Causal Models for Software Cost Prediction & Control (SCOPE)

Dr. Michael Konrad, Robert Stoddard, Dr. William Nichols, and Dr. David Zubrow
Why Causal Learning?

Estimating and controlling program costs would benefit from causal knowledge of program dynamics.

Regression does not distinguish between correlation and causation.

Causal knowledge is actionable knowledge.

Causal discovery is now practical and supported with innovative tools and algorithms.

Establishing causation with observational data remains a vital need and a key technical challenge but is becoming more feasible and practical.
Contrary and Surprising Results

Many different types of complexity are thought to affect program success.
 • But the only consistent driver of success or failure we’ve found is cognitive fog.

The number of Information Assurance Vulnerability Alerts (IAVAs) addressed per month was thought to drive IAVA-release effort.
 • But the most persistent drivers of such effort are funding factors.
 • When controlling for super domain (SD), the relationship between IAVAs and effort disappears.

On the basis of earlier work, it was found that architecture pattern violations did not introduce security vulnerabilities.
 • But a causal analysis discovered the contrary: architecture pattern violations do drive security vulnerabilities.
In 2012, Sheard found that 3 of 40 measures of complexity correlated highly with 7 measures of success:
1) difficult requirements
2) stakeholder relationships
3) cognitive fog

But causal learning found
• no evidence for 1)
• consistent evidence of 2) but only mediated through 3)
• consistent evidence for 3)
• weak evidence for other paths to success
Which Factors Drive the Number of IAVAs and Effort per Month?

Causal learning found that

1. Super Domain (SD) drives IAVAs and effort (per month).
 - IAVAs and effort are causally related, but their relationship vanishes if data is segmented by SD.

2. The number of appropriations and ACAT also drives effort.
 - This could be interpreted to mean we’re missing some controllable measures.

3. Could other measures provide insight?
 - accounting type
 - number of IAVAs opened and closed
 - technical stack
Do Architecture Pattern Violations Cause Vulnerabilities?

Outcome: File Affiliation with Total Security Issues

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>Exogenous Architecture Partition</th>
<th>File Age</th>
<th>Latest LoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>Architecture Pattern Violations</td>
<td>Clique</td>
<td>Crossing</td>
</tr>
<tr>
<td>Layer 3</td>
<td>Interim Outcomes</td>
<td>Bug Churn</td>
<td>CoChange</td>
</tr>
<tr>
<td>Layer 4</td>
<td>Final Outcome</td>
<td>% of files affiliated with Security Issues</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

Legend: **Green** = Direct Causal Evidence | **Orange** = Indirect Causal Evidence | **Red** = No Causal Evidence | **Grey** = Not Applicable
Conclusions and Future Work

Progress in *software engineering* can be accelerated by using **causal learning**.
- identifying deliberate courses of action
 - programmatic decisions and policy formulation
- focusing measurement on factors identified as causally related to outcomes of interest
 - *We may be measuring the wrong things and acting on the wrong signals.*

In the coming year, we will
- investigate determinants and dimensions of quality
- quantify the strength of causal relationships
- seek replication with other data sets and continue to refine our methodology
- integrate the results into a unified set of decision-making principles

We want your help! Stop by our poster or find us to learn how you can get involved.
Contact Information

Presenters/Points of Contact
Mike Konrad (mdk@sei.cmu.edu)
+1 412.268.5813

Bill Nichols (wrn@sei.cmu.edu)
+1 412.268.1727

Bob Stoddard (rws@sei.cmu.edu)
+1 412.268.1121

Dave Zubrow (dz@sei.cmu.edu)
+1 412.268.5243

Other SEI Team Members
Sarah Sheard
Rhonda Brown
Chris Miller

CMU Contributors
David Danks
Madelyn Glymour
Joe Ramsey
Kun Zhang

USC Contributors
Anandi Hira, Jim Alstad, Barry Boehm