Operational Cyber Risk Reduction

Dr. April Galyardt
Josh Hammerstein
Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM18-1195
Operational Cyber Risk Reduction

Introduction
Creating Operational Resilience

US Government and DoD can field and operate resilient systems that support the mission even when attacked by a capable adversary.

Enduring Software Challenges

Affordable
Be Affordable such that the cost of acquisition and operations, despite increased capability, is reduced and predictable

Capable
Bring Capabilities that make new missions possible or improve the likelihood of success of existing ones

Trustworthy
Be Trustworthy in construction, correct in implementation, and resilient in the face of operational uncertainties

Timely
Be Timely so that the cadence of fielding is responsive to and anticipatory of the operational tempo of the warfighter
Primary Themes for Cyber Risk Reduction

Better Tools
Can we read the minds of malware authors?

Better Training
How do we bring the experience of an expert instructor to every trainee?

Better Policies & Practices
How do we handle the next Spectre or Meltdown?
Operational Cyber Risk Reduction

Better Tools
Better Tools: The Big Picture

Problem
Malware analysis and reverse engineering can be tedious and time consuming

Solution
Help people better understand what executables do

Tools & Capabilities
- Pharos – Open source, automated executable analysis platform built on ROSE
 - Paper next week on recovering object-oriented structures from executables at ACM CCS
- Office of Naval Research, Total Platform Cyber Protection
 - Remove features (complexity) from executable (i.e., late-stage) software
Automated Executable Program Transformation
Recovery of Semantically Meaningful Variable Names

Original Source Code

```c
cp = buf;
(void)asxTab(level + 1);
for (n = asnContents(asn, buf, 512); n > 0; n--)
{
    printf(" %02x ", *(cp++));
}
```

Decompiled Source Code

```c
v14 = &v15;
asxTab(a2 + 1);
for (v13 = asnContents(al, &v15, 512LL); v13 > 0; --v13)
{
    v9 = (unsigned char*)(v14++);
    printf(" %02x ", *v9);
}
```
What’s Next?

Line-funded Strategic Initiative research project on path finding work in support of Office of Naval Research program

- Combine two approaches with different performance attributes
- Explore binary rewriting aspects of problem in 2019
- Partner with Dr. Arie Gurfinkel to apply PDR model checking algorithms to the problem

Two new LENS projects in 2019

- Investigate accuracy and reliability of ARM executable analysis tools
- Examine efficacy of protections against code reuse (e.g., return oriented programming) attacks

Pharos executable analysis platform undergoing active development

- github.com/cmu-sei/pharos
Operational Cyber Risk Reduction

Better Training
Empower DoD’s Cyber Mission Force to “Train as You Fight”

Develop and transition cutting-edge prototypes and content

- training and exercise platforms
- modeling and simulation tools
- gamified, on-demand training
We are working towards

Requirements

1. Domain model
 What does expert performance look like?

2. Domain collection
 What data should be collected?

3. Statistical modeling
 How does student performance compare to expert performance?
Richer performance data than ever before.

Current practice:
• Subjective assessment of mission readiness
• Multiple choice quiz.

New:

11320 2018-05-17T11:51:14.499Z [root@student ~]
ifconfig

11192 2018-05-18T12:11:51.879Z [student@student ~]
$ chmod shock.sh

10170 2018-05-21T12:08:38.318Z [root@student ~]
iwconfig

10170 2018-05-22T11:44:05.817Z [root@student ~]
ifconfig

11034 2018-05-31T12:13:08.082Z [root@student ~]
rm -f /etc/udev/rules.d/70
 -persistent -net.rules
Ongoing projects

Log Data

Inferences About Capabilities

Requirements

1. Domain model
 What does expert performance look like?

2. Domain collection
 What data should be collected?

3. Statistical modeling
 How does student performance compare to expert performance?

Assessment & Recommendations

- Assess mission readiness
- Optimize training schedule
- Provide detailed feedback
- Refine training modules
What’s Next?

Requirements

1. Domain model
 What does expert performance look like?

2. Domain collection
 What data should be collected?

3. Statistical modeling
 How does student performance compare to expert performance?

Log Data

Inferences About Capabilities

Assessment & Recommendations

- Assess mission readiness
- Optimize training schedule
- Provide detailed feedback
- Refine training modules
Operational Cyber Risk Reduction
Better Policies and Practices
Better Policies and Practices: The Big Picture

Problem
Vulnerability remediation is a complex multi-factor and multi-party process

Solution
Establish and promote best practices for coordinated vulnerability disclosure

CERT/CC has set the standard for vulnerability disclosure practices for three decades
• The CERT Guide to Coordinated Vulnerability Disclosure (2017)
• Co-author ISO/IEC standards on vulnerability disclosure (29147, 30111)
• Chair of vulnerability coordination and Vulnerability Reporting and Data Exchange (VRDX) SIGs in FIRST
• Common Vulnerabilities and Exposures (CVE) board membership since CVE’s inception

Current lines of work
• CVD and associated advisory services provided to the public under DHS and DoD (DC3) sponsorship
Multi-party Coordinated Vulnerability Disclosure (CVD)
Modeling the Operations of the Vulnerability Ecosystem

Goal
Identify factors that affect a successful coordinated vulnerability disclosure

CVD Data

• 46,000 vulnerabilities reported to CERT/CC from 1993-2017
 - 11,000 vulnerability reports were coordinated by CERT/CC

• Information included:
 - vulnerability description
 - all coordination emails
 - date made public (9,600 of the vulnerabilities)
CVD Workload Analysis

Case Midpoint Relative to Date Public

- 9,200 cases with >50% of messages after base date
- 400 cases with ≥50% of messages before public base date

Relative date on which cases reached 50% of their total messages
Public Base Date (PBD) = min(date_public, date_first_published)
Outcomes and Moving Forward

Multiparty CVD has gotten the attention of the Senate due to Meltdown and Spectre
 • CERT guidelines adopted by Intel and Microsoft
 - cited in Congressional testimony
 • Art Manion testimony before Congress

Update *CERT Guide to Coordinated Vulnerability Disclosure*
 • planned for FY19
 • responding to feedback and Congressional interest

Ongoing work
 • CVSS is uncorrelated with actual risk
 - FY19: correlate risk with availability of exploits
 • FY19: work with DHS and DC3 on vulnerability disclosure process and prioritization
Operational Cyber Risk Reduction

Summary
Goal: Field and Operate Resilient Systems

Better Tools
Can we read the minds of malware authors?
Faster, more meaningful malware analysis

Better Training
How do we bring the experience of an expert instructor to every trainee?
Build profiles of expert performance

Better Policies & Practices
How do we handle the next Spectre or Meltdown?
Improve and increase adoption of CVD practices
Resources

Binary Analysis

• Pharos — github.com/cmu-sei/pharos

• “Using Logic Programming to Recover C++ Classes and Methods from Compiled Executables” — edmcmman.github.io/papers/ccs18.pdf

Coordinated Vulnerability Disclosure

• The CERT Guide To Coordinated Vulnerability Disclosure — resources.sei.cmu.edu/library/asset-view.cfm?assetid=503330

• ISO/IEC 29147 — iso.org/standard/45170.html

• ISO/IEC 30111 — iso.org/standard/53231.html

• FIRST Vulnerability Reporting and Data Exchange SIG — first.org/global/sigs/vrdx/

• FIRST Vulnerability Coordination SIG — first.org/global/sigs/vulnerability-coordination/