
Suricata Tutorial

FloCon 2016

Agenda

● Setup
● Introduction to Suricata
● Suricata as a SSL monitor
● Suricata as a passive DNS probe
● Suricata as a flow probe
● Suricata as a malware detector

VirtualBox setup

● File -> Preferences
○ Apple: ‘VirtualBox -> Preferences’

● Network -> Host Only Network (tab)
● Add network vboxnet0

VirtualBox Port Forwards

● 2222 SSH
● 5601 Kibana4
● 5636 Evebox
● 8000 Scirius

Setup

● We have USB keys with OVA files
● Please copy to local disk first
● Pass on USB key
● File -> Import Appliance. Select the OVA file.
● Username “suricata”. Password “suricata”
● ssh suricata@localhost -p2222

About us

● Eric Leblond - Freedom Fries
● Victor Julien - Cheese and Tulips

About us

● Victor Julien
○ Suricata lead developer
○ Open Source Hippie

● Eric Leblond
○ Suricata core developer

■ packet acquisition
■ unix socket
■ redis

○ Stamus Networks co-founder
○ Netfilter coreteam member

about OISF

● Mission

● Funding

● Support

● Code

● Community

The Open Information Security Foundation
is a US based 501(c)3 non-profit foundation

organized to build community and to support open-
source security technologies like Suricata,

the world-class IDS/IPS engine.

Our Mission

OISF’s Funding

● Consortium Members - Platinum, Gold, Bronze…
new “Start-Up” level coming.

● Grant with Department of Energy

● Suricata Training Events

Suricata Community Events

● 2-Day Trainings - West Coast (US), East Coast
(US), Europe

● Developer Training - September 12th, Paris

● Suricata User Conference - November 9-11,
Washingon, DC

www.oisf.net for information!

http://www.oisf.net
http://www.oisf.net

Note about the PCAPS

● taken with permission from malware-traffic-analysis.net
● many thanks to Brad at malware-traffic-analysis.net

Introduction to Suricata

Who still knows their network?

● Increasing complexity
● BYOD
● IoT
● VM's and containers
● ICS/SCADA

Suricata is an engine for...

Network Intrusion Detection

Network Intrusion Prevention

Network Security Monitoring

IDS

● Intrusion Detection System
● Passive
● Out of line
● On tap or span port

IPS

● Intrusion Prevention System
● Active
● Inline
● Router or bridge

NSM

● Network Security Monitoring
● Not ‘just’ generating alerts, but also informational events like HTTP

requests, TLS transfers, etc
● Full Packet Capture (FPC) for being able to dig deep into traffic if necessary
● Produces LOTS of data

Suricata Ecosystem

● Distributions
○ SELKS & Amsterdam
○ SecurityOnion
○ pfSense & OPNsense

● Management tools
○ Evebox
○ Scirius
○ Kibana

● Event processing
○ Mobster
○ Barnyard2
○ Logstash

Suricata’s main features

● Inspect traffic for known bad using extended Snort language
● Lua based scripting for detection
● Unified JSON output for easy post-processing
● File extraction
● Scalable through multi-threading

Technical Features

● IPv4/IPv6, defrag, flow tracking
● TCP tracking, reassembly
● Port independent protocol detection
● Stateful HTTP, SMTP, DNS, TLS parsing
● File extraction for HTTP, SMTP
● Rule language additions: SSH, TLS, file names, type & md5
● IP Reputation, GeoIP, IP list support
● Lua scripting for extending detection and outputs
● (Net)flow like output logging

Suricata and performance

● Scalability via multithreading
○ Almost linear scalability
○ Around 450-650 Mbps per core

● 1Gbps
○ Multicore required
○ Straight setup

● 10Gbps
○ Possible on commodity hardware
○ Serious tuning needed

Suricata 2.0

● Current Stable
● Eve, an all JSON alert and event stream
● For use with Splunk,Logstash and native JSON log parsers
● DNS parser, matcher and logger
● “NSM runmode” -> only events, no rules and alerts

Suricata 3.0

● In Release Candidate cycle. Due January 27th.
● SMTP file extraction and logging
● Performance & scalability!
● Lua scripting++
● Multitenancy
● Redis output
● Flow logging

Rulesets

● 2 main sources of IDS rules
○ Emerging Threats (Proofpoint)
○ VRT/Talos (Sourcefire/Cisco)

● Both have free and paid sets
● Emerging Threats is optimized for Suricata

Introduction to SELKS

● Ready to use Linux distribution featuring
○ Suricata 3.0*
○ Elasticsearch: database
○ Logstash: data pipeline
○ Kibana: dashboard and visualization interface
○ Scirius: suricata ruleset management

● Availability
○ As a Live and Installable ISO
○ GPLv3

Introduction to “Amsterdam”

● Goals
○ Provide features of SELKS via docker containers
○ Objective is super fast installation

● Amsterdam provides
○ Latest ELK and suricata

● Basic setup sniffing traffic on physical host:
○ pip install amsterdam
○ amsterdam -d flocon -i wlan0 setup
○ amsterdam -d flocon start
○ firefox http://localhost:8000

Starting “Amsterdam”

● boot VM
● login directly or “ssh suricata@localhost -p2222”
● run “amsterdam -d flocon start”
● open a new SSH connection to the VM
● in ~/flocon the various “Amsterdam” components have their output dirs

Testing Amsterdam

● “Amsterdam” runs on the “eth0” in the VM, connected to the host only
network

● from the VM we can “replay” pcaps to “Amsterdam”
● sudo tcpreplay -i eth0 pcaps/2015-01-09-traffic-analysis-exercise.pcap
● now tail -f ~/flocon/suricata/stats.log

Suricata commandline

● General Suricata commands
○ -v, -h
○ --build-info
○ -i eth0
○ - r <pcap file>
○ -S <rule file>
○ -T -> test config & rules

● To run command inside running container:
○ docker exec flocon_suricata_1 suricata -V

Suricata as a TLS monitor

TLS tracking in Suricata

● Suricata tracks SSL/TLS sessions
● No decryption capabilities
● Looking at TLS still valuable

○ heartbleed
○ certificate validation

TLS Logging

● subject
● issuer
● fingerprint
● server name indication (SNI)
● protocol version

SSL Logging Example

{"timestamp":"2016-01-06T11:20:31.431359+0100","flow_id":105716325071680,"
in_iface":"eth0","event_type":"tls","src_ip":"192.168.1.6","src_port":48952,"
dest_ip":"173.194.65.132","dest_port":443,"proto":"TCP","tls":{"subject":"C=US,
ST=California, L=Mountain View, O=Google Inc, CN=*.googleusercontent.com",
"issuerdn":"C=US, O=Google Inc, CN=Google Internet Authority G2", "fingerprint":"
b2:e7:5a:d1:e4:3a:a9:a8:37:f5:13:b0:1a:88:70:a2:60:fe:8a:4a", "sni":"lh3.
googleusercontent.com","version":"TLS 1.2"}}

Replay pcap containing TLS

● Download the pcap as suricata user
○ wget http://home.regit.org/~regit/flocon-tls.pcap

● Replay the pcap
○ sudo tcpreplay -i eth0 flocon-tls.pcap
○ Wait 90s for completion

http://home.regit.org/~regit/flocon-tls.pcap

Usage in Kibana

● Create the following visualization and add them to a dashboard
○ Pie with TLS version
○ Bar diagram with Top issuer DNs splitted by server IP

● Demonstration
○ Top SNI timeline with point being unique servers

Using jq

● JQ is a command line tool to operate filtering and transformation on JSON
● Install it

○ sudo apt-get install jq

● Basic usage is to enhance format
○ cd flocon/suricata
○ cat eve.json | jq ‘.’
○ cat eve.json | jq -c ‘.’
○ tail -f eve.json | jq -c ‘.’

Using jq

Select only TLS events

cat eve.json | jq 'select(.event_type=="tls")'

Use jq to show only sni and issuerdn

cat flocon/suricata/eve.json | jq '{ sni:.tls.sni, issuerdn:.tls.issuerdn}'

Find self signed certificates

cat eve.json | jq 'select(.event_type=="tls" and .tls.subject==.tls.issuerdn)'

Using TLS detection

● keywords to match on issuerdn, subject, fingerprint
● combine with protocol detection for TLS on non-std ports
● HTTP & other protocols on port 443
● Lua

Alert example:

alert tls any any -> $SERVERS any (tls.issuerdn:!"C=NL, O=Staat der
Nederlanden, CN=Staat der Nederlanden Root CA";)

Alerting on self-signed certificates

The rule:

alert tls any any -> any any (msg:"SURICATA TLS Self Signed Certificate"; flow:established; luajit:self-
signed-cert.lua; tls.store; sid:999666111; rev:1;)

The script

Exercise: tls lua script (1/2)

● Download the ruleset on laptop
○ http://home.regit.org/~regit/tls-self-signed.tgz

● Connect to
○ http://localhost:8000

● Click on “Sources”, then “add source”
● Select Archive + Upload
● Click “Suricata,” then “ruleset actions”
● Select “build” and ”push”

http://home.regit.org/~regit/tls-self-signed.tgz
http://home.regit.org/~regit/tls-self-signed.tgz
http://localhost:8000
http://localhost:8000

Exercise: tls lua script (2/2)

● Activate tls-store in yaml:
○ sudo vi flocon/config/suricata/suricata.yaml
○ Switch enabled to yes for tls-store

● Restart suricata
○ docker restart flocon_suricata_1

● Replay flocon-tls.pcap
● Refresh suricata page of scirius to see alerts
● Check that certificate are created

○ openssl x509 -in flocon/suricata/1452462998.778376-1.pem -text

Suricata as a passive DNS
probe

Suricata DNS tracking

● Suricata does stateful DNS tracking for UDP and TCP
● Stateful in the sense that requests and responses are matched

Suricata DNS Logging

● log DNS transactions in EVE
○ file
○ syslog
○ redis
○ unix socket
○ lua script(s)

● log the data of various record types
○ A, AAAA
○ MX, PTR
○ TXT

Exercise: NXDOMAIN

● Lets try to look into NXDOMAIN responses
● tcpreplay -M1 -i eth0 pcaps/2015-02-15-traffic-analysis-exercise.pcap
● Kibana:

○ In Discover tab, search “event_type:dns”, then save the search as “DNS events”
○ In Visualize tab, select Pie Chart. From Saved Search. Select “DNS events”
○ In Buckets (left) select split slices, Aggregation “terms”, select field “dns.rcode.raw”
○ Save as “DNS Error”
○ In Dashboard tab: “Add Visualization” and select “DNS Error”
○ In Dashboard tab: “Add Visualization”, “Searches” tab, then “DNS Events”

Exercise: DNS types pie graph

● Create a pie diagram of the top 10 used DNS types
● Hint: use dns.rrtype.raw

Exercise: show DNS names with TTL < 100

● Create visualization in Kibana
● Hint: search for “dns.ttl:[0 TO 99]”

Suricata as a flow probe

Suricata flow tracking

● Suricata keeps ‘flow’ records
○ bidirectional
○ uses 5 or 7 tuple depending on VLAN support
○ used for storing various ‘states’

■ TCP tracking and reassembly
■ HTTP parsing

● Flow records are updated per packet
● Flow records time out

Suricata Flow Output

● Two different outputs with similar data
● ‘flow’

○ Bidirectional

● ‘netflow’
○ Unidirectional

● Data contained
○ IP tuple
○ Duration and volumetry
○ Application layer info

Suricata Flow Logging

● Flow Hash management is done asynchronously
● A flow is timed out after no packets have been seen for it for some time
● When a flow is timed out, it can be logged
● The logging API allows for logging to:

○ file
○ syslog
○ redis
○ unix socket
○ lua script(s)
○ or any combination of the above

Flow output records

● bidirectional
● IP protocol, source, destination, source port, destination port
● packet count, bytes count
● start time stamp (first packet), end time stamp (last packet)
● L7 protocol as detected based on traffic content
● TCP

○ flags seen
○ state at flow end

Flow Logging Example

{"timestamp":"2009-11-11T02:01:04.731888+0100","flow_id":105716325086112,"
event_type":"flow","src_ip":"192.168.2.9","src_port":2432,"dest_ip":"
174.133.12.162","dest_port":80,"proto":"TCP","app_proto":"http","flow":
{"pkts_toserver":26,"pkts_toclient":36,"bytes_toserver":1885,"bytes_toclient":
47934,"start":"2009-11-11T02:01:02.937818+0100","end":"2009-11-11T02:01:
04.731888+0100","age":2,"state":"closed","reason":"shutdown"},"tcp":{"tcp_flags":"
1b","tcp_flags_ts":"1b","tcp_flags_tc":"1b","syn":true,"fin":true,"psh":true,"ack":true,"
state":"closed"}}

Using Lua scripts for output

Inject traffic in the VM

● sudo tcpreplay -M1 -i eth0 pcaps/2015-*
○ starts a slow replay

● tail -f ~/flocon/suricata/eve.json | jq -c ‘select(.event_type==”flow”)’

Kibana visualization

● Timeline with flow count
● Timeline with mean value of flow duration
● Timeline with mean value of flow duration per protocol
● Donut with source, proto, destination

Scripting flow events in Python

● JSON module is official
● Deserialization via a single function
● Access to JSON like you access to a dictionary

Scripting JSON: example in Python

import json

with open('eve.json') as f:

 for line in f:

 event = json.loads(line)

 print event[‘event_type’]

Python scripting

Display events in the classical format

src ip:src port -> dst ip:dst port

Scripting JSON: example in Python

import json

with open('eve.json') as f:

 for line in f:

 event = json.loads(line)

 if event['event_type'] == 'flow':

 print("%s:%d --> %s:%d" % (event['src_ip'], event['src_port'], event['dest_ip'], event['dest_port']))

Python scripting

Display events in the format

src ip:src port -> dst ip:dst port [pkt_count]

Scripting JSON: example in Python

import json

with open('eve.json') as f:

 for line in f:

 event = json.loads(line)

 if event['event_type'] == 'flow':

 print("%s:%d --> %s:%d [pkts %d]" % (event['src_ip'], event['src_port'], event['dest_ip'], event['dest_port'], event['flow']
['pkts_toserver']))

Python scripting

Add application protocol or layer 3 protocol if not available to the display

Scripting JSON: example in Python

with open('/tmp/eve.json') as f:

 for line in f:

 event = json.loads(line)

 if event['event_type'] == 'flow':

 if event.has_key('app_proto'):

 app_proto = event['app_proto']

 else:

 app_proto = event['proto']

 print("%s:%d - %s -> %s:%d [pkts %d]" % (event['src_ip'], event['src_port'], app_proto, event['dest_ip'], event
['dest_port'], event['flow']['pkts_toserver']))

Suricata as a malware
detector

Suricata as a malware detector

● Rule/signature based detection
● More the ‘traditional’ IDS functionality
● Emerging Threats ruleset has strong focus malware

○ landing pages
○ CnC
○ Lua detect scripts for infections

■ https://github.com/EmergingThreats/et-luajit-scripts
○ “Open” version loaded by default in “Amsterdam”

https://github.com/EmergingThreats/et-luajit-scripts
https://github.com/EmergingThreats/et-luajit-scripts

Start your replay engines

● sudo tcpreplay -M1 -i eth0 pcaps/2015-*
○ starts a slow replay

● tail -f ~/flocon/suricata/fast.log
● tail -f ~/flocon/suricata/eve.json | jq -c ‘select(.event_type==”alert”)|.alert’

Bonus

cat ~/flocon/suricata/eve.json | jq -c 'select(.alert.signature=="ET POLICY
Outdated Windows Flash Version IE")|.payload' -r|base64 -d|grep -i flash

It’s a bit dangerous, so be careful

Short Demo of Evebox

● Evebox is a front-end to ElasticSearch with EVE data
● To try it, add a port-forwarding rule to VirtualBox for TCP/5636
● I’ll give a quick demo
● Try yourself at http://localhost:5636

Exercise: show Alerts on map

● In visualization, use Tile Map
● Use “Geo Coordinates”

Unix socket runmode

● A way to analyse fast a huge amount of pcap files
○ Coming from a honeypot
○ …

● Limitation in pcap reading mode
○ Detection engine optimisation can take 30 s or more
○ We need to skip this part

● In unix socket mode, suricata
○ Open a unix socket
○ wait for pcap file to analyse
○ output is done in specified directory

Showing Alerts in Wireshark

● Add EVE info to wireshark
● Done via suriwire plugin
● https://github.com/regit/suriwire

PCAP credit: malware-traffic-analysis.net

Supporting Suricata

● Contribute to Suricata
● Become an OISF Consortium Member
● Host one of our 2-day Suricata Training Events
● Put us in touch with Trainers and (always!) Developers
● Follow Us - @OISFoundation and @Suricata_IDS
● Sponsor the 2016 Suricata User Conference - Washington, DC

5 Day Developer Training

● Paris, France
● Hosted by Mozilla
● Week of September 12th

JOIN US!
2nd Annual Suricata User Conference

November 9 - 11, 2016
www.oisfevents.net

Thank You!

The Open Information Security Foundation

www.oisf.net

Suricata

www.suricata-ids.org

http://www.oisf.net
http://www.oisf.net
http://www.suricata-ids.org
http://www.suricata-ids.org

