%% Software Engineering Institute

Certified Binaries for Software
Components

Sagar Chaki
James lvers
Peter Lee

Kurt Wallnau
Noam Zeilberger

September 2007

TECHNICAL REPORT
CMU/SEI-2007-TR-001
ESC-TR-2007-001

Predictable Assembly from Certifiable Components Initiative
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

Carnegie Mellon

This report was prepared for the

SEI Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html)

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

N o 1= - o Y,
1 INtrOTUCTION . 1
2 BaSIiC CONCEPES oottt 3
3 Framework for Generating Certified Binaries i 7
3.1 The ProCeAUIE ... e e e e 7
3.2 Trusted Computing Baset 8
4 Certifying Model ChecKing ... e 11
4.1 Iterative Predicate Abstraction and Refinementl 11
4.2 Construction and Composition Languageiviiiiiiiei i 12
4.3 Interpretation from CCL O C i e e e 14
4.4 Ranking Functions Generated by Copper ...t 15
5 Certified Source-Code Generationo..iniit it 17
6 Certified Binary Generation ... e 21
T Related WOTK 23
8 EXperimental ResSUILS 25
O CONCIUSION o 27
R I BN CES .o 29

SOFTWARE ENGINEERING INSTITUTE ‘ i

ii | CMU/SEI-2007-TR-001

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Component in Analysis (Left) and C (Right)y Forms 3
Framework for Generating Certified Binaries 7
Example of Software Verification Via lterative Refinement 11
CCL Specification for a Simple Component, 13
Graphical Depiction of the Component’'s State Machine 13
Ranking Function in Terms of the C Program, 16
Ranking Function in Terms of the CCL Specification 16
Invariants in Pin/C Code (Left) and Assembly Code (Right) 17
Invariants and Code in Pin/C (Left) Assembly (Right) 21

SOFTWARE ENGINEERING INSTITUTE | iii

iv ‘ CMU/SEI-2007-TR-001

Abstract

Proof-carrying code (PCC) and certifying model checking (CMC) are two established paradigms for
obtaining objective confidence in the runtime behavior of a program. PCC enables the certification of
low-level binary code against relatively simple (e.g., memory-safety) policies. In contrast, CMC
provides a way to certify a richer class of temporal logic policies, but is typically restricted to
high-level (e.g., source) code. In this report, an approach is presented to certify binary code against
expressive policies, and thereby achieve the benefits of both PCC and CMC. This approach generates
certified binaries from software specifications in an automated manner. The specification language
uses a subset of UML statecharts to specify component behavior and is compiled to the Pin
component technology. The overall approach thus demonstrates that formal certification technology is
compatible with, and can indeed exploit, model-driven approaches to software development.
Moreover, this approach allows the developer to trust the code that is produced without having to
trust the tools that produced it. In this report details of this approach are presented and experimental
results on a collection of benchmarks are described.

SOFTWARE ENGINEERING INSTITUTE | v

vi ‘ CMU/SEI-2007-TR-001

1 Introduction

In the current plug-and-play era, off-the-shelf programs are increasingly being made available as
modules or components that are attached to an existing infrastructure. Often, such plug-ins are
developed from high-level component specifications (such as UML statecharts) but are distributed in
executable machine code, or binary form. In this report, we present a framework for generating
trustworthy binaries from component specifications and for proving that binaries generated elsewhere
satisfy specific policies.

Our approach builds on two existing paradigms for software certification: proof-carrying code and
certifying model checking. Proof-carrying code (PCC) was originally proposed in a seminal paper by
Necula and Lee [Necula 1996]. The essential idea underlying PCC is to construct a proof of the claim
that a piece of machine code respects a desired policy. The proof is shipped along with the code to
allow independent verification before the code is deployed, hence “proof-carrying.” In contrast,
certifying model checking (CMC) [Namjoshi 2001] is an extension of model checking [Clarke 1982]
that generates “proof certificates” for finite state models against a rich class of temporal logic policies.
In recent years, CMC has been augmented with iterative abstraction-refinement to enable the
certification of C source code [Henzinger 2002a, Chaki 2006].

PCC and CMC have complementary strengths and limitations. Specifically, while PCC operates
directly on binaries, its applications to date have been restricted to relatively simple memory safety
policies.! The progress of PCC has also been hindered by the need for manual intervention (e.g., to
specify loop invariants). In contrast, CMC can certify programs against a richer class of temporal
logic policies (which subsumes both safety and liveness) and is automated. However, CMC can certify
only source code (for example “C”) or other forms of specification languages.

Finally, while PCC and CMC both require a small trusted computing base—usually consisting of a
verification condition generator and a proof checker—they both tend to generate prohibitively large
proofs. This can pose serious practical obstacles in using these techniques in resource-constrained
environments. Unfortunately, the embedded software that can benefit most from the high confidence
obtained with PCC (e.g., medical devices, on-board automotive systems, mobile phones) will likely be
resource constrained.

In this context, our approach has the following salient features:

1. expanded applicability: We generate certified binaries directly from component
specifications expressed in a subset of UML statecharts. The key technique
involved is a process of translating “ranking functions,” along with the component
itself, from one language to the next. Thus, our approach bridges the two domains
of model-driven software development and formal software certification.

2. rich policies: As with CMC, we certify components against a rich class of
temporal logic policies that subsume both safety and liveness policies. We use the
state/event-based temporal logic called SE-LTL [Chaki 2004b] developed by the
Predictable Assembly from Certifiable Components (PACC)? Initiative at the
Carnegie Mellon®3 Software Engineering Institute (SEI).

3. automation: As with CMC, we employ iterative refinement in combination with
predicate abstraction and model checking to generate appropriate invariants and

Informally, a safety policy stipulates a condition that must never occur, while a liveness policy stipulates a condition
that must eventually occur.

For more information, go to http://www.sei.cmu.edu/pacc/.

®Carnegie Mellon is registered in the U.S. Pantent and Trademark office by Carnegie Mellon University.

SOFTWARE ENGINEERING INSTITUTE | 1

http://www.sei.cmu.edu/pacc

ranking functions required for certificate and proof construction in an automated
manner.

4. compact proofs: We use state-of-the-art Boolean satisfiability (SAT) technology
to generate extremely small proofs. Our results indicate that the use of SAT
yields proofs of manageable size for realistic examples.

The rest of this report is organized as follows. In Section 2, we present the basic concepts relevant to
our research; and in Section 3, we present an overview of our framework. We then focus on the CMC
portion of our framework in Section 4, on the process of generating certified source code in Section 5,
and on the process of generating certified binaries in Section 6. We survey related work in Section 7
and present some experimental results in Section 8. Finally, we conclude in Section 9.

2 | CMU/SEI-2007-TR-001

2 Basic Concepts

In this section, we describe the basic concepts of components, policies, ranking functions, verification
conditions, certificates, and resolutions that we use in the rest of this report.

Logical Foundation. We assume a denumerable set of variables Var and a set of expressions Expr
constructed using Var and the standard C operators. We view every expression as a formula in
quantifier-free first-order logic with C interpretations for operators and truth values (0 is false and
anything else is true). Thus, we use the terms “expression” and “formula” synonymously and apply
the standard concepts of validity, satisfiability, and so forth to both expressions and formulas.

Component. We deal with several forms of a component—its construction and composition
language (CCL) form, C implementation form, analysis form, and its binary (assembly language)
form. The syntax and semantics of CCL have been presented elsewhere [Wallnau 2003], and we use
the PowerPC assembly language. Hence, we only describe the other two (analysis and C
implementation) forms in more detail.

In its analysis form, a component is simply a control-flow graph (CFG) with a specific entry node.
Each node of the component is labeled with either an assignment statement, a branch condition, or a
procedure call. The outgoing edges from a branch node are labeled with THEN and ELSE to indicate
flow of control. For any component C, we write Stmt(C) to denote the set of nodes of C, since each
node corresponds to a component statement. Figure 1 shows a component on the left and its
representation in C syntax on the right.

x = getc();
if(x) y=2z + 1;

else y = fact(z);

Figure 1: Component in Analysis (Left) and C (Right) Forms

The analysis form is a very abstract notion of component that enables us to transcend syntactic
differences among different kinds of specification languages (CCL, C, or other) and therefore to talk
about component certification in a very general way.

The C implementation is generated from CCL and contains both the logical behavior as specified by
statecharts as well as the infrastructure imposed by the Pin component model [Hissam 2005].
However, we impose several strong restrictions on the C code itself. For instance, we disallow
recursion so that the entire component is inlined into a single CFG. We also disallow internal
concurrency. Variable scopes and return statements are not considered. All variables are assumed to
be of integral type, and pointers and other complicated data types are disallowed.

While these are severe restrictions when viewed from the full generality of ANSI-C, they are not so
severe when viewed from the more restrictive vantage of CCL specifications. In particular, a CCL
specification for a component with a single reaction (the CCL unit of concurrency) obeys the above
restrictions by definition. Even when a restriction is violated (e.g., CCL allows statically declared

SOFTWARE ENGINEERING INSTITUTE | 3

fixed-size arrays), simple transformations (e.g., representing each array element by a separate variable)
suffice to solve the problem. Since all C programs and binaries we consider are obtained via some
form of semantics-preserving translation of CCL specifications, they obey our restrictions as well.

Policy. Policies are expressed in CCL specifications as SE-LTL formulas. Prior to verification,
however, the policy is transformed into an equivalent Biichi automaton. Thus, for the purpose of this
report, a policy ¢ is to be viewed simply as a Biichi automaton. The theoretical details behind the
connection between SE-LTL and Biichi automata can be found elsewhere [Chaki 2004b] and are not
crucial for grasping the main ideas presented here.

Ranking Function. Ranking functions are a technical device used to construct proofs of liveness,
which require a notion of progress toward a specific objective Obj. The essential idea is to assign
ranks—drawn from an ordered set R with no infinite decreasing chains—to system states. Informally,
the rank of a state is a measure of its distance from Obj. Then, proving the liveness policy boils down
to proving that the rank of the current system state decreases appropriately with every transition
(i.e., the system makes progress toward Obj). Since there are no infinite decreasing chains in R, the
system must eventually attain Obj. In our case, it suffices to further restrict R to be a finite set of
integers with the usual ordering.

Definition 1 (Ranking Function) Given a component C, a policy ¢, and a finite set of integral
ranks R, a ranking function RF is a mapping from Expr to R. The expressions in the domain of RF
represent states of the composition of C and p, using additional variables to encode the “program
counter” of C and the states of . Thus, given any ranking function RF : Expr — R, we know C and
@ mplicitly.

Definition 2 (Verification Condition) Given a ranking function RF, we can effectively compute a
formula called the verification condition of RF, denoted by VC(RF), using an algorithm called
VC-Gen.

Ranking functions, verification conditions, and software certification are related intimately, as
expressed by Fact 1. Note that we write C' |= ¢ to mean component C respects policy ¢, and that a
formula is valid if it is true under all possible variable assignments.

Fact 1 (Soundness) For any component C and policy ¢, if there exists a ranking function
RF : Expr — R such that VC(RF) is valid, then C = .

We will not go into a detailed proof of Fact 1, since it requires careful formalization of the semantics
of C' and ¢. In addition, proofs of theorems that capture the same idea are presented
elsewhere [Necula 1996, Chaki 2006].

Definition 3 (Certificate) For any component C and policy ¢, a certificate for C |= ¢ is a pair
(RF,1II) where RF : Expr — R is a ranking function over some finite set of ranks R, and I is a proof
of the validity of VC(RF) in a sound proof system.

Indeed, if such a certificate (RF', 1) exists, by the soundness of the proof system used to construct II,
we know that VC(RF') is valid, and hence, by Fact 1, C = ¢. This style of certification, used in both
PCC and CMC, has several tangible benefits:

e Any purported certificate (RF,II) is validated by the following effective (i.e.,

automatable) procedure: (1) compute VC(RF) using VC-Gen and (2) verify that
I is a correct proof of VC(RF') using a proof checker.

4 | CMU/SEI-2007-TR-001

e Necula and Lee demonstrated that this effective procedure satisfies a fundamental
soundness theorem: any program with a valid certificate satisfies the policy for
which the certificate is constructed [Necula 1996]. This fact is not altered even if
the binary program, the proof certificate, or both are tampered with in any way.
A binary program may exhibit different behavior in its modified form than in its
original form. However, this new behavior will still be guaranteed to satisfy the
published policy if its proof certificate is validated.

e The policy, VC-Gen, and proof-checking algorithms are public knowledge. Their
mechanism does not depend in any way on secret information. The certificate can
be validated independently and objectively. The soundness of the entire
certification process is predicated solely upon the soundness of the underlying
logical machinery, which is time tested, and the correctness of the trusted
computing base (TCB), as discussed later.

e The computational complexity of the certification process is shouldered by the
entity generating the certificate. In the case of software components, this entity is
usually the component supplier who has the “burden of proof.”

Overall, the existence of a valid certificate implies that C' |= ¢ irrespective of the process by which the
certified component was created or transmitted. This feature makes our certification approach
extremely attractive for incorporating components derived from unknown and untrusted sources into
safety-critical and mission-critical systems.

Resolution. The fundamental proof system used in our approach is called “resolution.” A resolution
proof system is based on a single inference rule, also known as resolution. In the context of
propositional Boolean formulas, the resolution rule can be stated as follows:

(rVaq) (p' vV —q)
(pVy)

Intuitively, this rule means that if we have already inferred two clauses (pV ¢q) and (p’ V —q) containing
the same variable ¢ in positive and negative form, we can infer a new clause (p V p’) by combining the
two original clauses and eliminating the “resolved” variable q.

In our approach, we use resolution as a strategy for proving the unsatisfiability of SAT formulas in
conjunctive normal form (CNF). In this context, resolution is known to be both sound and complete.
In other words, for any unsatisfiable SAT formula &, there exists a finite sequence of applications of
the resolution rule that start with x and end with the inference of the empty clause (representing
falsehood). Such a proof is also called a resolution proof, and state-of-the-art SAT solvers such as
ZChaff [Zhang 2003] can emit resolution proofs upon proving a formula to be satisfiable. In addition,
since resolution proofs involve just one simple inference rule, checkers for such proofs are easy to verify
and trust.

SOFTWARE ENGINEERING INSTITUTE | 5

6 | CMU/SEI-2007-TR-001

3 Framework for Generating Certified Binaries

Figure 2 depicts the infrastructure for certified component binary generation that we have developed.
Key elements are numbered for ease of reference and are correlated with the steps of the procedure
described in this section. The flow of artifacts involved in generating a certified binary is indicated via
arrows.

AN

o 00—
Compiler
Code » Pin/C VC-Gen

Generator + RF Theorem Prover
AN
CCL

Certified

% l Binary

Reverse Interpretation
Interpretation

Counter-
example

v

——— | Copper

SAT Solver Theorem
Prover

Figure 2: Framework for Generating Certified Binaries

3.1 THE PROCEDURE
The steps involved in generating certified component binaries are summarized below:

Step 1. A component is specified in CCL [Wallnau 2003]. CCL uses a subset of UML 2.0 statecharts
that excludes features that are not particularly useful given the Pin component model as a target.
The specification Spec contains a description of the component as well as the desired SE-LTL policy ¢
against which the component is to be certified.

Step 2. Spec is transformed (“interpreted” [Ivers 2002]) into a component C that can be processed
by a model checker. C' comprises a C program along with finite state machine specifications for the
procedures it invokes. This step is implemented by augmenting the interpretation for the SEI’s
ComFoRT [Ivers 2004] reasoning framework so that C' contains additional information relating its line
numbers, variables, and other data structures to those of Spec. This information is crucial for the
subsequent reverse interpretation of ranking functions in Step 4.

SOFTWARE ENGINEERING INSTITUTE | 7

Step 3. C is input into Copper, a state-of-the-art certifying software model checker.

Copper [Chaki 2005a] was originally developed as part of ComFoRT and interfaces with theorem
provers (TP) and Boolean satisfiability solvers (SAT). The output of Copper is either a
counterexample (C'E) to the desired policy ¢ or a ranking function RF1 : Expr — R over some set of
ranks R such that VC(RF1) is valid.

Step 4. The certificate RF1 only certifies C' (the result of the interpretation) against the policy ¢. It
is reverse interpreted into a certificate RF2 : Expr — R such that VC(RF2) is valid. The reverse
interpretation is enabled by the additional information generated during interpretation to connect
Spec with C' (see Step 2).

Step 5. Spec and RF2 are transformed into Pin/C component code that can be compiled and
deployed in the Pin runtime environment (RTE) [Hissam 2005]. Pin/C code generation without
ranking functions had been developed as part of PACC. We augment this code-generation step to also
create a ranking function, using RF2, and embed it in the generated code. In essence, we transform
the ranking function, along with the component, from one format (CCL) to another (Pin/C).

Step 6. The final step consists of three distinct substeps.

[a] The component with the embedded ranking function is compiled from Pin/C to
binary form. In our implementation, we use GCC* (that targets the PowerPC
instruction set) to achieve this goal. We refer to the ranking function embedded in
the binary as RF3.

[b] We compute VC(RF3) using VC-Gen.

[c] We obtain a proof IT of VC(RF3) using a proof-generating theorem prover. For
our implementation, we use a SAT-based theorem prover. In essence, we convert
-~ VC(RF3) (i.e., the logical negation of VC(RF3)) to a Boolean formula ¢. We
then check if ¢ is unsatisfiable using ZChaff [Zhang 2003]. If VC(RF3) is valid,
the resolution proof produced by ZChaff serves as II. The use of SAT enables us
to obtain extremely compact proofs in practice [Chaki 2006]. Finally, the
certificate (RF,II) along with the binary is produced as the end result—the
certified binary for Spec.

Steps 1-6 are elaborated in Sections 4-6.

3.2 TRUSTED COMPUTING BASE

Certain artifacts must be trustworthy in order for our approach to be effective. In essence, the trusted
computing base (TCB) is composed of

1. VC-Gen
2. the procedure for converting ~VC(RF3) to ¢
3. the procedure for checking that II refutes ¢

All of these procedures are computationally inexpensive and can be implemented by relatively small
programs. Thus, they are more trustworthy (and more verifiable) than the rest of the programs shown
in Figure 2. For instance, they can be implemented in proof-based systems like ACL2.?

4 For more information, go to http://gcc.gnu.org/.
5 For more information, go to http://www.cs.utexas.edu/users/moore/acl2/.

8 | CMU/SEI-2007-TR-001

http://gcc.gnu.org
http://www.cs.utexas.edu/users/moore/acl2

Specifically, the programs no longer required to be in the TCB are the interpreter, the certifying
model checker, the reverse-interpreter, the code generator, the compiler, and the theorem prover.
These tools are all quite complex, and eliminating them from the TCB raises considerably the degree
of confidence of our certification method.

The fact that the model checker itself need not be trusted is not (initially) easily grasped, but this
astonishing fact is so fundamentally important that further elaboration is justified. In fact, this
concept can be demonstrated in the infrastructure described in this report:

e The Copper model checker uses the Simplify [Nelson 1980] theorem prover to
create program abstractions. Because Simplify regards integer types as unbounded
numbers, an invariant of the form =z < x 4+ 1 might be generated. Of course, in
unbounded arithmetic, this invariant is trivially valid. However, this invariant is
not valid when we consider bit-level semantics of integer types represented on a
computer (i.e., integer overflow). In short, Copper can produce unsound results if
bit-level semantics of programs will influence the satisfaction of a desired policy.

e The process for constructing - VC(RFS3) and for converting this to ¢ is part of the
TCB. The conversion to ¢ also encodes bit-level semantics in SAT form. These
semantics are missing from Simplify, which explains why the model checker may
have produced an unsound result.

e The proof of ¢ is generated by a SAT solver. At this point it is likely that the
SAT solver will fail to produce a proof of ¢. However, the SAT solver (which we
do not trust) may generate a faulty resolution proof of ¢.

e Even if the model checker and the SAT solver are faulty, the proof produced by
the SAT solver is checked independently against the published rules for resolution
proofs. The proof checker must be part of the TCB, but it is much smaller and
simpler when compared to the model checker and SAT solvers.

The above scenario demonstrates that the model checker and SAT solver used to generate
abstractions or proofs of policy satisfaction need not be trusted. Only the relatively simpler processes
of generating ¢ and checking resolution proofs that ¢ is unsatisfiable need to be trusted.

How the TCB is demarcated and how its size and complexity are reduced are important theoretical
and practical concerns for future applications of PCC. There are several approaches to these concerns.
For example, “foundational” PCC [Appel 2001] aims to reduce the TCB to its bare minimum of logic
foundations. We adopt the more systems-oriented approach pioneered by Necula and Lee, which does
not seek a pure foundation but rather seeks to achieve a practical compromise [Schneck 2002]. Even
this more “pragmatic” approach can achieve good results. In our own implementation, the TCB is
more than 15 times smaller in size (30 KB vs. 450 KB) than the rest of the infrastructure (which
includes code generators, model checkers, and ancillary theorem provers such as Simplify).

SOFTWARE ENGINEERING INSTITUTE | 9

10 | CMU/SEI-2007-TR-001

4 Certifying Model Checking

The infrastructure for certifying model checking corresponds to Steps 1-4 from Figure 2. We begin
with an overview of iterative predicate abstraction and refinement, the core paradigm used by Copper
to verify C programs.

4.1 ITERATIVE PREDICATE ABSTRACTION AND REFINEMENT

In iterative abstraction refinement, conservative models of the C program are constructed via
predicate abstraction, verified, and then refined iteratively until either the verification succeeds or a
real counterexample is found. We illustrate this paradigm with a simple example.

)) !)) |
LO [if (x==1) @ [Lo,lj [Lo,ooj L0,01 | |LO,10
THEN ELSE /' \ i i l

Ll[% = x+1] [X = 2]L2 [Ll,O] [LZ,O] [L2,l L2,00||L2,01 | |L1,10

L3 |assert (x==2) i

(a) (b) ()

N
A
N

Figure 3: Example of Software Verification Via Iterative Refinement

Consider the C program represented by the CFG shown in Figure 3(a). The program begins with a
branch statement at location LO. If the branch condition holds, the assignment at location L1 is
executed. Otherwise, the assignment at location L2 is executed. Finally, a call to the procedure
assert is made at location L3. The safety policy to be verified is that the argument to assert is
always non-zero.

Predicates and Concretization. As mentioned before, Copper creates conservative models of the
C program using a technique called predicate abstraction. The result of predicate abstraction is
parameterized by a finite set of predicates, where each predicate is a side-effect-free C expression. Let
P be a set of predicates. Then a valuation of P is a mapping from P to {TRUE, FALSE}. We use a
sequence of zeroes and ones to denote valuations, as follows. Let P = {& == 1,2 == 2} be a set of
predicates. Then the valuation V' = {0, 1} maps predicate (x == 1) to FALSE and (x == 2) to TRUE.
The concretization of a valuation V for a set of predicates P is denoted by (V') and is defined as

follows:
V)= A\ p"?
pEP

where pTRUE — p and pFALSE — — For example, if P = {z == 1,2 == 2} and V = {0, 1}, then
YV)=(z!= 1) && (x == 2). Note that we use C syntax for logical operators to express
concretizations as side-effect-free C expressions. Also, for any two distinct valuations V' and V/, v(V)
and (V') are logically disjoint.

Predicate Abstraction. The result of predicate abstraction with a set of predicates P is a finite
state machine model M such that... (1) the states of M are of the form (I, V'), where [is a statement
location in the C program and V is a valuation of P and (2) the transitions between states are defined
existentially. The key idea behind predicate abstraction is that a predicate valuation is an abstract

SOFTWARE ENGINEERING INSTITUTE ‘ 11

description of a (possibly infinite) collection of concrete memory states. Specifically, the valuation
V ={0,1} for P = {x == 1,2 == 2} represents the set of all memory states of the program where
the value of variable x is 2.

Therefore, an abstract state (I, V') of the model M represents the set of all concrete states of the C
program such that: (1) the statement at location [is to be executed next and (2) the current memory
state is described by V. Let us write CS(I,V) to denote the set of all concrete states represented by
the abstract state (I,V). Then, M has a transition from (I, V) to (I, V') if there exist concrete states
s€ CS(l,V) and s’ € CS(I', V') such that program’s execution from s leads to s’. While constructing
M, Copper uses a theorem prover, such as Simplify, to decide if a transition should exist between any
two abstract states.

Copper creates the first model with a set of predicates derived from the policy. In the example from
Figure 3(a), this set of predicates is P; = {x == 2}. The abstract model M; created with P; is shown
in Figure 3(b). Each state of M is labeled with a pair consisting of a location and a predicate
valuation. Upon model checking My, Copper finds a counterexample CFE, denoted by the dashed
arrows in Figure 3(b), that leads from an initial state to a state where the predicate (xr == 2) is FALSE.

Copper then determines whether CE corresponds to a real execution of the C program. However, in
this case, CFE turns out to be spurious (i.e., an artificial behavior introduced by the conservative
nature of the abstraction). Copper then adds new predicates to eliminate CE and reconstructs the
model via predicate abstraction. In our example, Copper adds the predicate (x == 1) so that the new
predicate set is Po = {x == 1,2 == 2}. The result M of predicate abstraction with Py is shown in
Figure 3(c). Model M5 has no reachable states where the predicate (z == 2) is FALSE and hence is
verified successfully. Copper then generates a witness to successful verification, as described in
Section 4.4.

4.2 CONSTRUCTION AND COMPOSITION LANGUAGE

We now give a brief overview of the construction and composition language (CCL), a simple
composition language used to describe how components behave and how components are wired
together into assemblies for deployment [Wallnau 2003]. For this work, we certify the behavior of
individual components, and we focus on the use of CCL to specify the behavior of software
components. Figure 4 shows a CCL specification for a simple component. (Note that the specification
corresponds to Step 1 from Figure 2.) This component reacts to stimuli from its environment on its
incr sink pin by incrementing an internal counter (up to a maximum and then resetting to a
minimum) and informing its environment of the new value on its value source pin.

In CCL, behavior is described in terms of potentially concurrent units of computation called reactions,
which describe how a component responds to incoming stimulation on its sink pins and under what
circumstances it will initiate interactions on its source pins. The semantics of the state machine
provided for each reaction is based on the UML 2.0 semantics of statecharts. Aside from the obvious
syntactic differences (CCL text as shown in Figure 4 vs. UML graphical notation as shown in

Figure 5), CCL differs from statecharts in two important ways:

1. CCL does not permit some concepts defined in UML statecharts—most
significantly hierarchical states and concurrent substates within a reaction.

2. CCL provides more specific semantics for elements of the UML standard that are
identified as semantic variation points (e.g., the queuing policy for events queued
for consumption by a state machine). These refined semantics are based on the
execution semantics of the Pin component technology, the target of our code
generator.

12 | CMU/SEI-2007-TR-001

const int min = 0;
const int max 6;

component comp () {
sink asynch incr ();
source asynch value (produce int v);

threaded react R (incr, value) {
int i = min;

start -> idle { }

idle -> incrementing {trigger “incr;}
incrementing -> idle {trigger $value; action $incr();}

state incrementing {
if (i < max) {
i++;

} else {
i = min;

“value(i);

}
} // end of react R
} // end of component comp

Figure 4: CCL Specification for a Simple Component

Aincr

$value / $incr()

incrementing

if (i < max)
i++;

1

else
i =min;

"value(i);
&

Figure 5: Graphical Depiction of the Component’s State Machine

SOFﬂNAREENGWEERWGINSﬂTUTE‘13

4.3 INTERPRETATION FROM CCL TO C

To model check CCL specifications, we generate an equivalent interpretation in a form suitable for use
with Copper, a software model checker. The interpreted form is a C implementation of the
component’s state machine, an excerpt of which is shown below (note that this C implementation
corresponds to the output of Step 2 from Figure 2).

void R() {
int curState = _R__START_;
int nextEvent;
int R__i = min;

CCL_NODE(16777255) ;
__COPPER_NONDET__Q) ;
curState = _R__idle_;
label _R__idle_:
// no state actions
label_listening R__idle:
nextEvent = fsp_R_externalChoice();
CCL_NODE(16777268) ;
if (nextEvent == __R__incr__) {
// Consume interaction on R__incr
// no transition action
CCL_NODE(16777272) ;
curState = _R__incrementing_;
goto label_R__incrementing_;
}
goto label_listening R__idle;

label_R__incrementing_:

CCL_NODE(1086) ;
if (R__i < max) {

CCL_NODE(94) ;

R__i++;
} else {

CCL_NODE(104) ;

R__i = min;
}
CCL_NODE(116);
__COPPER_HANDSHAKE__("begin__R__value");
R__value__v = R__i;
__COPPER_HANDSHAKE__("begin__R__value__done");
CCL_NODE(16777273) ;
__COPPER_NONDET__();
CCL_NODE(67) ;
__COPPER_HANDSHAKE__("end__R__value");
CCL_NODE(79) ;
__COPPER_HANDSHAKE__("end__R__incr");
CCL_NODE(16777283) ;
curState = _R__idle_;

goto label_R__idle_;

} // end of R

In the interpreted form, each state of the specification state machine is implemented in a
correspondingly labeled program block: guards are represented by if statements, transitions are

14 | CMU/SEI-2007-TR-001

completed using goto statements, and so on. The equivalence is straightforward, particularly given
CCL’s use of C syntax for actions. Two elements that are less intuitive are the representation of
events used for interaction (communication) between components and annotations used to facilitate
reverse interpretation (expressing model checking results in terms of the original CCL specification
instead of the interpreted C program).

Communication between concurrent units (representations of interacting components) in Copper is
primarily handled using event semantics based on finite state processes (FSP) [Magee 2006]. Our
interpretation uses events to model message-based interactions between components in the Pin
component technology. In Pin, interactions occur in synchronous or asynchronous modes, and the
initiation and completion of an interaction are differentiated syntactically by a “S for initiation on a
pin S or a $S for completion on a pin S. These phenomena are mapped to FSP-style events as part of
the interpretation. For example, initiation of an interaction over a source pin ("value) is represented
by a begin_value event. This event is denoted in the interpreted C program using the

__COPPER _HANDSHAKE_ () function.

Representing a choice among several events, however, is more difficult. For example, a component’s
willingness to engage in an interaction over any of several sink pins (i.e., pull the next message from
its queue and respond accordingly) corresponds to a willingness to synchronize over one of several
FSP-style events. This concept is not as easily represented in C, and here we use Copper’s ability to
provide specifications of a function’s behavior. We insert a call to an £sp_exernalChoice() function
and provide a specification of that function’s behavior as an FSP process that allows a choice among a
specific set of events and returns an integer indicating the event with which the process synchronized.

The annotations used to simplify reverse interpretation are inserted via CCL_NODE(x) function calls.
The parameter passed to each such call denotes a node in the CCL abstract syntax tree (AST) for the
CCL specification that corresponds to a C statement that follows the annotation. These functions are
known to Copper and normally stripped from the program prior to verification. When used for
certifying model checking, however, Copper retains the parameter values and includes them in the
ranking functions produced upon successful verification.

4.4 RANKING FUNCTIONS GENERATED BY COPPER

After a C program (with FSP specifications) is generated via interpretation, Copper is used to verify
whether each policy (specified as an SE-LTL formula) is satisfied (Step 3 from Figure 2). As
mentioned before, Copper uses automated iterative abstraction refinement to verify its target C
program against the desired policy. Normally, model checkers generate counterexamples when they
detect the violation of a policy. The counterexample is a machine-checkable witness to this failure. In
contrast, certifying model checkers also generate a witness to success. Specifically, in our certifying
model checker Copper, this witness takes the form of a ranking function. We now describe the
structure of the ranking functions produced by Copper in more detail.

Let M be the model verified successfully. Recall that each state of M is of the form (I, V') where [is a
location in the C program, and V is a valuation of the set of predicates used to construct M. Copper
emits the ranking function as a set of triples of the form ((I, 1), s,r) where: (1) I is an invariant (i.e.,
the concretization of a predicate valuation V such that (I, V) is a reachable state of M), (2) s is a
state of the Biichi automaton corresponding to the policy, and (3) r is a rank. The procedure for
constructing an appropriate ranking function has been presented elsewhere, so we do not describe it
further here [Chaki 2006].

Recall, from Definition 1, that a ranking function is a mapping from expressions to ranks. Each triple
((1,1),s,r) produced by Copper corresponds to an entry in this mapping as follows. Let PC and SS

6 Strictly speaking, an invariant at location [is the disjunction of the concretizations of all predicate valuations V such
that (I, V) is a reachable state of M. We use a slightly looser definition of invariant for simplicity.

SOFTWARE ENGINEERING INSTITUTE ‘ 15

be special variables representing the program location (i.e., program counter) and the specification
state, respectively. Then, the triple ((I,I),s,r) denotes a mapping in the ranking function from the
expression I && (PC ==1) && (S5S = s) to the rank r. Note that, for any two triples ((I,I), s,r) and
((I', 1), s',7") produced by Copper, either I # I’ or I and I’ are disjoint (since they are the
concretizations of two distinct predicate valuations). Hence, the ranking function produced is always
well formed.

Figure 6 shows an excerpt from the ranking function generated for our example CCL specification and
a policy asserting that min <= i <= max is always true (the input to Step 4 from Figure 2). Each line
denotes a triple ((I,I),s,r). The first field is the CCL AST node number, corresponding to the
location I. The second and third fields (which, in the excerpt, are always 8 and 0) correspond to the
policy automaton state s and the rank r, respectively. The last field is the invariant .

104 : 8 : 0 [(-1 < PO::R__i),(PO::R__i < 7)]
106 : 8 : 0 [(PO::R__i <7),(-2 < PO::R__i),(PO::R__i '= -1)]
116 : 8 : 0 [(-1 < PO::R__i),(PO::R__i < 7)]

Figure 6: Ranking Function in Terms of the C Program

The final step in our infrastructure for certifying model checking is to relate the ranking function back
to the original CCL specification. This step is achieved via a process of mapping elements from the
interpreted C program back to CCL elements. For example, variable names are “demangled” and
replaced with references to AST node numbers (of the form @n), and predicates relating to variables
that were introduced during interpretation are stripped or remapped to the appropriate CCL
concepts. An example of this corresponding to the “raw” ranking function from Figure 6 is shown in
Figure 7 (the output of Step 4 from Figure 2).

37 : 104 : 8 : 0 : [(-1 < @46) && (@46 < 7)]
37 : 106 : 8 : 0 : [(-2 < @46) && (@46 !'= -1) && (@46 < 7)]
37 : 116 : 8 : 0 : [(-1 < @46) && (@46 < 7)]

Figure 7: Ranking Function in Terms of the CCL Specification

At the conclusion of certifying model checking, if a component is known to satisfy all of its policies,
the tools produce evidence to that effect in the form of a ranking function expressed in terms of AST
nodes for the component’s CCL specification.

16 | CMU/SEI-2007-TR-001

5 Certified Source-Code Generation

The infrastructure for generating certified source code corresponds to Step 5 from Figure 2. We begin
with a component specification expressed in CCL and a ranking function expressed in terms of AST
nodes corresponding to that CCL specification.

From previous work, we have a code generator for CCL that generates C code targeted for deployment
in the Pin component technology (Pin/C). As such, in addition to the kind of instructions used to
represent the state machine for verification, platform-specific instructions are included for integrating
with the Pin component model, (e.g., when and how to examine incoming message traffic), for tasks
such as marshaling data to be included in an outgoing message, and for error checking.

To support certified code generation, we extended this code generator to embed invariants from the
ranking function in the generated Pin/C code. The key decision was choosing how to embed this
information so that a correlation would be maintained between the location of these invariants in the
Pin/C code and the location of equivalent information in assembly code resulting from compiling the
Pin/C code.

We chose a convention in which we insert a pair of function calls in the Pin/C code prior to the
location associated with each invariant. The invariant itself is used as the argument to the second
function of the pair. When such code is compiled, pairs of recognizable assembly call instructions
appear in the assembly code, and the instructions necessary to represent the invariant appear between
these calls. This convention and the mapping between C and assembly code are shown in Figure 8.
Specifically, in the assembly portion of the figure, Line 1 denotes the call to __begin__(), Line 14
denotes the call to __inv__(), and lines 2-13 denote the computation of the value of

(n >=0) && (n < 10) with the result being stored in register r3. Observe that variable n is stored in
memory location r31 + 8 (as seen in lines 4 and 7).

__begin__Q); bl __begin__

1i %r0,0

stw %r0,16(%r31)
1wz %r0,8(%r31)
cmpwi %cr7,%r0,0
blt %cr7,.L5

1wz %r0,8(%r31)
cmpwi Y%cr7,%r0,9
bgt %cr7,.L5

1i %r0,1

stw %r0,16(%r31)

© 00N O W N -

= e
= O

.L5:
12: 1wz %r3,16(%r31)
13: crxor 6,6,6
_inv__((n > =0) && (n < 10)); 14: bl __inv_

Figure 8: Invariants in Pin/C Code (Left) and Assembly Code (Right)

We extended the Pin/C code generator to insert these pairs of calls at any location for which the
ranking function provides invariants. The code generator adds an additional predicate to each
invariant found in the ranking function, an encoding of the current state of the state machine. This
piece of information is essential to mapping the control flow in the Pin/C program to the
corresponding state machine, particularly given that the calling convention for the C function
implementing the state machine differs between the interpreted C function and the Pin/C function, as
described next.

SOFTWMREENGWEERWGINSﬂTUTE‘17

In Pin, the function implementing the state machine is called by its container (which, among other
things, enforces the life cycle defined by Pin) whenever a new message is available for consumption.
The function then runs until it is ready to wait for the next message to arrive, at which point it
returns control to the container. This pattern is equivalent in effect to the interpreted C program’s
use of the fsp_externalChoice() convention for interaction with the component’s environment.

The key difference is that in the interpreted C program, the entire state machine is executed within a
single function. In the Pin/C program, the function is executed repeatedly, and global information is
used to keep track of the current state for the next invocation of the function. This difference also
requires that the code generator insert invariants at specific points in the program that are derived
from those found in the ranking function.

For example, at the conclusion of a block of code that could transition the state machine to one of
several successor states, we insert as an invariant the disjunction of the invariants known to hold prior
to the beginning of each potential successor state. An example of this is shown at the end of the
following excerpt from the generated Pin/C code for our simple example.

else if (_THIS_->R_CURRENT_STATE == 1) {

__begin__Q);

__inv__(((__pcc_claim__ == 0 &% __pcc_specstate__ == 8 && __pcc_rank__ == 0 &&
((-2 < _THIS_->R_i) && (_THIS_->R_i != -1) && (_THIS_->R_i < 7)) &&
THIS->R_CURRENT_STATE == 1))); /* 52 %/

if (pMessage->sinkPin == 0 /* “incr */) {

__sink_0__Q); /* “incr x/

// no action on idle->incrementing transition

THIS->R_CURRENT_STATE = 2;

__begin__Q;

__inv__(((__pcc_claim__ == 0 &% __pcc_specstate__ == 8 && __pcc_rank__ == 0 &&
((-2 < _THIS_->R_i) && (_THIS_->R_i != -1) && (_THIS_->R_i < 7)) &
THIS->R_CURRENT_STATE == 2))); /* 57 */

// incrementing action:

__begin__Q;

__inv__(((__pcc_claim__ == 0 &% __pcc_specstate__ == 8 && __pcc_rank__ == 0 &&
((-2 < _THIS_->R_i) && (_THIS_->R_i != -1) && (_THIS_->R_i < 7)))) &&
THIS->R_CURRENT_STATE == 2); /* 106 */

if (_THIS_->R_i < G_max) {

THIS->R_i++;
}
else {
__begin__(Q);
__inv__(((__pcc_claim__ == 0 && __pcc_specstate__ == 8 &&
__pcc_rank__ == 0 &% ((-1 < _THIS_->R_i) && (_THIS_->R_i < 7)))) &&
THIS->R_CURRENT_STATE == 2); /* 104 */
THIS->R_i = G_min;

}

__begin__Q;

__inv__(((__pcc_claim__ == 0 &% __pcc_specstate__ == 8 && __pcc_rank__ == 0 &&

((-1 < _THIS_->R_i) && (_THIS_->R_i < 7)))) &&
THIS->R_CURRENT_STATE == 2); /* 116 */
__source_0__(Q); /* value */

18 | CMU/SEI-2007-TR-001

__marshDx = 0;

__marshInt = _THIS_->R_i;

memcpy (&MessageOut .data[__marshDx], &__marshInt, sizeof (PIN_INT));
__marshDx += sizeof (PIN_INT);

if (!sendOutSourcePin(/* “value() */ pReaction, 0, &MessageOut,
(short) (sizeof (MessageOut.data)),
IPCPORT_WAITFOREVER /* TBD property */)) {
notifyController (pReaction->pInstance, CONTROLLER_UNKNOWN_ERROR,
"error in SendOutSourcePin");

}
Y it -——=

}

__begin__Q);

__inv__(((__pcc_claim__ == 0 &% __pcc_specstate__ == 8 && __pcc_rank__ == 0 &&
((-2 < _THIS_->R_i) && (_THIS_->R_i != -1) && (_THIS_->R_i < 7)) &&
THIS->R_CURRENT_STATE == 2))/* 57 %/

Il ((__pcc_claim__ == 0 && __pcc_specstate__ == 8 && __pcc_rank__ == 0 &&
((-2 < _THIS_->R_i) && (_THIS_->R_i != -1) && (_THIS_->R_i < 7)) &&

THIS->R_CURRENT_STATE == 1))/* 52 %/

At the conclusion of certified source-code generation, we have C source code that includes the
invariants necessary for generating a proof that the binary form of this component satisfies the desired
policy. An important point to note is that the generated certified source code contains at least one
call to __begin__() and __inv__(...) inside every loop. This convention is crucial for effective
computation of the certified binary, as presented in the next section, without having to supply loop
invariants.

SOFTWMREENGWEERWGINSﬂTUTE‘19

20 | CMU/SEI-2007-TR-001

6 Certified Binary Generation

In this section, we describe the process of obtaining the certified binary code. To this end, we present
the procedure for constructing the two components of the certified binary: the binary itself and a
certificate that is the proof of a verification condition.

Binary Construction. Recall from the previous section that we have C source code that includes
the invariants necessary for generating a proof that the binary form of this component satisfies the
desired policy. The certified binary is then obtained by compiling this C source code using any
standard compiler. In our implementation, we used GCC targeted at the PowerPC instruction set for
the compilation step of our procedure.

The binary generated by the compiler contains assembly instructions, peppered with __begin__()
and __inv__(...) calls. Let us refer to an assembly fragment starting with a call to __begin__()
and extending up to the first following call to __inv__(...), as a binary invariant. Note that in any
binary invariant, the code between the calls to __begin__() and __inv__(...) effectively computes
and stores the value of the argument being passed to __inv__(...) in register r3. For example,
Figure 9 shows a snippet with the source code on the left, and the corresponding PowerPC assembly
on the right. The assembly fragment has two binary invariants, one spanning lines 1-9 and the other

spanning lines 13-21.

__begin__Q); 1: bl __begin__

2: 1lis %r9,UC0S_LOCKG@ha

3: lwz %r0,UC0S_LOCK@1 (%r9)

4: cmpwi %ecr7,%r0,0

5: mfcr %r0

6: rlwinm %r0,%r0,31,1

7: mr %r3,%r0

8: crxor 6,6,6
__inv__(UCOS_LOCK == 0); 9: bl __inv__

10: 1lis %r9,UC0S_LOCKG@ha
UCOS_LOCK = 1; 11: 1i %r0,1

12: stw %r0,UC0S_LOCK@1 (%r9)
__begin__Q); 13: bl __begin__

14: lis %r9,UC0S_LOCK@ha

15: lwz %r0,UC0S_LOCK@1 (%r9)

16: cmpwi %er7,%r0,1

17: mfcr %r0

18: rlwinm %r0,%r0,31,1

19: mr %r3,%r0

20: crxor 6,6,6
__inv__(UCOS_LOCK == 1); 21: bl __inv__

Figure 9: Invariants and Code in Pin/C (Left) Assembly (Right)

Certificate Construction. To construct the certificate, we first construct the verification condition
VC, which is done one binary invariant at a time. Specifically, for each binary invariant 3, we
compute the verification condition for 3, denoted by VC(3). Let BI be the set of all binary invariants
in our binary. Then, the overall verification condition VC' is defined as follows:

ve= /\ vc)

pBeBI

SOFTWMREENGWEERWGINSﬂTUTE‘21

The technique for computing VC(f) is based on computing weakest preconditions, the semantics of
the assembly instructions, and the policy that the binary is being certified against. It is similar to the
VC-Gen procedure used in PCC. The main difference is that our procedure is parameterized by the
policy and is thus general enough to be applied to any policy expressible in SE-LTL. In contrast, the
VC-Gen procedure used in PCC has a “hard-wired” safety policy, namely, memory-safety. It is also
noteworthy that our procedure does not require loop invariants, since every loop in the binary
contains at least one binary invariant.

Once we have VC, the certificate is obtained by proving VC with a proof-generating theorem prover.
In this context, we leverage our previous work on using a theorem prover based on Boolean
satisfiability (SAT) [Chaki 2006]. This approach yields extremely compact certificates when compared
to existing non-SAT-based proof-generating theorem provers. In addition, it enables us to be sound
with respect to bit-level C semantics, which is crucial when certifying safety-critical software.

The above procedure is complex in its details but simple in overall concept. To reiterate at the
concept level: Given a binary B and an associate certificate C, we first compute the verification
condition VC using the technique described above. We then check that C' is a correct proof of the
validity of VC'. Validation succeeds if and only if C' turns out to be a proper proof of VC.

A final point to note is that once a certified binary has been validated successfully, the embedded
binary invariants are stripped off before the binary is actually deployed, which is crucial for both
correctness (since what we really certify is the binary without the invariants) and performance.

22 | CMU/SEI-2007-TR-001

7 Related Work

PCC was proposed by Necula and Lee for certifying memory safety policies on binaries

[Necula 1997, Necula 1996, Necula 1998b]. PCC works by hard-coding the desired safety policies
within the machine instruction semantics. In contrast, our approach works at the specification level
and encodes the policy as a separate automaton. Foundational PCC attempts to reduce the trusted
computing base of PCC to include only the foundations of mathematical logic

[Appel 2001, Hamid 2002]. In contrast, the focus of our work is to extend the ideas behind PCC
toward the generation of certified binaries from software component specifications. Bernard and Lee
propose a new temporal logic to express PCC policies for machine code [Bernard 2002]. However, we
use temporal logic to specify claims at the level of component specifications. While we leverage SAT
technology to generate compact proofs, non-SAT-based techniques for minimizing PCC proof sizes
have also been investigated [Necula 1998a, Necula 2001]. Whalen and colleagues describe a technique
for synthesizing certified code [Whalen 2002]. They augment the AUTOBAYES synthesizer to add
annotations based on “domain knowledge” to the generated code. Their approach is not based on
CMC and generates certified source code rather than binaries.

Certifying model checkers emit an independently verifiable certificate of correctness when a temporal
logic formula is satisfied by a finite state model [Namjoshi 2001, Kupferman 2004]. Namjoshi has
proposed a two-step technique for obtaining proofs of Mu-Calculus policies on infinite state

systems [Namjoshi 2003]. In the first step, a proof is obtained via certifying model checking. In the
second step, the proof is “lifted” through an abstraction. Namjoshi’s approach is still restricted to
certifying source code while our work aims for low-level binaries.

Iterative refinement has been applied successfully by several software model checkers such as

SLAM [Ball 2001}, BLAST [Henzinger 2002b], and MAGIC [Chaki 2004a]. While SLAM and MAGIC
do not generate any proof certificates, BLAST implements a method for lifting proofs of

correctness [Henzinger 2002a]. However, BLAST’s certification is limited to source code and purely
safety properties. Assurance about the correctness of binaries can also be achieved by proving the
correctness of compilers or via translation validation [Pnueli 1998]. Both of these techniques assume
that the original source code or specification is correct. They are difficult to do and are not yet widely
adopted. In contrast, our approach requires no such correctness assumptions.

In previous work, we developed an expressive linear temporal logic SE-LTL that can be used to
express both safety and liveness claims of component-based software [Chaki 2004b]. In the work
reported here, we used SE-LTL to express certifiable policies. Also previously, we developed an
infrastructure to generate compact certificates for C source code against SE-LTL claims in an
automated manner [Chaki 2005b]. There, the model checker is used to generate invariants and
ranking functions that are required for certificate and proof construction. Compact proofs were
obtained via state-of-the-art Boolean satisfiability (SAT) technology [Chaki 2006]. In the current
work, we extend this framework to generate certified binaries from component specifications. Finally,
we build on the PACC infrastructure for analyzing specifications of software component assemblies
and generating deployable machine code for such assemblies.

SOFTWARE ENGINEERING INSTITUTE ‘ 23

24 | CMU/SEI-2007-TR-001

8 Experimental Results

We implemented a prototype of our technology and experimented with two kinds of examples. First,
we created a CCL specification of a component that manipulates an integer variable and a policy that
the variable never becomes negative. Our tool was able to successfully prove, and certify at the
assembly code level, that the implementation of the component does indeed satisfy the desired claim.
The CCL file size was about 2.6 KB, while the generated Pin/C code was about 20 KB. In contrast,
the assembly code was about 110 KB, while the proof certificate size was just 7.7 KB. The entire
process took about five minutes with modest memory requirements.

To validate the translation of a certified C component to a certified binary (Step 7 in Figure 1), we
conducted additional experiments with Micro-C, a lightweight operating system for embedded
real-time applications. The OS source code consists of about 6,000 lines of C (97 KB) and uses a
semaphore to ensure mutually exclusive access to shared kernel data structures. Using our approach,
we were able to certify that all kernel routines follow the proper locking order when using the
semaphore. In other words, the semaphore is always acquired and released alternately, and thus
deadlock is avoided. The total certification time was about one minute, and the certificate size was
about 11 KB, or roughly 11% of the operating system source code size.

We also experimented with the C implementation of the “tar” program in the Plan 95 operating
system. Specifically, using our approach, we certified that a particular buffer will never overflow when
the program is executed. The source code was manually annotated in order to generate the
appropriate proof certificates. While our experiments showed that our approach is viable, we believe
that a more robust implementation and more realistic case studies are necessary to transition our
technique to a broader user base.

SOFTWARE ENGINEERING INSTITUTE ‘ 25

26 | CMU/SEI-2007-TR-001

9 Conclusion

In this report, we presented an automated approach for generating certified binaries from software
component specifications. Our approach is based on, and combines the strengths of, two existing
paradigms for formal software certification—PCC and CMC. It also demonstrates that a model-driven
approach can be combined effectively with formal certification methodologies in a way that allows us
to trust the code produced without having to trust the tools that produced it. In addition, we
developed and experimented with a prototypical implementation of our approach.

Our implementation and overall approach do have limitations, which we classify using the following
four catgories:

Deferred Features. Some of the missing features from our implementation are not difficult
conceptually but are best deferred until a target environment for the approach has been selected. For
example, we did not define the format of certified binaries—in particular how the proof object is
packaged with executable code.

Technical Limitations. Some limitations of our implementation do not depend on target
deployment but rather are limitations of our own tooling that could be addressed with time and effort.
For example, CCL currently supports only a primitive assortment of types, and, hence, the
implementation supports a limited range of C-language features (e.g., pointers, structs, and arithmetic
types other than int and float are not supported). Also, we have not implemented our own proof
checker or SAT formula generator, even though these are key elements of a TCB. Instead, we rely on
(in principle) untrusted publicly available implementations. However, both of these tools are relatively
simple to implement. Also, Copper is only able to generate ranking functions that involve a finite and
strictly ordered set of ranks and thus can certify a restricted set of programs. More general ranking
functions are generated by other tools such as Terminator.”

Intrinsic Limitations. The model-driven approach that we demonstrate differs in several
fundamental ways from more established PCC approaches. Where established approaches build
directly on semantic models of machine code (foundational or policy specific), our approach builds on
the semantics of higher level program descriptions, specifically CCL and C. Where established
approaches are insensitive to compiler optimizations, our approach makes assumptions about the
correspondence of assembly instructions to C programming statements. Certain optimizations (e.g.,
code reordering across the boundaries demarcated by calls to __begin__ and __inv__) may break this
correspondence. However, such optimizations have never been an issue during our experiments. In
addition, the fundamental soundness theorem still holds because in the worst case, an optimization
might result in a failure in proof checking but will never validate a proof for a program (optimized or
otherwise) that violates a policy.

Eternal Limitations. Some limitations of our approach flow (seemingly inevitably) from the
fundamental, and eternal, challenges of automated program verification. In particular, scalability is
always a concern, and concurrency is usually a major source of exacerbation. Our approach assumes
that components exhibit no internal concurrency. While the Copper model checker can effectively deal
with concurrency, we know of no compact encoding proofs of concurrent programs. As mentioned
earlier, small proof size is likely to be a major concern in the practical application of PCC.

Nevertheless, we believe that our work marks a positive and important step toward the development
of rigorous, objective, and automated software-certification practices, and the reconciliation of formal
and model-driven approaches for software development. Our experiment results are preliminary but
realistic and enouraging, and therefore underline the need for further work in this direction.

7 For more information, go to http://research.microsoft.com/ TERMINATOR,/default.htm.

SOFTWARE ENGINEERING INSTITUTE ‘ 27

http://research.microsoft.com/TERMINATOR/default.htm

28 | CMU/SEI-2007-TR-001

References

[Appel 2001] Appel, A. W. “Foundational Proof-Carrying Code”. Proceedings of the
16th Annual IEEE Symposium on Logic in Computer Science (LICS '01).
Boston, MA, June 16-19, 2001. Los Alamitos, CA: IEEE Computer
Society, June 2001.

[Ball 2001] Ball, T. & Rajamani, S. K. “Automatically Validating Temporal Safety
Properties of Interfaces”, 103-122. Dwyer, M. B., editor, Proceedings of
the 8th International SPIN Workshop on Model Checking of Software
(SPIN ’01), volume 2057 of Lecture Notes in Computer Science. Toronto,
Canada, May 19-20, 2001. New York, NY: Springer-Verlag, May 2001.

[Bernard 2002] Bernard, A. & Lee, P. “Temporal Logic for Proof-Carrying Code”, 31-46.
Voronkov, A., editor, Proceedings of the 18th International Conference on
Automated Deduction (CADE ’02), volume 2392 of Lecture Notes in
Computer Science. Copenhagen, Denmark, July 27-30, 2002. New York,
NY: Springer-Verlag, July 2002.

[Chaki 2004a] Chaki, S.; Clarke, E.; Groce, A.; Jha, S.; & Veith, H. “Modular
Verification of Software Components in C”. IEEE Transactions on
Software Engineering (TSE) 30, 6 (June 2004): 388-402.

[Chaki 2004b] Chaki, S.; Clarke, E. M.; Ouaknine, J.; Sharygina, N.; & Sinha, N.
“State/Event-Based Software Model Checking”, 128-147. Boiten, E. A.;
Derrick, J.; & Smith, G., editors, Proceedings of the 4th International
Conference on Integrated Formal Methods (IFM ’04), volume 2999 of
Lecture Notes in Computer Science. Canterbury, UK, April 4-7, 2004.
New York, NY: Springer-Verlag, April 2004.

[Chaki 2005a] Chaki, S.; Ivers, J.; Sharygina, N.; & Wallnau, K. “The ComFoRT
Reasoning Framework”, 164—-169. Etessami, K. & Rajamani, S. K.,
editors, Proceedings of the 17th International Conference on Computer
Aided Verification (CAV ’05), volume 3576 of Lecture Notes in Computer
Science. Edinburgh, Scotland, July 6-10, 2005. New York, NY:
Springer-Verlag, July 2005.

[Chaki 2005b] Chaki, S. & Wallnau, K. Results of SEI Independent Research and
Development Projects and Report on Emerging Technologies and
Technology Trends (CMU/SEI-2005-TR~020, ADA449433). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents,/05.reports/05tr020.html.

[Chaki 2006] Chaki, S. “SAT-Based Software Certification”, 151-166. Hermanns, H. &
Palsberg, J., editors, Proceedings of the 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’06), volume 3920 of Lecture Notes in Computer Science.
Vienna, Austria, March 25-April 2, 2006. Berlin, Germany:
Springer-Verlag, March 2006.

[Clarke 1982] Clarke, E. & Emerson, A. “Design and Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic”, 52-71. Kozen, D., editor,
Proceedings of Workshop on Logic of Programs, volume 131 of Lecture

SOFTWARE ENGINEERING INSTITUTE ‘ 29

http://www.sei.cmu.edu/publications/documents/05.reports/05tr020.html

Notes in Computer Science. Yorktown Heights, New York, May 46,
1981. Berlin, Germany: Springer-Verlag, May 1982.

[Hamid 2002] Hamid, N. A.; Shao, Z.; Trifonov, V.; Monnier, S.; & Ni, Z. “A Syntactic
Approach to Foundational Proof-Carrying Code”, 89-100. Proceedings of
the 17th Annual IEEE Symposium on Logic in Computer Science (LICS
'02). Copenhagen, Denmark, July 22-25, 2002. Los Alamitos, CA: IEEE
Computer Society, July 2002.

[Henzinger 2002a] Henzinger, T. A.; Jhala, R.; Majumdar, R.; Necula, G. C.; Sutre, G.; &
Weimer, W. “Temporal-Safety Proofs for Systems Code”, 526-538.
Brinksma, E. & Larsen, K. G., editors, Proceedings of the 1/th
International Conference on Computer Aided Verification (CAV '02),
volume 2404 of Lecture Notes in Computer Science. Copenhagen,
Denmark, July 27-31, 2002. New York, NY: Springer-Verlag, July 2002.

[Henzinger 2002b] Henzinger, T. A.; Jhala, R.; Majumdar, R.; & Sutre, G. “Lazy
Abstraction”, 58-70. Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Langauges (POPL 02),
volume 37(1) of SIGPLAN Notices. Portland, OR, January 16-18, 2002.
New York, NY: Association for Computing Machinery, January 2002.

[Hissam 2005] Hissam, S.; Ivers, J.; Plakosh, D.; & Wallnau, K. C. Pin Component
Technology (V1.0) and Its C Interface (CMU/SEI-2005-TN-001,
ADAA441815). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn001.html.

[lvers 2002] Ivers, J.; Sinha, N.; & Wallnau, K. A Basis for Composition Language
CL (CMU/SEI-2002-TN-026, ADA407797). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports/02tn026.html.

[lvers 2004] Ivers, J. & Sharygina, N. Querview of ComFoRT: A Model Checking
Reasoning Framework (CMU/SEI-2004-TN-018, ADA442864).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tn018.html.

[Kupferman 2004] Kupferman, O. & Vardi, M. Y. “From Complementation to
Certification”, 591-606. Jensen, K. & Podelski, A., editors, Proceedings of
the 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’04), volume 2988 of
Lecture Notes in Computer Science. Barcelona, Spain, March 29—-April 2,
2004. New York, NY: Springer-Verlag, March—April 2004.

[Magee 2006] Magee, J. & Kramer, J. Concurrency: State Models and Java Programs.
Hoboken, NJ: John Wiley & Sons, 2006.

[Namjoshi 2001] Namjoshi, K. S. “Certifying Model Checkers”, 2-13. Berry, G.; Comon,
H.; & Finkel, A., editors, Proceedings of the 13th International
Conference on Computer Aided Verification (CAV ’01), volume 2102 of
Lecture Notes in Computer Science. Paris, France, July 18-22, 2001. New
York, NY: Springer-Verlag, July 2001.

30 | CMU/SEI-2007-TR-001

http://www.sei.cmu.edu/publications/documents/05.reports/05tn001.html
http://www.sei.cmu.edu/publications/documents/02.reports/02tn026.html
http://www.sei.cmu.edu/publications/documents/04.reports/04tn018.html

[Namjoshi 2003] Namjoshi, K. S. “Lifting Temporal Proofs through Abstractions”,
174-188. Zuck, L. D.; Attie, P. C.; Cortesi, A.; & Mukhopadhyay, S.,
editors, Proceedings of the 4th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI ’03), volume 2575
of Lecture Notes in Computer Science. New York, NY, January 9-11,
2002. New York, NY: Springer-Verlag, January 2003.

[Necula 1996] Necula, G. C. & Lee, P. “Safe Kernel Extensions Without Runtime
Checking”, 229-243. Proceedings of the 2nd USENIX Symposium on
Operating System Design and Implementation (OSDI ’96). Seattle, WA,
October 28-31, 1996. New York, NY: Association for Computing
Machinery, October 1996.

[Necula 1997] Necula, G. C. “Proof-Carrying Code”, 106-119. Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Langauges (POPL ’97). Paris, France, January 15-17, 1997. New York,
NY: Association for Computing Machinery, January 1997.

[Necula 1998a] Necula, G. C. & Lee, P. “Efficient Representation and Validation of
Proofs”, 93-104. Proceedings of the 13th Annual IEEE Symposium on
Logic in Computer Science (LICS ’98). Indianapolis, IN, June 21-24,
1998. Los Alamitos, CA: IEEE Computer Society, June 1998.

[Necula 1998b] Necula, G. C. & Lee, P. “Safe, Untrusted Agents Using Proof-Carrying
Code”, 61-91. Vigna, G., editor, Proceedings of Mobile Agents and
Security, volume 1419 of Lecture Notes in Computer Science. New York,
NY: Springer-Verlag, 1998.

[Necula 2001] Necula, G. C. & Rahul, S. P. “Oracle-Based Checking of Untrusted
Software”, 142-154. Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Langauges (POPL 01),
volume 36(3) of SIGPLAN Notices. London, UK, January 17-19, 2001.
New York, NY: Association for Computing Machinery, January 2001.

[Nelson 1980] Nelson, G. “Techniques for Program Verification”. PhD diss., Stanford
University, 1980.

[Pnueli 1998] Pnueli, A.; Siegel, M.; & Singerman, E. “Translation Validation”,
151-166. Steffen, B., editor, Proceedings of the 4th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’98), volume 1384 of Lecture Notes in Computer
Science. Lisbon, Portugal, March 28—April 4, 1998. New York, NY:
Springer-Verlag, March—April 1998.

[Schneck 2002] Schneck, R. R. & Necula, G. “A Gradual Approach to a More
Trustworthy, Yet Scalable, Proof-Carrying Code”, 47-62. Voronkov, A.,
editor, Proceedings of the 18th International Conference on Automated
Deduction (CADE ’02), volume 2392 of Lecture Notes in Computer
Science. Copenhagen, Denmark, July 27-30, 2002. New York, NY:
Springer-Verlag, July 2002.

[Wallnau 2003] Wallnau, K. & Ivers, J. Snapshot of CCL: A Language for Predictable
Assembly (CMU/SEI-2003-TN-025, ADA418453). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports/03tn025.html.

SOFTWARE ENGINEERING INSTITUTE ‘ 31

http://www.sei.cmu.edu/publications/documents/03.reports/03tn025.html

[Whalen 2002] Whalen, M. W.; Schumann, J.; & Fischer, B. “Synthesizing Certified
Code”, 431-450. Eriksson, L.-H. & Lindsay, P. A., editors, Proceedings of
the International Symposium on Formal Methods Europe (FME ’02),
volume 2391 of Lecture Notes in Computer Science. Copenhagen,
Denmark, July 22-24, 2002. New York, NY: Springer-Verlag, July 2002.

[Zzhang 2003] Zhang, L. & Malik, S. “Validating SAT Solvers Using an Independent
Resolution-Based Checker: Practical Implementations and Other
Applications”, 10880-10885. Proceedings of 2003 Design, Automation
and Test in Europe Conference and Exposition (DATE 2003). Munich,
Germany, March 3—-7, 2003. Los Alamitos, CA: IEEE Computer Society,
March 2003.

32 | CMU/SEI-2007-TR-001

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES
(Leave Blank) September 2007 COVERED

Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Certified Binaries for Software Components FA8721-05-C-0003

6. AUTHOR(S)
Sagar Chaki, James Ivers, Peter Lee, Kurt Wallnau, & Noam Zeilberger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2007-TR-001
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/XPK AGENCY REPORT NUMBER
5 Eglin Street ESC-TR-2007-001
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Proof-carrying code (PCC) and certifying model checking (CMC) are two established paradigms for obtaining objective confidence in the
runtime behavior of a program. PCC enables the certification of low-level binary code against relatively simple (e.g., memory-safety)
policies. In contrast, CMC provides a way to certify a richer class of temporal logic policies, but is typically restricted to high-level (e.g.,
source) code. In this report, an approach is presented to certify binary code against expressive policies, and thereby achieve the benefits
of both PCC and CMC. This approach generates certified binaries from software specifications in an automated manner. The specifica-
tion language uses a subset of UML statecharts to specify component behavior and is compiled to the Pin component technology. The
overall approach thus demonstrates that formal certification technology is compatible with, and can indeed exploit, model-driven ap-
proaches to software development. Moreover, this approach allows the developer to trust the code that is produced without having to
trust the tools that produced it. In this report details of this approach are presented and experimental results on a collection of bench-
marks are described.

14. SUBJECT TERMS 15. NUMBER OF PAGES
certification, software validation, model checking, trust, safety, security 40

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified uL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Certified Binaries for SoftwareComponents
	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Basic Concepts
	3 Framework for Generating Certified Binaries
	4 Certifying Model Checking
	5 Certified Source-Code Generation
	6 Certified Binary Generation
	7 Related Work
	8 Experimental Results
	9 Conclusion
	References

