Modeling the Evolution of a Science Project in Software-Reliant System Acquisition Programs

Andrew P. Moore
William E. Novak
Software Engineering Institute
Carnegie Mellon University

International Conference of the System Dynamics Society

July 24, 2013
Acquisition Dynamics

The Evolution of a Science Project

1. Project begins as small informal effort to build prototype & prove concept.

2. Prototype is deployed on small scale, and is well received.

3. Warfighters and field commanders demand more capability, broader deployment, faster response.

4. Project staff is diverted to field support, so development progress slows.

5. As system grows, poor architecture, documentation, & code quality cause poor reliability, performance, & usability.

6. Project infrastructure, processes, & staff not able to scale up to production development.

7. New program office unwilling to discard prototype code due to field deployment pressures.

8. New versions of the system can’t be deployed with needed capability, robustness, and performance.

9. Warfighters wait years for a new system to be built from scratch.

This scenario aggregates five SEI software-reliant system acquisition ITAs conducted in 2006-2009.
Basis for Modeling: Independent Technical Assessments

ITA: Detailed examination of challenged programs with interviews, document reviews, and code analysis

“What they did at first was a proof of concept, a quick and dirty prototype, and when they tried to scale it up, there were indications that it might not be possible…”

—Acquisition Program Lead
The Evolution of a Science Project

Science Project (SP) Sector

- discovered quality issues (SP)
- undiscovered quality issues
- staffing of rework

Production Development (PD) Sector *

- discovered quality issues (PD)
- rework rippling
- injection of quality issues

- Schedule and Feature-Driven Development
- Schedule Pressure Magnified Ripple Effect

- Quality-Driven Development
- remaining work to do
- scheduled completion date (PD)

- B Schedule and Feature-Driven Development
- applying pressure to workers
- rigor of QA processes
- scheduled completion date (SP)

- R Quality-Driven Development
- released work
- QA work to do
- development scope (PD)

- development scope (SP)
- features developed

Key Preliminary Findings
The Evolution of a Science Project

Assumption

Applying pressure to workers developing SP results in undiscovered rework

![Graph showing SP Rework to be Discovered (Applying Pressure to Workers)]
The Evolution of a Science Project

Key Preliminary Findings

High pressure, or moderate pressure for long periods, can lead to a “tipping point”

PD Discovered Quality Issues (Applying Pressure to Workers)
The Evolution of a Science Project

The Tipping Point in Evolution of a Science Project

• Accumulating rework creates a dangerous feedback dynamic

• “Firefighting” due to rework is a key underlying element

• Key drivers in reaching the “tipping point” are:
 a) pressure on developers
 b) emphasis on schedule and features vs. quality
 c) timing of the transition from science project to production development
 d) degree of “ripple effect”
The Evolution of a Science Project

Key Preliminary Findings

Placing modest pressure on developers for limited periods shortens schedule

- VenSim optimization shows that placing pressure at a low level is optimal with respect to reducing project duration
- By allowing periods of pressure, followed by periods of relaxation, the program might:
 - Limit worker burnout
 - Perform better regarding schedule
The Evolution of a Science Project

Key Preliminary Findings

The tipping point contributes to the “90% Done” Syndrome

![Percentage Complete Graph]

- **Hi Pressure Applied**: 1 1 1 1
- **Med-Hi Pressure Applied**: 2 2 2 2
- **Med Pressure Applied**: 3 3 3 3
- **Med-Lo Pressure Applied**: 4 4 4 4
- **Lo Pressure Applied**: 5 5 5 5
- **No Pressure Applied**: 6 6 6 6
The transition from science project to production effort should be made *early*

- A late transition increases the amount of undiscovered rework that is transferred

PD Discovered Quality Issues (Scoping the SP Effort)

- Hi Feature SP Scope
- Med Feature SP Scope
- Med-Lo Feature SP Scope
- Lo Feature SP Scope
The Evolution of a Science Project

Key Preliminary Findings

Throwing away the prototype results in better program performance
• However, very early transition or evolutionary development may also be viable

PD Discovered Quality Issues (Reuse SP Prototype?)

<table>
<thead>
<tr>
<th>Time (Weeks)</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>360</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
</tr>
</tbody>
</table>

Reuse at Med SP Scope
Decision Not to Reuse
The Simulation Model
The Evolution of a Science Project

The Production Development (PD) Sector *

Preliminary Conclusions

Many acquisition program behaviors are an interaction of the inherent structural dynamics, inc. the incentives that act on key participants.

Tipping points may play a key role in many challenging software development and acquisition situations.

System dynamics modeling can provide a deep understanding of poorly understood dynamics in software-reliant acquisition.

Models are a great source for generating research questions!

Future work:

• Calibrating model based on acquisition program assessments conducted at SEI and data obtained from programs.
• Identifying and evaluating potential mitigations
• Develop games to teach model-based lessons learned
“Firefighting” Animation
Summary and Conclusions
For Additional Information

SEI Report: “Success in Acquisition: Using Archetypes to Beat the Odds”

SEI Blog: “Themes Across Acquisition Programs”: Parts 1-4

Website: http://www.sei.cmu.edu/acquisition/research/archetypes.cfm

Download all twelve:
- PMO vs. Contractor Hostility
- Underbidding the Contract
- Everything for Everybody
- The Bow Wave Effect
- Brooks' Law
- Firefighting
- "Happy Path" Testing
- Longer Begets Bigger
- Shooting the Messenger
- Feeding the Sacred Cow
- Staff Burnout and Turnover
- Robbing Peter to Pay Paul
Summary and Conclusions

Joint Program Acquisition Experience Wanted!

We are analyzing the dynamic organizational behavior of joint and joint-interest programs as part of an ongoing research project.

We are conducting group modeling workshops to elicit key joint program behaviors, and are using the information to build a system dynamics model.

If you’d be interested in participating in a workshop, or collaborating with us in other ways, please contact:

William E. Novak
Senior Member of Engineering Staff
Office: 412.268.5519
Email: wen@sei.cmu.edu
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890