AADL Overview and Perspectives

Peter Feiler

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Safety Critical Embedded Software System Challenge

SAE AADL Standard and Virtual System Integration to the Rescue

Embedded Software System Qualification and Assurance
The Safety Critical Embedded Software System Challenge

Problem:
Software increasingly dominates safety and mission critical system development cost.
80% of issues discovered post unit test.

Solution: Early discovery of system level issues through virtual Integration and incremental analytical assurance.

Approach:
International standard based technology matured into practice through pilot projects and industry initiatives.
Open source research prototyping platform continually enhances analysis, verification, and generation capabilities.

Reduced Defect Leakage through Early Analytical Assurance is Critical
We Rely on Software for Safe System Operation

Embedded software systems introduce a new class of problems not addressed by traditional system safety analysis

Breakdown in human intensive safety assessment process

Quantas Airbus A330-300 Forced to make Emergency Landing - 36 Injured

Written by ttbw on Oct-7-06 1:48pm
From: soyaawamaknew.blogspot.com

Thirty-six passengers and crew were in a mid-air drama that forced a Qantas emergency landing, the Australian airline said Tuesday.

The terrifying incident saw the Airbus mayday call when it suddenly changed course from Singapore to Perth, Qantas said.

Australian Transport Safety Bureau said yesterday. The plane 650 feet within seconds, slamming passengers and crew on the ceiling, before the pilots regained control.

“This appears to be a unique event,” the bureau said.

Toulouse, France-based Airbus, the world’s largest maker of airliners, issued a telex late yesterday to airlines that fly the craft fitted with the same air-data computer. The advisory is “aimed at minimizing the risk in the unlikely event of a similar occurrence.”

FAA says software problem with Boeing 787s could be catastrophic

By Dan Catchpole
@dcatchpole

The Federal Aviation Administration says a software problem with Boeing 787 Dreamliners could lead to one of the advanced jetliners losing electrical power in flight, which could lead to loss of control.

The FAA notified operators of the airplane Friday that if a 787 is powered continuously for 248 days, the plane will automatically shut down its alternating current (AC) electrical power.

Two Crashes in Five Months

What’s Wrong with Boeing’s 737 Max 8?

Boeing’s new airplane has only been around for two years and already two 737 MAX 8 crashes have killed 346 people. The disasters may be attributable to a design flaw that emerged when engineers began cutting corners.

Boeing’s Max 8 is short, limiting ground clearance under the wings. The engine simply doesn’t fit.
Current Practice: Impact on Cost and Schedule

70% errors introduced
3.5% errors detected
1x cost to fix

10% errors introduced
80% errors detected
16-100x cost to fix

Sources:

Software as % of total system development cost
1997: 45% → 2010: 66% → 2024: 88%

Post unit test software rework currently
~50% of total system development cost
Technical Challenges in Safety-Critical Embedded Software Systems

System Engineer
- System Hazards
- System Under Control

Physical Plant Characteristics
- Time-sensitive Processing

Control Engineer
- Control System

Application Developer
- Measurement units
 - Boolean, integer, real, vs data abstraction

Hardware Engineer
- Virtualization & Redundancy

Operator Error

System User/Environment
- Compute Platform
- Runtime Architecture

Embedded SW System Engineer

Why do system level failures still occur despite best safety practices?

Embedded software systems have become a major safety and cyber security risk

AADL Semantics Address the Challenges
Safety Critical Embedded Software System Challenge

SAE AADL Standard and Virtual System Integration to the Rescue

Embedded Software System Qualification and Assurance
AADL Overview and Perspectives
Oct 2019
© 2019 Carnegie Mellon University

Architecture Analysis & Design Language (AADL) Standard Targets Embedded Software Systems

AADL captures mission and safety critical embedded software system architectures in virtually integrated analyzable models to discover system level problems early and construct implementations from verified models.

The Physical System

Command & Control

The Software System

Deployed on Utilizes

Embedded Operational Avionics & Mission Software

SW Design & Runtime Architecture

Physical Interface Platform Component

The Computer System

Computer System Hardware & OS

Aerospace industry initiative chose AADL over SysML and other notations as it specifically addresses embedded software systems.

In 2008 Aerospace industry initiative chose AADL over SysML and other notations as it specifically addresses embedded software systems.

International

AS 5506 Standard Suite

Standards provide long-term industry-wide solutions to support multi-organization model-based engineering.
Core AADL language standard [V1 2004, V2 2012, V2.2 2017]

- Focused on embedded software system modeling, analysis, and generation
- Strongly typed language with well-defined semantics for execution of threads, processes on partitions and processor, sampled/queued communication, modes, end to end flows
- Textual and graphical notation
- Revision V3 in progress: interface composition, system configuration, binding, type system unification

Standardized AADL Annex Extensions

- Error Model language for safety, reliability, security analysis [2006, 2015]
- ARINC653 extension for partitioned architectures [2011, 2015]
- Behavior Specification Language for modes and interaction behavior [2011, 2017]
- Data Modeling extension for interfacing with data models (UML, ASN.1, ...) [2011]

AADL Annexes in Progress

- Network Specification Annex
- Cyber Security Annex
- FACE Annex
- Requirements Definition and Assurance Annex
- Synchronous System Specification Annex
SAE AADL & Architecture-centric Virtual Integration
Evolution, Maturation and Transition

Army and other Government Shadow Projects

Future Vertical Lift

Common Avionics Architecture System

Apache Block III ATAM

JPL Mission Data System

CH47F Health Monitor

System Architecture Virtual Integration (SAVI) Software & Systems Engineering

AADLV1 Timing

Software & System Co-engineering

Multi-team Safety

Requirements Assurance

System Architecture Virtual Integration (SAVI) Software & Systems Engineering

SAE AADL Standard & Tool Support: Research Transition Platform

DARPA MetaH ACME

AADLV1 Error Model

European Commission SLIM/FIACRE

DARPA META

DARPA HACMS Security

OMG MARTE Embedded Systems

ARINC653 Partitions

Avionics Network Standards

System Safety Practice Standards

Regulatory Guidance NRC, FDA, UL

Other Standards and Regulatory Guidance

AMRDEC has funded AADL standards development since 1999

US & European Research Initiatives

JMR TD: ACVIP Shadow Projects

Virtual System Integration

System Assurance
change of encryption from 128 bit to 256 bit

higher CPU demand

increased latency

bandwidth
CPU time
Power consumption

Resource Consumption

SAE AS5506 AADL

Hazard Analysis
FMEA
FTA
MTBF

One change drives multiple system issues

Potential new hazard

Single source of truth across analysis models

Temporal correctness
Data precision/ accuracy
Confidence

Tempoal correctness

Real-Time Performance

Cyber Security
Availability
Integrity
Confidentiality

Analysis of System Properties via Architecture Model
A Contribution to Single Source of Truth

Higher CPU Demand

Increased Latency

Architectural Model

Resource Consumption

Real-Time Performance

Data Quality

Cyber Security

Safety & Reliability
Latency and Jitter Contributors

Control System Engineering View
Processing latency
Sampling latency
Physical signal latency

Software System Latency Contributors
Execution time variation: algorithm, use of cache
Processor speed
Resource contention
Preemption
Legacy & shared variable communication
Rate group optimization
Protocol specific communication delay
Partitioned architecture
Migration of functionality
Fault tolerance mechanisms

Impact of Scheduler Choice on Controller Stability
A. Cervin, Lund U. CCACSD 2006

Flow Use Scenario through Subsystem Architecture
Safety Critical Embedded Software System Challenge

SAE AADL Standard and Virtual System Integration to the Rescue

Embedded Software System Qualification and Assurance
Assurance & Qualification Improvement Strategy

Assurance: Sufficient evidence that a system implementation meets system requirements

Architecture Centric Virtual System Integration Practice (ACVIP)

Architecture Led Incremental System Assurance (ALISA)

Data-Driven High Leverage Cost Effective
Cost Reduction Potential through Virtual Integration of Embedded Software Systems

Reduction through Focus on Verification of Architecture

ROI on AADL Pilot

Nominal development cost reduction of 26.1% ($2.391B out of $9.186B) for a 27 MSLOC system

ATKearney “Software: The Brains Behind U.S. Defenses Systems”
Benefits of Virtual System Integration & Continuous Lifecycle Assurance

Build the System

Assure the System

Increased Confidence through Continuous Verification And Testing

Reduced Cost through Early Discovery
Summary

Safety Critical Embedded Software Systems are facing exponential growth in software development cost exceeding 70% of total system development cost.

AADL is basis for a set of technologies and practices that specifically have been designed to provide early detection and continuous verification throughout the life cycle.

A number of case studies and pilot projects by different organizations have demonstrated the benefit of virtual system integration with AADL.