Presentation Outline

Essential Architecture Practices

Incorporating Architecture Practices into the Procurement Context

Conclusion
What is Architecture-Centric Engineering?

Architecture-Centric Engineering (ACE) is the discipline of using architecture as the focal point for performing ongoing analyses to gain increasing levels of confidence that systems will support their missions.

Architecture is of enduring importance because it is the right abstraction for performing ongoing analyses throughout a system’s lifetime.

The SEI Architecture Practices Group develops principles, methods, foundations, techniques, tools, and materials to support creating, fostering, and stimulating widespread transition of the ACE discipline.
Formal Definition of Software Architecture

“The software architecture of a system is the set of structures needed to reason about the system, which comprise software elements, relations among them and properties of both.”

The important quality attributes and their characterizations are key.

- Modifiability
- Interoperability
- Availability
- Security
- Predictability
- Portability

If function were all that mattered, any monolithic implementation would do, **...but other things matter...**

The Non-functional Requirements

Analysis, design, development, evolution

Software & System Architectures

Software & System

Has these qualities
Specifying Quality Attributes

Quality attributes are rarely captured *effectively* in requirements specifications; they are often vaguely understood and weakly articulated.

Just citing the desired qualities is not enough; it is meaningless to say that the system shall be “modifiable” or “interoperable” or “secure” without details about the context.

The practice of specifying quality attribute scenarios can remove this imprecision and allows desired qualities to be evaluated meaningfully.

A quality attribute scenario is a short description of an interaction between a stakeholder and a system and the response from the system.
Parts of a Quality Attribute Scenario

SOURCE → Stimulus → Artifact: Process, Storage, Processor, Communication → Response

MEASURE

1 2 3 4 5
Example Quality Attribute Scenario

A “performance” scenario: A remote user requests a database report under peak load and receives it in under 5 seconds.

SOURCE
Remote user

ENVIRONMENT
Database under peak load

Artifact:
Process, Storage, Processor, Communication

RESPONSE MEASURE
Response

under 5 seconds

Stimulus

1 2 3 4 5
Architecture-Centric Activities

Architecture-centric activities include the following:

• creating the **business case** for the system
• understanding the **requirements**
• **creating and/or selecting** the architecture
• **documenting and communicating** the architecture
• analyzing or evaluating the architecture
• **implementing** the system based on the architecture
• ensuring that the implementation **conforms** to the architecture
• **evolving** the architecture so that it **continues to meet** business and mission goals
<table>
<thead>
<tr>
<th>Activity</th>
<th>Method/Approach</th>
</tr>
</thead>
</table>
| creating the **business case** for the system| Quality Attribute Workshop (QAW) *
Mission Thread Workshop (MTW) * |
| understanding the **requirements** | |
| creating and/or selecting the architecture | Attribute-Driven Design (ADD) |
| document**ing and communicating** the architecture | Views and Beyond Approach; AADL |
| analyzing or evaluating the architecture | Architecture Tradeoff Analysis Method (ATAM) *
SoS Arch Eval *
Architecture Readiness Review (ARR) ; AADL |
| ensuring acquisition strategy is architecture-centric | Acquisition Planning Workshop (APW) |
| ensuring that the implementation **conforms** to the architecture | |
| evolving the architecture so that it **continues to meet business and mission goals** | Architecture Improvement Workshop (AIW)* and ArchE |
| ensuring use of effective architecture practices | Architecture Competence Assessment |

* = indicates a software engineering method that has been extended to systems engineering
Building the Business Case for the System

Some common business / mission drivers for systems include

- Reduce total cost of ownership
- Improve capability/quality of system
- Improve market position
- Support improved business processes
- Improve confidence in and perception of system

Results gleaned from

- 25 architecture evaluations
 - 18 government systems, 7 commercial systems
- 190 distinct business goals

http://www.sei.cmu.edu/reports/05tr021.pdf
Understanding the Requirements – The SEI’s Quality Attribute Workshop

The purpose of the SEI Quality Attribute Workshop (QAW) is to discover, early in the life cycle, the driving quality attribute requirements of a software-intensive system.

QAW Steps

1. QAW Presentation and Introductions
2. Business/Programmatic Presentation
3. Architectural Plan Presentation
4. Identification of Architectural Drivers
5. Scenario Brainstorming
6. Scenario Consolidation
7. Scenario Prioritization
8. Scenario Refinement

http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm
Analyzing the Architecture – SEI’s Architecture Tradeoff Analysis Method® (ATAM®)

The ATAM is an architecture evaluation method that focuses on multiple quality attributes.
View-Based Documentation

Views give us our basic principle of architecture documentation

Documenting an architecture is a matter of documenting the relevant views, and then adding documentation that applies to more than one view.

The choice of views used depends on the nature of the system and the stakeholder needs.
Presentation Outline

Essential Architecture Practices

Incorporating Architecture Practices into the Procurement Context

Conclusion
Architecture-Centric Procurement is the act of using architecture and architectural practices as a contractual means to reduce risk and gain added confidence that the system being procured will be capable of achieving its intended mission.

[Bergey 2010]

It is a quality attribute and architecture-driven approach to reducing software procurement risk.

It involves being proactive and selectively incorporating architectural practices in a procurement* in a prescribed manner.

* In an RFP/Contract or Task Order
Why Architecture-centric Procurement?

An architecture-centric approach raises the "performance bar" on both the acquirer’s and supplier’s side by:

- specifying architecturally significant requirements
- reinforcing a ‘quality-attribute-driven’ architectural design
- ensuring suitable software architecture documentation is procured
- conducting architecture evaluations to identify risks in achieving quality attributes and business goals
- requiring mitigation of identified architectural risks early in development to avoid costly rework and schedule delays
Selling the Concept with “Architecture Stories”

We have had success in getting procuring organizations buy into the concept through the use of “architecture stories.”

An architecture story is expressed in the following form:

As a <stakeholder role>, I want to <the goal> so that <reason why>

A well crafted architecture-centric story has these three components:

Who -- title denoting the acquisition stakeholder’s role
What -- the goal the acquisition stakeholder wants to achieve
Why -- the reason the stakeholder wants to achieve the goal
As a program manager, requirements manager, or architect …

I want to ensure the architecturally significant requirements are appropriately specified

so that:

• they unambiguously define the system’s non-functional requirements which will drive the design of the software architecture
• they accurately express the system’s desired qualities (e.g., security, performance, availability, modifiability, openness) in stakeholder terms
• they can later be used as the basis for conducting a software architecture evaluation

When should it be done?

Should the development contractor be involved?
Architecture Documentation Story

As a program manager, software life cycle manager, or architect …
I want to be sure the software architecture is appropriately documented and included as a contract deliverable

so that:

• stakeholders can understand the system’s construction and behavior
• an architectural baseline can be established and subsequently placed under configuration management and control
• up-to-date architecture documentation consisting of multiple views (e.g., decomposition, run-time, allocation) will be available
• better estimates can be made of the cost and schedule of implementing a new software capability, planned upgrade, or ECP
• support can be provided to third party component developers
• software development and sustainment can be conducted more effectively

Will this happen on its own?
As a program manager, risk manager, or architect …

I want an independent team to conduct a software architecture evaluation in collaboration with the development contractor in order to:

• obtain visibility into the efficacy of the development contractor’s proposed software design
• determine if the architecture is suitable for achieving the program’s business and mission drivers and desired system qualities
• create a “win-win” situation by having an objective evaluation that also involves the development contractor
• identify architecture-related risks early in the development cycle so they can be mitigated in a timely and cost effective manner
• have a good understanding of the nature of the risks so they can be prioritized and a risk mitigation plan can subsequently be developed

Why not just leave it up to the contractor to do it?
Example Implementation of an Architecture-Centric Procurement
Example Architecture-Centric Procurement

PHASES

Materiel Solution Analysis Technology Development Engineering and Manufacturing Development Production and Deployment Operations and Support

Milestones

A B C

Government and Contractor Stakeholders

Initial SWARD Delivery

Contract Award

SRR

SWARD Readiness Review

SW Arch Evaluation

Arch Risk Mitigation Report

Risk Mitigation Approaches

PDR

Arch Demo

SW Arch Evaluation

CDR

Contractually-specified architecture practices

Contract Option

Evaluation Report

By an Independent Arch Eval Team

Contract Performance Phase with Government Oversight

N days after contract award

P

Z

W days before PDR

X days before Arch Eval

Y

Y

Legend

Arch Demo – Architecture Demonstration
APW – Acquisition Planning Workshop
PDR – Preliminary Design Review
SRR – System Requirements Review
SWARD – SoftWare ARchitecture Description Document
CDR – Critical Design Review

PHASES

Acquisition Planning RFP / SOW

Scheduled by Program Office

Governance Stakeholders

Example Architecture-Centric Procurement

Milestones

A B C

Government and Contractor Stakeholders

Initial SWARD Delivery

Contract Award

SRR

SWARD Readiness Review

SW Arch Evaluation

Arch Risk Mitigation Report

Risk Mitigation Approaches

PDR

Arch Demo

SW Arch Evaluation

CDR

Contractually-specified architecture practices

Contract Option

Evaluation Report

By an Independent Arch Eval Team

Contract Performance Phase with Government Oversight

N days after contract award

P

Z

W days before PDR

X days before Arch Eval

Y

Y

Legend

Arch Demo – Architecture Demonstration
APW – Acquisition Planning Workshop
PDR – Preliminary Design Review
SRR – System Requirements Review
SWARD – SoftWare ARchitecture Description Document
CDR – Critical Design Review

Software Engineering Institute | Carnegie Mellon

Architecture-Centric Procurement

© 2013 Carnegie Mellon University

23
Architecture-Centric Activities and Events in a Procurement Context

- **Software Architecture Development**
 - Quality Attribute Scenarios
 - Quality Attribute Workshop

- **SOW Task**
 - Program Office
 - Contractor

- **Software Architecture Readiness Review (SWARD)**
 - Team
 - QAV Plan

- **Software Architecture Description**
 - Architecture documentation needs to be revised

- **Architecture Risks**

- **Risk Mitigation Analysis**

- **Architecture Risk Mitigation Report**

- **AGB Architecture Governance Board**
 - Direction
 - Guidance

- **PDR**
 - Program Office
 - Contractor

- **ATAM Evaluation Report**

- **Collaborative Task**
 - Contractor Task

- **Contract Deliverable**

- **Legend**
 - Program Office
 - Contractor
 - Updated SWARD
 - Detailed Design and CDR
 - AGB Plan
 - GFI Plan
Presentation Outline

Essential Architecture Practices

Incorporating Architecture Practices into the Procurement Context

Conclusion
Conclusion

Our experience has shown that a quality attribute and architecture-centric approach:

• provides early insight into critical requirements and design decisions that drive the entire development effort
• provides a proven and effective means for discovering architecture risks and risk themes
• results in fewer test and integration problems and costly rework downstream
• provides right level of abstraction that aligns with limited program office resources and time and effort
• provides a product focus that complements process-focused activities
• enables an acquisition organization to perform its contract management responsibilities with greater effectiveness.
Your Choice

An Architecture-Centric Acquisition Approach

or
Questions
References - 1

Software Architecture in Practice, Third Edition

Evaluating Software Architectures: Methods and Case Studies

Documenting Software Architectures: Views and Beyond, Second Edition

Software Product Lines: Practices and Patterns
References - 2

You can find a moderated list of references on the “Software Architecture Essential Bookshelf”
http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm

Grady Booch: Handbook of Software Architecture (currently only an on-line reference):
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main
Contact Information

John Bergey
Research, Technology, and Systems Solutions Program
Telephone: 215-348-0530
Email: jkb@sei.cmu.edu

Larry Jones
Research, Technology, and Systems Solutions Program
Telephone: 719-481-8672
Email: lgj@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/productlines
SEI Fax: 412-268-5758
Backup Slides
Architecture Readiness Story

As a program manager, quality assurance manager, or architect …
I want to conduct an in-situ review of the architecture documentation in collaboration with the system developer

in order to:

• determine if the documentation is sufficient to enable the follow-on architecture evaluation to proceed as scheduled
 ✓ identify any significant architecture documentation deficiencies early so they can be corrected in a timely fashion
 ✓ allow enough time for the development contractor to correct the deficiencies prior to conducting the architecture evaluation
 ✓ avoid potential expense and delay that would otherwise be incurred if the planned evaluation had to be aborted

• familiarize the developer with the method that will be used to conduct the follow-on architecture evaluation

Is this review really necessary?

What happens with out it?
Architecture Risk Mitigation Story

As a program manager, risk manager, or architect …

I want the development contractor to analyze the risks identified during the architecture evaluation and propose solutions in order to:

• mitigate risks as early as practical in the development cycle when they can be mitigated in a timely and cost effective manner
• understand the risk impact, what risk mitigation approaches were explored, and the rationale for the recommended approach
• have the development contractor present and facilitate a discussion of its risk mitigation approach during a Preliminary Design Review (PDR):
 ✓ avoids perfunctory design reviews
 ✓ provides forum for reviewing risks and understanding risk impact
 ✓ enables discussion of recommended risk mitigation approach and alternative approaches that were considered

Why do this? Isn’t the contractor required to have a risk management plan?
As a program manager, quality assurance manager, or architect …
I want to establish an effective means of architecture governance throughout the life cycle so that:

• the software architecture is under configuration management (CM) and control and the architecture documentation is kept up-to-date
• there is an architecture IPT or governing board to provide architectural input and consultation to management and the CM control board to:
 ✓ ensure new requirements and planned software changes are reviewed and analyzed to determine architectural impact
 ✓ estimate cost and schedule impact of architectural changes
 ✓ participate in architecture evaluations (and conformance reviews) and ensure architectural risks are appropriately mitigated
• changes to the system architecture and software architecture are appropriately documented and coordinated

Why do we have to tell the contractor what to do?
Architecture Conformance Story

As a program manager, quality assurance manager, or architect … I want the development contractor to conduct periodic architecture conformance reviews and report on the findings in order to:

• determine if the detailed software design and software implementation are in compliance with the baseline software architecture
 – prior to a critical design review (CDR)
 – before each major software release
• identify any significant discrepancies between the software architecture description and the “as built” software design and code implementation
• understand the impact of any discovered discrepancies or anomalies and how the contractor’s proposes to remedy them

What difference will it make?