An investigation of Technical Debt in Automatic Production Systems

Terese Besker*, Antonio Martini*, Jan Bosch* and Matthias Tichy**

*Computer Science and Engineering, Software Engineering Chalmers University of Technology, Göteborg, Sweden

**Institute of Software Engineering and Programming Languages Ulm, Germany

MTD 2017
Ninth International Workshop on Managing Technical Debt
In conjunction with XP 2017
Automatic Production Systems

Used in a high variety of industrial sectors such as

- automated packaging
- production of chemicals
- production of transportation vehicles

Contain mechanical, electrical and software parts and are jointly developed by engineers from the different disciplines.
Research Questions

• RQ1: How much effort do companies developing automatic production systems spend on paying the interest (extra-costs)? On which kinds of Technical Debt?

• RQ2: How much effort do companies spend in managing Technical Debt in automatic production systems?

• RQ3: How much is Technical Debt known and tracked in a company developing automatic production systems?

• RQ4: How familiar are practitioners in companies developing automatic production systems with the Technical Debt terminology?
Research Design

• A combination of quantitative and qualitative research approaches is used.
• The research is conducted by using methodological, source and observer triangulation.
• Survey at an international APS company in Sweden, with several sites in several parts in Europe.
• 40 Complete answers from:
 • 4 Project Managers
 • 3 Product Managers
 • 3 Software Team leaders
 • 3 Line Managers
 • 1 R&D Manager
 • 6 Software Architects
 • 20 Developers
• Qualitative follow-up interviews (8 managers)
Online Web-Survey

• Q1: “Which of the following challenges generate the most negative impact on your daily software development work? Please rank them from 1 to 11.”

• Q2: “How much of the overall development time is wasted because of these issues?”

• Q3: “How much of the overall development effort is usually spent on Technical Debt management activities?”

• Q4: “I track (using tools, documentation, etc.) Technical Debt in our system.”

• Q5: “If you track Technical Debt in your project, what kind of tool(s) do you use?”

• Q6: “How familiar are you with the term "Technical Debt"?”
Effort spent on paying interest and on different types of TD

The company waste on average 32% of the development process
Effort spent on *paying interest* and on different types of TD
Effort spent on *Managing* TD

Management activities necessary to keep Technical Debt at bay:

- Repaying the debt (refactoring the code),
- Finding the debt
- Measuring it
- Understanding the issues
- Managing, keeping track and communicating

This additional managerial extra-cost is, on average, *24 %* of the development time
Tracking and Knowledge about TD

- The practitioners are in general moderately aware of how much Technical Debt they have in their systems.

- As for the systematic tracking, this does not happen a lot.

- This shows that Technical Debt is moderately known even without tracking it.

- The few tools used for tracking Technical Debt, was Jira and Excel.

- The current tools and practices don’t support a better strategic management of Technical Debt.
Familiarity with the Technical Debt terminology

- 5. EXTREMELY FAMILIAR: 2
- 4. VERY FAMILIAR: 10
- 3. MODERATELY FAMILIAR: 7
- 2. SLIGHTLY FAMILIAR: 13
- 1. NOT AT ALL FAMILIAR: 8

Mean - Median
- 2.6
- 2
Implication for industrial practices

- We see a need for practical improvement of Technical Debt management consisting of:
 - Raising the awareness of Technical Debt
 - Increasing its tracking
 - A better visualization and strategic management
 - Need for introduction of Technical Debt-specific tools
Theoretical implications

• Technical Debt is a concept applicable to companies developing automatic production systems, and not only to software companies.

• These results reveal that Technical Debt in automatic production systems companies is a big challenge.

• In comparison with earlier studies, we can see generic software companies and companies developing automatic production systems is quite similar.

• It seems that the worse extra costs paid because of Technical Debt are at requirement and test level, while in the more generic software development the first choice as the most hurtful is architecture.
Thank You

Terese Besker* besker@chalmers.se
Antonio Martini* antonio.martini@chalmers.se
Jan Bosch* jan.bosch@chalmers.se
Mattias Tichy** matthias.tichy@uni-ulm.de

*Computer Science and Engineering, Software Engineering
Chalmers University of Technology, Göteborg, Sweden

**Institute of Software Engineering and Programming Languages
Ulm, Germany