Agile Architecture Roadmapping

Eltjo Poort
SATURN 2016 < :G I

© CGI Group Inc. Experience the commitment®

Elth Poort http://eltjopoort.nl

CGI Architecture Community of Practice lead
* Reviewing Bids & Projects
e Standardizing & Improving Architecture Practice

Researcher
* With Universities (VU, Twente, Utrecht, Eindhoven)
e Member of IFIP WG 2.10 Software Architecture

Do we still need Architecture?

Improvement by applying Solution Architecture

Budget predictability 2-3 X better Std dev 32 - 13
Budget overrun 7 X less 22% > 3%
Time overrun 6 X less 48% - 8%
Troubled projects 3 x less 38% 2 13%
Customer satisfaction 1-2 points better 10 point scale
Results delivered +10%

Survey among 49 software development projects between €50,000 and
€2,500,000. Reported by Raymond Slot, PhD Thesis, 2010.

SSo A VU CGl

Principles of Agile Architecting

Decisions are your main deliverable

Keep a backlog of architectural concerns

Let economic impact determine your focus

Keep it small

Use just enough anticipation

5oy : CGl

Principles of Agile Architecting

Decisions are your main deliverable

Keep a backlog of architectural concerns

Let economic impact determine your focus

Keep it small

Use just enough anticipation

T CGl

Traditional architect involvement

Architecture Department

Check
points

> D

Architecture Guidance

Solution Delivery)

Agile team perception of architect involvement

Cal

Decisions are your main deliverable

Focus on Architectural Decisions

e Convey change

Convey implications
Convey rationale & options
Ease of traceability

Agile documentation

Cal

Continuous stream of architectural decisions

Traditional Agile

Sprint | _
Backlog Daily

- Solution
Increment

= . '

Continuous stream of
Improvements

Development

Architactural
decisions

Architecture
. Continuous stream of
.. ® Big Up-Front Design Architectural Decisions

SO \ 2, 8 CaGl

Principles of Agile Architecting

Decisions are your main deliverable

Keep a backlog of architectural concerns

Let economic impact determine your focus

Keep it small

Use just enough anticipation

T CGl

The Architect’s Daily Job

Architecting Microcycle

Identify &
prioritize
architectural
concerns

*\What are my options?
I'll pick this one

Research
possible
solutions

® [] .
o .. Solution &
®e. , o . . ¢ Architect @
® o 0 . (P a
. e © e o

*What problems should | work on?

The Architecting Microcycle

ldentify &

prioritize
architectural

concerns

Research
possible
solutions

CaGi

The Architecting Workflow

Architectural

decisions

A Identify &
A prioritize
= architectural
A concerns
A

A

A

A

Architectural concerns

~—~
o
bl
(@)
ay
@)
\ e

Research
possible
solutions

CaGi

Principles of Agile Architecting

Decisions are your main deliverable

Keep a backlog of architectural concerns

Let economic impact determine your focus

Keep it small

Use just enough anticipation

T CGl

What is architecture about?

“Fundamental concepts or properties of a

Editor

Martin Fowler

ThoughtWorks

fowler@acm.org

Who Needs an Architect?

system in its environment embodied in its
elements, relationships, and in the principles
of its design and evolution”.

[ISO/IEEE]

‘Architecture is about the important stuff.

Whatever that is.”

[Fowler] :

Martin Fowler

TERE SOFTWARE Bublibed by the

andering down our corridor a while

ago, 1 saw my colleague Dave Rice

ina particularly gnumpy mood. My

brick question caused a violent

statement, *We shoulds't intcrview

anyonc who has “architect” on his
resume.” At firse blush, this was an odd nam of
phease, because we usually introduce Dave as
anc of our leading architects.

The reason for his tide schizo-
phrenia is the fact that, even by cur
industry’s standards, “architoct™
and “architccrure™ are terribly
overloaded words. For many, the
term “software architect” fits per-
fectly with the smug controlling im-
age at the ond of Marrix Reloaded.
Yet even in firms that have the
grearsst contempe for thar image,
there's a vital role for the technical
leadership that an architect such as Dave plays.

What is architecture?

When | was fretting over the title for Par-
terns of Enterprise Application Architecture
(Addison-Wesley, veryone who re-
viewed it agreed th chivocture” belonged
in the title. Yet we all felt uncomfortable defin-
ing the word. Because it was my hook, 1 felt
compelled o take 1 seab at dcfining it

My first move was to avoid fuzziness by
just letting my cynicism hang right out. In a
sense, | define architecture 13 3 word we use
when we want o talk abour design but want
to puff it up to make it sound important. (Yes,

<

chitect.) However, as 5o ofien oceurs, inside

the blighted cynicism & 1 pinch of tuh, Un-

derstanding come to me after reading o posting

from Ralph Johnson on the Extreme Program-

ming mailing list. Ifs so good I'll quoe it all.
A previous posting said

The RUP, werking ff the IEEE definificn, defines
architecturs as “the highest level concapt of o sys-
tamm in its anvircnmant. The architscturs of a sol-
wars syskem (at given point in fime) s its orga-
rizafion of sructure of sigribeant components
inkerading through inferfoces, these components
baing composad of seczassively smallec compo-
nents and inferfooss.”

Jehnson responded:

| was @ reviewsr on the |EEE standard that ysed
thes, and | argved usebessly that this was clearky
a completely bogus defirition. There is no high-
est level cancept of o system. Customers have a
different concapt hon developers. Customsrs do
ot cre o all about the skucture of significont
componants, So, parhaps an architcture is the
highest kevel concopt that developers have of a
systom in ity ervironment, Laf's ferget the davel-
epers who just understand their ke pisce. Ar-
chitecturs is he highes level concapt of the ac-
pert developers. 'What mokes component
significant? It s significant because the expert
developers say s

S, a bemer definifion would be ‘In most ssccesshul
sobwere projech, the sxpert developers warking
h h 4 cred urclovaionding of e

you can imagine a similar for ar-

EEE Computer Socie

project

07487 43/01117.00 © 2003 IKEE

After talking to architects and stakeholders on dozens of projects, we
have come to equate the “important stuff” with the stuff that has most

Impact on risk and costs.
Important <- high risk and cost

Architecture as a
Risk- and Cost Management Discipline

Managing Cost and Risks is architecture’s primary business goal
Cost and Risks are prioritizing factors determining architect’s concerns
Architect should be an expert on costing and risk mitigation

Architecture as a risk mitigation mechanism

* Reduce uncertainty in feasibility of solution
* Reduce troubled projects

Architecture as a cost control mechanism

» Better predictability of solution cost
* Less budget overrun

SS=0GICS cal

Risk and Cost Driven Architecture

Solution architecting principles and practices based on a view of

architecture as a risk and cost management discipline

Applicable in agile and traditional engagements

Highly scalable and pragmatic

Architectural decision making based on economic trade-offs
Architecture communication in economic terms

Traceability from requirements to cost

Cal

Architecture as a
Risk- and Cost Management Discipline

Managing Cost and Risks is architecture’s primary business goal
Cost and Risks are prioritizing factors determining architect’s concerns
Architect should be an expert on costing and risk mitigation

Architecture as a risk mitigation mechanism

* Reduce uncertainty in feasibility of solution
* Reduce troubled projects

Architecture as a cost control mechanism

» Better predictability of solution cost
* Less budget overrun

SS=0GICS cal

Principles of Agile Architecting

Decisions are your main deliverable

Keep a backlog of architectural concerns

Let economic impact determine your focus

Keep it small

Use just enough anticipation

T CGl

Architecture should be minimal

Avoid trap of “architecting everything”

Architectures are hard to change

Big architectures obstruct agility

Give designers/developers as much freedom as they can handle
Give yourself chance to keep total overview

Three factors determine optimal amount of up-front design:

Business criticality + Size - Volatility

S C 98

]
ﬁ =5
s

Cal

Principles of Agile Architecting

Decisions are your main deliverable

Keep a backlog of architectural concerns

Let economic impact determine your focus

Keep it small

Use just enough anticipation

T CGl

Just Enough Anticipation

Flow of architectural decisions ahead of development
Metaphor: Runway extended while in operation
e Just long enough to accomodate anticipated airplanes

Key tools to determine right amount of anticipation:

* Dependency analysis

e Technical debt control

e Economic trade-off: Net Present Value, Real Options Analysis

.'°o ‘,-..'. | ': . N CGI

Balance your backlog
Architecture and other solution improvements

Visible Invisible

" NEWAEEIIGEE Architectural,
Positive Added Structural

Value EIGSEHEIA features

Negatlve Technical
Value

Debt

e .- A . Philippe Kruchten Cal

SCRUM and the Architecture Microcycle

Solution Backlog

Architectural decisions

(==

Sprint
Backlog

8 23

Architectural concerns

Solution
Increment

CaGi

SCRUM and the Architecture Microcycle

I Architectural Architectural
decisions concerns

Architecture
Microcycle

Technical
Debt

Stakeholders Solution Backlog Sprint
Backlog

Solution
Increment

S5 s CGl

e * 0%, w Mo 24

Architecting the Time dimension

e Limited usefulness of architecture documents
e perpetually “almost finished”
* already obsolete when they're issued

* Risk of development based on revoked architectural decisions
 Difficulty planning ahead

Architecting the Time dimension

All architecture documentation methods use views
e |SO 42010, TOGAF, Archimate, 4 + 1, ‘Views and Beyond’

* Viewpoints address concerns per stakeholder (group)

What if we added a viewpoint for timing concerns?

Architecting the Time dimension
Evolution Viewpoint

Step 1: Identify events with architectural impact

Event When
expected
Competitor releases next Q4/2017

generation product

Microsoft Windows XP 4/2014
support discontinued

Corilla license contract 5/2017
expires
New version of IBM 11/2015
WebSphere
Project to build System Y Q1 2017
finishes
L]
® ©
e
o, .. o ¢
ot B * o
® o 0 ‘o

Impact type

Business

value + Risk

Risk

Cost

Cost

Business
value + Risk

Impact
Our own product will be harder to sell if we do not match their new
features, which would cause us to lose revenue.

Vulnerabilities no longer patched; implies security risk, e.g. risk of
intrusion and data leaks.

Opportunity for cost reduction by switching to open source
alternative.

Opportunity for maintenance cost reduction by using new features
announced for next version.

System Y (which is interdependent with ours) will require interface
features that are currently not supported by our solution. We need to
build these features or our solution will lose its business value.

. CaGl

Architecting the Time dimension

Step 2: Identify backlog items for solution roadmap

project backlog
user stories
use cases
functional requirements
feature wish-list
acceptance criteria visible Invisible
change request log Posttive ‘;‘If.ﬁ‘iif,ii‘."“‘"
Value PRRSYSSITRN features

Negative Technical
Value Debt

defect database architectural concerns
. risk list

=5 QAU SR CGl

Architecting the Time dimension

Step 3: Dependency Analysis

Logon GPS I/F-A Session Cache Pub/Sub DataPers RuleEng
uci X X

ucza2 X X

ucs X X X

uce X X X
ucr X X X X
ucs X X

uce X X

AT3 X X

AT4 X

ATS X

ATe X X
ATT X

ATS X X X

® ATI X

2R 2. s CGl

Architecting the Time dimension

Step 4: Visual Timeline
Rel 1.3 Rel 2.0 Rel 2.1 Rel 2.2 Rel 2.3
Q1 2017 Q2 2017 Q3 2017 Q42017 Q12018
. N © tit
IS Reporting Releases.
Regulations NextGen
7

>4

\'

—I g

K-

g =

- User feature

Dependency

30

Architectural improvement

- Defect removal - Technical debt reduction

Cal

Architecture Roadmapping

Release strategy 1: value-first
1.0 Rel

Start Rel

cost

- —

1.1 Rel

1.2 Rel

/

2.0

In line with Agile philosophy
May increase TCO (more refactoring)
Too “greedy” algorithm may run project into wall (complete rebuild)

. * Good in volatile environments

31

Cal

Architecture Roadmapping

Release strategy 2. architecture-first
Start Rel 0.1 Rel 0.2 Rel 1.0 Rel 1.1

cost

In line with plan-driven philosophy
Late delivery of value - risk of cancellation

Risk of building wrong architecture (if context changes)
. * Good for complex solutions

.. .'...° . 32 CGI

Architecture Roadmapping

Typically found architecturally significant events:

Project or process milestones, such as delivery and approval
deadlines; also deadlines in dependent projects

Product version/infrastructure upgrades

Business changes

* Changing agreements (KPIs, SLAs), mergers/take-overs, legislative/policy
Changes in availability of resources, e.g. availability of expertise

Architecture Roadmapping

e Anticipation documents often informal
* “roadmap”
* ‘“decision support”
* ‘“strategy document”

* Need stakeholders to identify significant future events!

Architecture Roadmapping

* Improved (more realistic) stakeholder
expectations

» Better prioritization of required
architectural improvements

e Helps architects articulate business
impact of roadmapping scenarios

* Helps architects discuss timing of
architectural improvements

* based on business impact rather than
generic (dogmatic) “rules” like YAGNI

Questions or Comments?

®
...
e & ®
. ‘e ‘o @
® .
& ° L
g ® .
l._. . :
@ * ®

Spare slides follow 36

Exper

CaGi

ience the commitment®

RCDA Practices

Core Practices Supporting Practices Lifecycles

Requirements Analysis

Solution Shaping

Architecture Validation

P Architecture Fulfillment

“Solution” Architecture?

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

4

 RCDA covers all types of IT-based solutions Solution

e software application
e system of systems
 BPO solution

e service solution

e systems integration

_ W
° embedded system Information Systems |3
e software as a service

e Highly scalable
e from 2-week architecture for short-deadline bids...
e ...to 2-year architecture for long-term engagements

----—'

SEES

[]
B
!

e o..'. h), S CGI

@ L . .0 38

References

Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010, March/April). Agility and
Architecture: Can They Coexist? IEEE Software.

Boehm, B. (2010). Architecting: How Much and When? In A. Oram, & G. Wilson,
Making Software: What Really Works, and Why We Believe It . O'Reilly Media.

Brown, N., Nord, R. L., & Ozkaya, I. (2010, November/December). Enabling Agility
Through Architecture. CrossTalk.

Fowler, M. (2003, July/August). Who Needs an Architect? IEEE Software, pp. 2-4.

Jansen, A., & Bosch, J. (2005). Software Architecture as a Set of Architectural Design
Decisions. Working IEEE/IFIP Conference on Software Architecture.

Malan, R., & Bredemeyer, D. (2002, september/oktober). Less is More with Minimalist
Architecture. IT Pro, pp. 46-48.

Poort, E. R., & van Vliet, H. (2012). RCDA: Architecting as a Risk- and Cost
Management Discipline. Journal of Systems and Software, 1995-2013.

Poort, E. R. (2014, Sept/Oct). Driving Agile Architecting with Cost and Risk. IEEE
Software.

Slot, R. (2010). A method for valuing architecture-based business transformation and
. measuring the value of solutions architecture. Amsterdam.

! . 39 CGI

