Incremental Lifecycle Assurance of Critical Systems
Peter Feiler

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Incremental Lifecycle Assurance Objectives

Improve critical system assurance through

• Improved requirement quality through coverage and managed uncertainty

• Improved evidence quality through compositional analytical verification

• Measurably reduced certification related rework cost through virtual integration and verification automation
Outline

Critical system assurance challenges
Incremental life cycle assurance approach
Year One Accomplishments
Critical System Assurance Challenges

- **Where Faults are Introduced**
 - 70%
 - 20%
 - 10%
- **Where Faults are Found**
 - Requirements Architecture Design: 3.5%
 - Code: 16%
 - Unit Test: 50.5%
 - Integration Test: 9%
 - Acceptance Test: 20.5%
 - Operation

- **Nominal Cost Per Fault for Fault Removal**
 - Post-unit test software rework cost 50% of total system development cost & growing
 - Recertification cost is not proportional to system changes

- **Years between labor-intensive system safety assessments**
 - Software as major hazard source often ignored

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies
Value of Requirement Uncertainty Awareness

Textual requirement quality statistics
- Current requirement engineering practice relies on stakeholders traceability and document reviews resulting in high rate of requirement change.

Managed awareness of requirement uncertainty reduces requirement changes by 50%
- 80% of requirement changes from development team
- Expert requirement uncertainty assessment
 - Volatility, Impact, Precedence, Time criticality
- Focus on high uncertainty areas
- Engineer for inherent variability

<table>
<thead>
<tr>
<th>Requirements error</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete</td>
<td>21%</td>
</tr>
<tr>
<td>Missing</td>
<td>33%</td>
</tr>
<tr>
<td>Incorrect</td>
<td>24%</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>6%</td>
</tr>
<tr>
<td>Inconsistent</td>
<td>5%</td>
</tr>
</tbody>
</table>

NIST Study

Rolls Royce Study
Mixture of Requirements & Architecture Design Constraints

Textual Requirements for a Patient Therapy System

The patient shall never be infused with a single air bubble more than 5ml volume.

When a single air bubble more than 5ml volume is detected, the system shall stop infusion within 0.2 seconds.

When piston stop is received, the system shall stop piston movement within 0.01 seconds.

The system shall always stop the piston at the bottom or top of the chamber.

Same Requirements Mapped to an Architecture Model

1. The patient shall never be infused with a single air bubble more than 5ml volume.

2. When a single air bubble more than 5ml volume is detected, the system shall stop infusion within 0.2 seconds.

3. When piston stop is received, the system shall stop piston movement within 0.01 seconds.

4. The system shall always stop the piston at the bottom or top of the chamber.

Importance of understanding system boundary

We have effectively specified a system partial architecture

U Minnesota Study
Outline

Assurance challenges

Incremental life cycle assurance approach

Year One Accomplishments
Assurance & Qualification Improvement Strategy

Assurance: Sufficient evidence that a system implementation meets system requirements

|--|---|---|--|

- **Mission Requirements**
 - Function
 - Behavior
 - Performance
- **Survivability Requirements**
 - Reliability
 - Safety
 - Security

Model Repository
- Architecture Model
- Component Models
- System Implementation
- System configuration

Operational & failure modes
- Resource, Timing & Performance Analysis
- Reliability, Safety, Security Analysis

Early Problem Discovery through Virtual System Integration & Analysis

Improved Assurance through Better Requirements & Automated Verification
Automated Incremental Assurance Workbench

Identify Assurance Hotspots Throughout Lifecycle

Tier 0

- Model

Tier 1

- Model+1

Tier 2

- Model+2
- Model+2'

Stakeholder Goals

Ver Plan

Req

Req+1

Req+2

Assurance Case

High Abstraction

Abstraction Level

Low Level
Close to Implementation
Three Dimensions of Incremental Assurance

Incremental assurance through virtual system integration for early discovery
Return on Investment study by SAVI*

Prioritization focused architecture design exploration for high payoff
Measurable improvement (Rolls Royce)

Early Discovery leads to Rework Reduction

Compositional verification and partitions to limit assurance impact

*System Architecture Virtual Integration (SAVI) Aerospace industry initiative
Three Dimensions of Requirement Coverage

- System interactions, state, behavior
- Design & operational quality attributes
- Implementation constraints
- Exceptional conditions
- Guarantees
- Assumptions
- Invariants

Fault impact & contributors

Fault Propagation Ontology

- Omission errors
- Commission errors
- Value errors
- Sequence errors
- Timing errors
- Replication errors
- Rate errors
- Concurrency errors
- Authentication errors
- Authorization errors

Control System

Behavior

Output

Control System

State

Input

System Under Control

Behavior

State

Actuator

Sensor
Impact and Alignment

DoD Acquisition and Industry Organizations

- OASD R&E: Champion maturation and insertion of virtual system integration into DoD programs
- DARPA research successes in HACMS program
- AMRDEC Joint Multi-Role (JMR) Tech Demo: maturation of Virtual System Integration for Future Vertical Lift (FVL) program
- Aerospace industry System Architecture Virtual Integration (SAVI) initiative Multi-year investment: Boeing, Airbus, Embraer, suppliers, FAA, NASA, DoD
- Rolls Royce engine control system case study

Standard Development

- Draft SAE AADL Requirement Specification standard
- Revision of SAE S18 ARP4761 System Safety Analysis standard

Regulatory Certification Agencies

- FDA: Guidance on medical device (re-)certification
- Underwriters Lab: medical device integration guidance (AAMI/UL2800)
- NRC: Educational workshop series on software system assurance
Outline

Assurance challenges
Incremental life cycle assurance approach
Year One Accomplishments
System Requirement Specification Notation

Associated with system specification in AADL architecture model
Description, rationale
Parameterization to accommodate variability changes
Traceability to stakeholder goals
Refinement, decomposition, hazard mitigation, evolution
Formal specification as predicate
Verifiable as specified in verification plans
Migration from textual requirement documents and traceability tools

```plaintext
system requirements FlightGuidanceImpl : "Requirements for the Flight Guidance System"
for FlightGuidance::FlightGuidance.subsystems
[
  val FG_DirectModeLatency = 0.15 ms
  val FG_NormalModesLatency = 25.0 ms
  compute ActualLatency
  requirement R6 1: "Stick-to-Surface End-to-End Flow Direct Mode Latency"
  for fStickToSurface_DirectMode
  [
    description "The stick-to-surface end-to-end flow response of the FGS in Direct Mode shall be no longer than " FG_DirectModeLatency
    value predicate ActualLatency <= FG_DirectModeLatency
    see document goal XACStakeholderGoals.XSG_8_3
  ]
```
Verification and Assurance Plan Notation

Registry of reusable verification methods
- Verification precondition and result validation

Composable verification plans against system requirements
- Verification activities invoke parameterized methods on models
- Dependent and backup verification activities

```plaintext
claim R1 [    
  activities
  actualsystemweight : Plugins.MassAnalysis()
  Weightlimit: mymethods.assumeWithWeightLimit()
  responsetime : Plugins.FlowLatencyAnalysis()
  behavior : Resolute.verifySCSReq1()
  timing: Plugins.ResourceAllocationScheduling()
  assert all [actualsystemweight else Weightlimit , 
  behavior , timing then responsetime

Configurable assurance plans
- Scope of assurance responsibility
- Time phased and priority focused execution of assurance plans

assurance plan AircraftTier2 for IntegratedAircraftSystem::AircraftSystem.
  assure own AircraftPlan
  assure subsystem plans FlightguidanceTb
  assume subsystems AircraftSubsystems::AuxiliaryPowerUnit
]

assurance task Tier2SafetyNetworkFocus for AircraftTier2 [    
  filter verifications Network Safety only
```
Assurance Automation and Metrics Collection

Assurance quality metrics

- Multi-valued verification result measures and their aggregates
 - Pass, fail, incomplete, conditions, backups
- Requirement coverage measures
- Weighted requirement claims, verification methods & results
 - Reflect importance, uncertainty, effectiveness

Measurement based assurance hotspot identification throughout lifecycle

- **System AircraftTier2**: (S93 F1 T0 E1 tbd0 EL0 T50)
 - **ClaimR1**: The weight of the Aircraft system shall not exceed 70000.0kg (S2 F0 T0 E0 tbd0 EL0 T50)
 - **System ELE**: (S1 F1 T0 E0 tbd0 EL0 T50)
 - **ClaimR1**: The weight of the Electrical system shall not exceed 75.0kg (S1 F0 T0 E0 tbd0 EL0 T50)
 - **ClaimR2**: The Electrical System shall be capable of handling at least 24000.0W (S0 F1 T0 E0 tbd0 EL0 T50)
 - Evidence powercapacity: Analyze Electrical power demands against supply and capacity. This method is performe
 - **System ELE**: **ELE power budget total 24500.0 W exceeds capacity 24000.0 W
 - **System ELE**: budget total 24500.0 W within supply 25000.0 W
- **System FGS**: (S90 F0 T0 E1 tbd0 EL0 T50)
 - **ClaimR1**: The FGS shall weigh no more than 300.0kg (S0 F0 T0 E1 tbd0 EL0 T50)
 - Evidence weightlimit: Perform full weight (mass) analysis. This includes net/gross weight consistency, weight bud
 - system FGS: [G] Sum of weights 76.300 kg less than grossweight 280.000 kg (using gross weight)
 - **ClaimR2**: The FGS shall not draw in excess of 2000.0W (S1 F0 T0 E0 tbd0 EL0 T50)
 - **ClaimR3**: The FGS shall be capable of processing at least 1100.0MIPS (S1 F0 T0 E0 tbd0 EL0 T50)
 - **ClaimR4_1**: The RAM memory needs of the FGS shall be no more than 80 percent of 2048.0MByte (S1 F0 T0 E0 tb
Requirement Spec & Virtual System Integration Case Study

• Joint Common Architecture (JCA) Demo
 − Model based acquisition of FACE conformant software
 − Integration onto multiple Operating Environments

• Architecture-Centric Virtual Integration Process (ACVIP)
 − Shadow Effort to JCA Demo after BAA was released
 − By Software Engineering Institute (SEI), Adventium Labs, Software Engineering Directorate (SED)

• Discovered potential system integration issues in advance through requirements, safety and timing analyses
 − Early identification of 85+ potential integration issues

Architecture analysis is critical for the successful and affordable integration of systems!
Assurance Rework Reduction through Virtual System Integration & Incremental Verification (SAVI)

- **Proof of Concept Demonstration and Transition by Aerospace industry initiative**
 - Architecture-centric model-based software and system engineering
 - Architecture-centric model-based acquisition and development process
 - Multi notation, multi team model repository & standardized model interchange

- **Multi-tier system & software architecture (in AADL)**
- **Incremental end-to-end validation of system properties**
Coming Up in Year Two

Focus on system quality improvement metrics

- Weighted requirement and verification result metrics
- Measurement-driven assurance hot spot guidance
- Demonstrate on three case studies

Demonstrate measurable requirement quality improvement

- Beyond stakeholder traceability, “shall,” no “not”
- Improvement of three coverage dimensions

Demonstrate measurable verification cost reduction

- Cost reduction through automated safety analysis
- Uncertainty reduction through priority focused architecture design exploration
- Proportional recertification costs through compositional automated verification
Contact Information

Peter Feiler
Software Solutions Division
Email: phf@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257