Open Systems Architecture: Progress and Challenges
Forrest Shull, Harry Levinson, Thomas DuBois
Michael Bandor, Michael McLendon, Doug Schmidt

Software Solutions Conference 2015
November 16–18, 2015
Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003005
Agenda

Background

Panel Introduction and Discussion
Open Systems Architecture: Progress & Challenges

Background
What is the DoD facing?

DoD wants

- faster response to changes in threat
- technology for improved performance
- interoperability
- multiple, reliable sources of supply
- supportable, sustainable systems

But the DoD cannot afford to pay for it.

How is the DoD going to handle this situation?

DoD wants to take advantage of

- the marketplace
- the commonality within its reach
- potential efficiencies

From “Open Systems for Executives” Executive Workshop by Dr. Carol Sledge, Tricia Oberndorf, Software Engineering Institute, 2009
Open Systems Is An Answer

Standards and conformance management make the marketplace work for the DoD

A systems vision and common architecture perspective helps the DoD exploit commonalities and provides the guide for evolution.

A business strategy provides the framework for achieving efficiencies.

Open systems—it makes (business) sense.

From “Open Systems for Executives” Executive Workshop by Dr. Carol Sledge, Tricia Oberndorf, Software Engineering Institute, 2009
2) OPEN SYSTEMS APPROACH.—The term “open systems approach” means, with respect to an information technology system, an integrated business and technical strategy that—

(A) employs a **modular design** and uses widely supported and consensus-based standards for key interfaces;
(B) is subjected to successful validation and verification tests to **ensure key interfaces comply** with widely supported and consensus-based standards; and
(C) uses a **system architecture that allows components to be added, modified, replaced, removed, or supported by different vendors throughout the lifecycle** of the system to afford opportunities for enhanced competition and innovation while yielding—

(i) significant cost and schedule savings; and
(ii) increased interoperability.
What is an open system?

A collection of interacting components designed to satisfy stated needs with the interface specification of components

• fully defined
• available to the public
• maintained according to group consensus

in which the implementations of components are conformant to the specification.

“Open Systems: What’s Old is New Again” Oberndorf/Sledge
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=18718
What is Open Systems Architecture (OSA)?

Open Systems Architecture is a strategy integrating business and technical practices to yield severable modules which can be competed.

Components can be... Added / Replaced / Removed by different vendors

Open Business Model

Technical Architecture
OSA is Good Architecture Engineering

Most defining aspects of being an open system architecture are based on sound system architecture engineering:

• Good modularity, i.e. components are major architecture-level subsystems exhibiting properties of single abstraction, high cohesion, low coupling, high encapsulation
• Well-defined components and interfaces
• Use of interface standards rather than proprietary interfaces

However the benefits of OSA, such as increased competition and avoidance of vendor lock, require multiple suppliers of separately procurable components to use the same:

• Component boundaries
• Interfaces
• Interface standards

Open system architectures are important, but other things are important too:

• Business and engineering-tradeoffs must be made

No system architecture is completely open.
Challenges Driving OSA Development & Use

Technical Challenges:

• Ad Hoc Architectures
• Legacy Code Base
• Proprietary Interfaces
• Low Interoperability, Maintainability, and Extensibility
• Isolation, removal, or replacement of US-only software for foreign military sales (FMS)

Acquisition Challenges:

• Vendor Lock
• Lack of Competition
• Lack of Data Rights
• Late Deliveries
• High Lifecycle Costs
Open Systems Architecture: Progress & Challenges

Panel Introduction & Discussion
Panel Introduction

Moderators:
Forrest Shull Carnegie Mellon/Software Engineering Institute (SEI)
Harry Levinson Carnegie Mellon/SEI

Panel:
Thomas DuBois The Boeing Company
Michael Bandor Carnegie Mellon/SEI
Michael McLendon Carnegie Mellon/SEI
Doug Schmidt Vanderbilt University & Carnegie Mellon/SEI
Open Systems Architecture: Progress & Challenges

Panel Discussion
For Additional Information

Forrest J. Shull, Ph.D.
Harry Levinson
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Voice: (703) 247-1372 - Shull
 (412) 268-4148 - Levinson
FAX: 412 / 268-5758

Email: fjshull@sei.cmu.edu
 hll@sei.cmu.edu

www.sei.cmu.edu
An *interface standard* is a widely-available document that specifies interfaces including services provided/required, protocols, message and data formats, etc.

- Standards may include ambiguities, implementation-dependent parts, and extensions that can result in incompatibilities and vendor lock.
- Use of implementation-dependent parts and extensions should be absolutely necessary, justified, encapsulated, and well-documented.

A interface *profile* is a set of one or more interface standards defining specific subsets (and potentially extensions) of these standards. Compliance with the same interfaces or interface profiles promotes:

- **Intra**operability is between two system-internal components
- **Inter**operability is between a system-internal component and an external system

Any use of proprietary or vendor-specific profiles should be absolutely necessary, justified, hidden via encapsulation, and well-documented.
Modular Open Systems Approach – Modularity

An architecture is modular to the degree to which it consists of architectural components with the following properties:

1. **Architecture-Level** – Components are architecture-level subsystems.

2. **Single Abstraction** – Each component models (abstracts) the important aspects of a single relevant thing or concept in the application domain (e.g., avionics, sensors, propulsion, and weapons), user interface (e.g., screens, graphs, and icons), or technological domain (e.g., computers, networks, middleware, and OS).

3. **High Cohesion** – All of the parts of each component are necessary to implement the component’s abstraction and the component does not contain any parts that are unrelated to its abstraction.

4. **Low Coupling** – The interfaces between these components are minimized in number, scope, and complexity (e.g., number and type of parameters).

5. **High Encapsulation** – The components are treated as black boxes that hide the implementations of their functionality behind well-documented visible interfaces that cannot be bypassed.