
Combining a Formal Method and PSP for
Improving Software Process:

An Initial Report
- (Work-In-Progress Report) -

Shigeru KUSAKABE, Yoichi OMORI, Keijiro ARAKI
Kyushu University, Japan

Outline

• Background
• Personal Software Process
• Formal Method
• Process Improvement with Formal Methods

– Case Report

• Concluding Remarks

TSP Symposium 2012 2012/09/19 2

Background
Using Formal methods is a promising approach to

– high quality products within shorter period
– reliable and dependable systems

• recommended in standards: ISO/IEC15408, IEC61508

Many engineers and managers are interested,
... but actually introduced in very limited cases (in Japan)

– formal methods seem too research oriented (esoteric)?
• hard to apply to real projects by usual developer?

– many developers seem less aware of process data
• estimate cost-performance without baseline performance

When, where, how to introduce FM in a feasible manner?
TSP Symposium 2012 2012/09/19 3

Seven Myths of Formal Methods
Anthony Hall, IEEE Software, 1990
Seven Myths
1. Formal methods can guarantee that software is perfect.
2. Formal methods are all about program proving.
3. Formal methods are only useful for safety-critical systems.
4. Formal methods require highly trained mathematicians.
5. Formal methods increase the cost of development.
6. Formal methods are unacceptable to users.
7. Formal methods are not used on real, large scale software.

2012/09/19 TSP Symposium 2012 4

Seven Facts of Formal Methods

1. Formal methods are fallible.
2. Formal methods are all about specifications.
3. Formal specifications helps with any system.
4. The mathematics for specification is easy.
5. Writing a formal specification decreases the cost of

development.
6. Formal specifications help users understand what

they are getting.
7. Formal methods are used daily on industrial projects.

2012/09/19 TSP Symposium 2012 5

Goal & Approach
Self-managed individuals ready for effective and efficient
software development with formal methods if necessary.
• Assumtion: we can effectively introduce formal methods

into a disciplined and analyzable software process.
• After establishing discipline, improve software process with

formal methods from an engineering point of view.

• Our first trial: process improvement with developer
friendly FM for well-defined & customizable process.
– well-defined & w/ data collection support -> easy to analyze
– customizable -> easy to extend with formal methods

– Case study, rather than strictly controlled experiment

TSP Symposium 2012 2012/09/19 6

Outline

• Background
• Personal Software Process
• Formal Method
• Process Improvement with Formal Methods

– Case Report

• Concluding Remarks

TSP Symposium 2012 2012/09/19 7

PSP: Personal Software Process*
Providing a framework that helps us to analyze where to
improve our personal process:
• Phases: plan, detailed design, detailed design review,

code, code review, compile, unit test, and post mortem,
with a set of associated scripts, forms, and templates.

• Data: time and defects injected and removed for each
phase, size, size and time estimating error, cost-
performance index, defects injected and removed per
hour, personal yield, appraisal and failure cost of quality,
and the appraisal to failure ratio.

 * Service Mark of Carnegie Mellon University, Software Engineering Institute

TSP Symposium 2012 2012/09/19 8

Introduce Formal Methods in PSP
PSP course structure (8-program version)

– PSP0*: measurement (2 exercises)
– PSP1*: estimate (2)
– PSP2*: quality (4)

• very simple formal notation by default

9

SS2011: 2011/06/10 9

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

TSP
Team development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)

Process extension (variation)
1. Collect process data to PSP X

as baseline data
• Time, defect (type, fix time, ..)

2. Analyze baseline data and
consider how to improve

3. Start using FM after PSP X
2012/09/19 TSP Symposium 2012 9

Outline

• Background
• Personal Software Process
• Formal Method
• Process Improvement with Formal Methods

– Case Report

• Concluding Remarks

TSP Symposium 2012 2012/09/19 10

Formal Methods
Useful in reducing defects injected into software

- Mathematically describing the system enables
efficient and effective (automatic) reasoning

- Elimination of ambiguity leads to improving quality
of software development as well as software itself

Various methods
– more than 100 methods, ...

Different levels of formality
– for example, level 0, level 1, and level 2

TSP Symposium 2012 2012/09/19 11

Introducing Formal Methods to Project
(In Japan,) Projects using formal methods are very
limited*0, while engineers & managers seem interested
in formal methods.

– In order to break this situation, several organizations /
groups, such as SEC*1 of IPA*2, are trying to establish
guidelines to introduce formal methods in real projects.

*0 One of the most famous succeeded projects is Felica IC chip firmware
*1 SEC: Software Engineering Center, *2 IPA: Information-technology Promotion Agency

Our challenge: Establish reference models of software
development process with formal methods, starting
from a developer-friendly one. (level 0)

TSP Symposium 2012 2012/09/19 12

Different levels of formality
• Level 0: In this light-weight level, we develop a formal specification

and then a program from the specification informally. This may be
the most cost-effective approach in many cases.

• Level 1: We may adopt formal development and formal verification
in a more formal manner to produce software. For example, proofs
of properties or refinement from the specification to an
implementation may be conducted. This may be most appropriate
in high-integrity systems involving safety or security.

• Level 2: Theorem provers may be used to perform fully formal
machine-checked proofs. This kind of activity may be very
expensive and is only practically worthwhile if the cost of defects is
extremely expensive.

2012/09/19 TSP Symposium 2012 13

Hoare logic

2012/09/19 TSP Symposium 2012 14

{N ≧ 0}

i := 1;
f := 1;
While i ≦ N
Do
 f := f * i;
 i := i + 1
End

{f = N!}

Proof

2012/09/19 TSP Symposium 2012 15

Different levels of formality
• Level 0: In this light-weight level, we develop a formal specification

and then a program from the specification informally. This may be
the most cost-effective approach in many cases.

• Level 1: We may adopt formal development and formal verification
in a more formal manner to produce software. For example, proofs
of properties or refinement from the specification to an
implementation may be conducted. This may be most appropriate
in high-integrity systems involving safety or security.

• Level 2: Theorem provers may be used to perform fully formal
machine-checked proofs. This kind of activity may be very
expensive and is only practically worthwhile if the cost of defects is
extremely expensive.

2012/09/19 TSP Symposium 2012 16

VDM
VDM (Vienna Development Method) (1970s, IBM Vienna):

• a collection of techniques for developing computer
systems from formally expressed models (specifications)

• VDM-SL (ISO/IEC 13817-1)
• Well-defined (c.f. UML), executable (c.f. Z)
• (DVM++ is its object-oriented extension version.)

• support for different abstraction:
• Implicit/Explicit, functional/state-based

• tool (interpreter for executable specification)
• support for Japanese: useful for other stakeholders
=> Developer friendly !?
17 TSP Symposium 2012 2012/09/18 17 2012/09/19

Example

-- implicit specification example
functions
 IAddAddress(name: Name, address: Address, book: AddressBook) r: AddressBook
 IAddAddress(name, address, book) == is not yet specified
 pre name not in set dom(book)
 post r = book munion {name |-> address}

2012/09/19 TSP Symposium 2012 18

-- explicit specification example
functions
 fact : nat -> nat
 fact(n) ==
 cases n :
 0 -> 1,
 others -> n * fact(n-1)
 end

Why VDM?
Reduction of ambiguity in a phase may reduce the defects in the following
phases, and may help finding the defects in the preceding phases.

TSP Symposium 2012 2012/09/19 19

Planning

• Design Review

Design

• Code Review

Coding

Compile

Test

Different level / style
 of abstraction
•implicit/explicit
•functional/state
No proof so far (level 0)

Outline

• Background
• Personal Software Process
• Formal Method
• Process Improvement with Formal Methods

– Case Report

• Concluding Remarks

TSP Symposium 2012 2012/09/19 20

Process Improvement Case Report
Concern
•Can we (non-expert) figure out how to use a formal
method, VDM, in a guided manner?

Setting
•A graduate student : not familiar with formal methods

– Basic experience of programming and software development
project such as PBL (Project-Based Learning)

•Defect prevention based on personal historical data

SS2011: 2011/06/10

TSP Symposium 2012 2012/09/19 21

Introduce VDM in PSP
PSP course structure

– PSP0*: measurement (2 exercises)
– PSP1*: estimate (2)
– PSP2*: quality (2/4)

• very simple formal notation by default

22

SS2011: 2011/06/10 22

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

TSP
Team development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)

Process extension
1. Collect baseline data: process

data until PSP1*
• Time, defect (type, fix time, ..)

2. Analyze baseline data and
consider how to improve

3. Start using FM from PSP2
2012/09/19 TSP Symposium 2012 22

Defect Data

Personal process improvement
with formal methods based on
the defect data:
•defect type
•time to fix defect
•defect injection phase
•defect removal phase
•brief explanation

Defect type:
•Documentation
•Syntax
•Build, Package
•Assignment
•Interface
•Checking
•Data
•Function
•System
•Environment

TSP Symposium 2012 2012/09/19 23

6.82
2.73

16.4

1.36 2.73

21.8

0

10

20

30

40

50

60

De
fe

ct
 d

en
si

ty
 (/

kL
O

C)

Defects by type

機能
データ
チェック
インタフェース
文法
文書化

Baseline Process Data (defects)

機能欠陥・インタフェー
ス欠陥が多い傾向
⇒この2つの欠陥に着目

SS2011: 2011/06/10 24

function
data
check
interface
syntax
document

target

type

ave.
fix
time
(mi)

I-1 Interface insufficient
breakdown 15.8

F-1 Function loop
control 10.3

F-2 Function logic 6.8

24 TSP Symposium 2012 2012/09/19 24

(PSP 0, PSP 0.1, PSP 1, PSP 1.1)

Process Modification
Plan

Detailed Design

Design Review

Coding

Code Review

Compile

Test

Postmortem

Base process: PSP 2
– design

• UML

• VDM++

– design review

• with customized check list (manual
check), and tool support

SS2011: 2011/06/10 25

TSP Symposium 2012 2012/09/19 25

Added Steps

[Step 1:] Prevention of I-1 type defects
– Write signature of methods in VDM++ in detailed design
– Use VDMTools for syntax and type check

[Step 2:] Prevention of F-1 type defects
– Describe sequence handling part in VDM++

[Step 3:] Prevention of F-2 type defects
– Write explicit VDM++ specification for selected part
– Use animation of VDMTools.

TSP Symposium 2012 2012/09/19 26

Time Distribution

TSP Symposium 2012 2012/09/19 27

Defect Density
Interface type

– none

Function type
(slightly increased, but removed in..)

– baseline
• mainly (87.5%) removed in Test

– proposed
• mainly remove in design review
• only 20% in Test

Total
– no reduction ...

– language proficiency?

SS2011: 2011/06/10 28

TSP Symposium 2012 2012/09/19 28

Productivity

TSP Symposium 2012 2012/09/19 29

Outline

• Background
• Personal Software Process
• Formal Method
• Process Improvement with Formal Methods

– Case Report

• Concluding Remarks

TSP Symposium 2012 2012/09/19 30

Concluding Remarks
• Introduced VDM in a guided manner

– He could use our baseline data in improving the process

• Effective process improvement
– spent more in design and less in test
– reduced the number of defects he had focused on without

decreasing his productivity
He felt that, without a disciplined process like PSP, he could not

have made a process improvement plan with formal methods.

• Future work:
– Other processes such as TSP, other formal methods, ...

TSP Symposium 2012 2012/09/19 31

	Combining a Formal Method and PSP for Improving Software Process: �An Initial Report�- (Work-In-Progress Report) -
	Outline
	Background
	Seven Myths of Formal Methods
	Seven Facts of Formal Methods
	Goal & Approach
	Outline
	PSP: Personal Software Process*
	Introduce Formal Methods in PSP
	Outline
	Formal Methods
	Introducing Formal Methods to Project
	Different levels of formality
	Hoare logic
	Proof
	Different levels of formality
	VDM
	Example
	Why VDM?
	Outline
	Process Improvement Case Report
	Introduce VDM in PSP
	Defect Data
	Baseline Process Data (defects)
	Process Modification
	Added Steps
	Time Distribution
	Defect Density
	Productivity
	Outline
	Concluding Remarks

