Near Real-Time Multi-Source Flow Data Correlation

Carter Bullard
QoSient, LLC
carter@qosient.com

FloCon 2013
Albuquerque, New Mexico
Jan 7-10, 2013
Problem Statement

- Cyber incident attribution and forensics, is a complex process.
- To assist in security incident response, recognizable hostile activity needs to be associated with other information system behavior in order to understand the complete cyber security incident life cycle.
 - Within a complex internal spoofed stepping stone attack, using a Wiki vulnerability, a machine with an Antartican source address sends a message, that runs a rogue program that sends a command control message to a botnet style agent on an other machine that exfiltrates data back to Antartica.
- For most existing protection strategies, this isn’t detectable.
Flow data is an important component

- Exfiltration should be detectable from sensors on the external border, or from a sensor in Antarctica - But in this case, nada

- The machine that sent the data should be able to report to something that it sent data to Antarctica - But there aren’t any logs that contain that transaction
 - Having some form of audit for the network activity of key hosts, is important.
 - Having a means to associate that transfer with the program that actually sent the data is critical, here.
 - Realizing that that program was run by a program, not by the current user of the system, is important.

- The machine that was accessed by the Antarctican machine, like most internal machines, provide inadequate access control, protection or auditing to track.
 - Associating that program with the stimulating / initiating message from Antarctica is critical

- Realizing that the machine isn’t really in Antartica, but its down the hall, is going to be a challenging problem.
Comprehensive Enterprise Awareness
Dealing with the Insider Threat

Management Plane
FCAPS

End Station

Domain Name Server

DNS Root Servers

BGP

AAA

ARP

STP

OSPF

MPLS Network

RSVP-TE/LDP
IS-IS-TE
BGP

End Station
Argus

Call Controller
Policy Server
Connection Controller
Call Control
Policy Control
Connection Control
Data Plane

Comprehensive Enterprise Awareness
Dealing with the Insider Threat
How to approach this

- Establishing a strategy that can help attribution and forensics analysis for the internal attack
 - Establish formal attribution / non-repudiation systems

- Improve audit so that the basic information is available, reliable, and relevant
 - At least each host should maintain a network activity log

- Improve methods and techniques so that correlation can be used to make the end-to-end attribution possible.

- Currently, for many sites, it's really luck, rather than engineering, that makes this stuff work
How to deal with host issues?

- We need to modify system audit strategies to approach this really important problem.
- In the absence of direct support, what to do.
 - We can install flow monitors on hosts
 - That will provide the network audit
 - argus is a good candidate
- We need user and program bindings to flow data to make the back chaining possible to deal with our scenario.
 - Socket audits are possible in some systems
 - Demonstrate using lsof() to provide that info.
Argus Strategy

• In argus we have integrated into the basic argus data generation, collection, processing, storage and analytics, the ability to correlate flow and non-flow data.

• Argus has a facility, Argus Events, that can be used to generate, structure and transport metadata.

• Argus-3.0.6+ supports the collection of many non-flow data sources, including /etc/proc, vm_stat, SNMP data, and lsof() output.

• We’ve implemented the ability to correlate lsof() data with cached flow data, as a simple example, in all ra* programs.
End-to-End Situational Awareness
Network Optimization - Black Core Mesh

System Layer 2-7 Flow Data
- System Communication Efficiency
- Connectivity / Availability
- Offered Load / Loss / Jitter
- One-Way Delay (GPS synchronization)
- Round Trip Delay

Comprehensive Layer 2-7 Flow Data
- Site Communication Efficiency
- Enterprise Communication Efficiency
- Site Offered Load / Loss / Jitter
- Network Transit Times

Comprehensive Layer 2-4 Flow Data
- Network Path Assurance / Status
- Reachability / Availability Assessment
- One-Way Delay (GPS Synchronization)

Comprehensive Flow Monitor
- SNMP RMON Element Statistics/Traps
- Interface Status / Transitional Events
- Bulk Link Statistics

SNMP RMON Style Monitor

Information System Repository

End-to-End Communication Efficiency
- Reachability / Connectivity
- Received Load / Loss / Jitter
- Network Transit Times

ISP Communication Efficiency
- Ingress Available Capacity / Loss / Jitter
- One-Way Delay (GPS Synchronization)
- Network Path Status

Network Path Assurance / Status
- Reachability / Availability Assessment
- One-Way Delay (GPS Synchronization)

Core Service Provider Management Domain

Enterprise Management Domain

ARGUS

Comprehensive Flow Monitor
SNMP RMON Style Monitor
Information System Repository
Complex Comprehensive Awareness
Local and Remote Strategies

- Comprehensive Flow IS
- Argus Sensor
- Data Plane
- Situational Awareness Data
- White/Visible Node
- Black/Non-Visible Node

Core Network Domain
Enterprise Domain
Radium
Data Flow Design
Argus Events

- Argus event type specific format for a particular collection, using a generic XML free form strategy.

```xml
<ArgusEvent>
  <ArgusEventData Type = "Program: /usr/sbin/lsof -i -n -P">
    COMMAND     PID           USER   FD   TYPE     DEVICE SIZE/OFF   NODE NAME
    mDNSRespo   53 _mdnsresponder 56u  IPv4 0xbb72da10      0t0    UDP *:50451
    awacsd      69           root  241u  IPv4 0xbb72da10      0t0    TCP 192.168.0.68:57367->17.172.208.94:443 (CLOSED)
    apsd        71           root   10u  IPv4 0xbb72da10      0t0    TCP 192.168.0.68:53556->17.149.32.65:443 (ESTABLISHED)
    blued       72           root    4u  IPv4 0xbb72da10      0t0    UDP *:*   
    ntpd        75           root   20u  IPv4 0xbb72da10      0t0    UDP *:123
    radium      110          root   10u  IPv4 0xbb72da10      0t0    TCP 192.168.0.68:49166->192.168.0.68:561 (ESTABLISHED)
    radium      110          root   11u  IPv6 0xbb72da10      0t0    TCP [:1]:562->[:1]:49171 (ESTABLISHED)
  [snip]
    Keynote   68546         carter    8u  IPv4 0xbb72da10      0t0    TCP *:49901 (LISTEN)
    raevent   69821         carter    5u  IPv6 0xbb72da10      0t0    TCP [:1]:51255->[::1]:562 (ESTABLISHED)
    perl5.12  69824           root    4u  IPv4 0xbb72da10      0t0    TCP *:561 (LISTEN)
    perl5.12  69824           root    6u  IPv4 0xbb72da10      0t0    UDP *:*   
    perl5.12  69824           root    8u  IPv6 0xbb72da10      0t0    TCP 192.168.0.68:58040->192.168.0.68:49166 (ESTABLISHED)
    perl5.12  69824           root    9u  IPv6 0xbb72da10      0t0    TCP [:1]:561->[:1]:58040 (ESTABLISHED)
  </ArgusEventData>
</ArgusEvent>
```
Argus.conf

Argus Event management configuration syntax is:

```
# Syntax is: "method:path|prog:interval[:postproc]"
# Where:
#   method = [ "file" | "prog" ]
#   pathname | program = "%s"
#   interval = %d[smhd] [ zero means run once ]
#   postproc = [ "compress" | "compress2" ]
```

ARGUS_EVENT_DATA="prog:/usr/local/bin/ravms:20s:compress"
ARGUS_EVENT_DATA="prog:/usr/local/bin/rasnmp:1m:compress"
ARGUS_EVENT_DATA="file:/proc/vmstat:30s:compress"
ARGUS_EVENT_DATA="prog:/usr/local/bin/argus-lsof:30s:compress"
Argus Correlation Design
Radium Process

Argus Correlation

Flow Cache

Data Alignment

Argus Data Input Processor

Time Correction

Semantic Enhancement

Labeling, Geolocation

Argus Flow Aggregator
Argus Correlation Design
Radium Process

Argus Correlation

Argus Data Input Processor
- Time Correction
- Semantic Enhancement
 - Labeling, Geolocation
- Argus Flow Aggregator

Flow Cache

Data Alignment
Argus Correlation Design
Radium Process
Argus Correlation Design
Radium Process

Argus Correlation

Argus Data Input Processor

Time Correction

Semantic Enhancement
Labeling, Geolocation

Argus Flow Aggregator

Flow Cache

Agent Cache Manager
Management
Filter Manager
Flow Manager
Sort Manager
Aggregation Manager
Update Manager

User Interface

Agent Output Manager
Remote Access
Display
Local Storage

Data Alignment
Argus Correlation Design
Radium Process

Argus Correlation

- Argus Data Input Processor
 - Time Correction
 - Semantic Enhancement
 - Labeling, Geolocation
 - Argus Event Flow Generator

Flow Cache

Event Flow Cache
Argus Correlation Design
Radium Process
Argus Correlation Design

Radium Process

Argus Correlation

Argus Data Input Processor

Time Correction

Semantic Enhancement

Labeling, Geolocation

Argus Flow Aggregator

Flow Cache
Argus Strategy

- Argus events processing generates flow descriptions and annotation labels that contain the user and the program.
- We append these labels to the record.
- And then process like any other flow record.
- Lot of rules on how argus labels work.

- Argus Metadata Tutorial has a lot of stuff on this topic.
Live Demonstration
from Presentation Laptop
ra and ratop screens showing live traffic as observed from the laptop and realtime labeling of user, pid, program name inserted into the flow record itself.
Supporting Slides
Distributed Situational Awareness

Attack Scenarios - Interior Exterior Spoofing

White/Visible Node
Black/Non-Visible Node

Data Plane
Command and Control
Attack Traffic
Spoof Correlation

• Simple multi-domain flow correlation

• However, with NAT, encryption, tunneling, traditional flow correlation is not possible.
 • No applicable flow identifiers for matching
 • Flow granularity mismatch

• Need flow metadata to make assessment
 • Content
 • Time
 • Packet dynamics (PD).

• Absence of correlation is the key
 • Statistical systems are unusable