Tactical Cloudlets: Moving Cloud Computing to the Tactical Edge
Grace Lewis, Ben Bradshaw, Sebastián Echeverría, Dan Klinedinst, James Root, Keegan Williams

Software Solutions Conference 2015
November 16–18, 2015
Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003033
Motivation

Soldiers, first responders and field personnel operating in tactical environments increasingly make use of mobile systems for mission support.

However, dynamic context, limited computing resources, disconnected-intermittent-limited (DIL), network connectivity, and high levels of stress pose a challenge for mobile systems in tactical environments.
Cyber-Foraging

Cyber-foraging* is the leverage of external resource-rich surrogates to augment the capabilities of resource-limited devices.

Two main forms of cyber-foraging:

- **Computation Offload**
 - Offload of expensive computation in order to extend battery life and increase computational capability.

- **Data Staging**
 - Improve data transfers between mobile computers and the cloud by temporarily staging data in transit on surrogates.

Tactical Cloudlets

Forward-deployed, discoverable, virtual machine (VM) based cloudlets that can be hosted on vehicles or other platforms and provide

- infrastructure to offload computation
- forward data-staging for a mission
- data filtering to remove unnecessary data from streams intended for dismounted warfighters
- collection points for data heading for enterprise repositories
Tactical Cloudlet Operations

1. Cloudlet Discovery
 - Mobile device discovers proximate cloudlets
 - Mobile device queries cloudlets for available capabilities
 - (Optional) Mobile device downloads clients for capabilities (apps)
 - Mobile devices uses cloudlet metadata to select the “best” cloudlet

2. Cloudlet Provisioning and Setup
 - Mobile device requests capabilities
 - Cloudlet sets up capabilities on demand (shared and non-shared)
 - Cloudlet informs mobile device that capabilities are ready

3. Application Execution
 - Mobile device interacts with capabilities on cloudlet
Tactical Cloudlet Architecture
Tactical Cloudlets Features

<table>
<thead>
<tr>
<th>Capability</th>
<th>Edge Characteristics</th>
<th>Intermittent cloudlet-enterprise connectivity</th>
<th>Mobility</th>
<th>Limited battery power</th>
<th>Dynamic missions</th>
<th>Limited technical skills in the field</th>
<th>Potentially hostile environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Requirements</td>
<td></td>
<td>Disconnected operations</td>
<td>Quick response time</td>
<td>Low energy consumption</td>
<td>Ease of redeployment</td>
<td>Ease of deployment</td>
<td>Trusted identities</td>
</tr>
<tr>
<td>Pre-Provisioned Cloudlets with App Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Packaging of Service VMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal Cloudlet Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudlet Management Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudlet Handoff/Migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secure Key Generation and Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Pre-Provisioned Cloudlets with App Store

Applications statically partitioned into a client and server
- Very thin client runs on mobile device (App)
- Computation-intensive server runs on cloudlet (Service VM)

Capabilities as services
- Service VM provides a self-contained capability and exposes a simple interface

Virtual machines as service containers
- VMs can be started and stopped as needed based on number of active users therefore providing scalability and elasticity
- Also enables legacy system reuse

Request-Response interactions between clients and cloudlets
- Enables easy detection of failed communication between mobile devices and cloudlets
- Also minimal effect on mobile devices if computation needs to be restarted or migrated
Standard Packaging of Service VMs

- Standard format for Service VMs (.csvm) so these can be easily loaded from the cloudlet disk drive, an enterprise Service VM repository, a thumb drive, or a mobile device connected via USB or Bluetooth to the cloudlet
- Service metadata (JSON file): service ID, port, version, description, tags, shared/non-shared, minimum memory, ideal memory
- VM image files — one for the disk image and one for the state/memory image that contain a suspended Service VM
Optimal Cloudlet Selection

Useful when there is more than one cloudlet available

Architecture enables different algorithms to be plugged in

Implemented three algorithms

- CPU-Based Ranker: Selects the less loaded cloudlet based on CPU utilization
- CPU Performance Ranker: Also takes into consideration CPU speed
- Memory Performance Ranker: Takes into consideration free memory and CPU cache
Cloudlet Management Component

Lightweight, web-based interface that enables easy deployment and redeployment of capabilities

- Service VM creation, edit and deletion
- Service VM import and export
- Service VM Instance start, stop and migration
- Cloudlet-Ready App repository (i.e., app store)
Cloudlet Handoff/Migration

Manual handoff enables scenarios in which a user is migrating capabilities from a fixed cloudlet to a mobile cloudlet to support field operations, as well as reintegration back to the fixed cloudlet.

Goal in the future is to support automatic migration based on for example signal strength, load balancing or a more powerful surrogate in proximity.
Secure Key Generation and Exchange (FY15 Work)

<table>
<thead>
<tr>
<th>Step 1: Bootstrapping</th>
<th>Step 2: Pairing</th>
<th>Device Credential Revocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Generation of Server Credentials using IBE (Identity-Based Encryption)</td>
<td>• Generation of Device Credentials using IBE</td>
<td>• Automatic due to timeout: Bootstrapping requires setting up mission length</td>
</tr>
<tr>
<td>• Setup of RADIUS Server with Server Credentials</td>
<td>• Transfer to device using Bluetooth or USB, plus visual confirmation</td>
<td>• Manual due to known loss or compromise: Server Management component has revocation option</td>
</tr>
</tbody>
</table>

Step 3: WiFi Authentication

RADIUS Server implements Wi-Fi WPA2-Enterprise 802.1X EAP-TTLS with PAP

- Device receives server credentials and validates
- Devices sends its credentials for validation

Step 4: API Requests

- Device exchanges encrypted messages with the server
- Each exchange is validated against authorized device list
Summary

Presented an architecture and implementation of cyber-foraging in tactical environments

Characteristics of tactical environments were mapped to system requirements for survivability and then to tactical cloudlet features

Next steps are

• Develop and evaluate a set of rankers for different service characteristics
• Support automatic/opportunistic migration
• Architectures for data staging
• Integration with DTN (Delay Tolerant Networking) to address DIL environment challenges

Available on GitHub as KD-Cloudlet: https://github.com/SEI-AMS/pycloud
Contact Information

Grace A. Lewis
Advanced Mobile Systems (AMS) Initiative

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Phone: +1 412-268-5851
Email: glewis@sei.cmu.edu
WWW: http://www.sei.cmu.edu/staff/glewis/

Come visit our demo during the breaks!