Exploring the Stability of Software with Time-Series Cross-Sectional Data

Jukka Ruohonen, Sami Hyrynsalmi, Ville Leppänen
University of Turku, Finland
Objectives

- **Primary**: empirical evaluation of Robert C. Martin’s object-oriented design principle with a case study
 - Data: 73 versions and 14 packages from Vaadin
 - Martin’s argument does not hold (negative result)

- **Secondary**: explore the use of time-series cross-sectional (TSCS) modeling in the software metrics context
 - Prolific because of the longitudinal dimension (cf. drift)
 - Challenging to estimate robustly
Martin’s (1994) Metrics

- Object-oriented package-level design metrics
 \[\text{Instability} \equiv \text{Many dependencies} \]
 \[\Rightarrow \text{Related to the concept of logical stability ("ripples") } \]

- Stable (no coupling) classes and packages should be abstract

- A class (package) should depend towards stable counterparts

- Abstraction = \(\frac{\text{Abstract classes}}{\text{All classes}} \)

- Instability = \(\frac{\text{Outward dependencies}}{\text{Inward dependencies} + \text{Outward dependencies}} \)
Martin’s Argument

Jukka Ruohonen et. al
Exploring the Stability of Software with TSCS Data
The Longitudinal Dimension

- **Packages**
- **Classes**
- **Methods**
- **Fixed defects**

Jukka Ruohonen et. al
Exploring the Stability of Software with TSCS Data
Time-Series Cross-Sectional Estimation

- Two dimensions: versions (time) \times packages (cross-sections)
- Can be estimated with least squares and dummy variables
- Many statistical challenges
 - Correlations across time and between cross-sections
- Encapsulation and inheritance were used as controls
- Martin’s argument also requires aggregation
- Hierarchical estimation across architecture levels?
Thank you

Questions?