (Oracle, DB2, UDB, Informix, Sybase)  

− ODBC data sources  

− VSAM and IMS, plus nonrelational data structures including COBOL copybooks 

• extend support beyond basic customer data, such as names, addresses, and telephone num-
bers, to include product, financial, asset, pricing, and other data 

 

Software Tool: Informatica Analyst 

This easy-to-use, browser-based tool is designed to empower the business to proactively partici-
pate in data quality processes without IT intervention. It enables line-of-business managers, data 
stewards, and business analysts to  

• profile, analyze, and create data quality scorecards 

• drill down to specific records with poor data quality to determine their impact on the business 
and how to fix them 

• monitor and share data quality metrics and reports by emailing a URL to colleagues 

• define data quality targets and valid reference data sets 

• specify, validate, configure, and test data quality rules 

• collaborate efficiently with IT developers to share profiles and implement data quality rules 

• identify anomalies and manage data quality exception records 

• track data quality targets on an ongoing basis  

 

Software Tool: Informatica Developer 

This Eclipse-based data quality development environment is designed to enhance IT productivity. 
It enables IT developers to 

• discover and access all data sources—whether they are on premise, with partners, or in the 
cloud 

• analyze, profile, and cleanse data 

• define and model logical data objects 

• combine data quality rules with sophisticated data transformation logic 

• conduct midstream profiling to validate and debug logic as it’s developed 

• configure data quality services, provisioning data physically or virtually and at any latency 
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• reuse all profiling and rule specifications from business analysts and data stewards across all 
applications and projects 

 

Software Tool: Informatica Administrator 

This easy-to-use, browser-based tool with centralized configuration and deployment capabilities 
for managing the data integration environment enables IT administrators to 

• manage services and nodes, including configurations that support grid and high availability 

• oversee security and user management, including users, groups, roles, privileges, and permis-
sions 

• perform advanced monitoring and logging 

 

Pitney Bowes Business Insight 

Software Tool: Spectrum 
 
http://www.pbinsight.com/  

Pitney Bowes incorporates its data profiling feature in the Enterprise Data Governance product. 
The product is composed of two modules, Profiler Plus and Monitor Plus. 

Profiler Plus is intended to help the user discover and understand the quality of data. Its data pro-
filing features and integrated analysis management framework enhances, accelerates, and reduces 
risks in data analysis activities. Key benefits described by Pitney Bowes include the ability to 

• decrease analysis timeframes by up to 90% 

• reduce IT project risks with automated, up-front analysis 

• simplify analysis activities through integrated management platform 

• gain confidence in the quality of your data 

Monitor Plus allows you to create rules to provide a proven way of checking and validating the 
data used in your business systems and applications, including the ability to 

• run regular data checks using an external scheduler 

• integrate monitoring into your existing operational data environment 

• receive automatic alerts after every execution, with data reports sent directly to your inbox 

Pitney Bowes also provides specific products related to other and more specific aspects of data 
quality. They include 

• Address New Module: Capture, validate, and correct addresses for the U.S., Canada, and 
over 220 countries worldwide with the Address Now Module for the Spectrum Technology 
Platform 

http://www.pbinsight.com/
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• Advanced Matching Module: Marketing and business processes rely on accurate data to 
identify and understand the relationships between records. The Advanced Matching Module 
recognizes customers, products, duplicates, and households across data sources.  

• Data Normalization Module: Creates a uniform customer experience by standardizing terms 
in your data base with the Data Normalization Module for the Spectrum Technology Platform  

• Universal Addressing Module: Address data exists throughout your enterprise in customer 
databases, call centers, web sites, and marketing systems. Reliable address information is re-
quired to communicate effectively with your customers, develop an accurate single customer 
view, and leverage your customer-facing technology investments. The Universal Addressing 
Module provides address validation, correction, and standardization technologies for more 
than 220 countries 

• Universal Name Module: Provides flexible and global name knowledge to better segment 
and target your customer base while matching, standardizing, analyzing, and consolidating 
complex records with confidence 

 

SAP BusinessObjects  

Software Tool: Data Quality Management 

http://www.sap.com/solutions/sapbusinessobjects/large/eim/data-quality-management/index.epx  

SAP BusinessObjects Data Quality Management—which is also available in versions for Infor-
matica, SAP solutions, and Siebel—delivers a solution to help analyze, cleanse, and match cus-
tomer, supplier, product, or material data (structured or unstructured) to ensure highly accurate 
and complete information anywhere in the enterprise. 

SAP BusinessObjects Data Quality Management includes the following features and functionali-
ty: 

• data quality dashboards that show the impact of data quality problems on all downstream sys-
tems or applications 

• the ability to apply data quality transformations to all types of data, regardless of industry or 
data domain, such as structured to unstructured data as well as customer, product, supplier, 
and material information 

• intuitive business user interfaces and data quality blueprints to guide you through the process 
of standardizing, correcting, and matching data to reduce duplicates and identify relationships 

• comprehensive global data quality coverage with support for over 230 countries 

• comprehensive reference data 

• broad, heterogeneous application and system support for both SAP and non-SAP sources and 
targets 

• prepackaged native integration of data quality best practices for SAP, Siebel, and Informatica 
PowerCenter environments 

• optimized developer productivity and application maintenance through intuitive transfor-
mations, a centralized business rule repository, and object reuse 

http://www.sap.com/solutions/sapbusinessobjects/large/eim/data-quality-management/index.epx
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• high performance and scalability with software that can meet high volume needs through par-
allel processing, grid computing, and bulk data loading support 

• flexible technology deployment options, from an enterprise platform to intuitive APIs that 
allow developers quick data quality deployment and functionality 
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