C ‘dI'Ilt‘,git‘, Mellon LTIlin‘I'SitV [DISTRIBUTION STATEMENT A] This material has been approved for public
. K <, release and unlimited distribution.]
Software Engineering Institute

Automated Cluster Testing
and Optimization

Brad Powell
Sr. Security Engineer | CERT

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Homeland Security under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by
the United States Department of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon®, CERT® and FloCon® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1377

Carnegie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
- ° . ¥ © 2018 Carnegie Mellon University release and unlimited distribution.] 2
Software Engineering Institute

Introduction

* How to setup an automated testing framework to get benchmarks
and results that will help determine tuning parameters and improve
the performance of your Spark cluster

Carnegie Mellon University Automated Cluster Testing and Optimization
_ c) v © 2018 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

Introduction

Development and Test Environment (DTE)

Support the architecture, design, and test processes of the lifecycle

Provide a baseline of technologies for prototyping and testing
capabilities supporting cybersecurity use cases

Manage a shared and collaborative environment

Evaluate relevant technology and conduct demonstrations as
appropriate to inform engineering efforts and lessen risk

Prototype data analysis techniques using the variety of available
data types and tools

Deliver Trend Reports to capture changes in the
industry/community for relevant technology spaces

Ca['n(h,gi(l]\/I(-ll()n UIIiV(‘['SilV Automated Cluster Testing and Optimization

Software Engineering Institute

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

Automated Cluster Testing and Optimization

Automated Testing Tools

Ca,l‘negie Me]_l()n University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
. . . © 2018 Carnegie Mellon University release and unlimited distribution.] 5
Software Engineering Institute

Automated Testing Tools

HiBench (Intel) - Measure speed, throughput, and system resource utilization Supported releases:

Micro benchmark workloads:
- Sort, WordCount, TeraSort, Sleep, Enhanced DFSIO

SQL workloads:
- Scan, Join, Aggregate

Machine Learning workloads:

Hadoop: Apache Hadoop 2.x, CDH5, HDP

Spark: Spark 1.6.x, Spark 2.0.x, Spark 2.1.x, Spark 2.2.x
Flink: 1.0.3

Storm: 1.0.1

Gearpump: 0.8.1

Kafka: 0.8.2.2

- Bayesian Classification, K-means clustering, Logistic Regression, Alternating Least Squares, Gradient Boosting Trees,
Linear Regression, Latent Dirichlet Allocation, Principal Components Analysis, Random Forest, Support Vector Machine,

Singular Value Decomposition

Websearch benchmark workloads:
- PageRank, Nutch indexing

Sample Output:

. G h b h k kl d . A B C D E F G H
rap enchmark workioaas: 1 Type Date Time Input_data_size Duration(s) Throughput(bytes/s) Throughput/node
NW . h 2 ScalaSparkWordcount 7/19/2018 15:45:00 36790 29.818 1233 30
- e'Q t 3 ScalaSparkWordcount 7/19/2018 16:02:00 36790 28.841 1275 31
4 |ScalaSparkWordcount 7/19/2018 16:16:58 36790 27.225 1351 34
5 |ScalaSparkTerasort 7/19/2018 16:27:26 3200000 36.693 87210 2180
H . 6 | HadoopWordcount 7/19/2018 17:08:34 36790 28971 1269 31
L]
Streaming workloads: ;
- ldentity, Repartition, Stateful Wordcount, Fixwindow
Carnegie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public

© 2018 Carnegie Mellon University

Software Engineering Institute

release and unlimited distribution.] 6

Automated Testing Tools

SparkBench (IBM) - Benchmarking and simulating Spark jobs

» Spark-Submit-Config:
- SparkBench converts config files into spark-submit scripts
- Allows multiple spark-submits in series or parallel

* Workloads:
- Standalone Spark jobs with input/output
- Data Generators: Graph, Kmeans, Linear Regression
- Kmeans, Logistic Regression, Sleep, SparkPi, SQL

» Workload Suites:

spark-bench = {
spark-submit-config = [{
workload-suites = [

{

descr = "One run of SparkPi and that's it!"

benchmark-output = "console"
workloads = [
{
name = "sparkpi"
slices = 10
¥
1
}
1
il
}
One run of SparkPi and that's it!
fmemc=s fmommzoomomas fezomczomczomo T e fmmomzs s . —

| name|

timestamp|total_runtime|

pi_approximate|input |workloadResultsOutputDir|slices|run|spark.driver.host|spark.driver. port |hive

| sparkpi|1498683099328| 1032871662| 3.141851141851142 | | | 10| e 10.200.22.54| 61657|
H e fmmmmzmsmzoaas S I fe=mm= e femm==- fmmsfimmcmsssssczcssas e fe==d]
- Collections of one or more workloads
- Control benchmark output and parallelism Sample Output:
A B < D E F G H I) K L
1 name timestamp total_Runtime run cache saveTime queryStr loadTime saveMode output queryTime input nu
. 2 sql 1532027918175.00 8783122380.00 O FALSE 0 select * from input 8763790695 error 19331685 hdfs:///tmp/csv-vs-parquet/kmeans-data.csv
® CU Stom WOFk|OadS . 3 sl 1532027935969.00 8938864314.00 O FALSE 0 select c0, c22 from input where c0 <-0.9 8854089340 error 84774974 hdfs:///tmp/csv-vs-parquet/kmeans-data.csv
4 sql 1532027945400.00 294150093.00 O FALSE 0 select * from input 286799781 error 7350312) P/ parquet, data.parquet
. S sl 1532027945991.00 21077522600 O FALSE 0 select c0, c22 from input where c0<-0.9 201379267 error 9395959 hdfs:///tmp, parquet, data.parquet
- Use Scala and SBT to build onto SparkBenCh 6 sl 1532027954978.00 9170048329.00 1 FALSE 0 select * from input 9153201838 error 16846491 hdfs:///tmp/csv-vs-parquet/kmeans-data.csv
7 sql 1532027972754.00 9009234399.00 1 FALSE 0 select c0, ¢22 from input where c0 <-0.9 8990084746 error 19149653 hdfs:///tmp/csv-vs-parquet/kmeans-data.csv
- i 1 i i 8 sql 1532027982164.00 328433835.00 1 FALSE 0 select * from input 316105852 error 12327983 hdfs: 1 parquet data.parquet
Test custom Spark libraries by InCIUdlng JAR 9 sql 1532027982893.00 17035541200 1 FALSE 0 select c0, c22 from input where c0<-0.9 162862259 error 7493153 hdfs:///tmp, parquet, data.parquet
10 sql 1532027991891.00 9212337819.00 2 FALSE 0 select * from input 9205135808 error 7202011 hdfs:///tmp/csv-vs-parquet/kmeans-data.csv
11 sql 1532028009737.00 8148945348.00 2 FALSE 0 select c0, c22 from input where c0 <-0.9 8141262036 error 7683312 hdfs:///tmp/csv-vs-parquet/kmeans-data.csv
12 sql 1532028018147.00 209987449.00 2 FALSE 0 select * from input 203314672 error 6672777 hdfs:///tmp, parquet, data.parquet

Carnegie Mellon University
Software Engineering Institute

© 2018 Carnegie Mellon University

Automated Cluster Testing and Optimization

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

Automated Testing Tools

SparkBench Config Workload Definition

spark- rubmlt pa allnl = false

descr = "Pack Co it ilte 1 appLabel®
benchmar! = f/ /tmp/mothra-test/mothra-appLabel-results.
parallel = false
repeat =
save-mode
workl 5
{
name = "custom”
class = "
output =
cache =
inputdata

1/spark-bench_2.3.8_08.4.8-RELEASE/1lib/*"

driver-cores = 8
}
conf = [
dynamicAllocation ecutorIdleTimeout™ = "128s"

cut =
ecutor.memory” = “8@g"

"spark.dynamicAllocation cutorIdleTimeout™
spa tor. !
"spark.executor.memory" Count with filter on applLabel”
benchmark-output = "hdfs: tmp/mothra-test/mothra-appLabel-results.
parallel = false
repeat = 1
save-mode = "append"
workloads = [
{
name
class .example.MothraLoad"
output :f//tmp/mothra-test/mothra-results.csv”
cach "

inputdata /data/mothra-ipfi afyaf-ixia*2818112*"

https://codait.github.io/spark-bench/

Carnegie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
- ° . . c © 2018 Carnegie Mellon University release and unlimited distribution.] 8
Software Engineering Institute

Automated Cluster Testing and Optimization

Mothra Refresher

Ca,l‘negie Me]_l()n Un]versity Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
. . . © 2018 Carnegie Mellon University release and unlimited distribution.] 9
Software Engineering Institute

Mothra Refresher

Mothra Architecture

* Facilitate bulk storage and
analysis of cybersecurity data
with high levels of flexibility,
performance, and
interoperability

* Reduce the engineering effort
involved in developing,
transitioning, and
operationalizing new analytics

» Serve all major constituencies
within the network security
community, including data
scientists, first-tier incident
responders, system admins,
and hobbyists

Data Sources

YAF

SilK

Analysis Platform

Mothra libraries

User Interfaces

Spark SQL
&

Streaming

DataFrames

Apache Spark Core APL

Exploratory Analysis
(Jupyter Notebook)

Alerting

Visualization

|Scala |[Java ”Python || R |[sQL |

spark platform

| sk
Lot data _
| ~other '

I Data
sources |

HDFS

w

Legend

SEI Interfaces

SEI Components

Other Comp ts

Other Interfaces

Carnegie Mellon University
Software Engineering Institute

Automated Cluster Testing and Optimization
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

10

Mothra Refresher A

SiLK vs. Mothra
Scalability

* Mothra enables more
complex analyses at a
scale beyond the capability
of SiLK’s single-node
architecture

Query Latency

executor startup,
network transfer .
between cluster node SiLK

writing temporary files to ‘\ N\ A N _/

Overhead of Spark { Mothra
s,

disk, etc.

. . ueries SiLK can’t handle due
Queries that are Queries that are ?o scale / complexity . but are
faster with SiLK faster with Mothra . p Y,

possible with Mothra
Query Complexity
Cill'll(‘ﬂ'i(‘ Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
¢ v © 2018 Carnegie Mellon University release and unlimited distribution.] 1 1

Software Engineering Institute

Automated Cluster Testing and Optimization

Test Plan

o

Cal‘negie Me]_l()n Un]versity Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
. . . © 2018 Carnegie Mellon University release and unlimited distribution.] 1 2
Software Engineering Institute

Test Plan
The goal of our testing was to identify the performance and
benchmarks for the DTE cluster in the following areas:

1. Cluster Operations using pre-built, Micro and Machine
Learning Workloads.

2. Mothra Dataframe Creation and Spark Query Performance.

3. Mothra Ingest Process Performance running Collector and
Packer processes on a 16 core physical edge node.

Carnccip Mellon Univ(\rsﬂy Automated Cluster Testing and Optimization
5 . . < © 2018 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

13

Test Plan

Test Environment Details

* Number of Nodes: 40+10 Virtual nodes for NameNode, YARN
Resource Manager, Zookeeper, and Edge Nodes

RAM: 256GB, Disks: 4 Disks - 600 GB, CPU: 2x8 cores
Network: Intel Corporation 82599ES 10-Gigabit dual port
HDP Version: HDP 2.6.4 YARN

Spark Version: Spark 2.2.1

Test parameters Values
spark.submit.deployMode client
spark.shuffle.service.enabled true
spark.scheduler.mode FIFO
spark.master yarn
spark.executor.memory 4g
spark.dynamicAllocation.minExecutors 4
spark.dynamicAllocation.initialExecutors 4
spark.dynamicAllocation.enabled true
spark.driver.port 36562
spark.driver.memory 8g

Carnegie Mellon University
Software Engineering Institute

Automated Cluster Testing and Optimization
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

14

Test Plan

HiBench Generated Data
» Four groups: Large, Huge, Gigantic, and BigData

Large Huge

Gigantic

BigData

hibench.bayes.large.pages 100000
hibench.bayes.large.classes 100
hibench.bayes.large.ngrams 2

hibench.bayes.huge.pages 500000
hibench.bayes.huge.classes 100
hibench.bayes.huge.ngrams 2

Naive Bayes

hibench.bayes.gigantic.pages 1000000
hibench.bayes.gigantic.classes 100
hibench.bayes.gigantic.ngrams 2

hibench.bayes.bigdata.pages 20000000
hibench.bayes.bigdata.classes 20000
hibench.bayes.bigdata.ngrams 2

hibench.linear.large.examples 200000
hibench.linear.large.features 30000

hibench.linear.huge.examples 300000

Linear Regression
hibench.linear.huge.features 50000

hibench.linear.gigantic.examples 500000
hibench.linear.gigantic.features 80000

hibench.linear.bigdata.examples 1000000
hibench.linear.bigdata.features 100000

hibench.rf.large.examples 1000
hibench.rf.large.features 1000

hibench.rf.huge.examples 10000
hibench.rf.huge.features 200000

Random Forest

hibench.rf.gigantic.examples 10000
hibench.rf.gigantic.features 300000

hibench.rf.bigdata.examples 20000
hibench.rf.bigdata.features 220000

hibench.kmeans.large.num_of_clusters 5
hibench.kmeans.large.dimensions 20
hibench.kmeans.large.num_of_samples 20000000
hibench.kmeans.large.samples_per_inputfile
4000000

hibench.kmeans.large.max_iteration 5
hibench.kmeans.large.k 10
hibench.kmeans.large.convergedist 0.5

hibench.kmeans.huge.num_of_clusters 5
hibench.kmeans.huge.dimensions 20
hibench.kmeans.huge.num_of_samples 100000000
hibench.kmeans.huge.samples_per_inputfile
20000000

hibench.kmeans.huge.max_iteration 5
hibench.kmeans.huge.k 10
hibench.kmeans.huge.convergedist 0.5

K-means

hibench.kmeans.gigantic.num_of_clusters 5
hibench.kmeans.gigantic.dimensions 20
hibench.kmeans.gigantic.num_of_samples 200000000
hibench.kmeans.gigantic.samples_per_inputfile
40000000

hibench.kmeans.gigantic.max_iteration 5
hibench.kmeans.gigantic.k 10
hibench.kmeans.gigantic.convergedist 0.5

hibench.kmeans.bigdata.num_of_clusters 5
hibench.kmeans.bigdata.dimensions 20
hibench.kmeans.bigdata.num_of_samples
24000000000
hibench.kmeans.bigdata.samples_per_inputfile
40000000
hibench.kmeans.bigdata.max_iteration 10
hibench.kmeans.bigdata.k 10
hibench.kmeans.bigdata.convergedist 0.5

Carn(‘,g‘it‘ xl(*"()n l'ni\'(‘[Sity Automated Cluster Testing and Optimization
° © 2018 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution.]

15

Test Plan

Ixia Simulated IPFIX datasets

2018092*

Filename(s) Size Record Count Bytes per Flow Description
/data/mothra-ipfix/live/ipfix-live-s1- 1.66 MB 8,746 189.80 1 hour of live ipfix data from DTE YAF
20180820000030-00268.yaf sensor on 8/20
/data/mothra-ipfix/ixia/yaf-ixia- 3.17GB 21,997,654 144.11 1 hour of Ixia generated ipfix data for
napa_lb0-20180819000021-00110.yaf 1 YAF sensor on 8/19
/data/mothra-ipfix/ixia/yaf-ixia- 22.19GB 154,038,796 144.05 1 hour of Ixia generated ipfix data for
napa_lb*-20180819000021-00110.yaf 8 YAF sensors on 8/19
/data/mothra-ipfix/ixia/yaf-ixia- 597.61GB 4,159,659,052 143.67 24 hours of Ixia generated ipfix data
napa_lb*-20180819*.yaf for 8 YAF sensors on 8/19
/data/mothra-ipfix/ixia/yaf-ixia- 3.08 TB 21,772,346,751 141.46 5.5 Days of Ixia generated ipfix data
napa_lb*-2018081*.yaf for 8 YAF sensors on 8/14-8/19
Filename(s) Size Record Count Bytes per Flow Description
/data/mothra-ipfix/ixia/yaf-ixia-napa_Ib7- 263.78 MB 1,088,294 254.15 5 minutes of Ixia generated ipfix data for 1
20180922110219-00274.yaf YAF sensor on 9/22
/data/mothra-ipfix/ixia/yaf-ixia-napa_Ib*- 2.06 GB 8,693,166 254.22 5 minutes of Ixia generated ipfix data for 8
20180922110219-00274.yaf YAF sensors on 9/22
/data/mothra-ipfix/ixia/yaf-ixia-napa_Ib7- 3.11GB 13,199,568 252.92 1 hour of Ixia generated ipfix data for 1 YAF
2018092211* sensor on 9/22
/data/mothra-ipfix/ixia/yaf-ixia-napa_Ib*- 24.89 GB 105,639,034 253.00 1 hour of Ixia generated ipfix data for 8 YAF
2018092211* sensors on 9/22
/data/mothra-ipfix/ixia/yaf-ixia-napa_Ib*- 605.74 GB 2,628,246,577 247.47 24 hours of Ixia generated ipfix data for 8

YAF sensors on 9/22

Carnegie Mellon University
Software Engineering Institute

Automated Cluster Testing and Optimization
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution.]

16

Test Plan

Automated Custom SparkBench Testing

Operation Query

Build IPFIX DataFrame (mothra), Count val input_data_ixia = "/data/mothra-ipfix/ixia/yaf-ixia-napa_lb*-20180815*.yaf"
val input_df = (spark.read.

fields(

"sIP", "dIP", "sPort", "dPort", "protocol", "packets", "bytes",

"startTime", "endTime",

"dnsQName" -> "ipfix:yaf_dns/yaf_dns_qr/dnsQName",

"dnsQAddr" -> "ipfix:yaf_dns/yaf_dns_qr/yaf_dns_a/sourcelPv4Address")
.ipfix(input_data_ixia)

input_df.count()

Simple Filter (Spark), Count var dns_flows = input_df-filter($"dport" === 53)
dns_flows .count()

https_flows = input_dffilter($"dport" =:
"sip" "dip", "sport", "dport",
"protocol", "packets", "bytes", "ss|CertificateHash")
https_flows.count()

Column Selection & Display (Spark) 443).select(

Sorting (Spark) https_flows.sort($"bytes".desc).show()

Aggregation (Spark) https_flows.

groupBy($"dip").
avg("packets", "bytes").
sort($"avg(bytes)".desc).count()

SQL Query (SparksQL) input_df.registerTempTable("df")
spark.sqll ELECT dnsQName,
AVG(packets) AS avg_packets,

SUM (packets) AS sum_packets,
AVG(bytes) AS avg_bytes,

SUM (bytes) AS sum_bytes

FROM df

WHERE dnsQName IS NOT NULL
GROUP BY dnsQName

ORDER BY sum_bytes DESC""").count()

Compound Query w/ Join, Filter, & Select (SparkSQL) val bad_names = spark.read.parquet("/user/tonyc/data/sample/bad_dns_names.parquet")
var bad_addrs = (

dns_flows

.join(bad_names, $"dnsQName" === $"name")

.select("dnsQAddr")

.distinct).toDF("addr")

val pwned = input_df.join(bad_addrs, $"dIP"
pwned.count()

= $"addr").drop("addr")

Automated Cluster Testing and Optimization

Carnegie Mellon University
€ 7 © 2018 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

17

Automated Cluster Testing and Optimization

Results and Tuning

Ca,l‘negie Me]_l()n Un]versity Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
. . . © 2018 Carnegie Mellon University release and unlimited distribution.] 1 8
Software Engineering Institute

Results and Tuning

Operational ML Workloads

* Machine Learning workloads benchmark average throughput in GB/s over one month

teand

Type @L @ RandomF Scala ScalaSparkKmeans

35

30

~

Average of Throughput(GB/s)
o
S

15 143 146 1.46 142
134
130 127
\ 125 122
e [i 132 132
125
1.20 118
10 112
1.00
084
05
034 052 oo 032 032 031 0:36 034 034 032 032
031 030 030 030 032 03 031
0.07 006 007 006 007 006 006 006 006 006 006 006 007 006 007 006 006
00 006
Aug 26 Sep 02 Sep 09 Sep 16
Carnegie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
S v 2018 Carnegie Mellon University release and unlimited distribution.]

Software Engineering Institute

Results and Tuning

SparkBench Custom Mothra Workloads

* Mothra Dataframe load time in minutes by input file record count and file size below. Graphs shows two
different raw, unpartitioned file schemes. Green is one file per hour of data and black is twelve files per hour of
data. There is a significant performance improvement when files are collected every five minutes vs. one hour.

load_count 5 Min vs 1 Hour @IXIA 1 Hour Files @IXIA 5 Minute Files

25
20.7

20
£
< 124
38 13
G
g 10
g 7.7
Z 6

5 6.9 5 6.2
34 6.0
27
1.7
0.8 Lt 0.8
\
0
™ 10M 100M 1,000M 10,000M
load_count
Carucgi(\ Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
g M release and unlimited distribution.] 2 0

Software Engineering Institute

© 2018 Carnegie Mellon University

Results and Tuning

SparkBench Custom Mothra Workloads

» Spark Submit completion times in seconds for Mothra and Spark queries. Graph is comparing equivalent data
sets with one file per hour vs twelve files per hour. Caching in the second chart adds some overhead during
load, but there is significant improvement in subsequent tasks reducing average processing time for all
workloads from 293 seconds to 118 seconds a 60% improvement.

®Loud @Filler @Selecl @Sorl @Agyregale @SQL @ Compound SQL

IXIA 5 Minute Files

@ Load @rilter @ Select @ Sort @Aggregate @SAL @ Compound SQAL

36
33
49

Average time (sec)

56

I 1

1

IXIA 5 Minute Files 9
4

40

Average time (sec)

60

90

80

:::::

Carnegie Mellon University
Software Engineering Institute

Automated Cluster Testing and Optimization
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.]

21

Results and Tuning

Mothra Packer Testing

» Load times and throughput for Mothra Packer. Two sample runs of 12 max pack jobs on a 16 core physical
edge node. Rwsender landed 96 files (1 hour) at once with an average of ~271 MB per file (91,346,434
records). The average throughput per process is ~3MB/s. Adding polling and flush overhead, the average of
total throughput is ~27MB/s

Average of mothra_packer.Seconds, Earliest rwreceiver finished.timestamp, Earliest mothra_packer.timestamp, Average of ... Average of MB/s by mothra_packer.thread and mothra_packer.thread
mothra_packerthread @ [pool-2-thre... @[pool-2-thre.. @[pool-2-thre... @ [pool-2-thre... @ [pool-2-thre... @ [pool-2-thre... » mothra_packerthread @[pool-2-threa... @[pool-2-threa... @[pool-2-threa... @ [pool-2-thre... @ [pool-2-thre...
4
150 14595 146
w
2
9 S
a s
= [
a o
.ﬁ L)
o o
3 g
o o
: 2
o
B
k]
@
o
2
g
=
A
o P & &P o0 } 0 o o o oo\ﬂ; o
7:00 PM 7:02PM 7:04 PM 7.06 PM 7.08 PM 710 PM 7.12PM N A\ ¢ K ® & ¢° \J e ° by ¥
mothra_packer.timestamp mothra_packer.thread
Carncgie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
v 2018 Carnegie Mellon University release and unlimited distribution.] 22

Software Engineering Institute

Results and Tuning

Mothra Packer Testing

» Two sample runs 16 core edge node. Rwsender landed 96 files (1 hour) at once with an average of ~271 MB
per file (91,346,434 records). The black dashed line shows the trend of completion time of each pack job.

» Test (a) shows a flat trend line which means that the jobs are keeping up with the files landing from rwsender
while test (b) shows an incline trend which means that jobs are slowing over time and not able to keep up with
the file ingestion. In both cases, one hour of our test data was packed in under 20 minutes, but test (a) should
maintain this speed with more load, while test (b) would continue to slow as more files are landed.

(a) 12 Max Pack Jobs (b) 6 Max Pack Jobs
mothra_packer.thread @ [pool-2-thre... @ [poal-2-thre... @ [pool-2-thie... @[pool-2-thre... @ [pool-2-thre... @ [pool-2-thre.. P - mothia_packer.thread @ [pool-2-thréad-... @ [pool-2-threa.. @ [pool-2-threa... @[pool-2-threa... @ [pool-2-thre... @ [pool-2-thre...
15842 158 500 47456 475
150

] 5 400

8 g

a a

]]

g < 300

2 3

& Ry

o 106 y

£700 410, 3

5 memm-- o

2 £ 200

k<) B

& =y

e s

) @

2 Z 100

50 4442
0 #
6:58 PM 7:00 PM 7:02 PM 7:04 PM 7:06 PM 7:08 PM 1:45PM 1:50 PM 1:55PM 2:00 PM
mothra_packer.timestamp mothra_packer.timestamp
Carnegie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
5 M © 2018 Carnegie Mellon University release and unlimited distribution.] 23

Software Engineering Institute

Results and Tuning

YARN Queue Manager / Capacity Scheduler

+ Certain settings needed to be changed to take full advantage of the cluster resources and utilize dynamic allocation in
Spark. Capacity and Max Capacity are not intuitive and only relate to the queue, not the whole cluster. In order to use
resources beyond the queue (80% * 60% = 48%) , User Limit Factor needs to be set above 1.

* Depending on the number of users, Minimum User Limit and Ordering Policy can be used to avoid conflicts among

analysts for cluster resources.

@ root (100%)
default (1%)
[] DHS (19%)

@ SEI (80%)

- Analyst (40%)

m» Dev (60%)

Effective Users

Dev @ b4
root. SEI.Dev
Capaity Lovel Toa!
v Dev O Enable node labels
Capacity: 60 % _O_ Max Capacity: 100 % —O
= v 4 v Show Peer Level Queues
Access Control and Status Resources
@
state [T Stopped User Limit Factor 21
v Minimum User Limit 100 %
Administer | Anyone | Custom
Queue
Maximum Applications Inherited
& Eioctve NS
Administraters Maximum AM Resource Inherite: | %
. N
6 Submit | Anyone | Custom Priority
Applications
Ordering Policy FFO |

Carnegie Mellon University
Software Engineering Institute

Automated Cluster Testing and Optimization
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public

release and unlimited distribution.]

24

Results and Tuning

Spark Tuning

» Executor Cores
- Typically no more than 5 cores can achieve full write throughput to HDFS

- Setting cores too low (tiny executors) for large jobs on large clusters will cause garbage collection and out of memory errors
- With executor-cores > 1, the DominantResourceCalculator must be selected for YARN

» Executor Memory

- Calculated based on cluster size and executor-cores (Example = 6 nodes, 16 cores/node, 64gb memory/node, 5 executor-cores)

yarn.nodemanager.resource.cpu-vcores * total cluster nodes = total 15 * 6 = 90 total available cores
available cores

total available cores / executor-cores = total available executors 90/ 5 = 18 total available executors
total available executors / total cluster nodes = number of executors per 18 / 6 = 3 number of executors per node
node

yarn.nodemanager.resource.memory-mb / number of executors per node 63 /3 = 21 memory per executor
= memory per executor

memory per executor * (1 - spark.yarn.executor.memoryOverhead) = 21 *(1-.07) =roundDown(19.53)=19 GB =
roundDown(executor-memory) executor-memory
Carnegie Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public

© 2018 Carnegie Mellon University release and unlimited distribution.]

Software Engineering Institute

Results and Tuning

Spark Tuning

» Dynamic Allocation Executor Idle Timeout

This option controls when executors are removed once idle.

Losing an executor due to a timeout and starting a new one adds additional overhead to a spark job.

For some use cases, such as exploratory analysis in Jupyter or Zeppelin, the default timeout of 60s might be too short.

Finding the ideal value for this, per use case, will require an iterative process between system administrators, cluster developers, and
analysts.

Cﬂl‘llﬁ“'i(‘ Mellon University Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
S . . v © 2018 Carnegie Mellon University release and unlimited distribution.] 26
Software Engineering Institute

Automated Cluster Testing and Optimization

Questions?

Contact

bmpowell@cert.org

Cal‘negie Me]_l()n Un]Versity Automated Cluster Testing and Optimization [DISTRIBUTION STATEMENT A] This material has been approved for public
. . . © 2018 Carnegie Mellon University release and unlimited distribution.] 27
Software Engineering Institute

mailto:bmpowell@cert.org?subject=FloCon%20Talk:%20

	Automated Cluster Testing�and Optimization
	Document Markings
	Automated Cluster Testing and Optimization
	Introduction
	Automated Cluster Testing and Optimization
	Automated Testing Tools
	Automated Testing Tools
	Automated Testing Tools
	Automated Cluster Testing and Optimization
	Mothra Refresher
	Mothra Refresher
	Automated Cluster Testing and Optimization
	Test Plan
	Test Plan
	Test Plan
	Test Plan
	Test Plan
	Automated Cluster Testing and Optimization
	Results and Tuning
	Results and Tuning
	Results and Tuning
	Results and Tuning
	Results and Tuning
	Results and Tuning
	Results and Tuning
	Results and Tuning
	Automated Cluster Testing and Optimization

