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Problem Statement

Military is interested in autonomy

• Cooperating unmanned systems

• Uncertain environments

• Adapt to change autonomously

Problem: Need systematic techniques for 

estimating the probability of mission success.

• Systems are large and complex

• Too large for formal models

• Stochastic/uncertain environment

But…. Is a simple estimate of mission success 

probability good enough?

• Why did you get 0.85 probability of success?

• What factors influence that result?

• What can you do to improve that result?

Statistical 
Model 
Checker

System ℳ with random inputs 

(e.g., collection of cooperating 

UAS performing a mission)

Predicate 𝝓 to be 

tested (e.g., “mission 

success”)

Estimated 

Probability that 

ℳ ⊨ 𝝓 with relative 

error 𝑹𝑬

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑬𝒓𝒓𝒐𝒓 =
𝑺𝒕𝒅.𝑫𝒆𝒗.

𝑴𝒆𝒂𝒏

Statistical Model Checking
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What is primary factor influencing 
success for the evader?

Perhaps distance characterized by

𝑥𝑝 − 𝑥𝑒
2
+ 𝑦𝑝 − 𝑦𝑒

2

Can we synthesize this automatically 
from the trial data?

Motivating Example
Pursuer/Evader Example

• Random initial positions (𝑥𝑝, 𝑦𝑝) and (𝑥𝑒 , 𝑦𝑒) near center.

• Evader attempts to reach safe zone in corner.

• Faster moving pursuer attempts to catch evader.

Statistical Model Checking (SMC)

• Let ℳ be the model for the pursuer/evader scenario and 

Φ be the property “the evader reaches safe zone”.

• SMC attempts to answer the question, “What is the 

probability that ℳ ⊨ Φ? "

Input Attribution (IA)

• Asks the question “Why do I get a particular SMC result?”

• Analog to counter-example in model checking.

• Expressed in terms of the inputs as model approximation.

Pursuer/Evader Example

Evader
(𝑥𝑒 , 𝑦𝑒)

Pursuer
(𝑥𝑝, 𝑦𝑝)

Safe 
Zone
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Input Attribution – The “Why” of SMC
Problem – Standard SMC provides an estimate on probability that a 

predicate is satisfied, but does not address why a particular result was 

obtained.

Goal – Provide investigator with informative non-redundant 

representation of how system inputs relate to the property being tested:

1. Describes relationship that actually exists in data

2. Is presented in a way that is quantitative and understandable

3. Gives investigator new insights

4. Is resilient to randomness in the system

Approach – Apply machine learning and feature extraction techniques.

• Use Logistic Regression to identify “predictors” that affect the 

probability that a predicate is satisfied.

• Calculate p-values for predictors to indicate significance.

• Look for sets of predictors that can be factored into larger 

expressions.

System ℳ Predicate Φ

Expression p-Value

0.62 𝑎 − 1.01𝑑 2 0.0013

4.3𝑏 0.0042

1.3(2.3 − 𝑐)^2 0.0172

Input Attribution
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Evaluating LR Results (Linear Case)

Name  𝜷 𝒔𝒆( 𝜷) p-Value

− -4.28 0.874 < 10−4

𝑥1 0.154 0.0138 < 10−4

𝑥2 -1.91 0.3551 < 10−4

𝑥3 0.0635 0.0277 0.0219

𝑥4 5.05 2.77 0.0685

Predictors
(input variables)

Constant Term

Positive/negative values 
represent increase/decrease 
of predicate probability. 

Error in 
estimation 
of 𝛽.

• Measure of statistical significance
• Probability that 𝛽 = 0
• >0.05  not statistically significant

This predictor is not 
statistically significant 
since its p-value is 
greater than 0.05. 

Logistic Regression Model:

𝐿 𝑥 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑁𝑥𝑁)

𝐿(𝑥) represents predicted probability 
that input 𝑥 will satisfy the predicate.
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Polynomial Input Attribution

Non-Linear Predictors

• By including non-linear predictors, it may be possible to 

find a statistically significant solution when linear only 

terms fail.

• In our work to date, we have focused on quadratic terms 

(e.g., 𝑥2, y2, xy)

• Higher order or non-polynomial terms could be useful for 

some systems.

Factoring

• Factored polynomials are easier for humans to 

understand.

• Since coefficients are approximated, perfect factorings 

may not be possible.

• Look for approximate factorings which do not adversely 

affect original coefficients.

1.01 𝑥 − 1.01𝑦 2

1.01𝑥2 − 2.04𝑥𝑦 + 1.03𝑦2

Re-expand and accept 
approximation if error is 
within set factor of std. error.

Name  𝜷 𝒔𝒆( 𝜷) p-Value

⋮ ⋮ ⋮ ⋮

𝑥2 1.01 0.0148 < 10−4

𝑥𝑦 -2.04 0.0362 < 10−4

𝑦2 1.02 0.0193 0.0219

⋮ ⋮ ⋮ ⋮

Complete square 
to create candidate 
factoring

Find variable pairs with 
squares and cross terms
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Implementation – Demeter

Demeter Goals

• Parallel infrastructure for SMC of systems with 

probabilistic behaviors.

• Primary target is autonomous systems.

• Integrated Input Attribution 

Demeter Components

• Client runs in web browser (e.g., Firefox)

• Master runs in Apache server with PHP

• Data stored in MySQL database

• Input Attribution uses R statistical system

• Individual simulations conducted in Docker 

containers.  Managed by “Runner”.

Demeter
Master

(Apache+PHP)

Results

(MySQL)

Job

(.smc)

SMC
Runner

Simulation

Docker Container

trial

trial

Input
Attribution

(with R)

SMC
Runner

Simulation

Docker Container

Trials

(.csv)

Demeter
Client

(Firefox)
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Target/Threat Experiment
Scenario

• Drone flies pre-programmed path over area.

• Along path are “targets” to be photographed.

- Close to ground → Better chance of good photo.

• Path also includes “threats” to be avoided.

- Close to ground → More likely to be destroyed.

• Adaptive algorithm with imperfect sensors, sense threats 

ahead and controls altitude.

Inputs
• Number of targets/threats

• Target detector range (down)

• Target/Threat detector range/accuracy (forward)

• Threat range

Predicate
• Drone photographs at least 50% of targets while avoiding 

being destroyed by threats.

Drone path

Famous 
Physicist Bodyguard
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Target/Threat Experiment

Key Observations

• False positives on threats reduce the probability of 

detecting targets.

- Reacting to threats that are not there results in drone 

flying at higher altitude when not necessary and 

missing some targets.

• Increasing number of targets reduces probability of 

survival.

- Drone takes more risks by flying lower to photograph 

targets.

• False negatives on threat and target detection do not 

have statistically significant effect on mission, detection 

or survival probabilities.

- Verified with additional simulations varying false 

negative rate.  Could indicate problem with adaptation 

algorithm controlling drone.

Name  𝜷
mission

 𝜷
detect

 𝜷
survive

Target Detector Range 1.33 1.46

Threat Range -1.57 -1.189 -2.37

Threat Lookahead 0.233 0.194 0.377

Number of Threats -0.0892 -0.0943 -0.0792

Number of Targets -0.0296

Target False Positives -17.81

Threat False Positives -3.26 -10.04 32.74

Simulation Results
#Trials: 22,560
P[SAT-mission]: 0.308
P[SAT-survive]: 0.618
P[SAT-detect]: 0.361
Relative Error: 0.05
Batch Size: 120
Run Time: 10 hours, 6 min

Input Attribution (AUC=0.926)
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Motivating Example - Revisited

Results – Factoring the IA predictors gives us:

0.0602 𝑥𝑒 − 1.03𝑥𝑝
2
+ 0.0561 𝑦𝑒 − 1.09𝑦𝑝

2

With error less than 4𝑠𝑒(𝛽) on each coefficient.

Resulting IA expression very close to square of Euclidean 

distance.  Constant factor represents relation between distance 

and log odds of survival.

Name  𝜷 𝒔𝒆( 𝜷) p-value

𝑥𝑒𝑥𝑝 -0.124 0.0027 < 10−4

𝑦𝑒𝑦𝑝 -0.122 0.0027 < 10−4

𝑥𝑒
2 0.06 0.0031 < 10−4

𝑦𝑒
2 0.056 0.0031 < 10−4

𝑥𝑝
2 0.056 0.0031 < 10−4

𝑦𝑝
2 0.056 0.0031 < 10−4

Simulation Results
#Trials: 36,960
# SAT: 7,900
P[SAT]: 0.214
Relative Error: 0.01
Batch Size: 120
Run Time: 5 hours, 20 min

Input Attribution (AUC=0.77)

Initial hypothesis – Distance 
between pursuer and evader was 
deciding factor for survival of evader.

Pursuer/Evader Example

Evader
(𝑥𝑒 , 𝑦𝑒)Pursuer

(𝑥𝑝, 𝑦𝑝)

Safe 
Zone
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Summary

Input Attribution Addresses the “Why” of SMC

• Shows which variables are most important

• Concise human understandable expressions

• Implementation in DEMETER

- Based on Logistic Regression

- Extended to Non-Linear Attribution

Future Work

• Explore other machine learning techniques

• Partitioned/conditional Input Attributions

• Higher order polynomial and non-polynomial predictors


