Technical Report
CMU/SEI-94-TR-013
ESC-TR-94-013
August 1994

Benefits of CMM-Based Software
Process Improvement:
Initial Results

James Herbsleb
Anita Carleton
James Rozum
Jane Siegel
David Zubrow

Technical Report
CMU/SEI-94-TR-013
ESC-TR-94-013
August 1994

Benefits of CMM-Based Software Process Improvement: Initial Results

James Herbsleb
Anita Carleton
James Rozum

Jane Siegel
David Zubrow

Empirical Methods

Software Process Measurement

Unlimited distribution subject to the copyright.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office

HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

Thiswork is sponsored by the U.S. Department of Defense.
Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal useis
granted, provided the copyright and “No Warranty” statements areincluded with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercia use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS1S" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIESOF ANY KIND, EITHER EXPRESSED ORIMPLIED, ASTOANY MATTERINCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, afederally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit othersto do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is avail able through Research Access, Inc., 800 Vinia Street, Pittsburgh, PA 15212,
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI aso maintains aWorld Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

Thisdocument isal so available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8222 or 1-800 225-3842.]

Use of any trademarksin thisreport is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Acknowledgments Y,
To the Reader vii
1. Background 1
1.1 Motivation for This Empirical Study 1
1.2 Responding to Community Needs 2
1.3 Data Caollection 3
1.3.1 Participating Organizations 3

1.3.2 Data Requested 3

2. Improvement Activities 5
3. Aggregated Results of SPI 7
3.1 Data 7
3.2 Results 8
3.2.1 Cost 9

3.2.2 Productivity 11

3.2.3 Calendar Time 12

3.2.4 Quality 13

3.2.5 Business Value 14

3.3. Summary of Aggregated Results 15

4. Case Studies 17
4.1 Bull HN 17
4.1.1 Organization Description 17

4.1.2 History of SPI Efforts 17

4.1.3 Current SPI effort 17

4.1.4 Results from Current SPI Activities 18

4.1.5 Lessons learned 20

4.2 Hughes Aircraft 21
4.2.1 Organization Description 21

4.2.2 History of SPI Efforts 21

4.2.3 Current SPI Activities 22

4.2.4 Results from Current SPI Activities 23

4.2.5 Lessons Learned 26

4.3 Schlumberger 27
4.3.1 Organization Description 27

4.3.2 History of SPI Efforts 27

4.3.3 Current SPI Effort 27

4.3.4 Results from Current SPI Activities 29

4.3.5 Lessons Learned 32

4.4 Texas Instruments 32
4.4.1 Organization Description 32

4.4.2 History of SPI Efforts 32

4.4.3 Current SPI Effort 33

4.4.4 Results from Current SPI Activities 33

4.4.5 Lessons Learned 35

CMU/SEI-94-TR-13

4.5 Oklahoma City Air Logistics Center, Tinker Air Force Base 35

4.5.1 Organization Description 35

4.5.2 History of SPI Efforts 35

4.5.3 Current SPI Effort 36

4.5.4 Results of Software Process Improvement Activities 37

4.5.5 Lessons Learned 39

4.6 Summary of Case Studies 40

5. Technical Issues in Measuring Results of SPI 41
5.1 Selecting Measures 42
5.2 Change over Time 45
5.3 Identifying Causes 46

6. Conclusions 49
Bibliography 51

ii CMU/SEI-94-TR-13

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.

Number of First Assessments by Year Within Software Organizations
Thousands of Dollars per Year Spent on SPI
Dollars per Software Engineer per Year Spent on SPI
Gain per Year in Productivity
Gain per Year in Early Detection of Defects
Reduction per Year in Calendar Time to Develop Software Systems
Reduction per Year in Post-release Defect Reports
Business Value Ratio of SPI Efforts
Mean Monthly Number of Customer-Reported Defects for Six-Month Periods
Percentage of Defects Found by Stage
Rework for Each Stage
Cost Performance Index
Schedule Performance Index
Effective Lines of Code per 1988 Dollar
Average Progress Rate for Projects by Definition Date
Average Difference Between Estimated and Actual Completion Times
Resources Spent in Various Stages of Two Projects
Percentage of Cost in each Life-Cycle Stage for Two Projects
Defects and Design Requests for Two Projects

Theoretical Ability to Predict Process Outcomes of Organizations

10
11
12
12
13
14
19
24
25
25
26
29
30
31
33
34
34
46

CMU/SEI-94-TR-13

List of Tables

Table 1. Organizations and People Who Provided Data v
Table 2. Summary of the Overall Results 15
Table 3. Financial Data for a Sample of Software Process Improvement Activities 38

CMU/SEI-94-TR-13

Acknowledgments

Many people were involved in the production of this technical report. First, we would like to
thank all of those who provided us with data and patiently answered our questions about

software process improvement in their organizations (see Table 1):

Edward Weller, Ron Radice

Bull HN

Constance Ahara, Debbie
De Toma, Jim Perry

GTE Government Systems

Sue Stetak

Hewlett Packard

Willis, Thomas Winfield

Bob Rova, Ken Shumate, Ron

Hughes Aircraft Co.

Ted Keller

Loral Federal Systems (formerly IBM
Federal Systems Company)

Barbara Bankeroff

Lockheed Sanders

John Pellegrin, Richard Motorola
Stenglein, Bob Yacobellis
Leitha Purcell Northrop

Peter Burrows, Harvey
Wohlwend

Schlumberger

Henry Gueldner

Siemens Stromberg-Carlson

Marie Silverthorn, Mary
Vorgert, Bob Stoddard

Texas Instruments

Kelley Butler

United States Air Force Oklahoma
City Air Logistics Center

Brenda Zettervall

United States Navy Fleet Combat
Direction Systems Support Activity

Table 1. Organizations and People Who Provided Data

We would also like to thank Jim Armitage, Jack Harding, and Bob Park for their helpful
comments on earlier versions of the ideas contained in this report. We also appreciate the
help of Julia Allen and Ron Radice who reviewed several drafts of this report and provided
numerous helpful comments along the way. Finally, we would like to thank Suzanne
Couturiaux for her skillful help with the technical editing.

CMU/SEI-94-TR-13 v

Vi

CMU/SEI-94-TR-13

To the Reader

This technical report is intended to provide the reader with some initial results of the effects of
software process improvement efforts on organizations. It is intended primarily for software
practitioners, members of software engineering process groups, and software managers
interested in understanding the business case for investing in software process improvement.
It assumes a familiarity with the capability maturity model for software (CMM) [Paulk 93a,
93b]. There is a forthcoming related special report, CMU/SEI-94-SR-13, which is an
executive summary of the material contained in this technical report.

Readers interested only in gleaning the results as quickly as possible can go directly to
Chapter 3 for an overview of the results and Chapter 4 which presents case studies of the
results obtained from specific improvement efforts in five organizations. We urge anyone
planning to make use of data contained in this report to read Section 3.1, which includes
information essential to appropriate interpretation of the data. Those readers wanting more
background on the motivation of the effort and on how the data were collected should also
read Chapters 1 and 2. Chapter 5 is intended for those readers who are interested in
gathering and analyzing their own data. This chapter provides an overview of the technical
issues involved in measuring the results of software process improvement.

This paper is organized as follows. We begin with the background of this effort in Chapter 1,
including our motivation, the selection of participating organizations, and the kinds of data we
requested from them. Chapter 2 is a summary of the improvement activities of the
participating organizations, while Chapter 3 contains the aggregated results. In 3.1, we
describe the criteria we applied for inclusion of data in this study, and explicitly discuss what
we see as the major limitations of this particular data set. We go on to present the results for
cost of the process improvement effort (3.2.1), productivity (3.2.2), rework (3.2.3), calendar
time (3.2.3), quality (3.2.4), and business value (3.2.5).

Next, in Chapter 4 we present brief case studies of process improvement in five
organizations: Bull HN, Hughes Aircraft, Schlumberger, Texas Instruments, and Oklahoma
City Air Logistics Center. These case studies give you an opportunity to read about how
specific activities produced results, and what lessons each organization believes it learned
from the experience.

In Chapter 5, we identify and discuss the major technical issues that we confronted as we
gathered data for this report. Finally, in Chapter 6, we provide conclusions about SPI efforts.

CMU/SEI-94-TR-13 Vi

viii CMU/SEI-94-TR-13

Benefits of CMM-Based Software Process
Improvement: Initial Results

Abstract. Data from 13 organizations were collected and analyzed to obtain
information on the results of CMM-based software process improvement efforts.
We report the cost and business value of improvement efforts, as well as the
yearly improvement in productivity, early defect detection, time to market, and
post-release defect reports. Improvement efforts and results in five organizations
are reported in more depth in case studies. In addition, technical issues that we
confronted as we tried to measure the results of software process improvement
are discussed. We end with conclusions about the results of SPI efforts.

1. Background

1.1 Motivation for This Empirical Study

Process improvement within software organizations is gaining momentum. More
organizations today are initiating software process improvement efforts. One indication of
this trend is the number of assessments performed each year. For most CMM-based
software process improvement (SPI) efforts, the first step is an assessment of the current
capability of the organization to develop software. We maintain a database of assessment
results, and the latest figures on first assessments are shown in Figure 1. While this
database contains just the fraction of all assessments reported to the SEI, it serves as a
reasonable indicator of increasing interest. As shown in the figure, more first assessments
were reported to the SEI in the last two years than in all previous years combined.

Number of
Assessments

80r
70
60 r
50
40
30
20
10

1987 1988 1989 1990 1991 1992 1993 Year

Figure 1. Number of First Assessments by Year Within Software Organizations

CMU/SEI-94-TR-13 1

But for those organizations that have had active software process improvement efforts for
several years, management is asking for quantitative evidence regarding the value returned
for the investments made. Many other organizations are reluctant to make an initial
commitment of resources without data they can use to build a business case for the
expenditures. Indeed, investment in software process improvement is just one strategy that
a company might take for improving its business performance.

The importance of reliable data on which these strategic decisions can be based was
reinforced by a recent survey done by the SEI. In 1993, the SEI conducted a survey at the
fifth Software Engineering Process Group (SEPG) National Meeting. This event is attended
primarily by software engineers and managers responsible for process improvement in their
organizations. Part of the survey asked the attendees about their most pressing needs. The
top-ranked need reported by survey respondents was the need for quantitative information
regarding the benefits from software process improvement efforts. This expressed need
provided much of the impetus for the work reported here.

1.2 Responding to Community Needs

The SEI also surveyed SEPG members to determine the feasibility of this study as a means
of responding quickly to the community's needs. In the fall of 1993, members of the
Empirical Methods Project of the SEI contacted representatives of several organizations
where CMM-based SPI occurred prior to 1990. Each representative was asked to
characterize readily available data from a substantial list of information the SEI believed
would be needed to produce this technical report on the results of SPI. For example, CMM-
based appraisal results, data about changes in effort, cycle time, product quality, etc., were
sought. The SEI asked 20 early adopting organizations engaged in CMM-based software
process improvement to participate in this first national study of CMM-based SPI. Initially, all
20 organizations provided some information to the SEI. Seven of the 20 organizations were
unable to participate due to constraints in their ability to release data, weak ties between their
measurement activity and CMM-based software process improvement, etc. Thus, 13
organizations formed the basis for this initial report on CMM-based software process
improvement.

Once this opportunistic sample of industry and government organizations agreed to
participate in this SEI report on CMM-based software process improvement, an attempt to
collect and analyze data about SPI efforts and effects began. Each organization received a
brief description of the study and a request for a list of data items. For this study, the SEI
solicited readily available data and information about the measures used and measurement
methods applied by each organization. We expected that organizations would vary
substantially in the measures they collected, and we anticipated the need to ascertain the
sources and amount of variation of measures and results before aggregating data items
across organizations.

Meeting the community’s need required the collection of actual organizational data on
projects, products, and improvement efforts. These data are typically held as highly sensitive
and confidential. Realizing this, the SEI offered confidentiality for all the data supplied to it by

2 CMU/SEI-94-TR-13

the participating organizations. Each participating organization was asked to decide whether
their data would be reported anonymously, identified as part of a group, or identified by
organization name. Also, each organization was guaranteed the opportunity to verify and
review material prior to release outside the SEI. Upon request, nondisclosure forms were
signed by designated points of contact for participating organizations and the SEI.

1.3 Data Collection

1.3.1 Participating Organizations

The following list identifies the 13 organizations that participated in this study. They are a
diverse group, including Department of Defense contractors, commercial organizations, and
military organizations. They also represent a wide range of maturity levels. The range of
application areas covered is also diverse, including such domains as telecommunications,
embedded real-time systems, information systems, and operating systems.

* Bull HN

* GTE Government Systems

» Hewlett Packard

» Hughes Aircraft Co.

* Loral Federal Systems (formerly IBM Federal Systems Company)
* Lockheed Sanders

» Motorola

 Northrop

» Schlumberger

» Siemens Stromberg-Carlson

* Texas Instruments

* United States Air Force Oklahoma City Air Logistics Center

* United States Navy Fleet Combat Direction Systems Support Activity

1.3.2 Data Requested

We requested several kinds of data from these organizations, as is shown in the following
list:

Organizational characteristics
* Organizational environment

» Business characteristics

Software process improvement efforts

* Descriptions of SPI efforts

CMU/SEI-94-TR-13 3

* Process maturity information
» Measures and techniques currently used
« Description of data collection activities

Results

« Impact of SPI on business objectives

« Impact of SPI on social factors

« Actual performance versus projections
The requested data fall into three categories: descriptive information about the
organizations, information about their process improvement and measurement programs,
and data about the results of their improvement efforts. These requests were based on the

view that the results obtained may depend on the organizational context as well as the SPI
effort itself.

4 CMU/SEI-94-TR-13

2. Improvement Activities

The organizations in this study were engaged in a wide range of software process
improvement activities. All of the organizations providing data that we used had action plans
and were working on the key process areas appropriate to their maturity levels. We will not
try to enumerate all the activities here; rather, we will just summarize those that were most
frequent:

« forming process groups,

* training,

« performing peer reviews,

« devising forums for exchange of ideas and intergroup coordination, and
* inserting new technology.

Virtually all of the organizations had formed a software engineering process group (SEPG) as
the organizational focus of the process improvement efforts. Many had both corporate-level
SEPGs and local or site SEPGs. In addition, many organizations created other special
purpose groups such as a management steering team or software mentor team to oversee,
coordinate, and prioritize improvement efforts. Several organizations also had software
process and technology task forces to investigate technologies (e.g., technology working
group, software technology center) or to address particular process issues. (e.g., software
guality engineering).

Training was an important element of the improvement activities in nearly every organization.
Although we do not have complete and systematic information on all of the training programs,
the most frequently offered courses appear to be project management, peer reviews, and
instruction in the local development process and methods. Some courses were offered by
third parties, while other organizations handled all training internally.

Another very common activity for organizations at all maturity levels was some form of peer
reviews. Most of the organizations conducted code inspections, many also conducted design
inspections, and several were pioneering requirements inspections. All who commented
about or collected data on peer reviews were firmly convinced of their value.

A few organizations had established forums for the exchange of ideas and for coordinating
efforts among groups. The more expensive type of forum is an in-house conference or
workshop where SEPGs across the corporation get together to learn from each others'
experiences. A more modest, but apparently effective alternative is a newsletter which
informs and publicizes accomplishments.

Several organizations were changing their processes not only for process improvement per
se but also to enable the insertion of new technology. The most frequently mentioned
technology innovation was reuse, based either on a library or on a generic architecture. In
these cases, there were many comments on the extensive process changes required to
incorporate these technologies.

CMU/SEI-94-TR-13 5

CMU/SEI-94-TR-13

3. Aggregated Results of SPI

3.1 Data

To ensure reasonable quality of data for this study, we established several criteria for
inclusion of data. First, we focused on software process improvement efforts based on the
capability maturity model. Since this model is closely associated with the SEI, and this is the
data we are most frequently asked for, we decided to make this our first priority.1 Second,
we included only data that had an interpretation that was fairly clear to us. We scoured
several thousand pages of documents of many kinds, including presentation slides, memos,
action plans, reports, newsletters, and so on. We often followed up examination of
documents with phone calls for clarification and requests for more documents. In spite of
this, there remained a few cases where we did not believe we had sufficient understanding of
some potential data points to include them in this study. Third, we looked for some indication
that the data point was valid. Examples of things that would satisfy this criterion are: a
description of the organization measurement program, clear data definitions, detail in the
data itself that seemed to indicate care was taken in their collection and handling, or a
description of how these particular data were collected. These do not guarantee accuracy
and precision, of course, but we regard them as reasonable reassurances appropriate for the
type of data available to us.

Before describing the results, we want to identify several caveats that shape the way these
data should be interpreted. These caveats identify limitations in the generality of the current
results. They also serve to identify challenges for future efforts, where the selection and
definition of measures, the sampling of organizations, and the sampling of projects within
organizations can all be addressed more systematically.

» There may be masked tradeoffs in the data we present. It is generally possible to
improve one measure, e.g., productivity, by sacrificing another, e.g., quality. We
generally did not receive a complete set of "core measures" (e.g., effort, size,
calendar time, and quality, see [Carleton 92]) from each organization. So we are
unable to determine the extent to which gains in one measure, reported to us, were
offset by declines in others, which were not reported.

» All of the organizations are doing things other than CMM-based software process
improvement, e.g., gaining experience in a domain, changing personnel, and so on.
Although we asked for data indicative of the results of SPI, it is probable that other
factors contributed to the improvements.

* We do not know if these results are representative of all organizations engaged in
CMM-based SPI. The participating organizations all had good SPI experiences, and
the data come from divisions and projects that have succeeded in their current

lwe anticipate studies in the future that will take a somewhat broader look at software process
improvement.

CMU/SEI-94-TR-13 7

efforts. We do not know at this point if these experiences are typical. We think the
best way of interpreting these results is to view them as indicators of what is possible,
given a supportive environment. In Chapter 4, we present some of the lessons
learned that describe some of the factors that these organizations believe were
responsible for their success.

3.2 Results

We organized the results we received into several categories:
« cost of the process improvement effort,
* productivity,
 calendar time,
* quality, and
* business value (often loosely referred to as return on investment).

These quantities were, of course, measured in very different ways in different organizations.
For this reason, the absolute levels are not terribly meaningful. For example, if you do not
know what constitutes a defect, and you don't know what counts as a line of code, the
absolute number of defects per thousand lines of code is not terribly meaningful. On the
other hand, it is reasonable to assume that there is some consistency within an organization
in how it defines and collects these data. For this reason, the most informative measure is
probably change within an organization over time, and that is, in general, what we report
here.

The number we use for productivity and early defect detection is gain per year,2 which we
compute much like a (nominal) compound interest rate.3 For example, tripling productivity

2We chose gain per year because different organizations provided data for different numbers of years,
and we needed some way to make these figures comparable. We rejected the simpler procedure of
taking the total gain and dividing by the number of years, because this gives an exaggerated picture of
the performance. For example, a threefold gain over three years would be a 100% gain per year. This
implies a doubling each year, which is not accurate. Gain per year avoids this problem.

3The following formula was used to calculate percentage gain per year:

2\ o
(overallgainratio - 1) * 100

where i is the number of years, and overall gain ratio is the ratio of the baseline value to the final
value. So, for example, if productivity increased from 1 unit to 1.8 units over a period of 5 years, i =5,
overall gain ratio = 1.8. The resulting percentage gain per year is 12%.

8 CMU/SEI-94-TR-13

over a period of three years is approximately a 44% gain per year. For decreasing quantities,
we use reduction per year, which is based on an analogous calculation.#

Please note, we do not claim that the actual values in the intermediate years closely
approximate the values given by this formula. We use this calculation only as a summary of
the available data, reflecting a process that occurred over some period of years. The only
purpose is to permit comparisons of processes spanning different numbers of years. This
formula is not intended as a model of the process itself.

In the figures that follow, organizations are labeled with alphabetical identifiers to protect
confidential data. Organization labeled with different letters in various charts might or might
not be the same organization. Again, this is to protect the confidentiality of the organizations,
so that it is not possible to identify an organization from a published figure then find
additional, confidential information about that organization.

As mentioned in the preceding paragraph, some of these data have been published before,
while other data points have not, to our knowledge, been previously made public. Of the 24
data points reported here, 8 have been previously published while the remaining 16 have not.

3.2.1 Cost

Figure 2 shows the amount spent by each organization on software process improvement
activities. The very large differences are not unexpected, since the organizations are very

Total yearly investment in SPI
(thousands of dollars per year)
1400 +

1203

1200 1
10001
8001
600
4001
200
0 1

A B C D E Organization
(6) () (6) (3.5)) (years of SPI)

Figure 2. Thousands of Dollars per Year Spent on SPI

4The formula used to compute percentage reduction per year is similar to the formula for percentage
gain per year, above:

(1- /\/ overall reduction ratio) * 100

where i is the number of years, and overall reduction ratio is the ratio of the baseline value to the
final value.

CMU/SEI-94-TR-13 9

different in size, from division and sector level to small development organizations. In order
to get a more meaningful view of the costs, we show figures for the same organizations
normalized for size in Figure 3. We used the number of "software engineers" or "software
professionals" as the denominator.

Interestingly, the largest organization and the smallest organization spent the two highest
dollar amounts per software engineer. These two organizations also had the two highest
business value figures (see the discussion of business value data, below).

Dollars per software
engineer per year

2500 T
2004
2000
1500
1000
500 T
0-
A B C D E Organization
(6) (2 (6) (3.5) (2) (years of SPI)

Figure 3. Dollars per Software Engineer per Year Spent on SPI.

10 CMU/SEI-94-TR-13

3.2.2 Productivity

The productivity measures we report here are all variations of lines of code (LOC) per unit of
time. These results, recorded as productivity gain per year, are shown in Figure 4.

The largest gain, organization G, is based mainly on a comparison of two projects, one that
did not adopt SPI and one that did. They developed very similar applications, and had
substantial overlap in staff. The most important factor in the superior performance of the
second project was probably its requirements elicitation and management. The second
largest gain, organization H, represents a process improvement effort that included a reuse
program, with tools and environment to support development with reuse. The reused code is

Gain per year
(LOC / unit of time)

70% T 67%
60% Tt
50% Tt
40% A
30%
20% -
10% -

0% -

58%

F G H I Organization
(3) () 4) (5) (Years of SPI)

Figure 4. Gain per Year in Productivity

counted in the productivity figure; if it were excluded, the figure would still be an impressive
28% gain per year. Itis impossible to separate process improvement gains from reuse gains,
since the reuse would not have been possible without extensive improvements in the
software process. The other two data points also represent substantial gains maintained
over significant periods.

Another form of productivity for which we have data is the early detection of defects. Figure 5
shows the yearly increases in early detection of defects for three organizations. For
organization J, all of the software systems on which this figure is based have gone through
the entire life cycle and are now out of service. The gains represented on the chart for
organization J are gains in the proportion of total life-cycle defects that were found pretest.
These data are taken from a number of releases of a large application, each with substantial
new and modified code. All are now out of service, so the total life-cycle defects are known.
The figures for K and L, on the other hand, are based on software still in service. These
figures simply represent increases in the number of defects found pretest. All of these gains
represent improvement over time through the use of inspections.

CMU/SEI-94-TR-13 11

Gain per year
(Defects detected early)
30% T

25% 1
20% 1
15% 1
10% 1
5% 1
0% -

25%

J K L Organization
9 (5) (3.5) (Years of SPI)

Figure 5. Gain per Year in Early Detection of Defects

These increases in early defect detection represent enormous savings in the cost of rework.
By one recent estimate, for example, the cost of fixing a defect discovered pre-release is
approximately $50 per line of code, while the cost of fixing a defect discovered post-release
is about $4000 per line of code [Townsend 94]. In general, one would also expect substantial
savings for finding defects in earlier stages of the life cycle [Humphrey 89 (p. 364)].

3.2.3 Calendar Time

Figure 6 shows the reduction in calendar time to develop software products experienced by
two organizations. Obviously, these are substantial gains and represent the potential of very
significant competitive advantage. Both figures are for development covering the entire life
cycle. As one would expect, given the enormous gain for organization N, there are several
factors contributing to reduction in time to market in this organization. The product was
embedded software in a product line. The process improvement effort included reuse as an

Reduction per year
(Development time)

25% T 23%
20% T
15% T
10% T

15%

M N Organization
(3) (6) (Years of SPI)

Figure 6. Reduction per Year in Calendar Time to Develop Software Systems

12 CMU/SEI-94-TR-13

inseparable element. The time to market actually suffered for the first year or so as the
reusable components were being developed. After two-three years, the time to market
dropped very rapidly to generate these enormous gains relative to the pre-SPI (and pre-
reuse) baseline.

3.2.4 Quality

Quality refers to the state of the software as it was released or delivered to customers. The
most common measure of quality among the data submitted to us was the number of post-
release defect reports. Figure 7 shows the yearly reduction in this measure. Most
organizations were engaged in improvements aimed at lowering defect injection rates as well
as improving detection. Two organizations, Q and R, had astonishing results within a very
short time frame. The figure for Q is probably influenced by a major release near the
beginning of the period, with much less new code over the remainder. The gain for R was
very substantial as well, and was in part the result of a relatively high defect density baseline.

Organization P is remarkable for the period over which it sustained a very sizable reduction
of 39% per year. The rates for P represent successive releases, with substantial amounts of
new and modified code, all of which have gone through their entire life cycle. The last
release had no defects reported in the new and modified code. The 39% rate of reduction,
over a nine-year period, represents two orders of magnitude reduction in the post-release
rate of error reports. The other two organizations, S and T, also sustained substantial
reductions over a significant period.

Reduction per year
(defect reports)

100%-+ 94%
90% +
80%+
70% +
60% +
50%+
40% +
30% +
20% +
10%+

0% -

70%

39%

10% 11%

P Q R S T Organization
(9) (1.5) 1) (3.5) (3.5) (Years of SPI)

Figure 7. Reduction per Year in Post-release Defect Reports

CMU/SEI-94-TR-13 13

3.2.5 Business Value

The bottom-line figure of most interest to many practitioners and managers is the value
returned on each dollar invested. This is often referred to rather loosely as the "return on
investment” (ROI).> The figures that we report are the ratio of measured benefits to
measured costs.

This number, despite its importance to many in the community, is probably the most difficult
of the numbers to interpret because of variations in how costs and benefits were estimated
and allocated to the improvement effort. In general the business savings figures were
calculated as follows. Benefits typically included savings from productivity gains and savings
from fewer defects. Less frequently, savings from earlier detection were also included. The
benefits generally did not include the value of enhanced competitive position, as a result, for
example, of increased quality and shortened time to market. The costs of SPI generally
included the cost of the SEPG, assessments, and training, but did not include indirect costs
such as incidental staff time to put new procedures into place.

As Figure 8 shows, the results are very impressive. There are very few investments one can
make that return a business value five or six times their cost. But we wish to stress once
again that we do not know how typical these results are. We take them to be indicative of
what is possible when improvement is planned and executed well and takes place in a
favorable environment.

Business value ratio

9.0~ 8.8
8.0 +
7.0+
6.0
5.0 -
4.0 -
3.0
2.0 -
1.0
0.0

U Vv w X Y Organization
(3.5) (6) (6) (5) (3.5) (Years of SPI)

Figure 8. Business Value Ratio of SPI Efforts

SThe definition of ROI in the world of finance involves much more complex calculations [Park 90].

14 CMU/SEI-94-TR-13

3.3. Summary of Aggregated Results

There is an enormous demand for information about the results of software process
improvement efforts. In response to this demand, we collected data from 13 organizations
that represent a variety of maturity levels. By looking at how performance changed over time
within each organization as improvement efforts were implemented, we identified substantial
gains in productivity, early defect detection, time to market, and quality. These gains added
up to impressive returns on the resources invested. These results, summarized in Table 2,
show the kinds of gains that are possible in a favorable environment.

Table 2. Summary of the Overall Results

CATEGORY RANGE MEDIAN

Total yearly cost of SPI activities $49,000 - $245,000
$1,202,000

Years engaged in SPI 1-9 3.5

Cost of SPI per software engineer $490 - $2004 $1375

Productivity gain per year 9% - 67% 35%

Early detection gain per year (defects 6% - 25% 22%

discovered pre-test)

Yearly reduction in time to market 15% - 23% 19%

Yearly reduction in post-release defect reports | 10% - 94% 39%

Business value of investment in SPI (value 4.0-8.8 5.0

returned on each dollar invested)

While it is important to aggregate results to see the broad view of how process improvement
affects software development, it is also important to understand how particular activities,
introduced into different kinds of organizations, lead to improvement. The case studies in the
following section address this need. Each concludes with "lessons learned" which
summarize many of the factors these organizations believe are important in getting these
kinds of results.

CMU/SEI-94-TR-13 15

16

CMU/SEI-94-TR-13

4. Case Studies

In this section, we present case studies of software process improvement in five
organizations: Bull HN, Hughes Aircraft, Schlumberger, Texas Instruments, and Oklahoma
City Air Logistics Center at Tinker Air Force Base. These organizations were selected for
case studies because they provided especially rich descriptions of their SPI efforts and
results, and because they agreed to release this information publicly. Each case study
consists of a description of software process improvement activities within the organization,
the results of those activities, and the lessons the organizations extracted from their
experiences.

4.1 Bull HN

4.1.1 Organization Description

BULL HN Information Systems Inc. is the US subsidiary of Groupe BULL, which is the fourth-
largest European systems integrator and employs 40,000 people in over 100 countries.
Groupe BULL's system integration focus is pinned heavily on helping companies migrate
from proprietary to open systems. Its multi-vendor approach means BULL offers a solution
service irrespective of whether the manufacturer of the required computer equipment is BULL
itself or a competitor. The data in this case study is primarily from an operating system
development organization in Phoenix. The operating system is a mainframe system,
including database and transaction processing "executives."

4.1.2 History of SPI Efforts

Prior to the current software improvement effort at Bull, there had been two previous efforts
within the last decade or so at the Phoenix site. The first was initiated in 1982 and resulted in
a standard software development process based on templates for requirements and design
documents and a framework for life-cycle reviews. These templates were used for about
eight years, even though they were never completed.

The second effort began in 1986 and was spearheaded by a steering committee consisting
of second-level managers along with some technical people. The people involved were not
the same as those in the first initiative. Three working groups studied and produced reports
on software maintenance, new design methods, and common standards for using the C
programming language. Near the end of this process, the effort was preempted by a
corporate-level initiative, which itself ended before significant results were achieved.

4.1.3 Current SPI effort

In 1989, an SEPG was created at the Phoenix site to coordinate site-wide process
improvement efforts. The SEPG has fluctuated between 4 and 11 members. In addition to

CMU/SEI-94-TR-13 17

these full-time members, some of the effort of the development organization, including one
full-time person, was allocated to software process. A technical education board (TEB) was
also created to facilitate continuing technical education and technology transfer.

The larger corporate environment into which these efforts at the Phoenix site were introduced
could be described as hostile, since there was consistent and severe downsizing.
Nevertheless, SPI was visible and provided a clear objective for everyone. Executive
management was given several related goals, including achieving the repeatable maturity
level and ISO 9001 certification. In order to move toward these goals, training time for
personnel was increased to about 67 hours per person per year, and the SEPGs were
funded at a level of about 2% of development budgets. Process definition and an active
measurement program were initiated.

In April 1990, the Phoenix site began an inspection program as part of its standard
development process. The initiative came initially from a member of the technical staff, with
support from his manager and funding from the TEB. This program included inspection
training for all technical personnel, as well as many managers, and extensive collection of
defect data for a major project. Design documents as well as code were inspected. The
success of this effort was very important in generating management buy-in for other kinds of
process improvement. In fact, the savings from inspections can be viewed as funding the
development staff contribution to further process improvement activities.

The Phoenix site had two SEIl-style assessments. The first was in September 1990, and
indicated that the organization was functioning at the initial level. About two years later, a
CMM-based assessment was conducted and showed that the organization had progressed
to the repeatable level, with significant progress toward satisfying key process areas for the
defined level.

The most recent SPI efforts at Phoenix have two focal points. First is establishing the
capability maturity model as the source of goals for the SEPG. The other focal point was a
software engineering process architecture (SEPA), which is a set of architectural guidelines
for software process, supported by templates. The results that follow were taken from the
Phoenix site.

4.1.4 Results from Current SPI Activities

Productivity. One way in which the organization enhanced productivity as a result of SPI
efforts was to base process decisions on a comparison of baseline data and data collected
on the ongoing project. On one project, for example, some code originally written in one
language had to be rewritten in another, for efficiency reasons. The team initially decided to
skip inspections, but when they began unit testing they discovered the mean time to find and
fix a defect was about four times higher than the mean time it had taken with inspections in
past projects. So they reconsidered their decision, and inspected the code, with considerable
savings in effort. Having relevant data readily available was sufficient to allow developers to
take the initiative and make an informed decision.

18 CMU/SEI-94-TR-13

Another example of basing an important management decision on an analysis of data from
the current project was a case where unit test was skipped, at a savings of 1.5 person years.
In this case, an inspection revealed a defect rate which was about half of what had been
experienced in similar projects in the past. In order to determine if the inspection was simply
failing to find existing defects or if the code really was nearly defect-free, unit test of a small
sample of modules was performed. No defects were found. Additional investigation revealed
a well-structured table-based design, which lent additional credibility to the possibility that the
new code was in fact nearly defect-free. On this basis, they decided to forgo unit test of the
remainder of the modules. This turned out to be a good decision. To date, the software has
been through more than a year of integration and system test, and of 302 defects discovered,
all but 8 were discovered prior to test.

The organization has estimated its savings from inspections. The estimate is based on the
very conservative assumption that removing a defect costs twice as much to remove in any
given stage as it does in the previous stage. So, for example, a high-level design defect
costs twice as much to remove if it is not discovered until coding as it would have cost to
remove had it been discovered in low-level design. If it is not discovered until unit test, the
cost doubles again. The estimation procedure also makes the reasonable assumption that
50% of all defects that existed when a stage was entered are removed by inspections during
that stage. This estimation procedure indicates that at least 1.2 million dollars are saved
annually by inspections of requirements and design documents. Savings from code
inspections are easier to quantify, and are estimated at 2.3 million dollars.

Schedule. Because of headcount changes, many cycle times were difficult to quantify. Of
those that could be quantified, some test cycles were reduced by half. Design cycle times
tend to be longer, but times for code and test are shorter.

Quality. There have been significant gains in quality as a result of the SPI program. There
has been about a 7-10% reduction per year in defects reported by customers (see Figure 9).

Customer defect reports
450 T

400
350
300
250
200
150
100
50
0

1990-1 1990-2 1991-1 1991-2 1992-1 1992-2 1993-1 1993-2

Figure 9. Mean Monthly Number of Customer-Reported Defects for Six-Month Periods

Since inspections of fixes were instituted, there has also been a 50% reduction in the number
of fixes that were themselves defective and had to be replaced. Interestingly, the effect is
larger than one might expect, given that only about 13% of the inspections detected any
defects. The additional improvement must be attributable either to the maintainers working

CMU/SEI-94-TR-13 19

more carefully because they know their work will be inspected, or to lower defect injection
rates caused by other facets of the process improvement effort.

There are also some current data from two recently released products. Project A, which had
about 30 KLOC, has been in use about 5 months, and so far has had only one customer
defect found. Data from previous products of similar size that have received comparable
amounts of use by customers would lead one to expect about 25-30 defects to be discovered
in this time period. Project B, which had 56 KLOC of which 25K was reused code, has been
in use for a year at a number of sites, and only 17 defect reports have been received.
Directly comparable data from previous systems are not available, but a previous similar
product had defect report backlogs of 200 trouble reports.

Business Value. Based just on the savings from inspection, calculated as outlined above,
and the cost of the SEPG, the organization calculates about a 4:1 return on investment. Any
other benefits of the SPI efforts of the SEPG are as yet unquantified, and therefore are not
reflected in the business value ratio.

4.1.5 Lessons learned

General SPI lessons

» Process improvement is a long-term effort which requires leadership and long-term
commitment from executive management. Middle management must stay involved,
and the technical community must buy in. Generating observable results is very
important in motivating and sustaining interest.

» Substantial improvements can be made even in a hostile environment; these efforts
took place amidst severe and consistent downsizing.

« When the development staff has ready access to their data, they make the right
decision themselves without the SEPG/QA people looking over their shoulder.

« Define the measures very carefully. Take particular pains to avoid using terms that
have been used differently in the past or are loaded with unintended meaning. An
example is the word "severity" which was used to describe defects that are visible to
the user. Engineers may be reluctant to own up to "high severity" defects, even
though no particular onus is intended.

» Make sure the definitions of measures are actually followed.

» There is often a tradeoff between accuracy of data and the effort necessary to collect
the data. In order to get enough data to be potentially useful, it may be necessary to
sacrifice some accuracy. An example is having secretarial staff enter inspection data
into the database. Since they do not have a high level of technical expertise, they are
unlikely to catch as many data-entry errors as technical staff, but this may be an
unavoidable cost to get data entered at all.

« There is likely to be a drop in the effectiveness of SPI efforts when moving from a pilot
project to wider use. This can be combated with the use of data to demonstrate the
effectiveness of the techniques and motivate others to give serious effort to
implementing the programs.

20 CMU/SEI-94-TR-13

Inspection lessons

* Inspections by themselves are not a silver bullet. They do not by themselves
overcome serious flaws in the software engineering process.

» Inspect before unit test. The inspection team is more motivated because they expect
to find defects, and smaller code segments can be inspected. In addition, it is
occasionally possible to skip unit test altogether, and inspections may uncover design
defects that could slip through unit testing and therefore be much more expensive to
detect and fix.

* It is important to inspect requirements and design documents as well as code.
Otherwise, design defects will often not be discovered until system integration test.

4.2 Hughes Aircraft

4.2.1 Organization Description

The Software Engineering Division (SED) of Hughes Aircraft is part of Hughes Ground
Systems Group. It is the largest dedicated software organization in the Ground Systems
Group that provides contract support for many other divisions. The SED primarily focuses on
US Defense Department contracts. Roughly 500 professionals are employed at Hughes
SED. Of these, 41 percent have 10 to 20 years experience in software development and 12
percent have 20 or more years experience.

4.2.2 History of SPI Efforts

Prior to 1987, the SED had established several policies and practices aimed at improving
their software process. These included technical and project review processes. The
technical review process specified criteria, data collection procedures, and review reporting.
Also, each project was required to produce a plan for evaluating the quality of its output. The
technical review process as implemented, however, was inconsistent. A policy for required
training was also attempted, but since it was implemented as a promotion requirement, it ran
afoul of equal employment opportunity considerations.

The project review process, on the other hand, was very well defined, institutionalized, and
supported by rigorous data collection and reporting standards. As early as 1973, SED began
using rate charts to track schedule adherence. By 1983, work unit completion was tracked
against budget with calculations of earned value, a cost performance index, and a schedule
performance index. By 1987, product measures such as software size trend, defect density,
and trouble report resolution status, as well as financial data such as earnings and return on
sales, were collected and used as well. Data were reported monthly to senior management
and used in a quantitative process management sense to keep projects on track. All of this
was done in accordance with clearly specified reporting standards.

As part of a total quality management effort that began in 1985, error data were collected,
categorized into types, and used to identify areas in need of improvement. Each project used

CMU/SEI-94-TR-13 21

its own format and collected data in its own way, so the data were of limited use above the
project level. These efforts were rather haphazardly implemented and lacked a central focus.
In 1987, as part of the continuous measurable improvement activity, SED analyzed the data
from the disjointed project efforts and used the results of this analysis as lessons learned.
This formed the basis for a clearly defined data collection and reporting process and for the
creation of an automated tool, the quality indicator program, which has been used to collect
and analyze data for over five years.

4.2.3 Current SPI Activities

In 1987, the Software Engineering Institute participated in the first process assessment of the
Software Engineering Division (SED) of Hughes Aircraft in Fullerton, California. This
assessment found Hughes' SED to be a level 2 organization. The first assessment yielded
six findings:

e Formalize technology management.
« Standardize and centralize the collection and reporting of defect data.

e Fill gaps in the training program, including project management, internal reviews,
requirements writing, testing, and quality assurance.

Standardize the review process.

Define the software engineering process.
« Strengthen software quality assurance.

The success with which these findings were addressed was apparent in 1990, when a
second SEl-assisted assessment found the SED to be a strong level 3 organization
[Humphrey 91] with many activities in place to take it to levels 4 and 5. The actual cost for
SED to go from strong level 2 to strong level 3 in a two-year period was 75 person-months
plus the cost of the SEl-assisted assessment, which was $45,000. Improvements included
the formation of a process group, key training actions, and a comprehensive technical review
process. SED also began to expand their use of data in a number of ways. Defect data were
summarized across many projects, and control limits were established to highlight process
quality problems as early as possible. Pareto analysis of defect types helped to identify the
most costly defects, and root cause analysis was used to identify and solve the process
problems that gave rise to them.

The 1990 assessment concluded that Hughes had achieved a strong position of software
process leadership and had established the foundation for continuing process improvement.
Although the findings and recommendations are pertinent only to the SED in Fullerton,
Hughes has capitalized on this experience to launch a broader process improvement effort.
In 1990, six basic findings were identified during the second assessment:

* Integrate software into systems engineering.

* Fill gaps in computer-aided software engineering (CASE) technology.

» Expand scope of quantitative process management (QPM).

» Optimize QPM to business goals.

22 CMU/SEI-94-TR-13

* Increase participation in software requirements.
» Ensure adequate software quality assurance (SQA) support.

These findings were addressed in an action plan which covered a period of 18 months and
included 65 milestones. As an example of how specific findings were addressed, SED
addressed its CASE technology needs by creating a technology transfer group, and
assigning it the responsibility for evaluating commercially available tools and disseminating
that knowledge throughout the organization. They were also asked to undertake project
needs assessments for CASE tools and to oversee the transfer of tools to the projects. In
addition to creating this entity with these general responsibilities, SED also generated very
specific requirements for its case tool solution. Among these requirements was maintaining a
file of promotional material from CASE vendors, publishing a CASE newsletter, and
automating recurring manual tasks such as unit testing. Each of the findings was addressed
in a similar manner.

SED underwent a self-assessment in May, 1992. Using CMU/SEI-87-TR-23, the assessment
resulted in a level 4 maturity rating. The assessors noted, however, that using the newer
version of the CMM, SED would be at maturity level 3. The findings from this assessment
were as follows:

* Predict and track errors.

» Analyze error data for root causes.
 Continuously improve the efficiency of reviews.
* Institute a process for prototyping.

» Develop a technology assessment mechanism.

The action plan resulting from this assessment covered the following 12 months, and
contained about 20 milestones. A good example of the kinds of actions taken is the plan to
analyze error data. A goal of developing the ability to predict the quality (i.e., post-release
defect density) of the final product was established, and specific projection and data
collections activities to achieve this goal were designed. At the start of each major phase,
error density is to be projected out to the end of the project. As actual defect detection data
are gathered, a profile of the projections and actuals over time will be made for each project.
These data will be used to help determine the "health" of future projects, and whether
extraordinary measures are warranted. Finally, this high-level design is further specified in
terms of what specific actions will be taken, and when and by whom. The total projected
effort for this action plan was 714 hours, or approximately 4.5 person-months.

4.2 .4 Results from Current SPI Activities

The benefits Hughes was able to quantify are reported below. Many of the most important
benefits were extremely difficult to measure with precision. Among these hard-to-quantify
benefits that SED has experienced are:

» Predictability based on facts and data has a multiplier effect on overall project quality.
» Team spirit, pride, and morale have increased.

CMU/SEI-94-TR-13 23

» Technology is easier to insert.
» Language, design, and models are simpler to change.

* Working conditions have improved, e.g., fewer overtime hours, lower stress, and
fewer “gut-wrenching” problems to deal with.

Productivity. There are several types of data which show that the level 3 process has
substantially improved productivity as compared to the previous level 2 process. Early
detection of defects is an important contributor to productivity, since it can substantially
reduce rework. Figure 10 shows the percentage of coding defects found in each phase for
the old process versus the new process. The "new process” figures are from an actual
project in 1992-1993 that implemented new coding activity guidelines designed to prevent
defects and to detect them earlier in the software development life cycle. These guidelines
applied to coding, peer reviews, rework, and formal review processes. The "old process"
figures came from similar projects in the central organization-wide defects database. While
we do not have a dollar estimate of the savings from early detection of defects, it is safe to
say that the savings to the project from the enormous change shown in this figure are
substantial.

Percent of

total defects

80% — ™ old process (level 2)
70% —=— new process (level 3)
60% 1
50% 1
40% A
30% 1
20%
10% t -

coding unit test integration
est

Figure 10. Percentage of Defects Found by Stage

Figure 11 shows a substantial reduction in the amount of rework performed. This is one of
the effects one would expect from the earlier detection of code defects shown in the previous
figure. But notice that there is substantially reduced rework in precoding stages as well,
indicating that other facets of the SPI effort are also having an impact on rework. Obviously,
the figure indicates a substantial savings.

24 CMU/SEI-94-TR-13

Person days
T B old process (level 2)

+ 3 new process (level 3)

| =

preliminary detailed coding unit integration
design design test est

—

Figure 11. Rework for Each Stage

In addition to the actual reductions in cost of rework, there was a substantial improvement in
the accuracy of overall predicted costs. Figure 12 shows how the cost performance index
(ratio of budgeted cost of the work performed to the actual cost of the work performed) has
improved over time. Notice that in the last two years, the average actual cost has been lower
than budgeted cost.

Cost performance index
1.027 .

100+ — — = — = — — — - ’;:/:>,,/:f _____
.98+ .

96T

94T
92+

901
884
867
.84 ; ' ' .
1988 1989 1990 1991 1992

Figure 12. Cost Performance Index

Schedule. Improvement in meeting schedules is shown in Figure 13. Here, the schedule
performance index is plotted over time. Notice that the first year of process improvement
produced a modest dip in this index, while it has improved steadily in each subsequent year.

CMU/SEI-94-TR-13 25

Schedule performance index
100~ — — — — — — — — — — - - — - - - -

.98 1 —

_

.96 --_/

94 +
92 +
90 +
.88 r
.86

.84 } } } |
1988 1989 1990 1991 1992

Figure 13. Schedule Performance Index

Business Value. First year benefits of about $2 million, versus cost of about $400,000, plus
the assessment cost of $45,000 gives a business value of about 4.5 to 1.6 Of course, as the
benefits continue to accumulate and the up-front investment costs are spread over additional
years, the ratio should continue to increase.

4.2.5 Lessons Learned
* Management commitment to software process improvement is critical to its success.
» Developing an action plan is essential.

» An organizational focal point for improvement efforts and a focal point for technology
transfer are keys to success.

* Many of the most important benefits of SPI are intangible such as pride, esprit de
corps, quality of work life, company image, and the emergence of a coherent culture.
Given their importance, it would be very useful to develop measures of these things.

« As compared to the past, there are very few crises at SED since process
improvement efforts have been implemented.

6This figure differs somewhat from the published figure [Humphrey 91]. In order to make this figure
comparable to others in this paper, we also included the cost of an assessment. The result is a figure
somewhat lower than the published 5:1 number.

26 CMU/SEI-94-TR-13

4.3 Schlumberger

4.3.1 Organization Description

Schlumberger is an international company employing over 53,000 people in 100 countries.
Included among Schlumberger's business are

« wellsite exploration and production services,
« testing and electronic transaction products, and
* metering products.

Over the last decade, software has increased dramatically in importance at Schlumberger.
The company now calculates software is responsible for the major share, i.e., 50% to 100%,
of the engineering investment in many of its products. Most of our data come from one
particular Schlumberger organization, we will call it organization A, which is located in the
United Kingdom.

4.3.2 History of SPI Efforts

Various process improvement and total quality management (TQM) initiatives had been
undertaken across several Schlumberger organizations in recent years. A very broad TQM
effort was initiated in organization A near the end of 1988. As part of these activities, a
process group was set up to improve software process. The initial goal was to reduce
defects in shipped code to less than 0.1 per thousand lines of source and to improve
compliance with the organization's product development procedures. The procedures that
existed at that time tended to be oriented toward hardware development. This initial goal
was soon redefined and broadened; the new mandate was to "improve the quality (i.e.,
conformance to requirements) of software and simultaneously improve productivity."

While the TQM efforts were regarded as successful in some areas, e.g., manufacturing, they
had relatively little impact on software development. The generic goals of improving quality
and productivity did not seem to provide a sufficiently clear focus for planning activities to
improve software development and maintenance.

4.3.3 Current SPI Effort

In 1989, Schlumberger established the Schlumberger Laboratory for Computer Science
(SLCS), in part, to help boost quality and productivity. Techniques based on the SEI
capability maturity model for software were adopted as the framework for improving software
development and maintenance.

In order to accommodate resource constraints, and because of the small size of their
development organizations, Schlumberger modified the standard SEI assessment procedure.
Two to five representative projects were selected, and the maturity questionnaire was
administered. The follow-up interviews were performed by one member of the SLCS staff
over a period of one to two days. The results of these studies (as Schlumberger calls them

CMU/SEI-94-TR-13 27

to distinguish them from the standard SEl-style assessment) were sets of 8-10 findings that
identified the most critical areas in which improvement was needed at each site. These
findings were based on common observations across the sampled projects.

The initial round of assessment activity involved 20 organizations, with about 10% of the
2000 developers in these organizations participating in interviews. About 70% of
Schlumberger's software developers reside in one of these 20 organizations. In terms of
maturity level, the results of these assessments were typical of the industry in general at that
time. According to these studies, the pattern of results was fairly consistent across sites.
The areas they determined to be most in need of improvement were

* project management,
« process definition and control, and
* project planning and control.

In addition to immediately initiating improvement efforts in these areas, it was also
recommended that development organizations

« track deliverable size and effort,

« gather error data,

« invest in resources for improvement activities, and
* review how project commitments are made.

Action on these findings often took the form of establishing improvement teams in the
organizations. Some were populated with full-time budgeted personnel, while others were
put together on a part-time volunteer basis. These teams were supported by the corporate-
level group in SLCS both by frequent visits and by electronic communication. In particular,
the SLCS group helped to develop a set of process documents with each organization. A
major training effort was also initiated, focusing primarily on in-house classes on software
project management and peer technical reviews. SLCS also undertook a "technology watch"
function to evaluate and publish findings on tool innovations such as defect tracking and
CASE tools. A bulletin board was established, and postings are made from Schlumberger
sites around the world. Finally, there was a major effort to encourage collaboration, across
areas of expertise and among business units.

Schlumberger has now followed up the first round of studies with about 10 follow-up studies.
These were done in a way that much more closely approximates an SEl-style assessment.
However, they use a four-person team and a three-day schedule. The major changes seen
in this second round were

« Most large and many small centers have and follow a written process document.
* Most sites have improvement teams.

« Geographically separated groups with similar product life cycles are sharing the same
software process.

 All organizations that set improvement goals have moved up the SEI maturity scale.

* Communication, both between departments within an engineering center and
between centers, has improved.

28 CMU/SEI-94-TR-13

4.3.4 Results from Current SPI Activities

As noted earlier, our data from Schlumberger come almost entirely from one organization,
which we are calling organization A. It was one of the original 20 for which an assessment
was performed. It had already been ISO 9000 certified, and as mentioned above, a TQM
initiative was already underway. While this organization provides the bulk of the data, we
provide examples of data from other organizations where they are available.

Productivity. Although there is considerable variability in the data, based on a linear
regression of the data points, organization A experienced approximately a 30% increase in
productivity as a result of software improvement efforts, as shown in Figure 14. The cost is
calculated as 1988 dollars per effective lines of code (ELOC). ELOC is an estimate of
physical lines of noncomment source code, counted as if there were no reuse. It was
estimated from cost data and from estimates of the proportion of software content in the
project. Other, more subjective, criteria were also used in some cases. In Figure 14, the
costs for each 6-month period are averaged across projects defined (i.e., a specification was
agreed upon and approved) in 6-month periods.” Caution is needed in the interpretation of
these data, since the numbers can be heavily influenced by the extent of reuse.

Effective lines of code
per 1988 dollar
0.10 T

0.09t1
0.08 1
0.07 A
0.06
0.05 A

0.04 + —=—— Six-month
0.03+ averages
0.02 4+ —b— Regression
line
0.01
0

88-2 89-1 89-2 90-1 90-2 91-1 91-2 92-1
Figure 14. Effective Lines of Code per 1988 Dollar

There are also examples of improvements in productivity from other organizations in the
company. Prior to the introduction of requirements management techniques, one group that
works on complex embedded real-time systems took 34 validation cycles (code, test, recode)
in order to satisfy customer requirements. After introduction of requirements management
procedures, the next product, which was a similar system, took only 15 validation cycles.

7 The regression line was fit using the least squares method.

CMU/SEI-94-TR-13 29

Productivity, as measured by noncommented source statements (NCSS) per person-month,
nearly doubled, due to the reduced effort for validation.

Schedule. Organization A experienced substantial improvement in adherence to schedule.
Figure 15 shows the average progress rate (APR) for projects that were defined (i.e., a
specification to do the work was agreed upon and approved) for each 6-month period. APR
is the average, for all projects underway, of the ratio of planned project duration, based on
the originally planned completion date, to the currently predicted project duration, based on
the current estimated completion data. As APR approaches 100%, the schedules are being
met. As the figure shows, organization A went from approximately a 55% APR to rates in
excess of 90% for the last year.

Average progress rate

100 +
90 1
80 4
701
60 -
50 4
40 -
30+
20 -
10

90-1 90-2 91-1 91-2 92-1 92-2 93-1 Start date

Figure 15. Average Progress Rate for Projects by Definition Date

30 CMU/SEI-94-TR-13

The difference in actual versus scheduled completion dates for finished projects is shown in
Figure 16. This figure shows the average difference between estimated and actual
completion times (in weeks) for projects defined (i.e., specification agreed upon and
approved) in each 6-month period.8 The improvement shown in this figure is startling. The
difference goes from nearly 35 weeks to -1 week. In other words, the average project signed

0 | | | | | | =
89-1 89-2 90-1 90-2 91-1 91-2 92-1 Start date
2T @ 0 (3) (3) (4) () (3) (# projects)

Figure 16. Average Difference Between Estimated and Actual Completion Times

off in the first half of 1992 (the last period for which project completion data are available)
finished a week early. An examination of project parameters for this period indicates that this
change was brought about primarily by work being completed faster than before. Schedules
and project size throughout the period remained fairly constant, so the change does not
seem to be the result of padding the schedules or taking on simpler projects.

Quality. Detailed data are not available, but organization A reports a decrease in defects
from 0.21 per KLOC to 0.14 defects per KLOC during the period of 1989 to 1992. This is
close to the original goal of 0.1 defects per KLOC established in 1988.

Business Value. A rough estimate of business value for organization A was obtained as
follows. Over the 3.5 years of process improvement efforts, the organization estimates that
total resources of about $170,000 were spent on software process improvement. A
conservative estimate of benefits was computed as follows. The software engineering
budget was approximately $2.5 million in 1988. We can calculate a savings for each six-
month period which is equal to the productivity gain for that period times one-half the 1988
annual budget. From this, we can estimate the dollar savings for each six-month period. The
accumulated savings divided by the cost given above generates an estimated business value

8 No projects were started in the second half of 1989.

CMU/SEI-94-TR-13 31

of 8.8:1. The figure is rough and very conservative, since it leaves out other potentially large
benefits such as market advantage from shortening development schedules.

4.3.5 Lessons Learned

« Software process improvement requires a cultural change that should spread
throughout the business. It is very important to coordinate the software process
improvement activities with other parts of the business. Software people interact
heavily with marketing, hardware development, sales, manufacturing, and others.

 Attention must be given to getting the support of middle management. They are often
caught in a bind in which they are supposed to implement significant changes without
missing pre-existing deadlines. This makes them less supportive. One possible
solution that SLCS will try in the future is to work with middle managers first, so that
senior management can be given an accurate picture of the time and resources
required.

» Subsequent assessments were more difficult than initial assessments. The engineers
were well coached with the "right" answers, and it was very difficult and time-
consuming to find out the “true” answers and to generate useful findings.

4.4 Texas Instruments

4.4.1 Organization Description

Texas Instruments Incorporated (TI), headquartered in Dallas, Texas is a high-technology
company with sales or manufacturing operations in more than 30 countries. TI products and
services include semiconductors, defense electronic systems, software productivity tools,
computers and peripheral products, custom engineering and manufacturing services,
electrical controls, metallurgical materials, and consumer electronics products. This
particular case study originated within a computer products and services group located at Tl
in Austin, Texas.

4.4.2 History of SPI Efforts

In 1981, a division of the Defense Systems & Electronics Group first developed a “software
methodology” for voluntary use among projects. The local SPI/Software Quality Assurance
Group maintained this document and provided consulting on demand from initial users of the
document. As such, the “software methodology” and other such efforts grew during the
1980s from different grass-roots efforts. In 1988, the computer products and services group
in Austin obtained a copy of the “software methodology” to use on their internal development
efforts with assistance from their local SPI group. By this time, the widespread voluntary use
of the “software methodology” was so great, that up to five releases of the document had
been released with about 500 copies in circulation.

32 CMU/SEI-94-TR-13

4.4.3 Current SPI Effort

Recognizing the significance of communication and leverage of the various SPI products and
services, Tl created the STEP corporate software process group in 1989. With thousands of
software engineers and various local SPI groups within TI, the first task of the STEP group
was to develop a company-wide preferred software process that supported tailoring to meet
local business/process needs. This preferred process had its roots in the “software
methodology” which formed the basis for this case study. Since then, the joint efforts of
STEP and local SPI groups have accelerated Tl achievements. TI's Defense Systems &
Electronics Group (DSEG) has recently been rated at the defined maturity level using the
SEI's new internal process improvement (IPI) appraisal method. [IPI is the evolved form of
the older software process assessment (SPA) methods.]

4.4.4 Results from Current SPI Activities

This case study compares two projects which were very similar in all respects except for the
software process used. Project A developed software for customer support. It was
developed in an ad hoc manner, with little time spent with users to nail down the
requirements. In fact, most of the requirements were not written down. Project B produced a
system for customer representatives who were taking change requests, providing customer
support, and screening service requests. There was much overlap in the functionality of the
two systems being developed, in that both were oriented around databases and had
extensive reporting functions. Both were fairly small, i.e., in the 25-50 KSLOC range. The
teams developing the systems were identical, i.e., the same people but using different
methods. Project B called in the local SPI group and followed their advice, including
definition of the requirements, testing the requirements with users, and inspecting the design
and code. The inspections were modified Fagan inspections and represented very structured
walkthroughs. This gives us an opportunity to compare two projects which were very similar
in all ways except the process used.

Productivity. Figure 17 shows the enormous reduction in effort experienced by Project B.

Thousands of dollars

180
160 == Project A
Project B
120
80
N i_ i_
0 requirements design ' coding ' unit test "integration & support
definition system test after
delivery

Figure 17. Resources Spent in Various Stages of Two Projects

CMU/SEI-94-TR-13 33

Figure 18 permits normalized comparisons of where the costs were incurred, by plotting
expenses in each stage as a percentage of total expenditures for each project. The savings
show up primarily in coding, integration testing and support after delivery. In requirements

Percentage cost

50% Bl ProjectA

40% t+ 1 ProjectB

30% [

20% T~

10% ;

0% requife_ments' design ' coding ' unit test 'integration&' support
definition system test after

delivery

Figure 18. Percentage of Cost in Each Life-Cycle Stage for Two Projects

definition, design, and unit test, Project B was as costly or more costly that Project A. The
overall savings, however, was significant. The cost per SLOC for Project B was only $3.60
as compared to $10.20 for Project A. Many factors may have contributed to this outcome. In
particular, it appears that the emphasis on managing the requirements and reviewing them
with the customer seems to have been a worthwhile investment. In Project A, two-thirds of
the modules needed rework, mainly because the requirements were not managed effectively.
It also seems very likely that the peer reviews helped reduce the costs of integration testing
and support. We must acknowledge, of course, that this is only a comparison of two projects,
so other effects, such as learning from the first project, also figure into the results. However,
the distribution of effort across phases clearly indicates the focus on upstream activities and
the areas of process improvement. (Also see the Hughes case study for a similar result.)
The enormous savings suggest very positive results for these software process improvement
efforts. The huge difference in the number of requests for design changes (Figure 19) shows
the value of working with customers to ensure that the product addresses their needs.

Quality. Project B also experienced substantially fewer defects than Project A, as can be
seen in Figure 19. Standardizing these numbers on size, Project A had 6.9 defects per
KSLOC, while Project B had only 2.0 defects per KLOC. The defects in Project B were also
less costly to fix. On average, a fix in Project A cost $706, while a fix for Project B cost $206.

Defects, design requests

%38 E= Project A
1 Project B
80

40

0
Critical defect Nuisance defect Design requests

Figure 19. Defects and Design Requests for Two Projects

34 CMU/SEI-94-TR-13

4.45 Lessons Learned

» Software process improvement depends on the critical role played by local SPI
groups as supported by the project leader. This arrangement is the most sensitive to
organizational and business needs.

» Local SPI groups can accelerate results by sharing and helping each other.

» The grass roots effort across Tl related to the “software methodology” underscores
the power of voluntary, cooperative process improvement. The nature of this
document allowed it to survive many generations of organizational changes and
changes of document owners.

« With multiple organizations contributing funding to maintain a living document, the
“software methodology” has maintained its audience. It has also saved substantial
resources compared to the case where each business group constructs a method on
their own.

4.5 Oklahoma City Air Logistics Center, Tinker Air Force Base

4.5.1 Organization Description

The United States Air Force's Oklahoma City Air Logistics Center's (OC-ALC) Directorate of
Aircraft Software Division is located at Tinker Air Force Base which is near Oklahoma City,
Oklahoma. The software division is divided into 9 branches and employs approximately 400
people engaged in developing and maintaining software. Due to different types of workloads,
the software division has divided their process improvement efforts into 2 parts. This case
study will discuss the efforts in the Test Software and Industrial Plant Equipment Branches
which are composed of over 180 personnel divided into 4 branches. Two of these branches
develop and maintain test program sets (TPSs) which are used with automatic test
equipment (ATE) to provide repair capability for complex avionics. The Industrial Plant
Equipment Branch provides software support to jet engine, constant speed drive, and eddy
current testing along with several automated processes associated with jet engine overhaul.
The fourth branch, the Management and Technical Support Branch, provides the personnel,
training, funding, drafting, computer, and other support functions. The weapon systems
affected by the software products produced and maintained by the Test Software and
Industrial Plant Equipment Branches include 10 different aircraft and 6 jet engines.

4.5.2 History of SPI Efforts

The OC-ALC began its software process improvement efforts in 1987 when it began defining
its software processes. In 1988, the process and product enhancement team (PPET) was
formed to play the role of caretaker of the process definition documents. The PPET failed to
have much influence in process improvement, primarily because it lacked a defined and
visible interface with management.

CMU/SEI-94-TR-13 35

4.5.3 Current SPI Effort

In 1989, OC-ALC began a relationship with the SEI and had its first assessment in March
1990. At that time, the center was rated at the initial level of process maturity.

The findings from that first assessment were addressed by over 50 different process
improvement efforts. They vary widely in scale, from very small, such as establishing a
newsletter, to very large, such as developing an on-line maintenance tracking system. A
small sampling of these improvement efforts follows:

Software maintainability evaluation (SME) process. This was originally developed to check
software developed by contractors. It allowed OC-ALC to find defects quickly so that the
software could be returned to contractors within the warranty period. It is now also used on
software developed by the OC-ALC as a final quality check prior to delivery to its customers.

Cost/schedule control system criteria (C/SCSC). Implemented very recently, this method
allows project leaders greater insight into the software development and maintenance
process. They can determine, for example, how long it takes to complete a specific form.
One very important consequence of using this method is the ability to tell external
organizations the precise impact that they have on OC-ALC processes. So, for example,
suppliers of needed assets, and interfaces with other groups such as the one controlling
configuration management, can be informed in some detail of how their schedules will affect
the overall development and maintenance process.

Maintenance tracking system (MTS). This system is used to track maintenance information
across multiple weapon systems. Originally developed for tracking the maintenance status of
the B-1B test program sets, it was modified for general use. Despite some initial resistance,
it is now used throughout the organization.

OC-ALC/Aircraft Software Division library update. This library is used for storing engineering
documentation, software, process assets, and so on. Various improvements to the library
were implemented, based on a survey of internal and external customers.

Internal training courses. Courses in a number of areas such as test program set process,
circuit simulation, and diagnostic tools were developed in-house when they were not
available or difficult to obtain from external sources.

Technical order (TO) editor. This tool permits engineers to check all messages that can
appear on the test operator's screen. It was provided to several contractors so that they
could check and correct their TPSs prior to delivery to LAS.

In 1993 OC-ALC was selected as an alpha site by the SEI to pilot test its updated
assessment method based on version 1.1 of the capability maturity model for software. OC-
ALC was again assessed with the help of the SEI. This time, however, the SEl-assisted
assessment resulted in OC-ALC being assessed at the repeatable level of process maturity
(level 2). Today, OC-ALC has a goal of becoming an organization at the defined level of
process maturity (level 3) by 1995—three years ahead of a United Stated Air Force policy
requiring all Air Force software organizations to be at level 3 by the year 1998. OC-ALC is
planning its next assessment for late 1995.

36 CMU/SEI-94-TR-13

To fund its process improvement efforts, OC-ALC budgeted an amount equal to five % of the
total labor costs for the organization. Two senior engineers are assigned full time to process
improvement, and the remaining budget (seven staff-years per year) is allocated to specific
improvement activities. All improvement activities are scheduled, funded, and tracked
similarly to all other projects within the organization. OC-ALC personnel have commented
that having a budget of five % of the total labor costs is significant and puts the process
improvement efforts at the same level of management attention as other key projects within
the organization.

Personnel chosen to work on process improvement activities at OC-ALC are chosen for their
knowledge, skills, and enthusiasm. By having many of its personnel, including key, senior
level engineers, work on improvement activities, ownership and responsibility is spread
across the organization.

The software process improvement infrastructure at OC-ALC consists of a management
steering team (MST), a software engineering process group (SEPG), and technical working
groups (TWG). The MST is composed of division and branch management and the SEPG
chairman. It has management and oversight responsibilities, including establishing priorities
for improvement activities, assigning personnel, providing resources, and monitoring status.
The MST has monthly meetings open to all personnel.

The objectives of the SEPG are to identify areas needing improvement, make
recommendations, formulate action plans, and track progress and effectiveness of the
improvement efforts. The SEPG, composed of both full and part-time personnel, meets
biweekly. The SEPG meetings serve as an informal forum for OC-ALC personnel to share
their ideas and raise issues that they see affecting the organization.

Technical working groups (TWGSs) are established as needed to work process improvements
in specific areas. TWGs are composed of technical experts for specific areas and
membership may cross organizational boundaries. Each TWG is required to develop a
charter defining the overall and specific objectives of the TWG, membership, voting methods,
meeting frequency, and the length of time it will exist.

It is important to note that TWGSs are not established for every improvement effort, just those
that need to be worked on by a group. Individuals may be assigned to work some of the
smaller improvements. Many improvements have originated within sections and been spread
throughout the organization with the aid of the MST and the SEPG.

Current activities regarding software process improvement at OC-ALC are focused toward
addressing the findings from the March 1993 assessment. The findings concerned level 3
issues along with some organization-specific issues. In addition, the physical facilities and
non-process external dependencies were noted as tough problems.

4.5.4 Results of Software Process Improvement Activities

Business Value. Tinker OC-ALC has implemented over 50 different process improvement
activities since 1989. Since that time OC-ALC has invested more than $1,070,000 in its
process improvement activities. It estimates that it has saved over $4,792,527 as a direct

CMU/SEI-94-TR-13 37

result of its process improvement activities. These savings are primarily cost avoidance,
such as rework and duplication of function. Overall, the ratio of savings to cost shows a
return of more than 4.48 dollars on every dollar invested in software process improvement.
Since there is inevitably a delay between spending for an improvement and realizing the
payoff, OC-ALC has also calculated a business value figure that excludes the amount spent
for work in progress that has not yet had an opportunity to generate a benefit. Of the
$1,070,000 spent, $305,254 fits in this "in progress" category. Calculating a business value
ratio that excludes this amount gives a figure of 6.27 to 1. Table 3 shows a sample of costs
and savings for some of the SPI activities at OC-ALC. Notice that the software
maintainability evaluation process and the maintenance tracking system together account for
about 25% of the total savings.

Improvement Cost to Develop Savings Business
Effort Value

(3 years)
Software $9,280 $900,000 971/1

maintainability
evaluation (SME)
process

Maintenance $90,000 $1.2M 13/1
tracking system
(MTS)

OC-ALC library $800 $12,000 15/1
update

TO Editor $1,300 $109,000 84/1

Table 3. Financial Data for a Sample of Software Process Improvement Activities

OC-ALC collects cost data on all of its improvement activities but has not been able to
measure or estimate savings on some of its specific improvement activities. For example,
one of OC-ALC's first improvement activities that began in 1987 and continues today is its
process definition efforts. To date, $338,500 has been spent on this activity but the savings
are very difficult to quantify. As in any process improvement initiative, process definition is
the foundation for improvement. OC-ALC understands this and continues to regard process
definition as an important activity. Other activities are not measured in terms of their benefits
or savings. One example is the organization's newsletter, produced at minimal cost of a few
hundred dollars. It has been credited with boosting morale and keeping all employees
informed of ongoing improvement activities.

OC-ALC also has realized that, even though it has been assessed as an organization at the
repeatable level of process maturity, it needs to maintain its current organizational strengths.
Recognizing that the goal is continuous improvement, OC-ALC also has ongoing
improvement activities that help to strengthen those assets such as its implementation of a
cost/schedule control system criteria (C/SCSC). Implemented in April 1993 (after the March

38 CMU/SEI-94-TR-13

1993 assessment), the C/SCSC has taken the project tracking and planning process to a
new level of expertise at OC-ALC. Project managers are now able to spot bottlenecks and
tune their software processes. They are also able to provide detailed information to outside
organizations concerning their affect on the organization's internal processes. Although the
organization is still gathering data on savings, the cost to implement the system was only
$4,222.

455 Lessons Learned

Process improvement and the internal groups that implement it must have active and
visible support from management in order to succeed. The management steering
team has been the biggest single key to the success of improvement efforts. They
send a visible signal that process improvement is a management concern and
priority.

Resistance, often in the form of statements such as "We're different," or "I've got real
work to do," or "I'm busy serving my customer" can be overcome if it is widely
perceived that process improvement is a priority for upper management. Goal setting
by upper management, such as the Air Force goal of SEI CMM level 3 by 1998 for its
software organizations, is a powerful way of focusing improvement efforts, motivating
people, and demonstrating that the efforts are valued. Getting everyone involved in
the improvement effort is another key.

Having SEPG membership of both full-time personnel and part-time personnel drawn
from various projects is very important. The full-time members provide continuity for
the process improvement efforts, while the part-time members act as advisors,
advocates, change agents, and communications liaisons.

The SEPG leader must keep records and treat process improvement just like any
other project. This person is key to process improvement success.

Specific, well-defined improvement efforts, often started by one or two people, have
proven easier to develop and implement. Experience has shown that addressing
each finding with a number of small improvements can be a very effective strategy.

Not every improvement effort requires a TWG. Using a TWG when one is not needed
is a bit like “watering your flowers with a fire hose.”

People must be kept aware of the improvement efforts, whether by newsletter,
meetings, e-mail, or otherwise. Visibility is important to building acceptance and buy-
in.

Don't be afraid to fail. It is not possible to perfect a plan before implementation.
Trying things out, modifying as necessary, and learning from failures as well as
success are important tactics.

Separate funding, rather than asking projects to support improvement efforts in their
"spare time" has been critical in having process improvement perceived as "real
work."

The CMM should be used as a tool, not as an end in itself. One should not do
something just because the "CMM says;" rather one should use the CMM as a way of

CMU/SEI-94-TR-13

39

addressing process issues with a goal of increasing quality and productivity. This
involves tailoring improvements to the organization.

4.6 Summary of Case Studies

In this chapter, we have seen five organizations that differ markedly in type, application
domain, and approach to SPI. It is worth reflecting on that diversity for a moment. The
organizations are commercial, DoD contractor, and military. Application domains include
operating systems, embedded real-time, information systems, and test program sets. Each
has its own approach to SPI, including

* An early emphasis on analysis and use of inspection data, within a wider-reaching
SPI effort (Bull HN).

* A long history of process definition, data collection, and quality management
(Hughes).

» Corporate-level assessment and consulting resources made available to many
software organizations (Schlumberger and Texas Instruments).

* Many small, grass-roots improvement efforts coming together under an organization-
wide structure to meet organizational goals (OC/ALC).

There was a similar diversity in the ways that organizations measured their progress. Some
looked only at a few key measures, while others are collecting many. Some have a baseline
going back a number of years, while others have begun to collect process measures only
recently. Differing business strategies, of course, dictate a focus on different measures.

What we find remarkable about this collection of case studies is that, despite all these
differences, each of these organizations was able to use the CMM as the basis for
substantial measurable improvement. They are not merely reaching higher maturity levels,
but more importantly, they are making progress toward their business objectives.

40 CMU/SEI-94-TR-13

5. Technical Issues in Measuring Results of SPI

In a recent article in the Journal of Systems and Software, Fenton [Fenton 93] wrote about
the current crisis in software and the myriad of proposed solutions:

[A]lnecdotal evidence of significantly improved quality and productivity are not
backed up by hard empirical evidence . . . and where real empirical evidence
does exist, the results are counter to the view of the so-called experts.

While we have not always encountered results so unexpected, we agree wholeheartedly that
intuition is no substitute for evidence. Fenton continues to note that software engineering is a
difficult discipline within which to conduct experiments. Furthermore, he faults the lack of
hard knowledge regarding the effectiveness and utility of software engineering innovations on
"poor experimental designs and lack of adherence to proper measurement principles."

Hetzel [Hetzel 93, p 202] has commented on the difficulty of measuring software processes
and comparing their results. To guide the use of measurement within an organization, he
recommends a model of software engineering that focuses upon inputs, outputs, and results.
This model captures the creation of the software work products and the impacts that they
have on software development or the business performance of the company. He notes the
problems associated with defining and measuring a process and its results. One must also
be aware, however, of the influence of other organizational factors or configurations of
processes that contribute to process outcomes.

Quantifying the results from investing in software process improvement is challenging. The
following section addresses issues that must be confronted and addressed when attempting
to quantify the impact of a particular software process improvement. It is intended for those
readers who wish to pursue a deeper understanding of the technical issues involved in
guantifying the results of software process improvement. For the purposes of presentation,
we have divided the issues into three groups.

First, it is necessary to identify, and have the capability to measure, outcomes of interest.
This involves addressing the issue of identifying measures that will indicate the success of
one's business strategy, as well as carefully defining the measures and implementing
procedures for actual data collection. These issues are discussed in Section 5.1.

Second, with any set of measures, the hope is that they will change in a positive direction
over time. A technique for plotting some of the most important kinds of changes is introduced
in Section 5.2.

Third, a causal link between the changes in software process and the measures of success
must be established. This is important because development of software systems is a
dynamic process in which many things besides the software process are changing.
Personnel, levels of experience, the technical environment, customers, business
environment, complexity of applications, and so on, all exhibit some degree of volatility, and
all may influence the success (and measures of success) of software development projects.

CMU/SEI-94-TR-13 41

In order to measure the benefits of SPI, one must be able to isolate the effects of process
improvement from the effects of other factors. These issues are discussed in section 5.3.

5.1 Selecting Measures

Are we improving? If so, by how much? These can be surprisingly difficult questions to
answer. In this section we give a brief overview of some of the issues involved in choosing a
set of measures to judge the performance of a software process. We discuss the balanced
scorecard, Goal-Question-Metric (GQM), CMM/SEI core measures, business value, and
intangible benefits.

Balanced scorecard. Measuring an organization's performance is an important issue for all
types of business units. Approaches that have worked well elsewhere may also be good
candidates for software organizations. An example is the balanced scorecard [Kaplan 92,
Kaplan 93] which proposes categories of measures for an organization to use to track its
performance. These authors suggest that organizations should track four types of measures:

« financial,

» customer satisfaction,

* internal processes, and

 innovation and improvement activities.

By specifying only categories of measures, the balanced scorecard proposal leaves sufficient
flexibility for organizations to define measures within each category that are most relevant to
their strategic goals. There are many ways of measuring, e.g., customer satisfaction, and
each organization should choose measures appropriate for its own market, customers, and
products.

On the other hand, the balanced scorecard requires that measures from each of the four
categories be chosen and tracked. This prevents masked tradeoffs. That is, it gives a
relatively complete picture of the business performance of a company. By monitoring
customer, internal, innovation, and financial perspectives, the company can be sure that
gains made in one aspect of its operation do not come at the expense of its performance in
another aspect. These may or may not be an appropriate set of categories for software
organizations, but the idea of breadth of a measurement program is still an important one.

GQM. The GQM paradigm [Basili 82, Basili 91] is a widely-cited method of identifying a
useful set of measures. Similar in spirit to the balanced scorecard, GQM starts by analyzing
project goals and refining them into a set of questions that can be answered quantitatively.
The questions then specify the measures that should be collected in order to track progress
toward the goals. Guidelines and templates have been developed to assist the process.
However, the measures must be tailored for the environment in which they will be used. This
approach contrasts with Hetzel's [Hetzel 93], which is more bottom-up.

CMM/SEI core measures. As pointed out above, for a measurement program to be
successful, the set of measures to be tracked must be chosen very carefully so that the

42 CMU/SEI-94-TR-13

measures accurately reflect the business and engineering objectives of the organization.
The following list provides examples of some of the measures likely to be important to many
software development organizations:

* Resources expended on software process improvements.

» Resources expended to execute the software processes.

« Amount of time (calendar time) it takes to execute the process.
 Size of the products that result from the software process.
 Quality of the products produced.

For more information on these measures and how they can be defined to help an
organization measure its benefits, refer to [Goethert 92] for measuring resources expended
and the amount of calendar time to execute the process, [Park 92] and [IFPUG 90] for
measuring the size of software products, and [Florac 92] for measuring the quality of
products produced. Information about measures related to the CMM is provided in [Baumert
92]. A set of core measures is recommended in [Carleton 92].

Business value. Often the result of most interest to managers is the business value, or ratio
of benefits to costs, of the software process improvement effort. Costs of the improvement
activities are considered as either nonrecurring costs or recurring costs. Nonrecurring costs
are those expended by the process improvement effort to establish a process or purchase an
asset (for example, the cost of training personnel, hiring consultants for specific tasks,
implementing changes). The organization must decide how it wishes to amortize these costs
over time. Recurring costs, on the other hand, are the costs of the activities that have been
implemented to monitor products, prevent errors, or continually guide or manage the effort.
These costs will be incurred during each time period.

After determining the cost incurred from the SPI effort, the organization determines the
amount of money saved. Some of the simpler methods used to determine the amount of
money saved include quantifying the dollar value of items such as

* Increased productivity.
 Early error detection and correction.

Overall reduction of errors.
* Improved trends in maintenance and warranty work.
» Eliminating processes or process steps.

Suggestions on how to use these methods to measure the costs and benefits from a process
improvement effort are discussed in detail in [Rozum 93]. Other sources on how to measure
a process improvement effort include [Moller 93] and [Grady 92].

There are a number of reasons why it may be difficult to measure the benefit received from a
SPI effort in dollars. For example, the primary benefit received may not be dollars saved, but
rather an expansion of gross income. Often, the benefit results from the company producing
a higher quality product and, eventually, customers migrating to the better quality. The

CMU/SEI-94-TR-13 43

difficulty is determining the benefit of new or more revenues returned by improving quality or
faster time to market. Sometimes, an organization can only hope that, if it produces a better
quality product, customers will buy the product at an increased cost.

Effective measurement of quality, of course, depends on what is important to the customer.
Some aspects of quality that could be measured to determine a benefit to the organization
from its process improvement efforts include

Mean time between failures.

* Mean time to repair.

Availability (as determined by a combination of the mean time between failures and
the mean time to repair).

« Customer satisfaction (probably the most overlooked measure of quality).

Intangible benefits. Process improvement efforts can also result in benefits that are either
not quantifiable or difficult to convert into a common measure (such as cost, schedule, or
quality) for decision-making purposes. For example, better morale, improved understanding
of the corporate mission and vision, fewer crises, less stress, less turnover, and better
communication within the organization are some of the intangible benefits that have been
reported to accompany software process improvement. These particular examples arise
from the impact of the SPI effort on the organization's employees. Other potential benefits
such as improved reputation, good will, and brand name recognition arise from the impact of
SPI on customers. It may be possible to include intangible benefits in cost-benefit studies by
measuring or estimating them, but, even when this is not possible, it is important that the
analysis acknowledge them.

Awareness of these benefits is important for two reasons. First, when considering alternative
improvement programs that offer similar tangible returns, preference should be given to the
program that offers the "larger" intangible return. It is not necessary to measure these
precisely; simply ranking the preferences in order of estimated magnitude is generally
sufficient. Of course, the situation becomes more complex when many such factors need to
be considered and they have mixed impacts, i.e., some are negative and some are positive.
Creating a list of such impacts often allows one to generate a rough summary estimate, e.g.,
on balance the intangibles are likely to produce a small positive impact.

Second, these types of benefits are often good indicators of the organizational climate or
culture which is typically recognized as a significant part of implementing continuous process
improvement. For instance, the SEI approach to software process improvement emphasizes
the need for management commitment and sponsorship and the need for widespread buy-in
from software practitioners [Humphrey 89, Paulk 93a, Paulk 93b]. Other case studies of
product and service innovation and process improvement have also noted the importance of
changing the organizational culture to one that supports "empowered employees" as a critical
success factor [Deming 86, Kaplan 93]. To measure these types of changes, organizations
now frequently conduct employee satisfaction surveys, track the volume of employee
suggestions for improvement, and ask employees whether they understand the corporate
strategy and whether their work assignments are consistent with the strategy [Kaplan 93].

44 CMU/SEI-94-TR-13

A few of the organizations that have written about their software process improvement efforts
have been impressed by the intangible benefits accruing from their effort. Hughes
[Humphrey 91] found fewer crises, a better quality of work life, and a shared sense of mission
and pride. Although the software requirements continued to be volatile, the process
improvements cushioned the impact of fluctuating requirements on people. As observable
indicators of the improvement in work life and decrease in crises, overtime hours were
reduced and turnover among the professional software personnel has remained relatively
low. Similar benefits were also noted at Raytheon [Dion 92] along with improved
communications and support for training. At Tinker AFB the process improvement created a
culture of continuous process improvement with wide-spread participation [Lipke 92]. At
Tinker AFB, employees actively seek and propose improvement projects to the SEPG and
steering team. In addition, increased customer satisfaction has also been noted by an
increase in return business. This has been directly attributed to the process improvement
effort which focused on quick response to customer problems.

These intangibles were recognized as valuable and important benefits of the process
improvement efforts undertaken by the organizations in this study. Indeed, many
organizational change strategies explicitly address the need to effect this type of change.
What has been less well addressed is how to measure and place a value on these changes.
This remains a need for the software community.

After a set of measures has been chosen and defined, and procedures for collecting the data
are in place, there is still the question of how to use the data to identify and quantify
improvement. This question is addressed in the next section.

5.2 Change over Time

Figure 20 illustrates how an organization might measure the performance of its software
processes over time. We assume that the organization is interested in both its ability to
predict performance and its actual performance on measures like cost and schedule. In this
figure, an organization is comparing its estimates to the actual outcomes of its processes. A
project's actual outcome is first normalized to other, similar projects in the organization. For
example, cost can be normalized by expressing it as a percentage of budgeted cost. A set of
projects is then considered and the normalized outcomes plotted. Those discrete outcomes
can also be translated into probabilities, and a probability density function plotted as in the
curves in Figure 20. A simpler procedure is to use a histogram to plot the number of projects
that fall within ranges such as 0-10% over, 10-20% over, etc. Either one will give a quick,
visual way of understanding how well projects are staying within budgets. A similar
procedure can be used for other measures of interest, such as time to market or number of
defects.

CMU/SEI-94-TR-13 45

Time 1

PDF

| Actual Cost
Estimate

PDF

Time 2

Estimate Actual Cost

PDF = Probability density function

Figure 20. Theoretical Ability to Predict Process Outcomes of Organizations

There are at least three kinds of improvements that can be tracked with these plots [Paulk
93a]. As improvements are made, the actuals should move closer and closer to the
estimates as the software process becomes more predictable. In the diagram, the
distribution of actual figures becomes more nearly centered on the estimate. In addition, the
distribution of actuals should be more tightly clustered around the center (i.e., have a smaller
variance). Finally, the average of the actual values should move in the desired direction;
average costs, for example, should go down.

While techniques of this sort (see [Rozum 93] for an overview) are very useful for tracking the
changes over time in the performance of a software process, they do not specify what is
causing the changes. It may be the process improvements, but it might also be increased
experience, new people, new analysis or design methods, new tools, change in complexity of
applications, faster hardware, and so on. Identifying the causes of changes in performance
introduces a new set of issues requiring additional techniques. The following section gives a
brief overview of some of the most important considerations when identifying courses of
performance changes in the context of software process improvement.

5.3 Identifying Causes

There is an increasing interest in software engineering about analyses that go beyond
tracking changes over time by trying to identify the causes of those changes (see, e.g.,
[Rombach 93, Fenton 93, Kitchenham 94]). Making inferences about causation adds new
complexity to the analysis because there are usually many possible causes of changes in
performance. Isolating the effects of a particular cause of interest, such as a process

46 CMU/SEI-94-TR-13

improvement program, generally requires comparisons of results in two or more well-
understood conditions. By comparing results where various causes are present or absent, or
present in various measurable degrees, one can often reach conclusions about causation
with a relatively high degree of confidence.

Unfortunately, practical considerations usually impose serious limitations on the ability of an
organization to determine the causes of changes in the performance of its software
processes. One of the most common and serious is simply the failure to collect any data at
all in a reliable way. And where data collection is initiated, it is often in the context of a pilot
project using a new process, so there is often no data from previous projects or other current
projects for comparison purposes. It is then impossible, of course, to determine if any
change has occurred as a result of the changed process. Where data from many projects
are collected, interpretation is often made extremely difficult by failing to capture the
important project characteristics that contributed to the results.

Beyond these practical issues lie considerations of research design and data analysis. To be
effective, data collection must be very carefully planned and executed (see, e.g., [Fenton 91],
[Basili 82]). Simply collecting available data, as we did in this effort, generally does not allow
for very sophisticated analyses of causal relations.

CMU/SEI-94-TR-13 47

48

CMU/SEI-94-TR-13

6. Conclusions

It is clear, on the basis of the data reported here and elsewhere [Dion 92, Humphrey 91,
Lipke 92, Wohlwend 93] that software process improvement can pay off. Diverse
organizations with very different software products have approached software process
improvement in a variety of ways within the context of the CMM, and each has realized
substantial benefit. The rough calculations of business value ratios indicate that the returns
can be very substantial. While we do not yet know how typical these results are, they are an
indication of what is possible. We are continuing to solicit data of the sort reported here to
further test this conclusion.

We are convinced, however, that it is time to move beyond the basic question of whether
process improvement can pay off. We need to learn how, when, why, and for whom
process improvement pays off. This includes both an empirical examination of the
assumptions underlying models of process improvement such as the CMM, as well as an
analysis of enablers and inhibitors not accounted for in models. We need to achieve an
understanding of the critical factors that cause success and failure.

Achieving this understanding is not easy, however. No single organization is likely to have
the range of experience necessary to identify these critical factors. We need to examine a
broad sample of projects undergoing SPI in order to determine

* characteristics that successful SPI efforts have in common,

* characteristics that unsuccessful SPI efforts have in common, and

« the factors that distinguish successes and failures.
It seems likely that the answers will depend to some extent on the particular improvements
attempted, the characteristics of the organization undergoing improvement, the application

domain, the technical environment, and the people involved. Any effort to understand the
results of SPI must take factors like these into account.

To address these questions, the SEI is investigating new mechanisms, such as a data-
sharing consortium of organizations, to provide the essential data and some resources. The
problems seem well-suited to a consortium, because a group of organizations working
together can accomplish things impossible for any individual member. The benefits to an
organization of membership in such a consortium would be considerable:

 Assistance with their software measurement program.

» Assistance with software process assessment.

» Benchmarking against similar organizations for goal-setting and motivation.

» Case studies summarizing experiences with particular improvement efforts.

* Reports of qualitative and quantitative analyses of critical factors drawn from
experiences across the consortium.

We are actively working on this and other approaches to understanding the results of SPI as
this paper goes to press.

CMU/SEI-94-TR-13 49

For organizations undertaking SPI efforts, establishing an effective measurement program
should be a very high priority. If the program is to gain and maintain the support of
management, the leaders of the improvement effort must be able to make the business case.
As we discussed above, in order to do this, the organization must develop measures that are
closely tied to business strategy, then be able to show they improve over time. This implies,
of course, that there is a baseline from pre-SPI projects to provide a background against
which change can be detected. Often, of course, this will not be the case, but if data
collection begins very early in the improvement effort, this will generally be adequate.

In addition to making the business case for management, collecting and analyzing data is
important for guiding the process improvement effort. Some of the early initiatives will
succeed and others will not. Effective measurement will allow the organization to make this
distinction and propagate what works. Measurement and data analysis are essential
components of any software process improvement program.

50 CMU/SEI-94-TR-13

Bibliography

[Basili 82] Basili, Victor R. & Weiss, David M. A Methodology for Collecting Valid
Software Engineering Data (TR-1235). College Park, Maryland:
University of Maryland, 1982.

[Basili 91] Basili, Victor, R. & Selby, Richard W. “Paradigms for Experimentation
and Empirical Studies in Software Engineering.” Reliability Engineering
and System Safety 32 (1991): 171-191.

[Baumert 92] Baumert, John H. & McWhinney, Mark S. Software Measures and the
Capability Maturity Model (CMU/SEI-92-TR-25, ADA257238).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

[Carleton 92] Carleton, Anita D.; Park, Robert E.; Goethert, Wolfhart B.; Florac,
William A.; Bailey, Elizabeth K.; Pfleeger, Shari L. Software
Measurement for DoD Systems: Recommendations for Initial Core
Measures (CMU/SEI-92-TR-19, ADA258305). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1992.

[Cook 79] Cook, Thomas D. & Campbell, Donald T. Quasi-Experimentation:
Design and Analysis Issues for Field Settings. Chicago: Rand McNally,
1979.

[Deming 86] Deming, W. Edwards. Out of the crisis. Cambridge, Mass.:

Massachusetts Institute of Technology, Center for Advanced
Engineering Study, 1986.

[Dion 92] Dion, Raymond. “Process improvement and the corporate balance
sheet.” IEEE Software 10, 4 (1992): 28-35.

[Fenton 91] Fenton, Norman. Software Metrics: A Rigorous Approach. New York:
Chapman and Hall, 1991.

[Fenton 93] Fenton, Norman. “How Effective Are Software Engineering Methods?”
Journal of Systems and Software 22, (1993): 141-146.

[Florac 92] Florac, William A. Software Quality Measurement: A Framework for
Counting Problems and Defects (CMU/SEI-92-TR-22, ADA258556).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

[Goethert 92] Goethert, Wolfhart B.; Bailey, Elizabeth K.; & Busby, Mary B. Software
Effort And Schedule Measurement: A Framework for Counting Staff-
Hours and Reporting Schedule Information (CMU/SEI-92-TR-21,
ADA258279). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1992.

CMU/SEI-94-TR-13 51

[Grady 93]

[Hetzel 93]

[Humphrey 87]

[Humphrey 89]

[Humphrey 91]

[IFPUG 90]

[Kaplan 92]

[Kaplan 93]

[Kitchenham 94]

[Lipke 92]

[Moller 93]

[Park 90]

[Park 92]

[Paulk 93a]

Grady, Robert B. Practical Software Metrics for Project Management
and Process Improvement. Englewood Cliffs, NJ: Prentice Hall, 1992.

Hetzel, William C. Making software measurement work. Boston : QED
Pub. Group, 1993.

Humphrey, Watts S. & Sweet, W. Method for Assessing the Software
Engineering Capability of Contractors. (CMU/SEI-87-TR-23,
ADA187230). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1987.

Humphrey, Watts S. Managing the Software Process. Reading, MA:
Addison-Wesley, 1989.

Humphrey, Watts S.; Snyder, Terry R.; & Willis, Ronald R. “Software
Process Improvement at Hughes Aircraft.” IEEE Software (July 1991):
11-23.

Function Points As Assets: Reporting to Management. International
Function Points Users Group, 1990.

Kaplan, Robert S. & Norton, David P. “The Balanced Scorecard --
Measures that Drive Performance.” Harvard Business Review,
(January-February 1992): 71-79.

Kaplan, Robert S. & Norton, David P. “Putting the Balanced Scorecard
to Work.” Harvard Business Review, (September-October 1993): 134-
147.

Kitchenham, B. A.; Linkman, S. G.; & Law, D. T. “Critical Review of
Quantitative Assessment.” Software Engineering Journal (March 1994):
43-53.

Lipke, Walter H. & Butler, Kelley L. "Software Process Improvement: A
Success Story." Crosstalk, November 1992, pp. 29-39.

K.-H. Moller and D. J. Paulish. Software Metrics. New York: Chapman
& Hall Computing, 1993.

Park, Chan S. and Gunter P. Sharp-Bette. Advanced Engineering
Economics. New York: John Wiley & Sons, 1990.

Park, Robert E. Software Size Measurement: A Framework for Counting
Source Statements (CMU/SEI-92-TR-20, ADA258304). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1992.

Paulk, Mark C.; Curtis, Bill; Chrissis, Mary B.; & Weber, Charles V.
Capability Maturity Model for Software (Version 1.1) (SEI/CMU-93-TR-
24, ADA263403). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1993.

52

CMU/SEI-94-TR-13

[Paulk 93b]

[Rombach 93]

[Rozum 93]

[Townshend 94]

[Wohlwend 93]

Paulk, Mark C.; Weber, Charles V.; Garcia, Suzanne M.; Chrissis, Mary
Beth; Bush, Marilyn. Key Practices of the Capability Maturity Model,
Version 1.1 (CMU/SEI-93-TR-25, ADA263432). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1993.

Rombach, H. Dieter; Victor R. Basili, Richard W. Selby (Eds.)
Experimental Software Engineering Issues: Critical Assessment and
Future Directions. New York: Springer Verlag, 1993.

Rozum, James R. Concepts on Measuring the Benefits of Software
Process Improvements (CMU/SEI-93-TR-09, ADA266994). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, 1993.

Townshend, Patrick L.; & Gebhardt, Joan E. “The Right Question.”
Quality Data Processing.

Wohlwend, Harvey ; Rosenbaum, Susan. "Software Improvements in an
International Company." Proceedings of ICSE '93, pp. 212-220.

CMU/SEI-94-TR-13

53

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	To the Reader
	1. Background
	2. Improvement Activities
	3. Aggregated Results of SPI
	4. Case Studies
	5. Technical Issues in Measuring Results of SPI
	6. Conclusions
	Bibliography

