An extension of the PSP PROBE process to help student for more reliable estimates in early stage of the PSP training

Yoshihiro Akiyama, Ph.D.,
Next Process Institute (NPI)

November 5th, 2014
Next Process Institute Ltd.

NPI is a SEI TSP Strategic Partner since Feb. 2010 and provides:

- PSP Instructor training
- TSP coach training
- PSP Developer Exam
- Training for engineers
 - All SEI PSP/TSP authorized courses
- Coaching for software teams
- Mentoring for TSP coach candidates

As a CMMI Partner, we provide:

- “Introduction to CMMI for Development” course
Contents

1. Problems I notice...
2. An extending the PROBE method for faster reaching proper estimates
3. Introducing the two concepts “Work Volume” and “Quality Performance Index (QPI)”
4. PSP data exercises
5. For Future Measurement Framework
5. Conclusions
PROBE Script – current

<table>
<thead>
<tr>
<th>Step</th>
<th>Activities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Conceptual Design</td>
<td>Review the requirements and produce a conceptual design.</td>
</tr>
<tr>
<td>2.</td>
<td>Parts Additions</td>
<td>Follow the Size Estimating Template instructions to estimate the parts additions and the new reusable parts sizes.</td>
</tr>
<tr>
<td>3.</td>
<td>Base Parts and Reused Parts</td>
<td>For the base program, estimate the size of the base, deleted, modified, and added code. Measure and/or estimate the size of the parts to be reused.</td>
</tr>
<tr>
<td>4.</td>
<td>Size Estimating Procedure</td>
<td>If you have sufficient estimated proxy size and actual added and modified size data (three or more points that correlate), use procedure 4A. If you do not have sufficient estimated data but have sufficient plan added and modified and actual added and modified size data (three or more points that correlate), use procedure 4B. If you have insufficient data or they do not correlate, use procedure 4C. If you have no historical data, use procedure 4D.</td>
</tr>
<tr>
<td>4A.</td>
<td>Size Estimating Procedure 4A</td>
<td>Using the linear-regression method, calculate the β_0 and β_1 parameters from the estimated proxy size and actual added and modified size data. If the absolute value of β_0 is not near 0 (less than about 25% of the expected size of the new program), or β_1 is not near 1.0 (between about 0.5 and 2.0), use procedure 4B.</td>
</tr>
<tr>
<td>4B.</td>
<td>Size Estimating Procedure 4B</td>
<td>Using the linear-regression method, calculate the β_0 and β_1 parameters from the plan added and modified size and actual added and modified size data. If the absolute value of β_0 is not near 0 (less than about 25% of the expected size of the new program), or β_1 is not near 1.0 (between about 0.5 and 2.0), use procedure 4C.</td>
</tr>
<tr>
<td>4C.</td>
<td>Size Estimating Procedure 4C</td>
<td>If you have any data on plan added and modified size and actual added and modified size, set $\beta_0 = 0$ and β_1 = (actual total added and modified size to date).</td>
</tr>
<tr>
<td>4D.</td>
<td>Size Estimating Procedure 4D</td>
<td>If you have no historical data, use your judgment to estimate added and modified size.</td>
</tr>
<tr>
<td>5.</td>
<td>Time Estimating Procedure</td>
<td>- If you have sufficient estimated proxy size and actual development time data (three or more points that correlate), use procedure 5A. - If you do not have sufficient estimated size data but have sufficient plan added and modified size and actual development time data (three or more points that correlate), use procedure 5B. - If you have insufficient data or they do not correlate, use procedure 5C. - If you have no historical data, use procedure 5D.</td>
</tr>
<tr>
<td>5A.</td>
<td>Time Estimating Procedure 5A</td>
<td>Using the linear-regression method, calculate the β_0 and β_1 parameters from the estimated proxy size and actual total development time data. If β_0 is not near 0 (substantially smaller than the expected development time for the new program), or β_1 is not within 50% of 1 (historical productivity), use procedure 5B.</td>
</tr>
<tr>
<td>5B.</td>
<td>Time Estimating Procedure 5B</td>
<td>Using the linear-regression method, calculate the β_0 and β_1 regression parameters from the plan added and modified size and actual total development time data. If β_0 is not near 0 (substantially smaller than the expected development time for the new program), or β_1 is not within 50% of 1 (historical productivity), use procedure 5C.</td>
</tr>
<tr>
<td>5C.</td>
<td>Time Estimating Procedure 5C</td>
<td>If you have data on estimated – added and modified size and actual development time, set $\beta_0 = 0$ and β_1 = (actual total development time to date/estimated – total added and modified size to date). If you have data on plan – added and modified size and actual development time, set $\beta_0 = 0$ and β_1 = (actual total development time to date/plan total added and modified size to date). If you only have actual time and size data, set $\beta_0 = 0$ and β_1 = (actual total development time to date/actual total added and modified size to date).</td>
</tr>
<tr>
<td>5D.</td>
<td>Time Estimating Procedure 5D</td>
<td>If you have no historical data, use your judgment to estimate the development time from the estimated added and modified size.</td>
</tr>
<tr>
<td>6.</td>
<td>Time and Size Prediction Intervals</td>
<td>- If you used regression method A or B, calculate the 70% prediction intervals for the time and size estimates. - If you did not use the regression method or do not know how to calculate the prediction interval, calculate the minimum and maximum development time estimate limits from your historical maximum and minimum productivity for the programs written to date.</td>
</tr>
</tbody>
</table>

(continued)
PROBE Script – current flow

1. Step 1 – 3: Obtain the estimated size using the SET template

2. Step 4:

 >3x(E, actA&M)
 >3x(P, actA&M)
 Insuffic. data

 CL

 4/5A
 Criteria not met
 Done

 4/5B
 Criteria not met
 Done

 4/5C
 No data avail.
 Criteria not met
 Done

 4/5D
 Done

“...A single path between the start to a Done.”
Continue to use PROBE Method C?

First Estimate

Second Estimate

Method C line

Second Estimate

Method D line

(c) 2014 Next Process Institute Ltd.
Early Correction in the Estimation is critical

1. The estimation is about the future activities.
2. To obtain **reliable** estimates, multiple estimations should be tried and mandated by identifying all possible situations in the future.
3. Past experiences of failing an appropriate estimate should not be forgettable.
PROBE Script flow – **Desirable**

1. Step 1 – 3: Obtain the estimated size using the SET template

2. Step 4:

 - CL
 - >3x(E, actA&M)
 - >3x(P, actA&M)
 - Insuffic. data
 - No data avail.

 - 4/5A
 - Criteria not met
 - Done

 - 4/5B
 - Criteria not met
 - Done

 - 4/5C
 - Criteria not met
 - Done

 - 4/5D
 - Criteria not met
 - Done

 Select Best Choices

 “Multiple pathes between the start to **Done** box”.
Students play with the PROBE process

1. Should this way of “teaching the process” be understandable and acceptable?
2. Am I teaching the size and time estimating enough?
3. What is all about the PROBE method?
Does the PROBE method related to these changes?

1. Majority are under-estimating

1. Balance of over- and under estimates

1. Much tighter balance around zero

Ref. “PSP for Engineers – Planning” lecture
Two New Fundamental Parameters for Quality

PROBE Method estimates Size (S) and Time (T);

Work Volume (WV) = S x T

- Size can be LOCS, Pages, Pictures, etc.

Defect (D) is used with these parameters:

QPI = D/(S x T)

QPI stands for “Quality Performance Index”.

(c) 2014 Next Process Institute Ltd.
Characteristics of WV

The two WV are the same work volume.

This Work Volume shows the effort to produce the size S product using the time T.

\[S \times T = \left(\frac{S}{2}\right) \times (T \times 2) = \left(\frac{S}{10}\right) \times (T \times 10) = \ldots \]

\[= \left(\frac{S}{3}\right) \times (T \times 2) + \left(\frac{S}{3}\right) \times T = \ldots \text{ where S has a same size type.} \]
Characteristics of QPI (Defect Density in WV space)

QPI measures a Quality Improvement Indicator.

These two works have the same QPI value.

Ex. 20 The QAPI of the work which injected 20 defects of the product size 100LOC created using 10 Hrs.

\[
QPI = \frac{20 \text{ Defects}}{(100 \text{ LOC}/1000) \times 10 \text{Hrs})} = 20 \text{ QPI}.
\]
These data are entered for each project in the next order:

<table>
<thead>
<tr>
<th>Program #</th>
<th>EstLOC</th>
<th>ActLOC</th>
<th>EstMin</th>
<th>ActMin</th>
<th>EstDef</th>
<th>ActDef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5A</td>
<td>104.7529</td>
<td>102</td>
<td>228.7</td>
<td>251.8333</td>
<td>9.1</td>
<td>5</td>
</tr>
<tr>
<td>6A</td>
<td>90.79574</td>
<td>88</td>
<td>151.9479</td>
<td>322.7333</td>
<td>4.450771</td>
<td>2</td>
</tr>
<tr>
<td>7A</td>
<td>131.9401</td>
<td>100</td>
<td>493.1484</td>
<td>553.5</td>
<td>4.86095</td>
<td>6</td>
</tr>
<tr>
<td>8A</td>
<td>109.5703</td>
<td>114</td>
<td>553.0832</td>
<td>512.2667</td>
<td>4.911773</td>
<td>5</td>
</tr>
<tr>
<td>9A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>437.059</td>
<td>404</td>
<td>1426.88</td>
<td>1640.333</td>
<td>23.32349</td>
<td>18</td>
</tr>
</tbody>
</table>

Given by best effort

Predictable using the other data items
PSP data case study example – QPI Calculation (2)

Program	EstLOC	ActLOC	EstMin	ActMin	EstDef	ActDef	est D	est D w/ est QPI	c-EstLOC	c-EstDef	c-EstST	est QPI	c-ActLOC	c-ActDef	c-actST	act QPI				
5A	114.8	223.0	493.8	761.0	5	8	n/c	n/c	114.8	493.8	5.0	0.9	0.9	5.3	223.0	761.0	8.0	2.8	2.8	2.8
6A																				
7A																				
8A																				
9A																				
10A																				
Sum	114.8	223.0	493.8	761.0	5	8	0	0	0	0	0	0	0	0	0	0	0	0	0	

Adding with the above cell:

\[
\text{EstQPI} = \frac{c-EstDef}{c-EstST} \\
\text{actQPI} = \frac{c-ActDef}{c-actST}
\]
PSP data case study example – QPI Calculation(3)

Adding with the above cell

\[\text{EstQPI} = \frac{c - \text{EstDef}}{c - \text{estST}} \]

\[\text{actQPI} = \frac{c - \text{ActDef}}{c - \text{actST}} \]
The work volume of the efforts was spent 80% more to the plan.
The quality of work is improved 5x.
The actual size and time graphs show that
• Actual size - larger than the planned
• Actual time - larger than the planned

Not clear for the student to figure out
• Quality level of its work
• How much effort it needs to improve
Engineer -2

Work Volume

QPI

EstLOC - ActLoc

EstMin - ActMin

EstDef - ActDef

(c) 2014 Next Process Institute Ltd.

2014/11/05
It is noted that the work volume increased more at Assignment 7&8.
Performance on Defect Estimating

Performance of Estimating the cumulative Defects for A6, 7, and 8

Assumption: the defects estimated for A5 is equal to the actual defect number of A5

<table>
<thead>
<tr>
<th>Engineers’ data</th>
<th>Estimated w/WV & QPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-EstDef</td>
<td>c-ActDef</td>
</tr>
<tr>
<td>Engineer1</td>
<td>17.63920218</td>
</tr>
<tr>
<td>Engineer2</td>
<td>22.56492625</td>
</tr>
<tr>
<td>Engineer3</td>
<td>22.84292615</td>
</tr>
<tr>
<td>Engineer4</td>
<td>15.77624206</td>
</tr>
<tr>
<td>Engineer5</td>
<td>14.22349387</td>
</tr>
<tr>
<td>Engineer6</td>
<td>3.360677871</td>
</tr>
<tr>
<td>Engineer7</td>
<td>33.73006735</td>
</tr>
<tr>
<td>Engineer8</td>
<td>13.42096562</td>
</tr>
</tbody>
</table>

Performance of Estimating the cumulative Defects for A6, 7, and 8

Assumption: the defects estimated for A5 is 2 times the actual defect number of A5

<table>
<thead>
<tr>
<th>Engineers’ data</th>
<th>Estimated w/WV & QPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-EstDef</td>
<td>c-ActDef</td>
</tr>
<tr>
<td>Engineer1</td>
<td>17.63920218</td>
</tr>
<tr>
<td>Engineer2</td>
<td>22.56492625</td>
</tr>
<tr>
<td>Engineer3</td>
<td>22.84292615</td>
</tr>
<tr>
<td>Engineer4</td>
<td>15.77624206</td>
</tr>
<tr>
<td>Engineer5</td>
<td>14.22349387</td>
</tr>
<tr>
<td>Engineer6</td>
<td>3.360677871</td>
</tr>
<tr>
<td>Engineer7</td>
<td>33.73006735</td>
</tr>
<tr>
<td>Engineer8</td>
<td>13.42096562</td>
</tr>
</tbody>
</table>

(c) 2014 Next Process Institute Ltd. 2014/11/05
Performance on Defect Estimating (2)

The PROBE approach with the Work Volume and QPI enables
- Defect estimation with narrower ranges.

 \[
 \text{WV} \times \text{estQPI} \quad \text{WV} \times \text{actQPI}
 \]

 where \(\text{estQPI} = \frac{c-\text{estD}}{\text{cumulated estimated WV}}, \)

 \(\text{actQPI} = \frac{c-\text{actD}}{\text{cumulated actual WV}} \)

- Defect estimation with less sensitive to the initial estimate
 (allowing the initial defect estimate more flexible)
A Possible Extension of the PROBE Process

1. All PROBE Methods A, B, C, and D should be tried in parallel to obtain the estimates which are then evaluated for selecting the best choice. If necessary, two or more choices should be allowed.

2. The estimating defect process could be extended with the two concepts: “work volume” and “Quality Performance Index (QPI).” Three options may be provided:
 - Option 1: Current computation
 - Option 2: Using actQPI (computed with actual data)
 - Option 3: Using estQPI (computed with estimated data)

3. With these, several important graphics can be added.
For Future PSP/TSP Measurement and Planning Framework

1. The current PSP/TSP measurement and data analysis cover the basic improvement framework.
2. The analysis results and presentations may not quantitatively suggest engineers and management on what action each engineer needs to take to meet its goals.
3. The concepts “Work Volume” and “Quality Performance Index” can help them objectively in finding:
 - where its quality work stands
 - how much of work volumes are left for future
Thank you for your patience.

Contact: Yoshihiro Akiyama
Next Process Institute Ltd.
102-3-3024 Nogawa Miyamae
Kawasaki Kanagawa 216-0001, Japan
Email: y.akiyama@next-process.com
Homepage: http://www.next-process.com
Tel: +81-44-751-1360

TSP Strategic partner
CMU/Software Engineering Institute

Note: The NPI home page will be opened by Jan. 22nd, 2014.