SEMPR:
The TSP Software Engineering Measured Performance Repository

TSP Symposium, Pittsburgh
Nov 4, 2014

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA

William Nichols, Yasutaka Shirai
Document Markings

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by TSP cost recovery and TSP partner and licensing fees. under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Team Software ProcessSM and TSPSM are service marks of Carnegie Mellon University.

DM-0001838
Agenda

1. Introduction
2. SEMPR data and analysis
3. Conclusion
Agenda

1. Introduction
2. SEMPR data analysis
3. Conclusion
Purpose of this presentation

• This presentation tells...

• Project overview in SEMPR
• Benchmark planning parameters in SEMPR
• Benchmark project level performance and work item (component) level performance
About SEMPR

- **Software Engineering Measured and Performance Repository**

- SEI has collected data from organizations that have adopted TSP in SEMPR

- Stores project data in Tuma Solutions Team Process Data Warehouse
 - From 109 project cycles (in this report)
 - Used the Software Process Dashboard
How did we measure data quality in SEMPR

• Time log and defect log have high correctness and consistency by automatic data recording.

• Size log and task log have low correctness by manual data recording.
What do the data tell us?

1. Introduction
2. SEMPR data analysis
3. Conclusion
How are projects organized?

Pattern (a)
Pattern (b)
Pattern (c)
Pattern (d)
Pattern (e)
Pattern (f)
How many projects are found in each pattern?

![Bar chart showing the frequency of projects in each pattern.](image-url)
What were the project durations?
What are the planning period durations?

Most Common 9-12 weeks
Half Shorter than 13 weeks

Mean = 16.9
Median = 13.0
n = 113

Many a half year or more

Why longer?
How many team members on projects?

histogram of team size in project

Frequency

0 5 10 15 20 25

0 5 10 15

team size
How many task hours per week?
mean Team Member Weekly Direct Hours per Week

Mean Team Member Weekly Task Hours

Frequency

Mean = 10.3
Median = 9.0
n = 111

 +/- 2.5

Load factor = hours/40
Depends on the project

COV = standard deviation
average hours

= 0.25!
How do Plan and Actual planned project hours compare?

The scatterplot: Plan task hours vs. Actual task hours in project

- $R^2 = 0.9084$
- Slope = 1.053
- Intercept = 1.115

Project level time hours data is highly predictable.

The scatterplot: Log plan task hours vs. Log actual task hours in project

- $R^2 = 0.8685$
- Slope = 0.8864
- Intercept = 0.1657

Log transformed
How do Plan and Actual component hours compare? (work item)

The scatterplot: Plan task hours vs. Actual task hours in component

- $R^2 = 0.4935$
- Slope = 0.9902
- Intercept = 0.122

Log transformed work item level time hours data is predictable.

The scatterplot: Log plan task hours vs. Log actual task hours in component

- $R^2 = 0.5621$
- Slope = 0.8891
- Intercept = 0.1441

Log transformed
How did they perform to planned schedule?

Project performance

\[
\text{schedule performance} = \frac{\text{actual duration} - \text{plan duration}}{\text{plan duration}}
\]

Work item performance
How well did they estimate effort?

\[
\text{effort performance} = \frac{\text{actual effort} - \text{plan effort}}{\text{plan effort}}
\]

- **Project performance**
 - Histogram of effort performance in all projects

- **Work item performance**
 - Histogram of effort performance in all work items
 - Overflow bin = 2
How fast are defects injectioned? (all work items)
What were the defect removal rates?
(all work items)

The distribution of defect removal rate is same as that of defect injection rate
How did defect injection rates differ by phase

All phase

Boxplot of defect injection rate in all work items

DIR in code review has wide range and highest median.

Except code phase

Boxplot of defect injection rate in all work items
How did defect removal rates differ by phase

All phase

- Boxplot of defect removal rate in all work items

DRR in Compile and DRR in code review are higher than DRR in unit testing.

Except compile phase

- Boxplot of defect removal rate in all work items
What were the total defect densities?
Agenda

1. Introduction
2. SEMPR data analysis
3. Conclusion
Conclusion

SEMPR collects TSP project data for benchmark and analysis

Projects organize in many ways

 Benchmarks include
- distributions for defect injection and removal rates
- Ranges of task hours
- Effort estimation accuracy
- Schedule estimation accuracy

Much work remains
- Include more contextual data
- Continue to add projects the database
Acknowledgement

We thank David Tuma of Tuma Solutions for contributing the process dashboard warehouse software.

http://www.processdash.com/tpdw
Contact Information

William R. Nichols
TSP/SSD
Telephone: +1 412-268-1727
Email: wrn@sei.cmu.edu

Yasutaka Shirai
Resident Affiliate
Toshiba
Email: yasutaka.shirai@toshiba.co.jp

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257