
1
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

1

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Multicore Processing, Virtualization,
and Containerization
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

Multicore Processing,
Virtualization, and
Containerization:
Similarities, Differences,
Challenges, and Recommendations

Donald Firesmith

2
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

2

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0237

3
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

3

Topics

Big Picture Up Front (BPUF)
Multicore Processing (MCP)

• Definition, Current Trends, Pros and Cons, and Safety/Security Ramifications

Virtualization (V)
• Definition, Current Trends, Pros and Cons, and Safety/Security Ramifications

Containerization (C)
• Definition, Current Trends, Pros and Cons, and Safety/Security Ramifications

Recommendations
• When to Use
• Architectural Patterns
• How to Allocate (SW to containers to VMs to processors to cores)
• Analysis (of interference and timing)
• Testing
• Documentation
• Security
• Certification and Accreditation

Conclusion

4
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

4[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Multicore Processing, Virtualization, &
Containerization
© 2018 Carnegie Mellon University.

MCP, Virtualization, and Containerization

Big Picture Up Front (BPUF)

5
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

5

Motivation

Supporting a DoD program to develop a control station for UAVs
• System is mission-critical, safety-critical, and security-critical.

Cyber-physical systems are beginning to be built using some
combination of:

• Multicore Processing (MCP) – via multicore processors
• Virtualization (V) – via virtual machines (VMs)
• Containerization (C) – via containers

These systems are:
• Not just weapons systems, aircraft, etc. with embedded software
• Not just data processing systems in the cloud
• For example, ground control stations

What are the significant ramifications on performance, reliability,
robustness, safety, security, and associated policies?

BPUF

6
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

6

Key Concepts

Three Related Technologies:
• Multicore Processing (MCP) – via multicore processors
• Virtualization (V) – via virtual machines (VMs)
• Containerization (C) – via containers

BPUF

SW = Software Application, OS = Operating System, VM = Virtual Machine, CR = Core, CN = Container

CR1 CR2 CR3 CR4

Processor

Hypervisor (e.g., VMware)

VM1 VM2 VM3 VM4

Processor

OS1 OS2 OS3 OS4

SW1 SW2 SW3 SW4

OS

SW1 SW2 SW3 SW4

Multicore Processing (MCP) Virtualization

Host OS (typically Linux)

Processor

CN1 CN2 CN3 CN4

SW1 SW2 SW3 SW4

Containerization

Host OS (optional)

Container Engine (e.g., Docker)

7
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

7

Three Technologies at Three Levels
BPUF

C1 C2 C3 C4

Processor

Hypervisor (e.g., VMware)

VM1 VM2 VM3 VM4

Multicore Processing (MCP)
(Multiple Actual Hardware)

Virtualization (via VMs)
(Multiple Virtual Hardware)

C1 C2 C3 C4

SW1 SW2 SW3 SW4

Containerization
(Multiple Virtual OSs)Container Engine (e.g., Docker)

Multiple Software Applications

8
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

8

Key Points

Multicore processing, virtualization, and containerization are:
• Ubiquitous and largely becoming unavoidable because of their

many benefits
• Different than traditional architectures in terms of complexity,

interference, and non-determinism
• Challenging due to ramifications of these differences,

especially for real-time, safety-critical cyber-physical systems
Multicore processing, virtualization, and containerization may
require:

• Additional analysis and testing
• Changes in safety/security certification policy

BPUF

9
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

9

Pros

Support for concurrency
Improved reliability and robustness by:

• Improving spatial and temporal isolation
• Limiting fault/failure propagation
• Supporting failover and recovery

Improved SWAP-C (Size, Weight, Power, and Cooling/Cost)
Hardware/OS isolation:

• Supports software reuse and technology refresh
Decreased hardware costs (due to multicore):

• Fewer computers/processors
• Sharing of underutilized computers/processors

PBUF

10
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

10

Cons

Additional complexity
• Architecture
• Analysis (e.g., performance, safety, and security)
• Testing

Layers of shared resources
(e.g., caches, memory controllers, I/O controllers, and buses):

• Sources of interference
• Added single points of failure

Sources of non-determinism
Increased hardware costs (due to virtualization overhead)
Changes to safety and security accreditation and certification

BPUF

11
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

11

Policies

New ways are needed to verify and certify real-time safety-critical
systems using multicore processing, virtualization, and
containerization.
Existing policies for ensuring that the related quality requirements
(especially reliability, robustness, safety, and security) are met:

• Are often based on assumptions that are no longer true
• Often mandate traditional architectural patterns that are

inconsistent with processing, virtualization, and containerization
technologies.

BPUF

12
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

12[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Multicore Processing, Virtualization, &
Containerization
© 2018 Carnegie Mellon University.

MCP, Virtualization, and Containerization

Multi-Core Processing (MCP)

13
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

13

Definition
A multicore processor is a single integrated circuit (a.k.a., chip
multiprocessor or CMP) that contains multiple core processing units
(CPUs), more commonly known as cores.
Many different multicore processor architectures exist in terms of:

• Number of cores
• Homogeneous or heterogeneous cores (same or different types)
• Number and level of caches

(relatively small and fast pools of local memory)
• How the cores are interconnected
• Minimal in-chip support for spatial and temporal isolation of cores:

- Physical isolation ensures that different cores cannot access the
same physical hardware (e.g., memory locations: caches and RAM).

- Temporal isolation ensures that the execution of software on one
core does not impact the temporal behavior of software running on
another core.

Multicore Processing (MCP)

14
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

14

Symmetric Multiprocessing (SMP)

Homogeneous cores (typically general purpose)
Requires a multicore operating system

Multicore Processing (MCP)

Multicore
Processor

AP
P

4

AP
P

6

AP
P

5

AP
P

12

AP
P

9

AP
P

11

AP
P

10

AP
P

13

AP
P

14

Hardware
Layer

Infrastructure
Layer

Application
Software

Layer

Core Core Core

L2 Cache L2 Cache

L3 Cache

Memory Controller

System Bus

Main Memory I/O Device

I/O Controller

Core

AP
P

1

AP
P

3

AP
P

2

AP
P

8

AP
P

7

i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache
L2 CacheL2 Cache

Board Support Package (boot loader, OEM Adapters, and device drivers)

Multicore Host Operating System (OS)

Middleware

15
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

15

Asymmetric Multiprocessing (ASP)

Heterogeneous cores (but homogeneous OS):
• Compare with single core processor + separate graphics card
• Today, GPU cores treated as a peripheral used by CPU cores

Multicore Processing (MCP)

AP
P

12

AP
P

9

AP
P

11
AP

P
10

AP
P

13

AP
P

14

Hardware
Layer

Application
Software

LayerAP
P

8
AP

P
7

AP
P

4

AP
P

6
AP

P
5

AP
P

1

AP
P

3
AP

P
2

Multicore
Processor

CPU Cores DSP Core(s) Fast Core(s)

L2 Caches L2 Caches

L3 Cache

Memory Controller

System Bus

Main Memory I/O Device

I/O Controller

GPU Cores
i-Caches d-Caches i-Caches d-Caches i-Caches d-Caches i-Caches d-Caches

L2 CachesL2 Caches

Infrastructure
Layer

Board Support Package (boot loader, OEM Adapters, and device drivers)

Multicore Host Operating System (OS)

Middleware

16
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

16

Current Trends

Multicore processors are replacing traditional single core
processors:

• Fewer single core processors are being produced and supported.
• Single-core processors are increasingly technologically obsolete

(as technical advances are primarily applied to multicore
processors)

The number of cores continues to increase.
Asymmetric (e.g., computer on a chip) processors becoming more
common.
User demand for significantly-increased performance in SWAP-C
constrained environments increases need for multicore processing.
Multicore processors are starting to be used in real-time, safety- and
security-critical, cyber-physical systems.

Multicore Processing (MCP)

17
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

17

Pros – Increased Energy Efficiency

Decrease number of separate embedded computers
Overcomes increased heat generation due to Moore’s Law

• Reduces the need for cooling
Reduces power consumption

• Increases battery life
Reduces SWAP-C (Size, Weight, and Power and Cooling/Cost)

Multicore Processing (MCP)

18
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

18

Pros – True Concurrency

Increased intrinsic support for actual (as opposed to virtual)
parallel processing of:

• Individual software applications
• Multiple SW applications (server and cloud computing)

Multicore Processing (MCP)

19
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

19

Pros – Increased Performance

Depends on number of cores, level of real concurrency
(multithreading) of the software, and use of shared resources
Decreased distance between cores on integrated chips enable
shorter resource access latency and higher cache speeds

• Compared to having separate processors/computers

Multicore Processing (MCP)

20
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

20

Pros – Improved Isolation

Typically improves (but does not guarantee) spatial and temporal
isolation (segregation) compared to single core architectures:

• SW running on one core less likely to affect SW on another core
than if both are executing on same single core
- Spatial isolation of data in core-specific cashes
- Temporal isolation of cores because thread on one core is not

delayed by thread on another core
(except for interference due to overlapping access to shared
resources)

• May improve robustness by localizing impact of defects to single
core

This increased isolation is particularly important in the “independent”
execution of mixed-criticality applications (mission-critical, safety-
critical, and security-critical).

Multicore Processing (MCP)

21
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

21

Cons – Shared Resources

Cores share:
• Processor-internal resources (L3 cache, system bus, memory

controller, I/O controllers, and interconnects)
• Processor-external resources (main memory, I/O devices, and

networks)
Shared resources imply:

• Single points of failure
• Two applications running on same core can interfere with each

other.
• Software running on one core can impact software running on

another core (i.e., interference can violate spatial and temporal
isolation because multicore support for isolation is limited).

Multicore Processing (MCP)

22
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

22

Cons – Interference

Interference occurs when software executing on one core impacts
the behavior of software executing on other cores in the same
processor:

• Failure of spatial isolation (due to shared memory access)
• Failure of temporal isolation (due to interference

delays/penalties)
Multicore processors may have special hardware that can be used
to enforce spatial isolation to prevent software running on different
cores from accessing the same processor-internal memory.

• Temporal isolation is a bigger problem than spatial isolation.
The number of interference paths increase very rapidly with
number of cores.

• Exhaustive analysis of all interference paths is often impossible.
• Representative selection of paths is necessary.

Multicore Processing (MCP)

23
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

23

Cons – Example Interference Paths

Three example interference paths with shared resources indicated:

Multicore Processing (MCP)

Board Support Package (boot loader, OEM Adapters, and device drivers)

Multicore Host Operating System (OS)

Middleware

Multicore Processor

Core Core Core

L2 Cache L2 Cache

Core
i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache

L2 CacheL2 Cache

Main
Memory

Memory Controller I/O Device Controller

I/O Device

AP
P

4

AP
P

6

AP
P

5

AP
P

12

AP
P

9

AP
P

10

AP
P

14

AP
P

2

AP
P

8

AP
P

3

AP
P

1

AP
P

7

AP
P

11

AP
P

13

Bus / Interconnect
L3 Cache

24
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

24

Cons – Increased Concurrency Defects

Increased potential for concurrency defects due to cores executing
concurrently:

• Deadlock
• Livelock
• Starvation
• Suspension
• (Data) race conditions
• Priority inversion
• Order violations
• Order vulnerabilities
• Atomicity violations

Increased amount and difficulty of testing needed to uncover
concurrency defects

Multicore Processing (MCP)

25
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

25

Concurrency Defects

Deadlock is a failure condition that exists when one thread or process cannot proceed because it
needs to obtain a resource that is held by a second thread, while the first thread holds a resource
that the second thread needs. All involved threads are in a waiting state as they wait for other
threads to release the resource they need.
Livelock is a failure condition that exists when one thread or process is waiting on a resource that
will never become available, while a CPU is busily releasing and acquiring the shared resource.
The state of the waiting thread is constantly changing, with the thread frequently executing but
never reaching completion.
Starvation is a failure condition that exists when a thread or process is ready to execute but is
indefinitely delayed because other processes are continually given preference.
Suspension is a failure condition that exists when a thread or process is forced to wait too long
before it can access a shared resource. The thread eventually obtains the resource but too late.
Data Race is a failure event that occurs when at a thread or process writes to an unprotected
memory location while others are simultaneously accessing it.
Priority Inversion in which a higher priority thread or process is forced to wait on a lower priority
one.
Order Violation is a failure event that occurs when two or more threads or processes execute in
an incorrect order.
Order Vulnerability exists when the expected order of at least two memory accesses is not
enforced.
Atomicity Violation is a failure event that occurs when a code block that must run to completion
without disruption is interrupted by the execution of another code block.

Multicore Processing (MCP)

26
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

26

Cons – Increased Non-Determinism

I/O Interrupts have top-level hardware priority
• Note that this is also a problem with single core processors.

Lock thrashing is the existence of excessive lock conflicts due to
simultaneous access of kernel services by different cores, resulting
in decreased concurrency and performance.

The resulting behavior is non-deterministic, unpredictable, and the
source of related failures.

Multicore Processing (MCP)

27
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

27

Cons – Analysis is more complex and difficult

Real concurrency requires:
• Different memory consistency models than virtual interleaved

concurrency
• Breaks traditional analysis approaches that work on single core

processors
Temporal analysis of maximum time limits is:

• More difficult
• May be overly conservative

Memory access analysis of spatial interference is more complex.
Although interference analysis becomes more complex as the
number of cores per processor increases, overly restricting core
number may not provide adequate performance.

Multicore Processing (MCP)

28
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

28

Cons – Safety Ramifications

Moving to a multicore architecture may require recertification.
Interference between cores can cause missed deadlines and
excessive jitter:

• Can cause faults (hazards) and failures (accidents)
• Requires:

- Proper real-time scheduling and timing analysis and/or
- Specialized performance testing

Safety policy guidelines are based on obsolete assumptions.
Safety policy guidelines need to be updated based on the
guidelines in the recommendations section.

Multicore Processing

29
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

29[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Multicore Processing, Virtualization, &
Containerization
© 2018 Carnegie Mellon University.

MCP, Virtualization, and Containerization

Virtualization (V)

30
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

30

Definition – Virtual Machines

A virtual machine (VM), also called a guest machine, is a
software simulation of a hardware platform that provides a virtual
operating environment for guest operating systems.
A platform VM, also called a system VM and full virtualization
VM, is a VM that:

• Runs on top of a hypervisor
• Simulates a complete hardware platform

An application VM, also called a process VM, is a VM that:
• Runs as a language-specific software application (e.g., Java

VM) on top of the host OS process
• Provides a platform-independent programming environment

For the rest of this presentation, we will restrict ourselves to
platform VMs.

Virtualization (V)

31
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

31

Definition - Hypervisors

A hypervisor, also called a virtual machine monitor (VMM), is a
software program that runs on an actual host hardware platform
and supervises the execution of the guest operating systems on
the virtual machines.

Virtualization (V)

Type 1 Hypervisor

VM 1 VM 2 VM 3

Guest
OS

Guest
OS

Guest
OS

AP
P

1

AP
P

2

AP
P

3

AP
P

5
AP

P
4

AP
P

6

AP
P

7
Host Hardware Platform

Type 2 Hypervisor

VM 1 VM 2 VM 3

Guest
OS

Guest
OS

Guest
OS

AP
P

1

AP
P

2

AP
P

3

AP
P

5
AP

P
4

AP
P

6

AP
P

7

Host Hardware Platform

Host OS

32
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

32

Type 1 (“Bare Metal”) Hypervisor on MCP

Notional
Diagram

Virtualization (V)

VM 1 VM 2 VM 3 VM 7

WIN-
DOWS LINUX RTOSLINUX LINUX WIN-

DOWS RTOS
AP

P
1

AP
P

2

AP
P

3

AP
P

5
AP

P
4

AP
P

12

AP
P

6

AP
P

7

Ap
p

8

AP
P

9

AP
P

11
AP

P
10

AP
P

13

AP
P

14

Type 1 (“Bare Metal”) Hypervisor

Physical
Hardware

Layer

Virtualization
Layer

Infrastructure
Layer

Application
Software

Layer

VM 6VM 4 VM 5

Multicore
Processor

Core Core Core

L2 Cache L2 Cache

L3 Cache

Memory Controller

System Bus

Main Memory I/O Device

I/O Controller

Core
i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache

L2 CacheL2 Cache

33
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

33

Type 2 (“Hosted”) Hypervisor on MCP

Notional
Diagram

Virtualization (V)

Host OS

VM 1 VM 2 VM 3 VM 7

WIN-
DOWS LINUX RTOSLINUX LINUX WIN-

DOWS RTOS
AP

P
1

AP
P

2

AP
P

3

AP
P

5
AP

P
4

AP
P

12

AP
P

6

AP
P

7

Ap
p

8

AP
P

9

AP
P

11
AP

P
10

AP
P

13

AP
P

14

Physical
Hardware

Layer

Virtualization
Layer

Infrastructure
Layer (Guest)

Application
Software

Layer

VM 6VM 4 VM 5

Type 2 (“Hosted”) Hypervisor

Infrastructure
Layer (Host)

Multicore
Processor

Core Core Core

L2 Cache L2 Cache

L3 Cache

Memory Controller

System Bus

Main Memory I/O Device

I/O Controller

Core
i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache

L2 CacheL2 Cache

34
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

34

Current Trends – 1

Virtualization is reaching saturation at the server level for:
• IT applications
• Data centers
• Cloud computing

Virtualization is increasingly being used for:
• Storage virtualization (mass storage)
• Network virtualization
• Mobile devices (especially testing on virtual mobile devices)

Virtualization is only just beginning to be used for real-time, safety-
critical, and security-critical systems such as:

• Automotive software
• Internet of Things (IoT)
• Military software

Virtualization (V)

35
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

35

Current Trends – 2

Virtualization is being combined with Containerization.
Where appropriate, VMs are being replaced by lighter-weight
containers.
Security is increasingly important as vulnerabilities (VM escapes)
in virtual machines and hypervisors are discovered.

Virtualization (V)

36
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

36

Pros – Increased Hardware Isolation

Increased hardware isolation:
• Supports reuse of software written for different, potentially older

operating systems and hardware
• Enables upgrade of obsolete hardware infrastructure software
• Improves portability to multiple hardware and OS platforms
• Enables virtualized test beds

Virtualization (V)

37
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

37

Pros – Decreased Hardware Costs

Decreases hardware costs by enabling consolidation (i.e., the
allocation of multiple applications to the same hardware).

• Take advantage of multicore hardware architecture
• Replace several lightly-loaded machines with fewer, more heavily-

loaded machines to:
- Minimize SWAP-C (size, weight, and power, and cooling)
- Free up hardware for new functionality
- Support load balancing

• Support cloud computing, server farms, and mobile computing

Virtualization (V)

38
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

38

Pros – Performance, and Availability

Optimized for general purpose computing (MIS and cloud
computing):

• Maximizes throughput and average case response time
• Not optimized for:

- Embedded real-time, safety-critical, cyber-physical systems
- Meeting deadlines

May improve operational availability by:
• Supporting failover and recovery
• Enabling dynamic resource management

Virtualization (V)

39
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

39

Pros – Isolation

Hypervisor significantly improve (but does not guarantee) spatial
and temporal isolation of VMs, whereby:

• Physical isolation means that different VMs are prevented from
accessing the same physical memory locations (e.g., caches and
RAM).

• Temporal isolation means that the execution of software on one VM
does not impact the temporal behavior of software running on another
VM).

Spatial and temporal isolation improves:
• Reliability and robustness by:

- Localizing the impact of defects to a single VM
- Enabling software failover and recovery

• Safety by localizing impact of faults and failures to a single VM
• Security by localizing impact of malware to a single VM

Virtualization (V)

40
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

40

Pros – Security

Spatial isolation largely limits impact of malware to a single VM.
• However, sophisticated exploits can escape from one VM to

another via the hypervisor.
A VM that is compromised can be terminated and replaced with a
new VM that is booted from a known clean image.

• Enables a rapid system restore or software reload following a
cybersecurity compromise

A bare-metal type 1 hypervisor has a relatively small attack surface
and is less subject to common OS exploits and malware.
Security software and rules implemented at the hypervisor level
can apply to all of its VMs.

Virtualization (V)

41
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

41

Cons – Increased HW Resources Needed

Virtualization needs increased hardware resources:
• VMs and hypervisor require more CPU
• VMs and hypervisor require increased RAM
• Images (software state and data) require increased mass

storage
Virtualization both decreases and increases required amount of
hardware.

• Architecture engineering determines which trend dominates.

Virtualization (V)

42
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

42

Cons – Shared Resources

VMs share:
• Hypervisor
• Host OS
• Same shared resources as with multicore processors:

- Processor-internal resources (L3 cache, system bus, memory
controller, I/O controllers, and interconnects)

- Processor-external resources (main memory, I/O devices, and
networks)

Shared resources imply:
• Single points of failure
• Two applications running on same VM can interfere with each

other.
• Software running on one VM can impact software running on

another VM:
- Primarily interference that violates temporal isolation

Virtualization (V)

43
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

43

Cons – Example Interference Paths
Virtualization (V)

44
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

44

Cons – More Difficult Analysis

Analysis of temporal interference (e.g., meeting timing deadlines)
is difficult and typically overly conservative.
Interference analysis becomes more complex as:

• The number of VMs increases
• Virtualization is combined with multicore processing

The number of interference paths increase very rapidly with
number of VMs.

• Exhaustive analysis of all interference paths is typically
impossible.

• Representative selection of paths is necessary.

Virtualization (V)

45
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

45

Cons – Safety Ramifications

Moving to a virtualized architecture based on hypervisors and
virtual machines will probably require safety recertification.
Interference between VMs can cause missed deadlines and
excessive jitter:

• Can cause faults (hazards) and failures (accidents)
• Requires proper real-time scheduling and timing analysis

Safety policy guidelines are based on obsolete assumptions.
Safety policy guidelines need to be updated based on the following
recommendations.
Safety-critical applications can be run on multiple VMs:

• Software redundancy with voting

Virtualization (V)

46
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

46

Cons – Security Ramifications

Moving to a virtualized architecture based on hypervisors and
virtual machines will probably require security recertification.
Security vulnerabilities can violate isolation. Sophisticated exploits
can escape from one VM to another via the hypervisor.

Virtualization (V)

47
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

47

Cons – Increased Concurrency Defects

Increased potential for concurrency defects due to VMs executing
concurrently (on one or more cores):

• Deadlock
• Livelock
• Starvation
• Suspension
• (Data) race conditions
• Priority inversion
• Order violations
• Order vulnerabilities
• Atomicity violations

Increased amount and difficulty of testing to uncover concurrency
defects

Virtualization (V)

48
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

48

Cons – Miscellaneous

Real-time lack of predictability causes:
• Jitter
• Failure to meet hard real-time deadlines (response time)

Increased cold start and restart times
Virtualization is a relatively new technology

• Hypervisors and VMs are more buggy than operating systems
Increased system integration and test:

• Increased number of test cases
• Increased duration of testing (reliability testing, soak testing,

reliability demonstration testing, and accelerated reliability
testing)

Increased licensing costs (unless using FOSS)

Virtualization (V)

49
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

49[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Multicore Processing, Virtualization, &
Containerization
© 2018 Carnegie Mellon University.

MCP, Virtualization, and Containerization

Containerization (C)

50
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

50

Definitions

A container is a virtual runtime environment that runs on top of a
single OS kernel without emulating the underlying hardware.
A “pod” is a cohesive collection of containers that are collocated
and share resources.
Containerization is sometimes called virtualization via containers:

• Virtualization: multiple virtual hardware platforms
• Containerization: multiple virtual operating systems

Containerization is the process of engineering a software
architecture using multiple containers.
Container orchestration is the process of managing (e.g.,
creating, deploying, securing, and monitoring) multiple containers,
possibly spread across multiple VMs, cores, processors, and
clusters.

Containerization (C)

51
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

51

Definition – Pure Containerization
Containerization (C)

Applications

Namespaces Control
groups

SELinux

Binaries /
Libraries

Applications Applications Applications

Binaries /
Libraries

Binaries /
Libraries

Binaries /
Libraries

Infrastructure
Layer

Application
Software Layer

Containerization
Layer

Physical
Hardware Layer

Multicore
Processor

Core Core Core

L2 Cache L2 Cache

L3 Cache

Memory Controller

System Bus

Main Memory I/O Device

I/O Controller

Core
i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache

L2 CacheL2 Cache

Container 4Container 3Container 2Container 1

Container Engine / Management Interface (e.g., Docker)

Linux OS / Kernel

52
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

52

Definition – Hybrid Virtualization
Containerization (C)

Virtualization
combined with
containerization

VM 3

Infrastructure
Layer

Application
Software Layer

Containerization
Layer

Physical
Hardware Layer

Multicore
Processor

Core

L2 Cache L2 Cache

L3 Cache

Memory Controller

System Bus

Main Memory I/O Device

I/O Controller

Core
i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache i-Cache d-Cache

L2 CacheL2 Cache

Container 3Container 2

VM 2VM 1

Container Engine

Linux Kernel

Applications

Binaries /
Libraries

Applications Applications Applications

Binaries /
Libraries

Binaries /
Libraries

Binaries /
Libraries

Hypervisor (Type 1)

Virtualization
Layer

Guest OS Windows

Container 1

Container Engine

Core Core

53
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

53

Container Technology Architecture

Container Lifecycle:
• Image Creation, Testing, and Accreditation
• Image Storage and Retrieval
• Container Deployment and Management

Containerization (C)

54
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

54

Current Trends
Containers are becoming more common because they provide
many of the isolation benefits of VMs without as much overhead.
Although containers are typically hosted on some version of Linux,
they are beginning to also be hosted on other OSs such as
Windows.
Containers are being heavily used in Cloud-hosted applications.
Containers are increasingly being used to support the continuous
development and integration (CD/CI) of containerized microservices.

Containerization (C)

55
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

55

Pros
Supports lightweight spatial and temporal isolation:

• Provides each container with its own resources (e.g., CPU and memory)
• Uses container-specific namespaces

Requires less overhead than VMs, which must emulate underlying
hardware.
Relatively easy multiple instantiation of individual containers, which
supports:

• Scalability
• Availability and reliability via redundancy and failover
• Load balancing

Supports DevOps and continuous integration/deployment (CI/CD)
Supports consistency between development, test, and operational
environments
More consistent timing than VMs (supports real-time and safety)

Containerization (C)

56
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

56

Both Pros and Cons

Applications within a container may share binaries and libraries.
• Decreased code size (Pro)
• Shared code can lead to interference (Con)

Containerization (C)

57
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

57

Cons – Shared Resources

Containers share:
• Container engine and OS kernel
• VM, hypervisor, and host OS (if container runs on a VM using a

type 2 hypervisor)
• Same shared resources as with multicore processors:

- Processor-internal resources (L3 cache, system bus, memory
controller, I/O controllers, and interconnects)

- Processor-external resources (main memory, I/O devices, and
networks)

Shared resources imply:
• Single points of failure
• Two applications running in the same container can interfere

with each other.
• Software running in one container can impact software running

in another container (i.e., interference can violate spatial and
temporal isolation).

Containerization (C)

58
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

58

Interference Paths In Hybrid Architecture

Components
with red labels
are shared
resources.
Red arrows are
corresponding
interference
paths

Containerization (C)

Multicore Processor

Core

L2 Cache
i-Cache d-Cache i-Cache d-Cache i-Cache

Main
Memory Actuator

AP
P

8

Bus / Interconnect

VM 1 VM 2

Sensor

Memory Controller

LINUX
Kernal

VM 3

Core

Container 2Container 1

Infrastructure
Layer

Application
Software

Layer

Container
Virtualization

Layer

Physical
Hardware

Layer

VM
Virtualization

Layer

Infrastructure
Layer

AP
P

6

AP
P

7

Binaries /
Libraries

AP
P

10

L3 Cache
AP

P
9

I/O Device Controller

Container Engine

Type 2 (“Hosted”) Hypervisor

Host Operating System

L2 Cache
d-Cache i-Cache

L2 Cache

AP
P

4
AP

P
5

AP
P

3

AP
P

1

AP
P

2
Guest

OS
Guest

OS

AP
P

11

AP
P

12

Binaries /
Libraries

AP
P

14

d-Cache
Core Core

L2 Cache

AP
P

13

59
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

59

Cons – Analysis

Analysis of temporal interference (e.g., meeting timing deadlines)
is difficult and overly conservative.
Interference analysis becomes more complex as:

• The number of containers increases
• Containerization is combined with:

- Virtualization
- Multicore processing

The number of interference paths increase very rapidly with the
number of containers.

• Exhaustive analysis of all interference paths is typically
impossible.

• Representative selection of paths is necessary.

Containerization (C)

60
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

60

Cons – Security Ramifications
Containers by default are typically not secure and require significant
work to make secure:

• No data stored inside containers pattern
• Force container processes to write to container-specific file

systems
• Set up container’s network namespace to connect to specific

private intranet
• Minimize container services’ privileges (e.g., non-root if possible)

Moving to a containerized architecture might require recertification.
NIST Application Container Security Guide (SP 800-190)

https://doi.org/10.6028/NIST.SP.800-190

Containerization (C)

https://doi.org/10.6028/NIST.SP.800-190

61
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

61

Cons – Increased Concurrency Defects

Increased potential for concurrency defects due to multiple
containers executing concurrently (on one or more VMs or cores):

• Deadlock
• Livelock
• Starvation
• Suspension
• (Data) race conditions
• Priority inversion
• Order violations
• Order vulnerabilities
• Atomicity violations

Increased amount and difficulty of testing to uncover concurrency
defects

Containerization (C)

62
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

62

Cons – Miscellaneous
Largely restricted to Linux-based operating systems.
Container sprawl (excessive containerization) increases
management needs.

Containerization (C)

63
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

63[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Multicore Processing, Virtualization, &
Containerization
© 2018 Carnegie Mellon University.

MCP, Virtualization, and Containerization

Recommendations

64
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

64

When to Use
Recommendations

Criteria Multicore Virtualization Containerization

Reliability and Robustness Yes Yes Yes

Concurrency Yes Yes Yes

Temporal and Spatial Isolation Yes Yes Yes

Configurability (flexible deployment) Yes Yes Yes

SWAP-C Yes Yes/No Yes

Portability - Multiple HW platforms No Yes No

Portability - Multiple OSs No Yes No

Technology Refresh Yes Yes Yes

Legacy Software Reuse Somewhat Yes Somewhat

Performance (throughput) Yes Somewhat Yes

Hard real-time (response time) Somewhat No Somewhat

Safety Somewhat Improved Improved

Security Somewhat Improved Less Improved

65
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

65

Comparison of VMs vs. Containers
Recommendations

Criteria VMs Containers

Portability - Number of operating systems One or more per HV One / ContainerEng

Portability - Number of OS versions One or more per HV One or more per CE

Portability - Number of OS types One or more Primarily Linux

Size of Applications Medium or large Small or medium

Security(see notes page)

Roughly equal, depending on how used
Improved isolation Improved isolation

Smaller attack surface

Number of applications per server Lower Higher

Number of copies of single application One Many

Performance (throughput, not response time) Lower Higher

Overhead - Administration Higher Lower

Overhead - resource usage Much higher Much lower

Readily share resources (devices, services) No Yes

Robustness via failover and restart Not supported Supported

Scalability & load balancing (dynamic deployment) Slower and harder Faster and easier

Application runs on bare metal Not supported May be supported

66
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

66

When To Use – Architecture Patterns

A pattern is a general, reusable, solution to a commonly occurring
problem within a given context.
Patterns are typically documented in mostly standard ways.
Patterns exist at different levels:

• Architecture patterns, design patterns, implementation
(language idioms)

Use multicore-, virtualization-, and containerization-related
architectural patterns based on:

• The architectural problem to be solved
• The architectural context:

- Intent (i.e., overarching goal)
- Forces (i.e., specific motivations)
- Relevant architecturally significant requirements
- The rest of the architecture

Recommendations

67
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

67

When To Use – Multicore Patterns

Select solutions based on relevance of associated problems
and contexts.
Multicore Patterns:

• Multicore
• Homogeneous (symmetric) Cores
• Heterogeneous (asymmetric) Cores
• Single Service per Core
• Multiple Services per Core

Recommendations

68
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

68

When To Use – Virtualization Patterns

Select solutions based on relevance of associated problems
and contexts.
Virtualization Patterns:

• Virtual Machine
• System Virtual Machine
• Process Virtual Machine
• Type 1 Hypervisor
• Type 2 Hypervisor
• Single Service/Function/CSCI per Virtual Machine
• Maximize Cohesion / Minimize Coupling (maximize isolation)
• Multiple Services per Virtual Machine
• Virtual Machine Template

Recommendations

69
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

69

When To Use – Containerization Patterns

Select solutions based on relevance of associated problems
and contexts.
Containerization Patterns:

• Container
• Maximize Cohesion / Minimize Coupling (maximize

isolation)
• Single Service per Container (Micro-services)
• Multiple Services per Container
• Hybrid Virtualization (Virtualization + Containerization)

Recommendations

70
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

70

Allocation

Minimize unnecessary coupling across containers, VMs,
processors, and cores.
Keep allocation of software to containers to VMs to processors to
cores static (where appropriate):

• Simplifies architecture and reduces number of test cases
Only use hybrid virtualization architectures (allocating containers to
VMs) where appropriate due to complexity, overhead, and
interference.
Document the allocation
Automate the build/deployment process:

• Improved quality and consistency across development, test, and
operational environments

• Increased productivity and support for agile / DevOps

Recommendations

71
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

71

Recommendations for –
Interference Analysis Process
Require the performance of MCP and interference analysis:

1. Identify relevant software (e.g., hard real-time & safety-critical)
2. Determine deployment of relevant software to cores and data paths
3. Adequately identify processor’s important interference paths

based on behavior of deployed software, whereby exhaustive
identification and analysis is likely infeasible.

4. Determine potential negative consequences based on the
interference penalties of the important interference paths.

5. Categorize interference paths as acceptable or unacceptable.
6. Use interference mitigation techniques to eliminate, reduce, or

bound interference.
7. Repeat steps 2 through 6 until all interface paths are acceptable.
8. Document analysis results and limitations
9. Review analysis results and limitations

Recommendations

72
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

72

Interference Analysis - Challenges

Challenges of interference analysis include determining:
• Interference paths due to:

- Processor complexity (number of paths grows exponentially with
number of components)

- Black-box processor components
- Lack of documentation involving proprietary data

• Multiple “types” of interferences along same path:
- Operations involved (e.g., read vs. write)
- Sequences of operations
- CPU usage (stress)
- Memory locations accessed

• Sufficient coverage in terms of interference paths
• Interference penalties

Use equivalence classes of paths and path redundancy to limit cases.

Recommendations

73
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

73

Interference Management Techniques – 1

Techniques for eliminating, reducing, and bounding, interference:
• Re-architect software to minimize coupling across containers,

VMs, multicore processors, and cores
• Reallocate software to containers to VMs to processors to cores
• Interference-related fault/failure/health monitoring (e.g.,

performance, missed deadlines) with exception handling
• Configuration (hardware and operating system)
• Cache coloring or partitioning to reduce cache conflicts
• Interference-free scheduling (only one critical task per timeslot)
• Deterministic execution scheduling (tasks accessing the same

shared resource execute in different timeslots)
No single silver bullet
Multiple techniques are typically required.

Recommendations

74
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

74

Interference Management Techniques – 2

Some interference-management techniques are:
• Completely reliant on the software architect
• Configurable by the software architect
• Selected and implemented by the processor vendor

Recommendations

75
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

75

Augment Analysis

Combine interference analysis with:
• Relevant testing
• Expert feedback on the processor (or similar processors)
• Information shared with the manufacturer

Recommendations

76
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

76

Testing – 1

Because related defects are rare:
• Use reliability testing, soak testing, reliability demonstration

testing, and accelerated reliability testing
• Ensure size of test suite is adequate to uncover rare faults and

failures.
• Use very large numbers of simulation runs to detect rare events.

Google simulates 3 million miles of autonomous driving per day.
• Use statistical analysis when desired behavior is stochastic.
• Use combinatorial testing to achieve adequate coverage of

combinations of conditions and of edge and corner cases.
• Use M&S to control non-deterministic hardware and

environmental inputs to ensure coverage of corner cases.
• Do not rely on simple demonstrations of functional

requirements (i.e., one test case per requirement).

Recommendations

77
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

77

Testing – 2

Identify potential multicore-, virtualization-, and containerization-
related defects to drive test methods and test cases:

• Use interference analysis
• Types of concurrency defect/fault/failures

Because multicore-, virtualization-, and containerization-related
defects are difficult and expensive to uncover, concentrate your
effort testing for them on mission- and safety-critical software.
Incorporate Built-In-Test (BIT), especially Continuous BIT (CBIT),
Interrupt-Driven BIT (IBIT), and Periodic BIT (PBIT) to provide
testability (observability and controllability)
Instrument software so that logs can be scrutinized for rare timing
and other anomalies.
Program non-deterministic systems (especially autonomous and
machine learning systems) to be able to answer questions
regarding why they did what they did.

Recommendations

78
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

78

Documentation

Complete and current documentation of the multicore,
virtualization, and containerization architecture is needed for:

• Software configuration management (CM)
• Automating the build and deploy process, which is critical for:

- Agile development and DevOps
- Continuous integration, testing, and deployment (CI/CT/CD)

• Understanding and analyzing the software’s behavior
• Safety and security accreditation and certification (C&A)

Recommendations

79
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

79

Documentation – Deployment

Document the following in the system/software architecture
models/documentation:

• Software to container to VM to MCP deployment:
- Software deployment to guest operating systems
- Guest OSs to virtual machines or containers
- VMs to hypervisor (or containers to container engine)
- Hypervisor to host operating system (if any)
- Containers/VMs, hypervisor/container engine, and host OS to cores
- Cores to multicore processors
- Multicore processors to computers (e.g., blades in racks) and

processor-external shared resources
- Containers/VMs to data partitions in memory

Recommendations

80
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

80

Documentation – MCP

Document the following multicore processor information in the
system/software architecture models/documentation:

• Vendor and model number
• Processor type:

- Number of cores
- Type (Symmetric vs. Asymmetric) including core types and speeds
- Levels and sizes of caches

• Processor configuration information
• Instruction set architecture
• Memory consistency model
• Successful usage on real-time, safety-critical systems

Recommendations

81
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

81

Documentation – Virtualization

Document the following hypervisor information in the
system/software architecture models/documentation:

• Vendor and model number
• Hypervisor type
• Hypervisor configuration information
• Successful usage on real-time, safety-critical systems

Recommendations

82
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

82

Documentation – Containerization

Document the following container information in the
system/software architecture models/documentation:

• Vendor and version
• Container engine
• Container engine configuration information
• Successful usage on real-time, safety-critical systems

Recommendations

83
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

83

Documentation – Techniques

Document actual deployment using tables or simple relational
database rather than deployment diagrams, which likely will be too
complex to be more than notional.
Document the techniques used to eliminate, reduce, and mitigate:

• Important container-, VM-, and core-interference penalties
• Non-deterministic behavior

Recommendations

84
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

84

Documentation – Analysis and Test

Document the analysis and testing performed to verify performance
deadlines are met:

• Analysis and test method(s) used
• Interference paths analyzed and path selection criteria
• Analysis results
• Known limitations of analysis/test results

Recommendations

85
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

85

Security Recommendations – Virtualization 1

Harden host and guest OSs in accordance with relevant Security
Technical Implementation Guides (STIGs).
Patch host and guest OSs in a timely fashion.
Limit VM resource (processors, memory, disk space, interfaces) so
that a compromised VM cannot starve other VMs (a DOS attack).

• For example, use disk partitioning so that one VM cannot use
disk space needed by other VMs.

Prevent file sharing between host and guest OSs.
Use different credentials for host OS and guest OSs.
Ensure proper mapping of virtual devices to physical devices so
that one VM cannot inadvertently access another VMs devices.
Apply role based access controls to VMs.

Recommendations

86
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

86

Security Recommendations – Virtualization 2

Do not deploy security-critical and non-security-critical software
and data to the same virtual machine.

• The data and software in all VMs on a single host OS should
have the same security level (e.g., confidential, secret, top-
secret; FOUO, NOFORN).

Regularly audit the security configuration of all virtual resources
Separate role-based administration of VMs and virtual networks
(as in sys admin vs. network admin).
Regularly backup VMs while controlling access to backups.
Don’t just rely on the preceding list. There are several, easily
discovered documents on the Internet that provide more complete
lists of recommendations with rationales.

Recommendations

87
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

87

Security Recommendations - Containerization

Use container security tools and container names to enforce
security policies.

• Traditional Intrusion Detection/Prevention Systems and Web
Application Firewalls are often inadequate for containers.

• Use trusted hardware and container-specific vulnerability
management tools to prevent non-compliant images from
executing

Use container-specific host operating systems instead of general-
purpose OSs.

• Reduces attack surfaces
Only group related containers on a single host OS kernel if they
have the same sensitivity and threat posture:

• Increases the likelihood that compromises are detected and
contained within the group.

• Isolates sensitive data within group’s local cache and volumes

Recommendations

88
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

88

Certification & Accreditation

Tailor safety and security C&A process for MCP, virtualization, and
containerization architectures:

• Remove obsolete architecture requirements
• Modify analysis and testing guidelines
• Modify documentation guidelines

Recommendations

89
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

89[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Multicore Processing, Virtualization, &
Containerization
© 2018 Carnegie Mellon University.

MCP, Virtualization, and Containerization

Conclusion

90
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

90

Conclusion

Multicore processing, virtualization, and containerization are quite
similar, causing similar problems that can be addressed in similar
ways:

• MCP – allocate software to multiple physical cores on a
processor

• Virtualization – allocate software to multiple virtual hardware
platforms

• Containerization – allocate software to multiple virtual software
platforms (OS and middleware)

They have significant safety and security ramifications.
They should improve – but do not guarantee – spatial and
temporal isolation.
Eliminate, reduce, or bound interference.
Analysis can help but cannot be exhaustive, requiring
augmentation with testing, expert opinion, and past experience.

Conclusion

91
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

91

References

https://www.zdnet.com/article/which-is-more-secure-containers-or-
virtual-machines-the-answer-will-surprise-you/
Linus Containers vs. VMs: A Security Comparison by Jim Reno,
Info World, 19 May 2016
http://www.infoworld.com/article/3071679/linux/linux-containers-vs-
vms-a-security-comparison.html
Demystifying container vs. VM-based security: Security in plaintext,
by Jianing Guo, 9 August 2017
https://cloudplatform.googleblog.com/2017/08/demystifying-
container-vs-VM-based-security-security-in-plaintext.html
https://www.twistlock.com/resources/container-security-vs-virtual-
machine-security-key-differences/
https://gonorthforge.com/criteria-to-make-the-choice-of-containers-
vs-virtual-machines-in-infrastructure-cost-decisions/

Conclusion

https://www.zdnet.com/article/which-is-more-secure-containers-or-virtual-machines-the-answer-will-surprise-you/
http://www.infoworld.com/article/3071679/linux/linux-containers-vs-vms-a-security-comparison.html
https://cloudplatform.googleblog.com/2017/08/demystifying-container-vs-VM-based-security-security-in-plaintext.html
https://www.twistlock.com/resources/container-security-vs-virtual-machine-security-key-differences/
https://gonorthforge.com/criteria-to-make-the-choice-of-containers-vs-virtual-machines-in-infrastructure-cost-decisions/

92
Multicore Processing, Virtualization, & Containerization
February 26, 2019
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution.

92

Contact Information

Presenter / Point of Contact
Donald Firesmith
Principal Engineer
Telephone: +1 412.268.6874
Email: dgf@sei.cmu.edu

mailto:dgf@sei.cmu.edu

	Multicore Processing, Virtualization, and Containerization:�Similarities, Differences, Challenges, and Recommendations
	Topics
	MCP, Virtualization, and Containerization
	Motivation
	Key Concepts
	Three Technologies at Three Levels
	Key Points
	Pros
	Cons
	Policies
	MCP, Virtualization, and Containerization
	Definition
	Symmetric Multiprocessing (SMP)
	Asymmetric Multiprocessing (ASP)
	Current Trends
	Pros – Increased Energy Efficiency
	Pros – True Concurrency
	Pros – Increased Performance
	Pros – Improved Isolation
	Cons – Shared Resources
	Cons – Interference
	Cons – Example Interference Paths
	Cons – Increased Concurrency Defects
	Concurrency Defects
	Cons – Increased Non-Determinism
	Cons – Analysis is more complex and difficult
	Cons – Safety Ramifications
	MCP, Virtualization, and Containerization
	Definition – Virtual Machines
	Definition - Hypervisors
	Type 1 (“Bare Metal”) Hypervisor on MCP
	Type 2 (“Hosted”) Hypervisor on MCP
	Current Trends – 1
	Current Trends – 2
	Pros – Increased Hardware Isolation
	Pros – Decreased Hardware Costs
	Pros – Performance, and Availability
	Pros – Isolation
	Pros – Security
	Cons – Increased HW Resources Needed
	Cons – Shared Resources
	Cons – Example Interference Paths
	Cons – More Difficult Analysis
	Cons – Safety Ramifications
	Cons – Security Ramifications
	Cons – Increased Concurrency Defects
	Cons – Miscellaneous
	MCP, Virtualization, and Containerization
	Definitions
	Definition – Pure Containerization
	Definition – Hybrid Virtualization
	Container Technology Architecture
	Current Trends
	Pros
	Both Pros and Cons
	Cons – Shared Resources
	Interference Paths In Hybrid Architecture
	Cons – Analysis
	Cons – Security Ramifications
	Cons – Increased Concurrency Defects
	Cons – Miscellaneous
	MCP, Virtualization, and Containerization
	When to Use
	Comparison of VMs vs. Containers
	When To Use – Architecture Patterns
	When To Use – Multicore Patterns
	When To Use – Virtualization Patterns
	When To Use – Containerization Patterns
	Allocation
	Recommendations for –�Interference Analysis Process
	Interference Analysis - Challenges
	Interference Management Techniques – 1
	Interference Management Techniques – 2
	Augment Analysis
	Testing – 1
	Testing – 2
	Documentation
	Documentation – Deployment
	Documentation – MCP
	Documentation – Virtualization
	Documentation – Containerization
	Documentation – Techniques
	Documentation – Analysis and Test
	Security Recommendations – Virtualization 1
	Security Recommendations – Virtualization 2
	Security Recommendations - Containerization
	Certification & Accreditation
	MCP, Virtualization, and Containerization
	Conclusion
	References
	Contact Information

