StreamWorks – A System for Real-Time Graph Pattern Matching on Network Traffic

GEORGE CHIN, SUTANAY CHOU DHURY AND KHUSHBU AGARWAL
Pacific Northwest National Laboratory
Emerging Graph Patterns

Goal:

Detect and identify precursor events and patterns as they emerge in complex networks such that events or threats may be mitigated or acted upon before they are fully realized

- Capture evolution of critical graph patterns
- Devise optimal search strategy to identify emerging pattern
- Consider cases where target subgraph patterns may or may not be known
- Subgraph pattern matching is a well-studied NP-hard problem. Some work on scalable algorithms
- Limited work on subgraph matching in dynamic networks
- Application areas:
 - Computer network intrusions and threats
 - Social media and network analysis
 - Financial and stock market analysis
 - Distributed sensor networks
Emerging Graph Pattern Algorithm in Action

Data Graph

Subgraph Join Tree

Maple

Alder
Emerging Graph Pattern Algorithm in Action

Data Graph

Subgraph Join Tree

Maple

Trout (Web Server)

Alder

January 21, 2015
Emerging Graph Pattern Algorithm in Action

Data Graph

- Maple
- Goliath (DNS Server)
- Trout (Web Server)
- Alder

Subgraph Join Tree

- 100%
- 67%
- 33%
- 33%
- 33%
- 33%
Emerging Graph Pattern Algorithm in Action

Data Graph

Maple
Goliath (DNS Server)
Pine
Trout (Web Server)
Alder

Subgraph Join Tree

100%
67%
33%
33%
33%
33%
33%
33%
Emerging Graph Pattern Algorithm in Action

Data Graph

- Maple
- Goliath (DNS Server)
- Pine
- Trout (Web Server)
- Alder

Subgraph Join Tree

- DNS Server
- Web Server
- Host

67%
33%
33%
100%
33%
Emerging Graph Pattern Algorithm in Action

Data Graph

- Maple
- Goliath (DNS Server)
- Pine
- Trout (Web Server)
- Alder
- Oak

Subgraph Join Tree

- 100%
- 67%
- 33%
- 33%
- 33%

Emerging Graph Pattern Algorithm in Action
Emerging Graph Pattern Algorithm in Action

Data Graph

Maple

Goliath (DNS Server)

Cedar

Pine

Trout (Web Server)

Alder

Subgraph Join Tree

100%

67%

33%

33%

DNS Server

Web Server

Host

Host

Host

Host

Web Server

DNS Server

Web Server

DNS Server

DNS Server

Web Server
Emerging Graph Pattern Algorithm in Action

Data Graph

- Maple
- Pine
- Trout (Web Server)
- Goliath (DNS Server)
- Cedar
- Birch
- Oak
- Alder

Subgraph Join Tree

- DNS Server
- Web Server
- Host

Unclassified
Emerging Graph Pattern Algorithm in Action

Data Graph

- Maple
- Goliath (DNS Server)
- Cedar
- Pine
- Trout (Web Server)
- Oak
- Alder

Subgraph Join Tree

- DNS Server
- Web Server
- Host

67%
33%
33%
100%
Emerging Graph Pattern Algorithm in Action

Data Graph

- Maple
- Goliath (DNS Server)
- Pine
- Trout (Web Server)
- Birch
- Oak
- Alder

Subgraph Join Tree

- 100%
- 67%
- 33%
- 33%
- 33%

Unclassified
Detecting Emerging Cyber Attacks

- Developing emerging subgraph pattern algorithm in a package we call StreamWorks to detect cyber intrusions and attacks in computer network traffic.

- Constructing set of cyber attack graph patterns related to network scans, reflector attacks, flood attacks, viruses, worms, etc., in collaboration with PNNL cybersecurity analysts.

- Utilizing anonymized internet traces data curated by CAIDA (The Cooperative Association for Internet Data Analysis) at SDSC/UCSD and simulated intrusion detection datasets from the University of New Brunswick’s Information Security Centre of Excellence.
Witty Worm

- Internet worm that began to spread on March 19, 2004
- Targeted buffer overflow vulnerability in internet security systems (ISS) products
- Payload contained phrase “(^.^) insert witty message here (^.^)”
- Attacked port 4000 with packets of sizes between 796 and 1307
Distributed Denial-of-Service Smurf Attack

- Attacker sends packets to broadcast IP address with spoofed source address of victim’s
- Packets delivered to intermediate hosts
- Intermediate hosts reply to return address of victim
Distributed Denial-of-Service DNS Amplification Attack

- Agents or zombies generate large number of DNS requests with spoofed source address
- DNS servers send 3 different types of responses to victim
- DNS response packets may be significantly larger than DNS request packets
Subgraph Join Tree for DDoS Smurf Attack

Cyberattack Pattern

Subgraph Join Tree (Breadth-First)

100%

86%

43%

43%
DDoS Smurf Attack Query

Breadth-First SJT

100%

86%

14%

43%

43%

48:06

January 21, 2015

Unclassified
DDoS Smurf Attack Query

Breadth-First SJT
DDoS Smurf Attack Query

Breadth-First SJT

100%

86%

14%

43%

43%

53:11
StreamWorks Components

Graph Pattern Definition and Join Tree Modeling

- Graph Pattern Library
- Statistics Collection Tools
- Subgraph Join Tree Generation Algorithms

Run-Time System

- Stream Processing (Storm)
- Network Analysis Visualizations
- Scalable Subgraph Pattern Matching Algorithm
- Semantic Graph Library (SGlib)
Scalable Subgraph Matching Algorithm

Distributed Implementation of Dynamic Graph Search

- Update the distributed graph with new edges in parallel
- Search the updated graph in parallel for unique sub-queries
 - Colors represents unique sub-queries in SJ-Tree
 - Each node in SJ-Tree maintains a match collection
 - Each nodes receive the new set of matches
- Perform parallel hash join of new and old matches in SJ-Tree at each level
Scalability Results for Distributed Implementation of Dynamic Graph Search

CAIDA Network Traffic
(2.49M nodes, 19.55M edges)

PNNL institutional computing (PIC) cluster: 692 nodes, AMD Interlagos processors, dual socket, 16 cores per socket, 64 GB memory per node, QDR InfiniBand
Scalable Subgraph Matching Algorithm

Distributed Dynamic Graph Data Structure

Adjacency List Index

Cluster

Node 0

Node 1

Chaining slots for a particular vertex

Slots in Edge Pool

Distributed Edge Pool

Example graph being stored
Scalable Subgraph Matching Algorithm

Concurrent Graph Queries via Multiple Subgraph Join Trees

- Conduct parallel searching across all subgraph patterns of all subgraph join trees
- Leverage locality in terms of operations: Identify common subgraph patterns across subgraph join trees and search once for multiple queries
- Leverage locality in terms of data: Identify graph regions that apply to multiple subgraph searches and track and manage once for multiple queries
Stream Processing

- Developed various Apache Storm Bolts to filter/aggregate Netflow data
- Filtered and aggregated data is passed to emerging subgraph algorithm using Apache ActiveMQ
- Tuning of primitive subgraph matching between Storm and emerging subgraph algorithm is ongoing

1M Netflow records through Storm, 1 record per message through ActiveMQ (on PIC)

10M and 100M power law graph updates through emerging subgraph algorithm (on PIC)
Cyberattack Graph Patterns

Is Netflow data and patterns enough to effectively detect emerging cyberattacks?

Port Scan

Exploit Spread

Syn

Ack

Exploit

Exploit

Exploit
Cyberattack Graph Patterns

- Known Host?
- Type of Server?
- Machine Type Known to Scan?

Port Scan

- New User?
- Failed Logins?
- Admin Privileges?
- Escalated Privileges?

- Syn

Exploit Spread

- Newly Added Application?
- Known Application Creator?
- Known Process?
- Known Exploit?

- Exploit

- New User?
- Failed Logins?
- Admin Privileges?
- Escalated Privileges?
Multi-Source Cyberattack Graph Patterns

- Look to fuse streaming Netflow data with other streaming data sources such as event logs, host scan logs, firewall logs, and anti-malware reports.
- Enrich the semantic graph with more attributes to collect information from the fused data stream.
- Derive additional candidate graph patterns and their associated subgraph join trees with fuller attributes to better elaborate specific cyberattacks.
Automatic Subgraph Join Tree Generation

- With known target graph patterns
 - Breadth-first traversal
 - Depth-first traversal
 - Frequency-based

- With unknown target graph patterns
 - Frequency-based
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern

January 21, 2015
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern

Host 1
Host 2
Host 3
DNS Server A
Web Server B

1284
173
267
210
89
14
1139
1637
756
1369
1375
27
532
182
96
182267
89
96
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern
Automatic Join Tree Generation with Known Graph Pattern
Automatic Join Tree Generation with Known Graph Pattern
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern
Automatic Join Tree Generation with Known Graph Pattern
Automatic Join Tree Generation with Known Graph Pattern
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern
Automatic Frequency-Based Join Tree Generation with Known Graph Pattern
Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns

Web Server J

Host 2 DB Z
Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Emergent Infrequent Subgraph Patterns

DNS Server I
Host 3
FS N

Host 2
DB Z

Web Server J

DNS Server G
Host 4
DB O

DNS Server A
DB X
FS Y
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns

January 21, 2015
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Emergent Infrequent Subgraph Patterns
Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns

January 21, 2015
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns

DNS Server I
- Host 1
 - Web Server B
 - DB O
 - Host 4
- Host 2
 - DB Z
- DNS Server C
- Host 5
 - FS P
- DNS Server D
- Web Server E
- DNS Server A

DNS Server A
- Web Server B
 - DB X
 - FS Y

DNS Server A
- Web Server B
 - DB X
 - FS Y

DNS Server A
- Web Server B
 - DB X
 - FS Y

DNS Server A
- Web Server B
 - DB X
 - FS Y
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Automatic Frequency-Based Join Tree Generation with Unknown Graph Pattern

Emergent Infrequent Subgraph Patterns
Summary

- Developing scalable emerging subgraph pattern algorithm that can detect and identify precursor events and patterns as they emerge in complex networks.

- Utilizing an efficient and novel subgraph join tree approach which tracks and monitors partial matches of a query graph against a large-scale dynamic network.

- Applying emerging subgraph pattern algorithm to the detection of computer network threats and intrusions.

- Packaging emerging subgraph pattern capabilities into an interactive network analysis framework called StreamWorks.

- Extending StreamWorks to support emerging subgraph patterns across multiple dynamic data sources.

- Developing approach for dynamic subgraph join tree generation to support the detection of zero-day exploits.