
Model Problems in Technologies

for Interoperability:

Model-Driven Architecture

Grace A. Lewis
Lutz Wrage

May 2005

Integration of Software-Intensive Systems (ISIS) Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-022

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2005-TN-022 i

Contents

Abstract ...vii

1 Introduction..1

2 Model Problem Approach..3
2.1 Develop Hypotheses ...4

2.2 Develop Criteria ..4

2.3 Design and Implement Model Solution ..4

2.4 Evaluate Model Solution Against Criteria...5

3 Implementing the Technical Solution ...6

4 Evaluation...9
4.1 Hypothesis 1: The Use of MDA Reduces Development Time9

4.1.1 Difficult Learning Curve ...9
4.1.2 Configuration and Debugging Is “Trial-and-Error”12
4.1.3 Transformations Generate Code for a Very Specific Platform..13
4.1.4 Not All Tools Generate the Same Amount of Code..................14

4.2 Hypothesis 2: The Use of MDA-Based Development Tools Frees the
Developer from Learning the Low-Level Details of the Target Platform
and Underlying Infrastructure ..15
4.2.1 Three Different Roles: Designer, Developer, and Configuration

Expert ..15
4.2.2 Deployment Requires Platform and Infrastructure Knowledge .18

5 Experience with MDA...19
5.1 Development Time is not Reduced for the First Application for which

an MDA-Based Development Tool is Used..19

5.2 The Real Potential of MDA is not Completely Supported by Current
Tools ...19

5.3 MDA-Based Development Tools Are the Next Generation CASE Tool .21

6 Conclusions ...22

References...25

ii CMU/SEI-2005-TN-022

CMU/SEI-2005-TN-022 iii

List of Figures

Figure 1: Model Problem Process for Technology Evaluation................................. 3

Figure 2: High-Level Component and Connector View for the HR System............. 7

Figure 3: Deployment View for the HR System .. 8

Figure 4: Component Configuration Screenshot—EJB Configuration 11

Figure 5: Component Configuration Screenshot—JBoss Configuration 12

Figure 6: Sample Transformation Rule... 13

Figure 7: MDA Model Transformation Process... 14

Figure 8: Class Diagram for the Business and Data Management Logic of the HR
System.. 17

iv CMU/SEI-2005-TN-022

CMU/SEI-2005-TN-022 v

List of Tables

Table 1: Hypotheses for MDA... 4

vi CMU/SEI-2005-TN-022

CMU/SEI-2005-TN-022 vii

Abstract

Model-driven architecture (MDA) is a technology produced and maintained by the Object
Management Group (OMG), an open membership, not-for-profit consortium that produces
and maintains computer industry specifications for interoperable enterprise applications. This
technical note examines two claims regarding the benefits of MDA, namely, that it (1)
reduces development time, and (2) allows the developer to focus on business logic rather than
on details about the target platform and architecture. Such advantages would greatly benefit
interoperability; as target platforms and underlying infrastructure change, deployment of
applications would be quick and easy. This note presents the results of applying the model
problem approach to verify these claims.

viii CMU/SEI-2005-TN-022

CMU/SEI-2005-TN-022 1

1 Introduction

From a technology perspective, there are many current approaches to building systems with
interoperability requirements. Each has particular advantages and disadvantages with respect
to interoperability, and each works well in some circumstances but not others [Lewis 05].
This report will look at Model-Driven Architecture (MDA) as one of many technologies for
accomplishing interoperability.

Model-Driven Architecture (MDA) is an approach to software development produced and
maintained by the Object Management Group (OMG), an open membership, not-for-profit
consortium that produces and maintains computer industry specifications for interoperable
enterprise applications. The goal of MDA is one that is often sought: to separate business and
application logic from its underlying execution platform technology so that (1) changes in the
underlying platform do not affect existing applications, and (2) business logic can evolve
independently from the underlying technology [Lewis 05, OMG 03]. A tool that implements
the MDA concept allows developers to (1) produce models of the application and business
logic, and (2) generate code for a target platform by means of transformations.

MDA is not to be confused with Model-Driven Development (MDD), also known as Model-
Driven Software Development (MDSD). MDD is an approach to software development
where extensive models are created before source code is written or generated. MDA is the
OMG implementation of MDD and it is built upon existing OMG standards, such as UML.
The MDA concept is implemented by a set of tools and standards that can be used within an
MDD approach to software development. Even though MDD is often associated with agile
software development processes, it can also be used within other processes where modeling
plays a big role, such as Object-Oriented Analysis and Design (OOAD) and the IBM Rational
Unified Process (RUP).

The Software Engineering Institute is examining technologies and approaches for the
construction of systems that are required to interoperate with other systems, with the purpose
of examining the gaps between what these technologies and approaches offer and what users
expect of them. The end goal is to provide users with information about what can be expected
by the current state of technology and to provide technology suppliers with information about
user expectations, hoping to help bridge these gaps.

MDA literature, and some MDA tool vendors, claim that the MDA approach (1) reduces
development time, and (2) frees the developer to focus on business logic rather than on target
platform and infrastructure details. Aside from being a valid and beneficial approach to
software development, this should allow quick and easy deployment of applications, as target
platforms and underlying infrastructure change. If realized, these advantages would
significantly benefit interoperability.

2 CMU/SEI-2005-TN-022

To verify these claims about MDA, we chose the model problem approach [Wallnau 01]. This
involves (1) formulating hypotheses about the technology, and (2) examining these
hypotheses against very specific criteria through experimentation. In this way the hypotheses
are either sustained or refuted. The model problem approach has the advantage of producing
very efficient and representative experiments that not only evaluate technologies within the
context of their future use, but also generate hands-on competence with the technologies.

Section 2 explains the model problem process. The details of the experiments are presented in
Section 3. Results are presented in Section 4. Section 5 provides details about the experience
with MDA. And finally, Section 6 presents some conclusions along with recommendations
for users and vendors of MDA-based development tools.

CMU/SEI-2005-TN-022 3

2 Model Problem Approach

Model problems were initially created as a technique for evaluating commercial components
[Wallnau 01]. We have slightly modified the original model problem process so it extends to
the evaluation of technology in general. A graphical representation of the model problem
process is presented in Figure 1. The model problem is part of a larger process for context-
based technology evaluation.1 In this larger process, the context for the model problems is
established and the expectations from the technology are captured.

Develop Hypotheses

Develop Criteria

Design and Implement Model Solution

Evaluate Model Solution Against Criteria

[Hypothesis Sustained] [Hypothesis Refuted]

Figure 1: Model Problem Process for Technology Evaluation

The context for our model problem is a military human resources system we worked with
recently. Military personnel are often reassigned to new locations, which triggers additional
processes such as the actual reassignment, payroll adjustments, and flight booking. We were
also specifically interested in the Java 2 Enterprise Edition (J2EE) platform because
component frameworks are another technology of interest for interoperability.

1 Lewis, Grace A. & Wrage, Lutz. Context-Based Technology Evaluation. Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University. To be published.

4 CMU/SEI-2005-TN-022

2.1 Develop Hypotheses

The first step in the process is to define hypotheses. Hypotheses are claims about the
technologies that are to be sustained or refuted. For MDA we defined the following initial
hypotheses:

1. The use of MDA reduces development time.

2. The use of MDA-based development tools frees the developer from learning the low-
level target platform and underlying infrastructure details.

2.2 Develop Criteria

Criteria are used to determine if a hypothesis is sustained or refuted. Each hypothesis can
have one or more criteria, depending on the breadth covered by the hypothesis. Each criterion
is stated as a clearly measurable statement of capability. For the above hypotheses, the
defined criteria are described in Table 1.

Hypothesis Criteria

The use of MDA reduces development time. The time to develop a J2EE application using an MDA-
based development tool will be less than it would take
us to write the application using a standard IDE. Times
will be compared against data from previous developer
experience.

The use of MDA-based development tools frees the
developer from learning the low-level details of the
target platform and underlying infrastructure.

The developer will need to understand J2EE at a
conceptual level but will not need to have a detailed
understanding of J2EE or the JBoss application server
while generating a J2EE application for JBoss using an
MDA-based development tool.

Table 1: Hypotheses for MDA

2.3 Design and Implement Model Solution

A model solution is the mechanism by which data is collected to sustain or refute a
hypothesis or set of hypotheses. Building a model solution for technology evaluation in this
context has three parts.

1. Define scenario.

2. Define technical solution that satisfies the scenario.

3. Implement technical solution.

It is important to ensure that all hypotheses can be sustained or refuted with the defined set of
scenarios. Testing more than one hypothesis using the same scenario may be possible if it is
carefully designed.

CMU/SEI-2005-TN-022 5

The model solution should be very efficient—it only needs to answer the question at hand.
The purpose of the scenarios is to ensure that the model solution is realistic and implemented
within the context of how the technology will be used. Therefore, a model solution should
involve the simplest set of applications and/or components that are able to sustain of refute
the hypotheses as measured by the associated criteria, given the context framed by the
scenario.

Hypotheses: see above

Scenario: A military organization has a Human Resources (HR) system that maintains
personnel records. Some of the information maintained for each person is: name, complete
address, and assignment location. When the personnel record is created, the person is given
his/her initial assignment location.

Technical Solution: An MDA-based development tool is used to create the HR system as a
Java 2 Enterprise Edition (J2EE) application that uses a number of Enterprise Java Beans
(EJBs) to perform basic Create-Retrieve-Update-Delete (CRUD) operations and basic
validations on personnel data. The user interface is implemented as a set of Java Server Pages
(JSPs) that are accessed through a browser [Sun 05]. Apache Jakarta Tomcat is used as the
servlet container [Apache 05]. The J2EE application server used is JBoss Application Server
[JBoss 05]. Data is stored in an Oracle database [Oracle 05].

We present the details of implementing the technical solution in Section 3.

2.4 Evaluate Model Solution Against Criteria

In this step, the technical solution is implemented, run, and observed, until there is enough
information to sustain or refute the set of hypotheses. Criteria sometimes require refining
because they are too vague, making it difficult to decide whether the hypothesis is sustained
or refuted. Sometimes new criteria must be created based on findings during implementation.

We kept notes about product installation, problems encountered, interim results, deployment
environment, and any other information that might help future projects, should the
technology be selected for use in the organization. For this set of model problems we used a
blog that was shared with all members of the team.

Section 4 contains details of the evaluation.

6 CMU/SEI-2005-TN-022

3 Implementing the Technical Solution

The first step in implementing the technical solution was finding an MDA-based
development tool. Given that we were interested in evaluating the technology and not the tool
itself, we did not want to perform an extensive evaluation and selection process. The initial
selection criterion was very simple: the tool had to be able to generate code for both J2EE
and .NET, because we did not want to learn a separate tool for other future model problems
involving .NET. If there were many tools that did this, we would add additional criteria to
reduce the size of the pool. As a source for tools, we relied on the success stories published
on the OMG site.2 We made a list of all the tools mentioned in these stories and began
visiting their Web sites to see which ones would satisfy our initial criterion. To our surprise,
only two tools did. We sent email to both tool companies, requesting an evaluation license
and explaining what we were going to do with the tool. Only one of the companies,
Interactive Objects, answered our request; shortly after they provided a license for its tool
ArcStyler [IO 05].

In parallel, we began designing the architecture for the system. Figure 2 shows a high-level
component and connector view for the HR System as a typical J2EE application. Figure 3
shows a deployment view.

2 http://www.omg.org/mda/products_success.htm

CMU/SEI-2005-TN-022 7

Business
Logic

(EJBs)

ORACLE
Database

JDBC

External
Component

HR
Component

Repository

Legend

Presentation
Layer
(JSPs)

RMI

HR System
User Interface

(Browser)

HTTP

Figure 2: High-Level Component and Connector View for the HR System

8 CMU/SEI-2005-TN-022

Windows XP

Apache Jakarta Tomcat
4.0.1

SuSE Linux 9.0

JBoss 3.2.4

Business
Logic

(EJBs)

Windows 2000

ORACLE
Database

Presentation
Layer
(JSPs)

HR System
User Interface

(Browser)

External
Component

HR
Component

Repository

Legend

Node

Communication

Figure 3: Deployment View for the HR System

The ArcStyler tool uses the Unified Modeling Language (UML) as the modeling notation
[OMG 05c]. The tool elements that transform the models into code are called cartridges.

We used the ArcStyler tool to generate code for the following components:

• EJBs for the business logic and data management elements of the HR system for the
JBoss application server using the JBoss32 cartridge

• JSPs for the user interface of the HR system using the WebAccessors cartridge

The evaluation of the model solution against the model problem criteria is presented in the
next section.

CMU/SEI-2005-TN-022 9

4 Evaluation

The last step in the model problem process is to evaluate the model solution against the
criteria in order to determine whether the hypotheses are sustained or refuted. The results of
this process are provided in the following sections.

4.1 Hypothesis 1: The Use of MDA Reduces Development Time

This hypothesis is partially refuted. Development time is not reduced for the development of
the first application for which a tool is used, but it may be considerably reduced for subsequent
applications developed for the identical platform. When the platform is not identical, tools
require reconfiguration and transformations3 may require modification. To confirm this, we
used the tool a second time to generate the JSPs for the user interface of another model problem
that we were working on. The development time was significantly reduced for the second
application we generated with the tool mainly because it was targeted at the identical platform:
JSPs running in a Tomcat 4.0.1 servlet container connecting to a JBoss 3.2.4 application server.
Making this “model-to-code” process repeatable so that development time is reduced requires
discipline in describing the process.

Several studies about MDA and productivity have been conducted, such as the one produced by
The Middleware Company in 2003 [Middleware 03]. This study claims a 35% reduction in
development time was realized by using MDA. Even though we believe these results, we also
believe that the tool was used mostly as-is, did not count training time, and the process did not
involve the configuration and potential transformation modifications that would most probably
be required in a real-world situation. We believe that all these elements require large amounts of
time and should not be underestimated.

A more detailed description of our findings follows.

4.1.1 Difficult Learning Curve

The learning curve for MDA-based development tools is very steep. While this is somewhat
true for any new development tool, we make our assessment based on extensive experience
with such tools. Both participants in the model problem process have approximately 15 years
of development experience and one participant has previous experience with two other
MDA-based development tools. Both found the learning curve for MDA to be much steeper
than for other development tools.

3 Transformations are the set of rules that convert a platform-independent model to a platform-

specific model. This concept is further explained in Section 4.1.3.

10 CMU/SEI-2005-TN-022

The difficult learning curve is due to some of the components in an MDA-based development
tool. We list them all to provide an idea of the complexity of some of these tools:

• Modeling component – In the tools we have worked with, the modeling component uses
UML notation. UML is fairly well known. The user interface varies from tool to tool but
it is not difficult to learn so it does not contribute to the difficult learning curve.

• Platform-specific model configuration component – The platform-specific model
configuration component is tool specific. In the case of ArcStyler, model configuration is
done through parameter settings in tabs for each of the components of the model, as
shown in Figure 4 and Figure 5. Each component requires configuration so that the code
generated for it matches the requirements of the technical solution.

• Transformation component – The transformation component is called cartridge, model
transformer, code generator, or translator, depending on the tool. Invoking the
transformation component is fairly simple; what is time-consuming is understanding
what it generates and where it generates it. Given that most MDA-based development
tools are limited to generating code from UML models, transformations are commonly
referred to as code generators. This will be addressed further in the findings for the next
hypothesis.

• Build and deployment component (optional) – The build and deployment (or simulation)
components are optional. These are also fairly straightforward to invoke and use and do
not contribute greatly to the difficult learning curve.

• Transformation editor component – The transformation editor is probably the most
difficult of the components to use. Transformations need to be modified when there are
mismatches with the target platform. This will be addressed shortly.

CMU/SEI-2005-TN-022 11

Figure 4: Component Configuration Screenshot—EJB Configuration

12 CMU/SEI-2005-TN-022

Figure 5: Component Configuration Screenshot—JBoss Configuration

4.1.2 Configuration and Debugging Is “Trial-and-Error”

During configuration there is a lot of trial and error—looking at the generated code to analyze
any problems, changing configuration parameters in the tool, and repeating this process until
the application works. Fortunately, repeating this process can be avoided if all configuration

CMU/SEI-2005-TN-022 13

settings are documented. This contributes to reduced development time for subsequent
applications for the identical platform and is not unique to MDA-based development tools.

4.1.3 Transformations Generate Code for a Very Specific Platform

Changes to transformations can be a time-consuming and difficult task. In general, in tools
that implement the MDA concept, a platform-independent model (PIM) that contains only
business and application logic is developed using the tool’s modeling component. The code
generation component is a series of transformation rules that map elements in the PIM to
elements in a platform-specific model (PSM) that contains details that are specific to the
target platform. Code is considered a form of PSM and a PIM can go through several levels
of transformation before becoming code. A simple example of a set of high-level
transformation rules for the J2EE platform, not specific to any tool, is shown in Figure 6.
This model transformation process is illustrated in Figure 7.

if (UMLClass) {

 create Java class named <UMLClass.className>Bean.java

 create methods in <UMLClass.className>Bean.java for each

 operation in UMLClass

 create attributes in <UMLClass.className>Bean.java for

 each attribute in UMLClass

 create Java class named <UMLClass.className>.java for

 remote component interface

 create Java class named <UMLClass.className>Home.java for

 remote home interface

 create Java class named <UMLClass.className>Local.java for

 local component interface

 create Java class named <UMLClass.className>LocalHome.java

 for local home interface

 …

}

Figure 6: Sample Transformation Rule

As Figure 6 shows, transformation rules are very platform specific. Many things that one
might wish to change in a transformation are not configurable via settings, such as file
location, personal preferences, coding standards, and organizational user interface standards.
In more extreme cases mismatches occur between the transformation and the target
environment. For example, if the tool provides a C code transformation for a stand-alone
environment, the transformation would have to be largely modified or rewritten completely if
the target is C language for a distributed environment with real-time concerns.

14 CMU/SEI-2005-TN-022

Figure 7: MDA Model Transformation Process

Modifying these transformations is not a trivial task and may require learning a completely
new scripting language. ArcStyler, for example, uses a language called Jython [Jython 05].
The MDA-based development tools that we previously worked with offered full courses and
manuals on how to tailor the transformations, or write your own, acknowledging that these
are not easy tasks.

To conclude, if the transformations need to be written entirely or heavily tailored, the
development time will not be reduced, and might even be increased, for the first application
for which MDA is used, with eventual, potentially large savings for subsequent applications.

4.1.4 Not All Tools Generate the Same Amount of Code

One element that factors into development time is the amount of code that must be written
that is not generated by the tool. There is currently a wide variation in the amount of code
that an MDA-based development tool generates. There are tools that generate infrastructure
code but do not generate business- and application-logic code. Typical examples are tools that
generate code for J2EE and .NET environments. In these cases, the amount of code still to be
written can be large, depending on the complexity and size of the system. Conversely, there
are tools that implement what is called Executable UML (xUML). In the xUML approach,
business logic is expressed in the models as state machines and an accompanying action
language. In this case, the application and business logic is generated by the tool as well,
minimizing the amount of code to be written.

As attractive as the idea of not having to write code can be, we have learned from experience
with other MDA-based development tools that representing all business and application logic
in a system as a state machine can be difficult and not intuitive for all types of systems. For
example, representing a bank account as a state machine would include states such as open,
closed, suspended, and overdrawn, and there are clear rules that take an account from one
state to another. However, there are many static-like entities in a model that usually

CMU/SEI-2005-TN-022 15

correspond to lookup data, that do not change and for which it does not make a lot of sense to
create a state machine. Also, the action language provided by these xUML-based tools is not
complete. For example, if the business logic requires complex mathematical operations, these
would have to be provided by external code.

In short, depending on the tool used, there is still work involved in writing business- and
application-logic code. ArcStyler, for example, indicates by using the tag @TODO within the
code that there is logic code to write corresponding to the body of the methods in a class. All
user-written code is included within protected areas so that it is not deleted when the
application is re-generated. This approach requires developers to understand the logic of the
generated code so that they can add the appropriate code at the right places.

4.2 Hypothesis 2: The Use of MDA-Based Development Tools
Frees the Developer from Learning the Low-Level Details of
the Target Platform and Underlying Infrastructure

This hypothesis is refuted. Assuming that development starts from the moment a design is
delivered or finalized, the tool, models, and transformations must be configured before any
type of code is generated. This configuration requires very good knowledge of the
infrastructure target platform. The use of MDA-based development tools frees the developer
from having to write infrastructure code, but it does not free the developer (or whoever is
doing configuration) from learning the low-level details of the target platform and underlying
infrastructure. A more detailed description of our findings follows.

4.2.1 Three Different Roles: Designer, Developer, and Configuration Expert

MDA introduces a third role in the development process: the configuration expert. It is not
uncommon in software development to separate the role of designer and developer. The
designer is a modeling expert who produces a model of the system. The developer takes the
model and writes code that implements it. The designer might be a UML expert and the
developer might be a Java/J2EE expert. When using an MDA-based development tool, there
is a step in between modeling and producing code: configuration. In our discussion of the
previous hypothesis, we saw that during configuration, certain global and component-specific
parameters are set so that transformation is done properly. While it is true that all
infrastructure code is generated and therefore the developer need not worry about this task,
the configuration itself and the trial-and-error process mentioned above require low-level
detailed knowledge of both the target platform and the underlying infrastructure.

There are many configuration parameters that require platform knowledge. In our model
problem, one of our tasks was to generate EJBs for the business- and data-management-logic
of the HR system, to be deployed on a JBoss application server. For example, for each class
in the UML model corresponding to our system (see Figure 8), we had to define it as a
session or entity bean, add create methods, and identify which methods to include in the local

16 CMU/SEI-2005-TN-022

and remote interfaces. Knowledge of J2EE is required to determine the appropriate
configuration. In many cases, when an application did not work properly, we had to look at
the generated code and determine the potential problem, change some parameters in the tool,
and generate again until the application worked. This required understanding the code, as
well as knowledge of the appropriate configuration outcome. Also, transformations
sometimes come with built-in assumptions. For example, the JBoss32 cartridge that we used
has configuration parameters for a Hypersonic database. However, to use a different database,
such as Oracle, the configuration must be done manually (this changed in the current version
of ArcStyler). Setting a data store requires knowing what files to modify and to deploy, the
details of which are highly dependent on the J2EE application server used.

User interface transformations will probably require defining a template for the screens if the
default template is not appropriate for the organization’s needs and standards. For example,
the template may require inclusion of the corporate logo, window styles, menu styles, and all
screen standards. For the ArcStyler WebAccessor cartridge, templates are defined using JSP
and are then included in the generated JSP files corresponding to the user interface. For the
model problem we made only very small modifications to the templates.

In short, the configuration expert will require both MDA development tool and target
environment knowledge because it is required especially when using the tool for the first
time. This role should be assigned to the designer, a developer, or a third person. For
subsequent applications this knowledge requirement might be reduced if configuration steps
are provided as a “recipe” or are encoded in the transformation. However, at least conceptual
knowledge would be required to make decisions and ideally a target platform expert should
be on the development team.

CMU/SEI-2005-TN-022 17

Figure 8: Class Diagram for the Business and Data Management Logic of the HR
System

18 CMU/SEI-2005-TN-022

4.2.2 Deployment Requires Platform and Infrastructure Knowledge

It is probably true that any development environment requires platform and infrastructure
knowledge. However, since MDA-based development tools commonly advertise that it is not
necessary to have platform and infrastructure knowledge, it is important to mention this
point.

Deployment can be quite tricky, especially if the deployment environment is different from
the deployment or simulation environment included with the tool so that testing can be done
on the development machine instead of the production machine. ArcStyler, for example,
comes with an internal Tomcat servlet container as well as the Ant deployment tool. The
MDA-based development tools we previously used came with a simulation environment that
showed the values of objects and variables at simulation execution time.

The following are some examples of problems we had that required platform and
infrastructure knowledge.

• We had several problems with Tomcat because the version within ArcStyler was different
from the one that was installed in the deployment environment. Even after we thought the
application was working, we had to manually change several configuration and
deployment files so the application would actually work.

• We had to switch from running Tomcat from within ArcStyler to running it from the
Eclipse IDE so we could do server-side debugging to see what was happening on the
JBoss side. This was difficult because we had to discover the exact Tomcat settings that
ArcStyler used.

CMU/SEI-2005-TN-022 19

5 Experience with MDA

Our exploration of the MDA concept through the use of a model problem has been quite
interesting. We have gained competence in several technologies while examining various
claims about MDA and the circumstances under which they prove true or false. The vendors
of the technologies used in the model problem have been very helpful providing software,
documentation, and support. Exchanges with the ArcStyler vendor about future plans for the
company’s tool support some of our findings and recommendations about the future direction
for MDA-based development tools in general. As expressed earlier, our interest was in the
evaluation of the technology and not the tool itself. Therefore, none of the following points
should be interpreted as pertaining specifically to ArcStyler. We are also using the experience
with two other MDA-based development tools, as well as data from the tool selection process
discussed earlier.

5.1 Development Time is not Reduced for the First Application for
which an MDA-Based Development Tool is Used

While MDA-based development tools work well for modeling and code generation, they
involve a large initial investment in configuration and potential transformation modifications.
This leads us to conclude that if the tool is going to be used for just one application, or one
application on multiple platforms, its use should be reconsidered, unless expert help is hired
or the tool is a perfect match for the target platform.

In our experience, development time does decrease for subsequent applications developed for
the identical platform. A large initial investment in configuration and transformation
modification may be reasonable in industry where there is usually a common deployment
platform, but in the military where the same application is commonly deployed on multiple
platforms, this might be a problem.

5.2 The Real Potential of MDA is not Completely Supported by
Current Tools

The MDA vision is very much dependent on the availability of tools that enable developers
and organizations to realize the promised benefits. In our experience, current MDA-based
development tools implement only part of the MDA concept. Current tools are able to
generate code from models, which is one aspect of the MDA concept. But these tools fail to
take advantage of another important aspect of MDA: the use of common modeling and
transformation standards that allow models to be successfully shared between tools without
information loss. To provide a common modeling and transformation representation for

20 CMU/SEI-2005-TN-022

vendors to use in their tools and therefore allow sharing of UML models, OMG is working on
specifications such as XML Metadata Interchange (XMI); Meta-Object Facility (MOF);
Common Warehouse Meta-model (CWM); and Query/Views/Transformations (QVT) [OMG
02a, OMG 02b, OMG 05a, OMG 05b]. QVT is still in proposal stage and has not yet become
a standard.

Most tools we surveyed and used are restricted to one level of transformation: from a UML
model directly to code. This limitation requires that all information for the code generation
must be included as transformation-specific markings in the PIM. In particular, if there are
several target platforms for the application, then all markings for all target platforms must be
part of one model. Developing and maintaining this model in a team may become
problematic from a configuration management perspective.

Most tools are also equipped to generate code for only one target platform. When selecting a
tool to implement our model problem, we conducted a short survey of 10+ tools, as indicated
in Section 3. Out of these, only two tools were capable of generating code for our two target
platforms. Most other tools were bound to one platform, mainly J2EE. It is our impression
that some MDA-based development tools are little more than code generators for J2EE
applications.

If tools could successfully exchange PIMs, developers could then use different tools to
generate code for different platforms while still using the same underlying model. The OMG
has addressed model exchange with the XMI standard. In theory, tools that store models in
XMI format should be able to exchange models. In practice, however, some loss of data is
likely to occur because of differing interpretations of the XMI standard. There is no guarantee
that an XMI document produced by one tool can be consumed without loss of data by another
tool. An additional issue for model exchange is the detail that is necessary in the models for
a tool to work. Most prominently, tools that support xUML require the model to contain all
information necessary to generate the complete source code; this is unnecessary for the tools
that generate only infrastructure code and leave the implementation of business logic to the
developer [Mellor 02]. These are two very different paradigms which add to the difficulty of
model interoperability.

Exchanging models is just one building block of MDA-based tool interoperability. The next
level of interoperability requires tools that can exchange markings and transformations. This
requires a new generation of tools that are not available today—not surprising since the
standard representation of transformations does not yet exist. Currently, transformation
definitions are tool specific. As we mentioned earlier, this means that a developer who needs
to tailor the transformation must learn from scratch how to accomplish this. QVT, currently
under development, is intended to address this issue.

All tools we experimented with use UML as the modeling language. While UML is widely
used and extensible via the stereotype mechanism, it may not always be the ideal choice for
modeling. Petri-nets, for example, would be useful to reason about synchronization of

CMU/SEI-2005-TN-022 21

concurrent processes and these cannot be used with any of these tools.4 The MDA concept
assumes that developers can define their own, domain-specific modeling languages using the
OMG's meta-object facility (MOF). Support for this type of tool extensibility is not yet
widely available.

An ideal tool could represent models in a common abstract component model style
corresponding to the PIM. An initial transformation could be applied to the model to create a
J2EE-specific model (PSM). A second transformation could take the J2EE model to a JBoss-
or WebLogic-specific platform and therefore code (lower level PSM). The same PIM could
be transferred to a different tool so that the equivalent .NET-specific model and code could be
generated. Unfortunately, current tools simply don’t have this capability.

5.3 MDA-Based Development Tools Are the Next Generation
CASE Tool

From a tool perspective, MDA-based development tools are the next generation of Computer
Aided Software Engineering (CASE) tools. This is not a bad thing—it is a natural
progression of development environments in which modeling, code generation, testing, and
deployment capabilities are provided by a single tool. But MDA-based development tools
need to go a step further.

The MDA concept adds a level of abstraction to the modeling process. The PIMs represent
the desired functionality with no details of the platform. Platform-specific details are added
through intense configuration so that code can be generated. We have seen that the difficulty
lies in the transformations—mapping of abstract constructs, to platform-specific constructs,
to code—which is probably why most tools generate for a single platform. If an organization
acquires an MDA-based development tool with the purpose of generating for more than one
platform, the focus has to be on these transformations. Creating such transformations is not
easy. As we noted earlier, the ability to exchange models between tools and model-to-model
transformations is therefore crucial and should be an essential part of MDA-based
development tools.

4 It is worth mentioning that UML 2.0 uses Petri-net semantics instead of state machine semantics for

activity diagrams.

22 CMU/SEI-2005-TN-022

6 Conclusions

MDA is a valid and beneficial approach to software development. What is important is to
fully understand the effort involved in using this approach.

Through the model problem process we have partially refuted the hypothesis that the use of
MDA reduces development time. Development time can increase greatly for the first
application on which it is used due to configuration and transformation modifications. While
development time for subsequent applications for the identical platform will reduce
significantly, careful analysis has to be done to determine if this reduction is enough to offset
that of the first application.

We have refuted the hypothesis that the use of MDA frees the developer from understanding
low-level details of the target platform and underlying infrastructure. The use of MDA-based
development tools frees the developer from having to write infrastructure code, but it does
not free the developer, or person who is doing configuration, from learning the low-level
details of the target platform and underlying infrastructure. Ideally, there should be a target
architecture expert on the development team.

Current MDA-based development tools present a large initial investment for configuration
and potential transformation modification that will only pay off if the tools are going to be
used for generating multiple applications for the identical target platform. Changes in the
target platform will require re-configuration and modification of the transformations. In the
worst case it will require the purchase of an additional tool, which means “starting from
scratch” again. Tool capabilities and transformation availability for potential target platforms
must be thoroughly investigated before making the investment in an MDA tool.

MDA is a concept that must be fully embraced and implemented by tools before it can
become a widespread and cost-effective practice. If not, lack of adequate tooling support
could become an adoption barrier to MDA as a technology. Most of the tools that we have
investigated are able to generate code for one specific platform from UML models, but the
internal representation of these models and transformations is specific to the tool and
therefore cannot be shared with other tools. The good news is that OMG continues to make
progress in specifications for modeling and transformations. Until tool vendors start fully
conforming to these specifications, an MDA-based development tool is nothing more than an
automated code generator, and that is not where the real benefit of MDA lies.

Lastly, there must be incentives for tool vendors to go beyond code generation. OMG
provides the specification, but somebody has to provide the motivation for vendors to
change. In the late 1980s and early 1990s there were several initiatives to develop standard
interfaces for CASE tools so that information from one tool could be readily incorporated

CMU/SEI-2005-TN-022 23

into other tools. Even something as simple as configuration management brought on huge
disagreements, and vendors were not willing to change their tools for the “common good,”
particularly when users expected such integration to come for free. Eventually, these
initiatives gave up. If there is no incentive for tool vendors coming from industry, consortia,
or user groups to support sharing models and transformations among tools, MDA-based
development tools will likely to meet a similar fate as CASE tools.

24 CMU/SEI-2005-TN-022

CMU/SEI-2005-TN-022 25

References

URLs are valid as of the publication date of this document.

[Apache 05] The Apache Jakarta Project. Apache Jakarta Tomcat.
http://jakarta.apache.org/tomcat/ (2005).

[IO 05] Interactive Objects. ArcStyler. http://www.interactive-
objects.com/products/arcstyler_overview.jsp (2005).

[JBoss 05] JBoss. JBoss Application Server.
http://www.jboss.org/products/jbossas (2005).

[Jython 05] Jython. Jython Home Page. http://www.jython.org/ (2005).

[Lewis 05] Lewis, Grace A. & Wrage, Lutz. Approaches to Constructive
Interoperability (CMU/SEI-2004-TR-020 ESC-TR-2004-020).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2005. http://www.sei.cmu.edu/publications/documents
/04.reports/04tr020.html.

[Mellor 02] Mellor, Stephen & Balcer, Marc. Executable UML: A Foundation
for Model Driven Architecture. Addison-Wesley Professional, 2002.

[Middleware 03] The Middleware Company. Model Driven Development for J2EE
Utilizing a Model Driven Architecture (MDA) Approach –
Productivity Analysis. June 2003.
http://www.omg.org/mda/mda_files/MDA_Comparison-
TMC_final.pdf.

[OMG 02a] Object Management Group. XML Metadata Interchange.
http://www.omg.org/technology/documents/formal/xmi.htm (2002).

[OMG 02b] Object Management Group. Meta-Object Facility (MOF).
http://www.omg.org/technology/documents/formal/mof.htm (2002).

[OMG 03] Object Management Group. MDA Guide Version 1.0.1., 2003.
http://www.omg.org/docs/omg/03-06-01.pdf.

26 CMU/SEI-2005-TN-022

[OMG 05a] Object Management Group. The Data Warehousing, CWM and
MOF Resource Page. http://www.omg.org/technology/cwm/
(2005).

[OMG 05b] Object Management Group. Revised submission for MOF 2.0
Query/View/Transformation RFP (ad/2002-04-10). March 2005.
http://www.omg.org/cgi-bin/doc?ad/05-03-02.

[Sun 05] Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE).
http://java.sun.com/j2ee/ (2005).

[Wallnau 01] Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems
from Commercial Components. New York, NY: Addison-Wesley,
2001.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2005

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Model Problems in Technologies for Constructive Interoperability:
Model-Driven Architecture

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Grace A. Lewis, Lutz Wrage
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Model-driven architecture (MDA) is a technology produced and maintained by the Object Management Group
(OMG), an open membership, not-for-profit consortium that produces and maintains computer industry
specifications for interoperable enterprise applications. This technical note examines two claims regarding the
benefits of MDA, namely, that it (1) reduces development time, and (2) allows the developer to focus on
business logic rather than on details about the target platform and architecture. Such advantages would
greatly benefit interoperability; as target platforms and underlying infrastructure change, deployment of
applications would be quick and easy. This note presents the results of applying the model problem approach
to verify these claims.

14. SUBJECT TERMS

MDA, Model-Driven Architecture, MDA-based development tool

15. NUMBER OF PAGES

37
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Model Problems in Technologies for Interoperability: Model-Driven Architecture
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Model Problem Approach
	3 Implementing the Technical Solution
	4 Evaluation
	5 Experience with MDA
	6 Conclusions
	References

