Mapping Architectural Decay Instances to Dependency Models

Drexel University: Ran Mo, Yuanfang Cai
University of Southern California: Joshua Garcia, Nenad Medvidovic

Workshop on Managing Technical Debt, 2013
Architectural Decay Instances

- Software architecture drift and erode
- Architectural decay instances
- Architecture debt
<table>
<thead>
<tr>
<th>Scattered Parasitic Functionality</th>
<th>Connector Envy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraneous Adjacent Connector</td>
<td>Duplicate Component Functionality</td>
</tr>
<tr>
<td>Brick Concern Overload</td>
<td>Unused Brick</td>
</tr>
<tr>
<td>Brick Use Overload</td>
<td>Connector Dimension Overload</td>
</tr>
<tr>
<td>Ambiguous Interface</td>
<td>Lego Syndrome</td>
</tr>
<tr>
<td>Brick Dependency Cycle</td>
<td>Sloppy Delegation</td>
</tr>
<tr>
<td>Unused Interface</td>
<td>Brick Functionality Overload</td>
</tr>
</tbody>
</table>
Scattered Parasitic Functionality Decay Instance

Definition

- Multiple components are responsible for realizing the same high-level concern
- Some of those components are responsible for orthogonal concerns.

Formalization

\[\exists z_1 \in T \mid P(z_1 \mid c_1) > \text{th}_1 \land \exists z_2 \in T \mid P(z_2 \in c_2) > \text{th}_1 \land z_1 = z_2 \land \exists z_3 \in T \mid P(z_3 \mid c_2) > \text{th}_2 \land z_1 = z_3, \] where \(\text{th}_1, \text{th}_2 \) are proportions such that \(0 \leq \text{th}_1 \leq 1 \) and \(0 \leq \text{th}_2 \leq 1 \).

\(\text{th}_1 \) and \(\text{th}_2 \) specify the acceptable degree of scattering per topic.
Challenge

- Heterogeneous elements
 - Component
 - Connecter
 - Concerns
 - Interfaces

- Difficult to automatically detect Decay Instances
Our Approach

- Uniform the heterogeneous elements and their relations to dependency model
 - Extended Augmented Constraint Network (EACN)
 - Constraint Network
 - Dominance Relation
 - Clustering Set
 - Concern Elements relation

- Design Structure Matrix (DSM)
 - Derived from EACN
 - Visualizing all the heterogeneous elements and their relations
EACN [Cai and Sullian 2012]

- Variables: Concerns, Components

- Constraints Network: StrateggeAnalyzer => ConnectorInteface

- Dominance relation: (StrateggeAnalyzer, ConnectorInteface)

- Clustering Set: Concern, Component

- Concern Element relations: <ResourceManager, Event and Message Management, 0.47>
Emergency Response System (ERS) - Design Structure Matrix (DSM)

Components	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27		
Component_RenderingAgent										0.19	x	x	14																
Component_SimulationAgent		0.56	0.24																										
Component_ResourceManager		0.48	0.47																										
Component_SAKBUI	0.31	0.33	0.33																										
Component_StrategyAnalyzer	0.14	0.14	0.14																										
Component_DeploymentAdvisor	0.49	0.13	0.23	0.14																									
Component_Monitor	0.43	0.07	0.30	0.06	0.10																								
Component_map	0.30	0.17	0.60	0.19																									
Component_Repository	0.30	0.20	0.27	0.33	0.33	0.30																							
Component_Weather	0.54	0.05	0.23	0.23	0.23																								
Component_StrategyAnalyzerKB	0.20	0.25	1.00	0.30																									

Concerns

- Component_RenderingAgent
- Component_SimulationAgent
- Component_ResourceManager
- Component_SAKBUI
- Component_StrategyAnalyzer
- Component_DeploymentAdvisor
- Component_Monitor
- Component_map
- Component_Repository
- Component_Weather
- Component_StrategyAnalyzerKB
- Component_Clock

Components

- Commander

Drexel University
Mapping and detecting Scattered Parasitic Functionality Decay Instance

- **Definition and Formalization**
 - Multiple components are responsible for realizing the same high-level concern; Some of those components are responsible for orthogonal concerns.

\[
\exists z_1 \in T \mid P(z_1 | c_1) > \text{th}_1 \land \exists z_2 \in T \mid P(z_2 | c_2) > \text{th}_1 \land z_1 = z_2 \land \exists z_3 \in T \mid P(z_3 | c_2) > \text{th}_2 \\
\land z_1 = z_3, \text{ where } \text{th}_1, \text{th}_2 \text{ are proportions such that } 0 \leq \text{th}_1 \leq 1 \text{ and } 0 \leq \text{th}_2 \leq 1.
\]

- **Mapping to the dependency model**
 - <ResourceManager, Event and Message Management, 0.47>
 - <StrategyAnalysisKB, Event and Message Management, 0.54>
 - <StrategyAnalysisKB, Commander and Agents concern., 0.33>
Summary

- All the heterogeneous elements and their relations can be modeled in the dependency model

- Mapping all the decay instances to the dependency model

- Detect the decay instances
Question?