RESEARCH REVIEW 2020

Video Summarization and Search (VidSum)

Ed Morris, Adam Harley, Kevin Pitsick, Rachel Brower-Sinning, Ben Cohen, Dan DeCaprio, April Galyardt, Jeff Hansen, Ryan Meeuf, Jacob Ratzlaff
Document Markings

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM20-0884
Agenda

Problem Overview
Transition Activities: Support to DoD
Research: 3D Tracking
Video Summarization and Search (VidSum)

Problem Overview
VidSum Problem Statement

Problem: Aerial surveillance demands full attention to video by PED teams
- Manual, error-prone process
- Technical barriers including object detection, recognition and tracking
- Limitations result in poor pattern recognition in a surveilled region

Approach
- Improve DoD pattern recognition in aerial surveillance data by applying statistical analysis and machine learning technologies
- Work with CMU researchers to address core technology problems associated with object tracking

Achievements
- Influence on DoD pattern detection strategy
- “Reasoning” pathfinder for DoD
- 3D tracking state-of-the-art performance

Products
- Source code for data cleansing, statistical analysis, and ML-based pattern detection
- Source code to supplement training data
- Publications (2 accepted, 2 submitted)

Current Activities
- Transition: Support to DoD
- Research: 3D tracking
Video Summarization and Search (VidSum)

Transition Activities: Support to DoD
Improving the Data: Data Cleansing and Smoothing

Problem: Data from aerial cameras is often “dirty”
- Imprecise lat/lon values due to onboard sensor inaccuracy and platform drift can lead to spurious/missing detections, bad tracking in downstream apps

Approach: Clean and smooth data prior to downstream processing

Implementation:
- Moving median smoothing
- Geo-registration corrections
 - Change of basis
 - Optical flow mismatch
- Kalman filtering

Example: Change of basis using 3 stationary objects
Pattern Analysis: Statistical Reasoning

Problem: Most activity is normal and harmless – some is not

Approach: Use observations to build statistical PoL model
- map out “normal” (e.g., vehicles & people pathways, density)
- detect anomalous activities (specific to location and/or time)
- search for specific activities/interactions of interest

Implementation:
- Separate region into grid points based on camera attention
- Remove bad tracks
- Calculate grid point features (e.g., mean speed, heading, density)
- Detect anomalies by setting feature-based rules with thresholds
Pattern Analysis: Anomaly Detection

Problem: Most activity is normal and harmless – some is not

Approach: Use observations of a region to train an ML model to learn normal behavior in order to identify anomalous tracks and predict future tracks

Implementation:
- Train a long short-term memory (LSTM) autoencoder to reconstruct observed tracks
- Tracks with high reconstruction error are identified as anomalous tracks

Anomaly detector results:
- Perfect data (GPS)
- Reality not so pretty
- Importance depends on mission
Barrier to Progress: Poor Object Tracking

Problem 1: Best performing tracking algorithms correlate detections across 2D camera frames, but
• Objects look different depending on viewpoint
• Occlusion throws trackers off
• Object coordinates within a frame are not a good predictor of where to look for the object in the future

Problem 2: Best-performing tracking algorithms require many images in order to train object detectors, but
• Often relatively few images for many things that matter to DoD

Resulting in:
• Poor identification of objects
• Lost tracks
• Poor pattern detection due to poor tracking

Strategy: 3D Tracking
• Collaboration with Adam Harley and Dr. Katerina Fragkiadaki (advisor)
• Adam has turned it into a focus of his PhD thesis
Video Summarization and Search (VidSum)

Research: 3D Tracking

Adam W. Harley, Yiming Zuo, Jing Wen, Shrinidhi K. Lakshmikanth, Katerina Fragkiadaki
Detection and Tracking from Aerial Data

3D geometry can make things easier by stabilizing the observations
Detection and Tracking from Aerial Data

Trajectories that are complex in the raw video become simpler after stabilization.
Existing academic data is not aerial, but we can explore the same techniques
Video Summarization and Search (VidSum)

Research Part 1/3: Learning to track objects in 3D without labels
Corresponding Static Points

Using geometry we can correspond static points. If we train features to correspond these points visually, maybe we can use the same features to track moving points.
Training from Static Points

Given 2 viewpoints of the same object:

• Generate a neural 3D mapping for each
• Identify the corresponding voxel pair in the two mappings
• Treat all other mappings as negative correspondences
• Train the features to indicate the correspondences automatically
Tracking Moving Objects

Given the bounding box of the target object:

- Generate features for the object
- Generate features for the search region
- For each voxel of the object, compute its correlation with the search region
- Estimate the total motion with RANSAC
- Update the box
Tracking Moving Objects: Qualitative Results

- Tracking is mostly successful.
- Boxes "jump around" since this is frame-by-frame tracking (no motion prior).
- Works in simulation and in the real world.
Tracking Moving Objects: Quantitative Results

- Improves on unsupervised tracking algorithms
- Approaches supervised tracking algorithms
Tracking Moving Objects: Contributions

1. We show that learning correspondence from static 3D points causes 3D object tracking to emerge.
2. We introduce a neural 3D mapping module that simplifies prior works on 3D inverse graphics.
3. We introduce a method to train for correspondence in dynamic scenes — simply drop moving parts!
Research Part 2/3: Estimating Camera Motion (Egomotion)
Estimating Camera Motion (Egomotion)

- Input: 2.5D (RGB+Depth) video
- Output: camera’s rotation, translation at each timestep
Egomotion: Qualitative Results

- The model builds a "feature map" of the world while travelling through it.
- If the map gets corrupted, everything fails, so it is important to only make "good" updates to the map.
Egomotion: Quantitative Results

<table>
<thead>
<tr>
<th></th>
<th>Mean endpoint error (in meters) after 100 frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours - no map, no coarse-to-fine</td>
<td>8.525</td>
</tr>
<tr>
<td>Ours - no map</td>
<td>4.914</td>
</tr>
<tr>
<td>Ours - full</td>
<td>1.627</td>
</tr>
<tr>
<td>Orbslam2-stereo</td>
<td>0.2993</td>
</tr>
</tbody>
</table>

KITTI Odometry Validation Set Results
Egomotion: Contributions

1. We introduce a neural egomotion module that is capable of map-building.

2. We are closing the gap between the “deep” and “traditional” methods, both in terms of method and accuracy. This paves the way for more general systems, that succeed in domains where the handcrafted features fail.
Research Part 2/3: Object Discovery
What happens when you do not have enough data to train good detectors, or require a process that does not need human intervention to track objects?

- Extract 3D features for each frame
- Determine voxel-wise median
- Determine the difference from the median for each frame
Object Discovery: Qualitative Results

- The "median of the scene" is visibly empty - no cars or bikes. This is what makes the subtraction work.
- The largest differences from the median (big blobs) highlight moving objects.
- When an object is detected, we track it with our previous (unsupervised) method.
Object Discover: Contributions

We have shown that object discovery is relatively easy if

• we appropriately exploit the geometry of the scene
• we leverage long time horizons, where the “median” is a stable estimate of the background
Summary

Current Activities

• Transition: Support to the DoD
• Research: 3D Tracking

Next Steps:

• Continued work with DoD to improve pattern recognition from aerial surveillance data
• Continued research on 3D tracking by Adam Harley and the CMU team

More Information

Ed Morris
ejm@sei.cmu.edu

Adam Harley
aharley@cmu.edu

Grace Lewis
glewis@sei.cmu.edu

Dr. Katerina Fragkiadaki
katef@cs.cmu.edu