

TSP Symposium 2012 Proceedings

William Richard Nichols
Álvaro Tasistro, Universidad ORT Uruguay
Diego Vallespir, Universidad de la República
João Pascoal Faria, Faculty of Engineering, University of Porto
Mushtaq Raza, University of Porto
Pedro Castro Henriques, Strongstep – Innovation in Software Quality
César Duarte, Strongstep – Innovation in Software Quality
Elias Fallon, Cadence Design Systems, Inc.
Lee Gazlay, Cadence Design Systems, Inc.
Shigeru Kusakabe, Kyushu University
Yoichi Omori, Kyushu University
Keijiro Araki, Kyushu University
Fernanda Grazioli, Universidad de la República
Silvana Moreno, Universidad de la República

November 2012

SPECIAL REPORT
CMU/SEI-2012-SR-015

Software Engineering Process Management Program

http://www.sei.cmu.edu

http://www.sei.cmu.edu

SEI markings v3.2 / 30 August 2011

Copyright 2012 Carnegie Mellon University.

This material is based upon work funded and supported by the United States Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

Any opinions, findings and conclusions, or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

ESC/CAA
20 Schilling Circle, Building 1305, 3rd Floor
Hanscom AFB, MA 01731-2125

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the

work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to

the copyright license under the clause at 252.227-7013 and 252.227-7013 Alternate I.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

mailto:permission@sei.cmu.edu

CMU/SEI-2012-SR-015 | i

Table of Contents

Abstract vii

1 Introduction 1

2 An Analysis of Code Defect Injection and Removal in PSP 3
2.1 Introduction 3
2.2 The Personal Software Process and the Collection of Data 4
2.3 The Data Set 6
2.4 Where the Defects Are Injected 8
2.5 Analysis of CODE Defects 10

2.5.1 Defect Types Injected During the Code Phase 10
2.5.2 When Are the Defects Injected During Code Removed? 12
2.5.3 Cost to Remove the Defects Injected in Code 14

2.6 Limitations of this Work 17
2.7 Conclusions and Future Work 18
2.8 Author Biographies 18
2.9 References/Bibliography 19

3 Model and Tool for Analyzing Time Estimation Performance in PSP 21
3.1 Introduction 21
3.2 Performance Model for Analyzing the Time Estimation Performance 22

3.2.1 Performance Indicators and Dependencies 23
3.2.2 Control Limits 26
3.2.3 Work in Progress: Improvement Actions 27

3.3 The PSP PAIR Tool 28
3.4 Evaluation 30
3.5 Presentation of Evidence—Impact of Process Changes on Productivity Stability 32
3.6 Presentation of Evidence—Impact of Defect Density in Unit Tests on

Productivity Stability 34
3.7 Conclusions and Future Work 36
3.8 Acknowledgments 37
3.9 Author Biographies 38
3.10 References/Bibliography 39

4 PSPDC: An Adaptation of the PSP to Incorporate Verified Design by Contract 41
4.1 Introduction 41
4.2 Formal Methods 42
4.3 Adaptation 43
4.4 Planning 45
4.5 Design 45
4.6 Design Review 46
4.7 Formal Specification 46
4.8 Formal Specification Review 46
4.9 Formal Specification Compile 46
4.10 Code 46
4.11 Code Review 47
4.12 Compile and Proof 47
4.13 Unit Test 47
4.14 Post-Mortem 47
4.15 Conclusions and Future Works 47
4.16 Author Biographies 49

CMU/SEI-2012-SR-015 | ii

4.17 References/Bibliography 49

5 Experience Report: Applying and Introducing TSP to Electronic Design Automation 51
5.1 Introduction 51
5.2 Electronic Design Automation 51
5.3 Why We Decided to Pilot TSP 52
5.4 PSP Results 53
5.5 TSP Results 59

5.5.1 TSP Quality Results 59
5.5.2 TSP Planning Results 62

5.6 Summary 65
5.7 Acknowledgements 65
5.8 Author Biographies 65
5.9 References 66

6 A Combination of a Formal Method and PSP for Improving Software Process:
An Initial Report 67
6.1 Abstract 67
6.2 Introduction 67
6.3 Personal Software Process 68
6.4 Formal Methods 69
6.5 Process Improvement with Formal Methods 70
6.6 Case Report 71
6.7 Concluding Remarks 73
6.8 Author Biographies 74
6.9 References 74

7 A Cross Course Analysis of Product Quality Improvement with PSP 76
7.1 Introduction and Background 76

7.1.1 Concept Introduction on PSP Courses 77
7.2 Data Set and Statistical Model 78
7.3 Analysis and Results 79
7.4 Threats to Validity and Limitations 85
7.5 Conclusions 86
7.6 Acknowledgments 87
7.7 Author Biographies 87

CMU/SEI-2012-SR-015 | iii

List of Figures

Figure 1: The PSP Phases, Scripts, Logs, and Project Summary 4

Figure 2: PSP Process Level Introduction During Course 6

Figure 3: Quantity of Students by Program Languages 7

Figure 4: Percentage of Defects Injected by Phase (Box and Whisker Chart) 9

Figure 5: Box and Whisker Plot of the Percentage of Defects Injected During Code 12

Figure 6: In Which Phase Are the Code Defects Found? – Variability Between Individuals 13

Figure 7: Box and Whisker Plot of the Cost to Find and Fix a Code Defect Segmented
by Phase Removed 15

Figure 8: Box and Whisker Plot of the Cost to Find and Fix a Defect Segmented by Defect Type 17

Figure 9: Overview of the Steps and Artifacts in our Approach (Notation of
UML Activity Diagrams) 22

Figure 10: Performance Model for Identifying Causes of Estimation Problems 24

Figure 11: PSP PAIR Home 28

Figure 12: PSP PAIR Performance Results Report 29

Figure 13: PSP PAIR Recommended Improvement Actions for a Sample Project 30

Figure 14: Evolution of the Mean Productivity Per Phase (in Minutes Spent Per New
or Changed LOC) Along the Four Program Assignments 33

Figure 15: Box and Whisker Plot Showing the Relationship Between the Defect Density
 in Unit Tests and the Productivity Stability 35

Figure 16: Box and Whisker Plot Showing the Relationship Between the Defect Removal
Phase and the Defect Fix Time 36

Figure 17: Personal Software Process 44

Figure 18: Size Versus Development Time for All PSP Fundamental Programs Written
at Cadence 53

Figure 19: Total Defects Injected in PSP Fundamentals Programs 54

Figure 20: Defect Removal Rates for PSP Fundamentals Programs 55

Figure 21: Test Defect Density Across Programs 56

Figure 22: Total Quality Costs 57

Figure 23: Appraisal Costs for PSP Fundamentals Programs 58

Figure 24: Productivity for PSP Fundamentals Programs 59

Figure 25: Defect Removal Profile (Defects/KLOC removed in each phase) for a Team in
Its Second Cycle 60

Figure 26: Defect Removal Profile (Defects/KLOC removed in each phase) for the Same Team
in Its Third Cycle with a More Formal Code Inspection Process 60

Figure 27: Defect Removal Profile (Defects/KLOC removed in each phase) for the Same Team
in Its Fourth Cycle 61

Figure 28: Cost of Quality Across Four Teams Inside the Developer’s Process 62

CMU/SEI-2012-SR-015 | iv

Figure 29: Plan Time vs. Actual Time Team X, Cycle 3 63

Figure 30: Plan Size Versus Actual Size for the Same Development Items Shown in Figure 28 64

Figure 31: Actual Size vs. Actual Time for Modification-Dominated Tasks with Less than
100 A&M LOC 64

Figure 32: The Comparison of Time Ratio Spent in Each Phase 72

Figure 33: The Comparison of Defect Density, Number of Defects Per One Thousand Lines
of Code, Between the Baseline Process and the Extended Process with VDM++ 73

Figure 34: Defect Density in Unit Testing grouped by Course Type and PSP Level 80

Figure 35: Defect Density in Unit Testing Grouped by Course Type and Program Assignment 80

Figure 36: Comparison of Estimated Marginal Means of Ln(DDUT) versus Program Number
 between PSP Fund/Adv and PSP I/II 84

Figure 37: 95% Confidence Interval of Ln(DDUT) for each PSP Level in PSP Fund/Adv
and PSP I/II 85

CMU/SEI-2012-SR-015 | v

List of Tables

Table 1: Defect Types in PSP 5

Table 2: Mean Lower, Upper Confidence Interval Values and Standard Deviation of the
Percentage of Defects Injected by Phase 8

Table 3: Percentage of Defect Types Injected During Code 10

Table 4: Phases Where the Code Defects are Found (Percentage) 12

Table 5: Cost of Find and Fix Defects Injected in Design Segmented by Phase Removed 14

Table 6: Cost of Find and Fix Defects Injected in Code Segmented by Defect Type 16

Table 7: Performance Indicators 25

Table 8: Control Limits for the Performance Indicators 26

Table 9: Preliminary List of Problems and Improvement Actions 27

Table 10: Results Assessment: Problems 31

Table 11: Results Assessment: Improvement Actions 31

Table 12: Overall Statistics of the Experiment 32

Table 13: Results of Pairwise ANOVA Analysis, Highlighting Statistically Significant
Differences in Mean Productivity Per Phase Between Pairs of Program Assignments,
with a 95% Confidence Level (p value < 0.05) 33

Table 14: Comparison of Quality Measures for 6.1.5 vs. 6.1.4 52

Table 15: Defect Types Frequently Injected and Expensive to Fix 71

Table 16: PSP Levels for each Program Assignment 77

Table 17: ANOVA Outputs for Program Assignment Comparison in PSP Fund/Adv 82

Table 18: ANOVA Outputs for Program Assignment Comparison in PSP I/II 82

Table 19: ANOVA Outputs for Program Assignment Comparison Combined Course Data 83

CMU/SEI-2012-SR-015 | vi

CMU/SEI-2012-SR-015 | vii

Abstract

The 2012 TSP Symposium was organized by the Software Engineering Institute (SEI) and took
place September 18–20 in St. Petersburg, FL. The goal of the TSP Symposium is to bring together
practitioners and academics who share a common passion to change the world of software
engineering for the better through disciplined practice. The conference theme was “Delivering
Agility with Discipline.” In keeping with that theme, the community contributed a variety of
technical papers describing their experiences and research using the Personal Software Process
(PSP) and Team Software Process (TSP). This report contains the six papers selected by the TSP
Symposium Technical Program Committee. The topics include analysis of performance data from
PSP, project performance outcomes in developing design systems, and extending the PSP to

evaluate the effectiveness of formal methods.

CMU/SEI-2012-SR-015 | viii

CMU/SEI-2012-SR-015 | 1

1 Introduction
 William Nichols, Software Engineering Institute

The 2012 TSP Symposium was organized by the Software Engineering Institute (SEI) and took
place September 18–20 in St. Petersburg, FL. The goal of the TSP Symposium is to bring together
practitioners and academics who share a common passion to change the world of software
engineering for the better through disciplined practice. The conference theme was “Delivering
Agility with Discipline.” In keeping with that theme, the community contributed a variety of
technical papers describing their experiences and research using the Personal Software Process
(PSP) and Team Software Process (TSP).

The technical program committee was geographically and technically diverse and included
members from the United States, Mexico, Portugal, South Africa, and Japan. Representatives
from the SEI, academic partners, and TSP Transition Strategic Partners were included on the
committee, which reviewed and selected presentations for the symposium and papers for this
report.

This report contains six papers that dive deeper into experience and analysis than is feasible in a
conference presentation. Topics include analysis of PSP process improvement data, integration of
formal methods into the PSP for Engineers, improved analysis tools for use in the PSP for
Engineers, and a TSP case study for a large company enhancing legacy products. An overview of
these papers follows.

Analysis of Code Defect Injection and Removal in PSP (Diego Vallespir and William Nichols)
extends research reported last year to include analysis of defects injected during the Code phase.
Defects injected in the Code and Design phases are categorized by defect type. The find-and-fix
times for each type are analyzed by phase removed. It is hardly surprising to PSP instructors that
the find-and-fix times vary by phase. How the effort for defect type categories differs is more or
less consistent with our experience, yet is described formally for the first time in this paper.

PSPDC – An Adaptation of the PSP to Use Design by Contract (Silvana Moreno, Álvaro
Tasistro, and Diego Vallespir) investigates using the PSP to measure the effectiveness of “Design
by Contract.” Design by Contract was pioneered by Bertrand Myers and enhances the design
process with more formal methods. This paper includes a discussion of how the PSP process can
be adapted for use in Design by Contract environments, including through the use of a verifying
compiler.

Analysis of Product Quality Improvement with PSP (Fernanda Grazioli and William Nichols)
analyzes and compares some of the results from two versions of the PSP introduction course, the
eight-exercise PSP I/PSP II and the seven-exercise PSP Fundamentals/PSP Advanced. The
performance as measured by defect level in the unit test phase is described for each exercise and
compared by PSP exercise and PSP process level. The results are then analyzed using ANOVA to
attempt to separate the effects of PSP level from that of progression through the exercises. Both
courses showed significant improvements in quality, but the rapid pace of introduction leaves the

CMU/SEI-2012-SR-015 | 2

causality not fully inferable from this ANOVA. The significance and scale of improvement
remain consistent across all versions of the PSP training courses.

Model and Tool for Analyzing Time Estimation Performance in PSP (César Duarte, João
Pascoal Faria, Mushtaq Raza, and Pedro Castro Henriques) reports on research toward automated
data collection and analysis tools for use in the PSP training course. The approach is promising
for identifying performance issues and improving the quality, consistency, and cost of training.

Case Study: Applying and Introducing TSP to the Electronic Design Automation Industry
at Cadence Design Systems (Elias Fallon and Lee Gazlay) provides an experience report from
the initial stages of a large company developing software for the design of semiconductor circuits.
The product includes a large legacy component. The authors describe early planning and quality
results and their search for meaningful and useful size proxies in this environment.

A Combination of a Formal Method and PSP for Improving Software Process: An Initial
Report (Shigeru Kusakabe, Yoichi Omori and Keijiro Araki) is another paper describing the
integration of formal methods into PSP development. The researchers propose integrating the
Vienna Development Method (VDM) into the PSP for Engineers. The objective feedback from
process data would help developers realize the benefits of applying more formal techniques.
Initial results are promising, indicating not only reductions in defects but also more developer
awareness of the results. Moreover, developers reported that they would be unlikely to implement
a process improvement plan without the PSP structure.

CMU/SEI-2012-SR-015 | 3

2 An Analysis of Code Defect Injection and Removal in PSP
 Diego Vallespir, Universidad de la República
 William Nichols

2.1 Introduction

A primary goal of software process improvement is to make software development more effective
and efficient. Because defects require rework, one path to performance improvement is to
quantitatively understand the role of defects in the process. We can then make informed decisions
about preventing defect injection or committing the effort necessary to remove the injected
defects. The PSP establishes a highly instrumented development process that includes a rigorous
measurement framework for effort and defects. After examining a large amount of data generated
during PSP classes, we can describe how many defects are injected during the PSP Code phase,
the types of defects injected, when they are detected, and the effort required to remove them. We
have found that even using a rigorous PSP development process, nearly a quarter of all defects
injected will escape into unit test. Moreover, finding and removing defects in unit test required
seven times as much effort as removing them in earlier phases. The purpose of this study is not to
measure the effectiveness of PSP training, but rather to characterize the defects developers inject
and must subsequently remove. By examining the characteristics of defect injections and escapes,
we might teach developers how to define and improve their own processes and thus make the
product development more effective and efficient.

Watts Humphrey describes PSP as “a self-improvement process that helps you to control, manage,
and improve the way you work” [Humphrey 2005]. This process includes phases that you
complete while building the software. For each phase, the engineer collects data on the time spent
in the development phase and data about the defects injected and removed.

During the PSP course, the engineers build programs while they progressively learn the PSP. We
analyzed eight exercises from this PSP course version. In this section, we present an analysis of
defects injected during the Code phase of the last three PSP programs (6, 7, and 8). The engineers
used the complete PSP when they built these programs.

We focused on defects injected during the Code phase because these specific data had not been
studied before. Recently we made a similar analysis but focused on the defects injected during the
Design phase of PSP [Vallespir 2011]. Previous studies did not have all the defect data, such as
defect types and individual defect times; they had only summaries.

Our analysis of the complete data available from individual defect logs shows not only that the
defects injected during Code are more expensive to remove in Test than in previous phases of the
process, but also that they are easy to remove in the Code Review phase. The difference is
striking: it costs seven times more to remove a defect in the PSP Unit Test than it does to remove
a defect during code review.

To show this, we observed how defects injected during Code escaped into each subsequent phase
of the PSP and how the cost to remove them was affected by defect type and phase. We describe
the different defect types injected during Code and how these defect types compare with respect

CMU/SEI-2012-SR-015 | 4

to the find-and-fix time. From this analysis, we show that “syntax” type of defects are the most
common Code phase defect (around 40% of all the defects), that personal code review is an
effective removal activity, and that finding and fixing Code defects in the Code Review phase is
substantially less expensive than removing them in the Test phase.

Other studies have examined software quality improvement using PSP [Paulk 2006, 2010; Wohlin
1998; Rombach 2008; Hayes 1997; Ferguson 1997]. In the context of PSP, quality is measured as
defect density (defects/KLOC). Our study differs from the other studies in that we focused on
code defects, considered the defect type, and did not consider defect density. Instead, we
concentrated on the characteristics of the defects introduced in Code. Our findings resulted from
analyses of the defect types injected, how they proceeded through the process until they were
found and removed, and the cost of removal in subsequent development phases. In the literature,
we do not know of any other study that has the characteristics of our research.

2.2 The Personal Software Process and the Collection of Data

For each software development phase, the PSP has scripts that help the software engineer follow
the process correctly. The phases include Planning, Detailed Design, Detailed Design Review,
Code, Code Review, Compile, Unit Test, and Post Mortem. For each phase, the engineer collects
data on the time spent in the phase and the defects injected and removed. The defect data include
the defect type, the time to find and fix the defect, the phase in which the defect was injected, and
the phase in which it was removed. Figure 1 shows the guidance, phases, and data collection used
with the PSP.

Figure 1: The PSP Phases, Scripts, Logs, and Project Summary

CMU/SEI-2012-SR-015 | 5

Some clarifications are needed to understand the measurement framework. The phases should not
be confused with the activity being performed. Students are asked to write substantial amounts of
code, on the scale of a small module, before proceeding through to reviewing, compiling, and
testing. Once a block of code has passed into a phase, all time is logged in that phase, regardless
of the developer activity. For example, a failure in test will require some coding and a compile,
but the time will be logged in the “Unit Test” phase. If a personal review is performed prior to
compiling, the compile can serve as an independent check of review effectiveness. We expect the
compiler to remove the simple and inexpensive defects; however, if the review was effective the
compile should be clean. When a defect is found, data recorded includes the phase of removal, the
direct effort required to find and remove that defect, the phase in which it was injected, and the
defect type and description.

The PSP defines 10 types of defects to be used during the course [Humphrey 2005; Chillarege
1996]. Table 1 presents these types of defects together with a brief description of which defects
should be registered for each type.

Table 1: Defect Types in PSP

Defect Type Possible Defects for the Type

Documentation Comments, messages

Syntax Spelling, punctuation, typos, instruction formats

Build/Package Change management, library, version control

Assignment Declaration, duplicate names, scope, limits

Interface Procedure calls and references, I/O, user formats

Checking Error messages, inadequate checks

Data Structure, content

Function Logic, pointers, loops, recursion, computation, function defects

System Configuration, timing, memory

Environment Design, compile, test, or other support system problems

The time to find and fix a defect is a direct measure of the time it takes to find it, correct it, and
then verify that the correction made is right. In the Design Review and Code Review phases the
time to find a defect is essentially zero, since finding a defect is direct in a review. However, the
time to correct it and check that the correction is right depends on how complex the correction is.
These variable costs are distinct from the predictable cost of performing a review. The point is
that the variable cost of defects found in review can be directly measured and compared to similar
costs in unit test.

On the other hand, both in the Compile and the Unit Test phases, finding a defect is an indirect
activity. First, there will be a compilation error or a test case that fails. If that failure is taken as a
starting point (compilation or test), what causes it (the defect) must be found in order to make the
correction and verify if it is right.

During the PSP course, the engineers build programs while progressively learning PSP planning,
development, and process assessment practices. For the first exercise, the engineer starts with a
simple, defined process (the baseline process, called PSP 0); as the class progresses, new process
steps and elements are added, from Estimation and Planning to Code Reviews, Design, and
Design Review. As these elements are added, the process changes. The name of each process and
which elements are added in each one are presented in Figure 2. The PSP 2.1 is the complete PSP
process.

CMU/SEI-2012-SR-015 | 6

Figure 2: PSP Process Level Introduction During Course

In this section, we present an analysis of defects injected during the Code phase of the PSP, in
programs 6, 7, and 8 (all developed using PSP 2.1, the complete PSP). In PSP 2.1, students
conceptualize program designs prior to coding and record the design decisions using functional,
logical, operational, and state templates. Students then perform a checklist-based personal review
of the design to identify and remove design defects before beginning to write code. After coding,
students perform a checklist-based personal review of the code. After the review they compile the
code, and finally they make unit testing.

2.3 The Data Set

We used data from the eight-program version of the PSP course (PSP for Engineers I and II)
taught between October 2005 and January 2010. These courses were taught by the SEI at
Carnegie Mellon University or by SEI partners, including a number of different instructors in
multiple countries.

This study is limited to considering only the final three programs of the PSP course (programs 6,
7, and 8). In these programs, the students apply the complete PSP process, using all process
elements and techniques. Of course, not all of these techniques are necessarily applied well
because the students are in a learning process.

This relative inexperience of the students constitutes a threat to the validity of this study, in the
sense that different (and possibly better) results can be expected when the engineer continues
using PSP in his or her working environment after taking the course. This is due to the fact that

CMU/SEI-2012-SR-015 | 7

the engineer continues to assimilate the techniques and the elements of the process after having
finished learning the PSP.

We began with the 133 students who completed all programming exercises of the courses
mentioned above. From this we made several cuts to remove errors and questionable data and to
select the data most likely to have comparable design and coding characteristics.

Because of data errors, we removed data from three students. Johnson and Disney reviewed the
quality of the PSP data [Johnson 1999]. Their analysis showed that 5% of the data were incorrect;
however, many or most of those errors in their data were due to process calculations the students
made. Process calculations are calculations made to obtain the values of certain derived measures
the process uses to make estimates for the next program, such as the defects injected per hour in a
certain phase or the alpha and beta parameters for a linear regression that relates the estimated size
to the real size of the program.

Because our data were collected with direct entry into a Microsoft Access tool, which then
performed all process calculations automatically, the amount of data removed (2.3%) is lower
than the percentage reported by Johnson and Disney; however, this amount seems reasonable.

We next reduced the data set to separate programming languages with relatively common design
and coding characteristics. As we analyze the code defects, it seems reasonable to consider only
languages with similar characteristics that might affect code size, modularity, subroutine interfacing,
and module logic. The students used a number of different program languages, as shown in Figure 3.

Figure 3: Quantity of Students by Program Languages

The most common language used was Java. To increase the size of the data set, we decided to
include the data generated by students who used Java, C#, C++, and C. The languages in this
group use similar syntax, subprogram, and data constructs. For the simple programs produced in
the PSP course, we judged that these were most likely to have similar modularization, interface,
and data design considerations. This cut reduced our data to 94 subjects.

CMU/SEI-2012-SR-015 | 8

Because our intent was to analyze defects, we removed from consideration any data for which
defects were not recorded. From the 94 engineers remaining, two recorded no defects at all in the
three programs considered. Our data set for this analysis was, therefore, reduced to 92 engineers.
In the following sections we present the types of defects that were injected in the Code phase,
when the defects were removed, and the effort required to find and fix these defects.

Our analysis included the defect injection and removal performance of individuals and the
performance range of variation among them. It should be noted that this is different from
analyzing the behavior of a team. That is, we wanted to characterize the work of individual
programmers, which is why we calculated individual performance for each one of the subjects.
After obtaining the performance of each subject, we computed the mean and spread of individual
averages (as opposed to the global average for all defects). We calculated an estimate of the mean
percentage, the 95% confidence interval for that mean (to characterize the standard error on the
mean), and the standard deviation of the distribution, to characterize the spread among
individuals. For these calculations, as previously mentioned, only programs 6, 7, and 8 of the PSP
course were used in order to consider the complete PSP.

For this study we included the 92 engineers who recorded defects. In several cases, the number of
engineers included varies, and in each of these cases the motive for varying is documented.

2.4 Where the Defects Are Injected

The first goal of our analysis was to better understand where defects were injected. We expected
injections to be dominated by the Design and Code phases, because they are the construction
phases in PSP. We began by explicitly documenting the phase injection percentages that occur
during the PSP course.

For each PSP phase and for each individual, we calculated the percentage of defects injected. The
distribution statistics are shown in Table 2.

Table 2: Mean Lower, Upper Confidence Interval Values and Standard Deviation of the Percentage of
Defects Injected by Phase

 DLD DLDR Code CR Comp UT

Mean 46.4 0.4 52.4 0.3 0.03 0.5

Lower 40.8 0.2 46.7 0.0 0.00 0.2

Upper 52.0 0.7 58.1 0.7 0.09 0.9

Std. Dev. 27.2 1.7 27.4 1.8 0.30 1.8

The Design and Code phases have similar injection percentages both on average and in the
spread. Their mean of the percentage of defects injected is near 50% with lower and upper CI
bounds between 40% and 58%. Both standard deviations are around 27%. So, in the average of
this population, roughly half of the defects were injected in the Design phase and the other half
were injected in the Code phase. On average, the defect potential of these phases appears to be
very similar. The standard deviation shows, however, that the variability between individuals is
substantial. Nonetheless, as we expected, in the average almost 99% of the defects were injected
in the Design and Code phases with only around 1% of the defects injected in the other phases.

CMU/SEI-2012-SR-015 | 9

The Design Review, Code Review, Compile, and Unit Test phases also have similar average
defect potentials. The average in all these cases is less than 0.5% and their standard deviations are
small, the largest being 1.8% in Code Review and Unit Testing. This shows that during
verification activities in PSP, the percentage of defects injected is low but not zero. From time to
time, developers inject defects while correcting other defects. We will study these secondary
injections in a later study.

The variability between individuals and the similarity between the Code and Design phase is also
presented in Figure 4. Note that the range in both phases is from 0% to 100% (all possible values).
The 25th percentile is 26.34 for Design and 35.78 for Code, the median is 45.80 for Design and
52.08 for Code, and the 75th percentile is 64.22 for Design and 71.56 for Code.

Despite a high variability between individuals, this analysis shows that the great majority of
defects are injected in the Design and Code phases. Slightly more defects are injected during
Code than during Design, but the difference is not statistically significant. We could, therefore,
focus on the defects injected in the Design and Code phases. In this article, we discuss only the
defects injected in the Code phase.

Figure 4: Percentage of Defects Injected by Phase (Box and Whisker Chart)

CMU/SEI-2012-SR-015 | 10

2.5 Analysis of CODE Defects

From the 92 engineers in our data set there were four whose records of injected defects (injected
during Code) were uncertain regarding their correctness; they were therefore dismissed for this
analysis. Also, eight engineers did not record defects in the Code phase, so they were dismissed,
as well.

Our data set for analysis of the code defects was, therefore, reduced to 80 engineers. In the
following sections we discuss the types of defects that are injected in the Code phase, when those
defects are removed, and the effort required to find and fix the defects.

2.5.1 Defect Types Injected During the Code Phase

To improve the detection of code defects, we first wanted to know which types of defects were
injected during the Code phase. Table 3 shows the mean of the percentage of the different defect
types injected. It also presents the lower and upper bound of the 95% confidence interval for the
mean (a measure of the standard error) and the standard deviation of the distribution.

None of the engineers registered system type defects injected during the Code phase. The Mean
D. line presents what was found in our previous work of analysis of the defects injected during the
Design phase, so these results could be comparable.

Table 3: Percentage of Defect Types Injected During Code

D
o

cu
m

en
ta

ti
o

n

S
yn

ta
x

B
u

il
d

 P
ac

ka
g

e

A
ss

ig
n

m
en

t

In
te

rf
ac

e

C
h

ec
ki

n
g

D
at

a

F
u

n
ct

io
n

S
ys

te
m

E
n

vi
ro

n
m

en
t

Mean 3.8 40.3 0.6 14.0 5.5 2.7 5.8 26.4 0 0.9

Mean D. 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1

Lower 1.5 33.7 0.0 9.9 3.1 1.0 3.1 19.9 0 0.0

Upper 6.0 46.9 1.1 18.1 8.0 4.4 8.6 32.8 0 1.7

Std. Dev. 10.1 29.5 2.5 18.4 11.1 7.4 12.4 29.1 0 3.9

When seeking improvement opportunities, a Pareto sort can be used to identify the most frequent
or most expensive types. These types can then be the focus for future improvement efforts. For
the following analysis we sorted defects by frequency, and then segmented the defect types into
three categories of increasing frequency. The first grouping is “very few” defects of this type. In
the “very few” category we found system, build/package, and environment types of defects. In our
previous work, in which we studied the defects injected in the Design phase, we found within this
category the system and build/package defect types, but not the environment type of defect.
Considering this work and the previous work, it is clear that, during the PSP course, the
build/package and system types of defects were seldom injected. This may be due to the PSP
course exercises rather than the PSP. Because the exercises are small, take only a few hours,
contain few components, and make few external library references, build packages are usually

CMU/SEI-2012-SR-015 | 11

quite simple. We expect to find more defects of these types in the TSP [Humphrey 2000, 2006] in
industrial-scale projects.

A second grouping is “few defects”; most of the other defect types (all except syntax and function
types) are in this category. The percentage of defects in this category ranged from 2.7% to 14.0%. In
our previous work, both syntax and environment defect types were in this category. It is reasonable
that, when analyzing the design defects mentioned, we find few syntax defects and that the
percentage of these defects in relation to the rest of the other types of defects increases when the
defects injected during the Code phase are analyzed. It is natural that when coding, more syntax
defects are made than when designing, even if the design contains pseudocode, as in the case of the
PSP.

The third and final grouping, “many defects,” includes the syntax and function types of defects.
The syntax defects injected during Code are around 40% of the total defects and the function
defects are around 26%. Approximately two out of three injected defects during the Code phase
are of one of these two types.

As mentioned earlier, one out of four (26.4%) defects injected during the Code phase is a function
type of defect. This is an opportunity for improvement for the PSP, since this type of defect
should be injected (and as far as possible removed) before reaching Code phase. The fact that
there is such a large percentage of this type of defect injected indicates problems in the Design
and Design Review phases. PSP incorporates a detailed pseudocode in the Design phase using the
Logic Template. Therefore, it is in this phase that the function type defects should be injected, and
then they should be removed in the Design Review phase.

The lower, upper, and standard deviation data show again the high variability between
individuals. This can also be observed in Figure 5; the box and whisker chart shows many
observations as outliers. The high variability among individuals is repeated in every analysis
conducted, both in this work and in the previous work, which studied the defects injected in the
Design phase. A detailed analysis of developer variability is beyond the scope of this paper.

CMU/SEI-2012-SR-015 | 12

Figure 5: Box and Whisker Plot of the Percentage of Defects Injected During Code

2.5.2 When Are the Defects Injected During Code Removed?

Our analysis indicated the subsequent phases during which the code defects were removed. While
our data set was large, it remained too small for us to examine the removals based on defect type.
Still, for each engineer who injected defects in the Code phase, we identified the phases in which
the engineer found the defects; then, for every phase, we determined the percentage of the defects
that were found in that phase.

Table 4 shows the mean (with 95% confidence interval) and standard deviation for the different
phases. As previously shown, the standard deviation was high, indicating the high variability
between individuals. From this we learned that, on average, 62% of the defects injected during
Code were found in the Code Review phase.

Table 4: Phases Where the Code Defects are Found (Percentage)

 CODE DEFECTS

 CR Comp UT

Mean 62.0 16.6 21.4

Lower 55.0 11.7 15.4

Upper 69.0 21.6 27.3

Standard Deviation 31.3 22.4 26.9

CMU/SEI-2012-SR-015 | 13

In our previous analysis, we found that around 50% of the defects injected during the Design
phase were detected in the Design Review phase. This indicates that for the defects injected in
both the Design and Code phases, the following Review phases are highly effective.

On the other hand, in the previous study we also found that around 25% of the defects injected in
the Design phase are detected only in Unit Test. This happens in 21.4% of the cases, based on our
analysis of defects injected in the Code phase. This indicates that a relatively high percentage of
defects manage to escape from the different detection phases and reach Unit Test.

We also know, of course, that not all the defects that escape into Unit Test are found in Unit Test.
This phase will not have a 100% yield. (That is, we will not find all the defects that are in a given
unit when it arrives at Unit Test.) Therefore the percentage of defects found in each of these
phases is smaller than reported, while the actual percentage of escapes into Unit Test is a lower
limit. An estimate or measurement of the Unit Test yield will be necessary to revise these phase
estimates.

Figure 6 shows the box and whisker charts displaying the percentage of defects found in the
different phases. Figure 6also shows the high variability between individuals in the percentage of
defects found during Code Review, Compile, and Unit Test phases. This variability among
individuals was also found in the previous study.

Figure 6: In Which Phase Are the Code Defects Found? – Variability Between Individuals

CMU/SEI-2012-SR-015 | 14

2.5.3 Cost to Remove the Defects Injected in Code

What is the cost and variation in cost (in minutes) to find and fix the defects that are injected
during Code? To determine this, we first analyze the differences in cost, segmented by the
removal phase. Second, we study the differences in cost segmented by defect type.

It also would be interesting to segment and analyze both the removal phase and the defect type
jointly. Unfortunately, because of limited sample size after a two-dimensional segmentation, we
cannot perform that analysis with statistical significance.

2.5.3.1 Phase Removal Cost

What is the cost, in each removal phase, to find and fix a defect injected in Code? Code defects
can be removed in PSP in the Code Review (CR), Compile, and Unit Test phases. For each
engineer, we calculated the average task time of removing a design defect in each of the different
phases. Because some engineers did not remove code defects in one or more phases, our sample
size varied by phase. We had data from 72 engineers for Code Review, 44 for Compile, and 51 for
Unit Test.

Table 5 shows the mean, lower, and upper 95% confidence intervals and the standard deviation
for the find-and-fix time (in minutes) for code defects in each of the studied phases.

Table 5: Cost of Find and Fix Defects Injected in Design Segmented by Phase Removed

 CODE DEFECTS

 CR Com UT

Mean 1.9 1.5 14.4

Lower 1.5 1.1 9.8

Upper 2.3 1.9 19.0

Standard Deviation 1.9 1.3 16.4

As we expected, the average cost of finding code defects during Unit Test is much higher than in
the other phases, by a factor of seven. We are not stating here that the cost of finding and fixing a
particular code defect during Unit Test is seven times higher than finding and fixing the same
particular code defect in Code Review or Compile. We are stating that with the use of PSP, the
code defects that are removed during Unit Test cost seven times more than the ones that were
removed in Code Review and Compile (these are different defects).

In our previous study we also found that the Design injection defects find-and-fix times in Design
Review and Code Review are a factor of five smaller than the find-and-fix times in Unit Test. We
also found that the defects injected in Design and removed in Unit Test have an average find-and-
fix time of 23 minutes. Considering the two analyses, these are the defects that are most costly to
remove. Defects injected in Code and removed in Unit Test follow with an average of 14.4
minutes. Testing, even at the unit test level, is consistently a more expensive defect removal
activity than alternative verification activities.

We also found high variability among individual engineers. This variability can be seen in the box
and whisker chart in Figure 7. We tested for normal distribution after log transformation of find-
and-fix times for Code Review, Compile, and Unit Test. Only Unit Test is consistent (p> 0.05

CMU/SEI-2012-SR-015 | 15

using Shapiro-Wilk test) with a log-normal distribution. The test for normality is primarily useful
to verify that we can apply regression analysis to the transformed data; however, understanding
the distribution also helped to characterize the asymmetry and long-tailed nature of the variation.
The log-normality confirmed our intuition that some defects found in Unit Test required far more
than the average effort to fix, making Unit Test times highly variable. We observe that both the
mean and variation of rework cost in the Code Review and Compile phases were significantly
lower than Unit Test in both the statistical sense and the practical sense.

Figure 7: Box and Whisker Plot of the Cost to Find and Fix a Code Defect Segmented by Phase
Removed

2.5.3.2 Defect Removal by Type

What is the find-and-fix cost, per defect type, of defects injected during Code? We did not have
enough data for a statistically significant analysis of the cost of removing the build/package,
checking, system, and environment types of defects. However, we were able to analyze the
remaining defect types.

Table 6 presents the mean, lower, and upper 95% confidence interval and the standard deviation
categorized by defect type then sorted by the find-and-fix cost of code defects. For prioritization,
the cost, in minutes, for “find-and-fix” fell into three groups:

1. A group that has a mean around 2-3 minutes: documentation, syntax, assignment, and
interface defects

2. A group, composed only of function defects, that has a mean around 9 minutes

CMU/SEI-2012-SR-015 | 16

3. A group, composed only of data defects, that has a mean around 12 minutes

Function type defects (injected during Code phase) take three times longer to find and fix than
documentation, syntax, assignment, and interface defects. Data type defects take four times as
much time.

Table 6: Cost of Find-and-Fix Defects Injected in Code Segmented by Defect Type

D
o

cu
m

en
ta

ti
o

n

S
yn

ta
x

A
ss

ig
n

m
en

t

In
te

rf
ac

e

D
at

a

F
u

n
ct

io
n

Mean 3.4 1.9 2.7 2.3 12.2 9.4

Lower 1.3 1.4 1.8 1.4 0.0 6.8

Upper 5.4 2.3 3.7 3.3 27.2 12.1

Standard Deviation 4.2 2.0 3.1 2.2 32.9 10.7

As in the other cases, the variation among individual developers was high. This can be seen using
the standard deviation, as well as the box and whisker chart that is presented in Figure 8.

CMU/SEI-2012-SR-015 | 17

Figure 8: Box and Whisker Plot of the Cost to Find and Fix a Defect Segmented by Defect Type

2.6 Limitations of this Work

There are several considerations that limit the ability to generalize this work: the limited life cycle
of the PSP course, the lack of a production environment, that students are still learning process,
the students perform the defect categorization, and the nature of the exercises. Because the PSP
life cycle begins in Detailed Design and ends in Unit Test, we do not observe all types of defects
and specifically do not observe requirements defects or those that would be found in the late
testing such as Integration Test, System Test, and Acceptance Test. This also implies that finds in
Unit Test are only a lower estimate of the actual escapes into Unit Test. Defects such as build and
environment or requirements injections are not considered.

The second consideration is that the PSP exercises do not build production code. Code is not
intended to be “bullet proofed” or production ready. This is most likely to affect the rigor of Unit
Test. Students often run only the minimum tests specified. This will likely lead to fewer defects
being found and higher overall development rates. For example, coding rates are typically much
higher than those found in industry. Also excluded is the production practice of peer inspections.

A third consideration is that, students using PSP are still learning techniques of design and
personal review. The results after gaining experience may differ from those found during this
course.

A fourth consideration is that precision of the student categorization of defect types has not been
precisely measured. That is, students are learning how to categorize defects and should receive

CMU/SEI-2012-SR-015 | 18

guidance from the instructor. Nonetheless, there will certainly be some inconsistency among the
students in how specific defects are categorized.

Finally, the problems, though modestly challenging, do not represent a broad range of
development problems.

2.7 Conclusions and Future Work

In this analysis, we considered the work of 92 software engineers who, during PSP course work,
developed programs in the Java, C, C#, or C++ programming languages. In each of our analyses,
we observed a high variation in range of performance among individuals; we show this variability
using standard deviation and box and whisker charts to display the median, quartiles, and range.

After considering this variation, we focused our analysis on the defects injected during Code. Our
analysis showed that most common code defects (40%) are of syntax type. This type of defect is
the cheapest to find and fix (1.9 minutes). The types of defects injected in Code that are most
expensive to correct are the data (12.2 minutes) and function (9.4 minutes) defect types.

In addition, the analysis showed that build/package, systems, and environment defects were
seldom injected in the Code phase. We interpreted this as a consequence of the small programs
developed during the course, rather than as a characteristic of PSP as a development discipline.

We found that defects were injected roughly equally in the Design and Code phases; that is,
around half of the defects were injected in code. 62% of the code defects were found early
through appraisal during the Code Review phase. However, around 21% were discovered during
Unit Test, where mean defect find-and-fix time is almost seven times greater than find-and-fix
time in review.

While this analysis provided insights into the injection and removal profile of code defects with
greater specificity than previously possible, a larger data set would allow us to consider more
detail, such as the costs of defects discriminated by defect type in addition to removal phase. A
more complete analysis may enable us to analyze improvement opportunities to achieve better
process yields. In future analysis, we will examine the relationship between Design and Code
activities and the defects found in the downstream phases.

2.8 Author Biographies

Diego Vallespir
Assistant Professor
School of Engineering, Universidad de la República

Diego Vallespir is an assistant professor at the Engineering School at the Universidad de la
República (UdelaR), where he is also the director of the Informatics Professional Postgraduate
Center and the Software Engineering Research Group. He is also a member of the Organization
Committee of the Software and Systems Process Improvement Network in Uruguay (SPIN
Uruguay).

CMU/SEI-2012-SR-015 | 19

Vallespir holds Engineer, Master Science, and PhD titles in Computer Science, all from UdelaR.
He has had several articles published in international conferences. His main research topics are
empirical software engineering, software process, and software testing.

William Nichols

Bill Nichols joined the Software Engineering Institute (SEI) in 2006 as a senior member of the
technical staff and serves as a PSP instructor and TSP coach with the Team Software Process
(TSP) Program. Prior to joining the SEI, Nichols led a software development team at the Bettis
Laboratory near Pittsburgh, Pennsylvania, where he had been developing and maintaining nuclear
engineering and scientific software for 14 years. His publication topics include the interaction
patterns on software development teams, design and performance of a physics data acquisition
system, analysis and results from a particle physics experiment, and algorithm development for
use in neutron diffusion programs. He has a doctorate in physics from Carnegie Mellon
University.

2.9 References/Bibliography

[Chillarege 1996]
Chillarege, R. “Orthogonal Defect Classification,” 359–400. Handbook of Software Reliability
Engineering. Edited by M.R. Lyu. McGraw-Hill Book Company, 1996.

[Ferguson 1997]
Ferguson, Pat; Humphrey, Watts S.; Khajenoori, Soheil; Macke, Susan; & Matvya, Annette.
“Results of Applying the Personal Software Process.” Computer 30, 5, (May 1997): 24–31.

[Hayes 1997]
Hayes, Will & Over, James. The Personal Software Process: An Empirical Study of the Impact of
PSP on Individual Engineers (CMU/SEI-97-TR-001). Software Engineering Institute, Carnegie
Mellon University, 1997. http://www.sei.cmu.edu/library/abstracts/reports/97tr001.cfm

[Humphrey 2006]
Humphrey, Watts S. TSP: Coaching Development Teams. Addison-Wesley, 2006.
http://www.sei.cmu.edu/library/abstracts/books/201731134.cfm

[Humphrey 2005]
Humphrey, Watts S. PSP: A Self-Improvement Process for Software Engineers. Addison-Wesley
Professional, 2005. http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm

[Humphrey 2000]
Humphrey, Watts S. The Team Software Process (CMU/SEI-2001-TR-023). Software
Engineering Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/library/abstracts/reports/87tr023.cfm

[Johnson 1999]
Johnson, Philip M. & Disney, Anne M. “A Critical Analysis of PSP Data Quality: Results from a
Case Study.” Empirical Software Engineering 4, 4 (March 1999): 317–349.

http://www.sei.cmu.edu/library/abstracts/reports/97tr001.cfm
http://www.sei.cmu.edu/library/abstracts/books/201731134.cfm
http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm
http://www.sei.cmu.edu/library/abstracts/reports/87tr023.cfm

CMU/SEI-2012-SR-015 | 20

[Paulk 2010]
Paulk, Mark C. “The Impact of Process Discipline on Personal Software Quality and
Productivity.” Software Quality Professional 12, 2 (March 2010): 15–19.

[Paulk 2006]
Paulk, Mark C. “Factors Affecting Personal Software Quality.” CrossTalk: The Journal of
Defense Software Engineering 19, 3 (March 2006): 9–13.

[Rombach 2008]
Rombach, Dieter; Munch, Jurgen; Ocampo, Alexis; Humphrey, Watts S.; & Burton, Dan.
“Teaching Disciplined Software Development.” The Journal of Systems and Software 81, 5
(2008): 747–763.

[Vallespir 2011]
Vallespir, Diego & Nichols, William. “Analysis of Design Defects Injection and Removal in
PSP,” 19–25. Proceedings of the TSP Symposium 2011: A dedication to excellence. Atlanta,
GA, September 2011. Software Engineering Institute, Carnegie Mellon University, 2011.

[Wohlin 1998]
Wohlin, C. & Wesslen, A. “Understanding software defect detection in the Personal Software
Process,” 49–58. Proceedings of the Ninth International Symposium on Software Reliability
Engineering, Paderborn, Germany, November 1998. IEEE, 1998.

CMU/SEI-2012-SR-015 | 21

3 Model and Tool for Analyzing Time Estimation
Performance in PSP
 César Duarte, Strongstep – Innovation in Software Quality
João Pascoal Faria, Faculty of Engineering, University of Porto
Mushtaq Raza, University of Porto, Portugal
Pedro Castro Henriques, Strongstep – Innovation in Software Quality

High maturity software development processes, making intensive use of metrics and quantitative
methods, such as the Personal Software Process (PSP) and the Team Software Process (TSP), can
generate a significant amount of data that can be periodically analyzed to identify performance
problems, determine their root causes, and devise improvement actions. Currently, there are
several tools that automate data collection and produce performance charts for manual analysis in
the context of the PSP and TSP, but little tool support exists for automating the data analysis and
the recommendation of improvement actions. Manual analysis of this performance data is
problematic because of the large amount of data to analyze and the time and expertise required to
do a proper analysis. Hence, we propose in this paper a performance model and a tool (named
PSP PAIR) to automate the analysis of performance data produced in the context of the PSP,
specifically, to identify performance problems and their root causes, and recommend
improvement actions. The work presented is limited to the analysis of the time (effort) estimation
performance of PSP developers, but is extensible to other performance indicators and
development processes.

3.1 Introduction

Software development professionals and organizations face an increasing pressure to produce high-
quality software in a timely manner. The PSP and TSP are examples of methodologies tailored to
help individual developers and development teams improve their performance and produce virtually
defect free software on time and budget [Davis 2003]. One of the pillars of the PSP/TSP is its
measurement framework: based on four simple measures (effort, schedule, size, and defects) it
supports several quantitative methods for project management, quality management, and process
improvement [Pomeroy-Huff et al. 2009].

Software development processes that make intensive use of metrics and quantitative methods, such
as the PSP/TSP, can generate a significant amount of data that can be analyzed periodically to
identify performance problems, determine their root causes, and identify improvement actions
[Burton 2006]. Currently, there are several tools that automate data collection and produce
performance charts, tables, and reports for manual analysis in the context of PSP/TSP [Design
Studio Team 1997; Software Process Dashboard 2011; C.S.D Laboratory 2010; Sison 2005; Shin
2007; Nasir 2005], but little support exists for automating the data analysis and the recommendation
of improvement actions. There are some studies that show cause-effect relationships among
performance indicators (PIs) [Kemerer 2009; Shen 2011], but no automated root cause analysis is
proposed. The manual analysis of the performance data for determining root causes of performance
problems and devising improvement actions has significant shortcomings: the amount of data to
analyze may be overwhelming [Humphrey 2002], the effort needed to do the analyses is significant,
and expert knowledge is required to do the analyses and devise the improvement actions.

CMU/SEI-2012-SR-015 | 22

Hence, the goal of our research is to develop models and tools to automate the analyses of
performance data produced in the context of high maturity development processes, namely, to
identify performance problems and their root causes and recommend improvement actions. For
practical reasons, we limited the work presented in this paper to the automated analysis of time
(effort) estimation performance in the context of the PSP, while at the same time providing a
significant degree of extensibility for other PIs and development processes.

The rest of the paper is organized as follows: In Section 3.2, we present the performance model
conceived for analyzing the time estimation performance of PSP developers. In Section 3.3, we
present the tool developed for automatically analyzing time estimation performance based on the
previously defined model. In Section 3.4, we present an evaluation based on a case study. In
Section 3.5, we present a summary of main achievements and points of future work.

3.2 Performance Model for Analyzing the Time Estimation Performance

In this section we describe the performance model we conceived for enabling the automated
analysis of the time estimating performance of PSP developers (i.e., the identification of
performance problems, root causes, and remedial actions). An overview of the artifacts and steps
involved in our approach is presented in Figure 9.

Figure 9: Overview of the Steps and Artifacts in our Approach (Notation of UML Activity Diagrams)

The performance model comprises a set of performance indicators (PI) and cause-effect
relationships, for identifying root causes of performance problems (in this case, time estimation

A. Setup (section II)

Performance Model

B. Execution (section III)

A1. Identify
performance

indicators

A2. Identify
cause-effect

relations among
performance

indicators

Performance
indicators

(Table I)

Cause-effect
relationships

(Fig. 2)

A3. Identify
control limits for
all performance

indcators

Control limits
(Table II)

A4. Identify
improv ement

actions for leaf
indicators

Improv ement
actions (Table

III)

B1. Identify
performance
problems and

root causes

B2.
Recommend
improv ement

actions

Performance
results (Fig. 4)

Recommended
improv ement
actions (Fig.5)

CMU/SEI-2012-SR-015 | 23

problems); recommended control limits for the PIs, for identifying performance problems; and a
list of improvement actions for each leaf PI, for identifying remedial actions.

The performance model was conceived based on PSP specifications (of base and derived
measures, estimation methods, etc.); literature review, namely published analysis reports of PSP
data; and opinions of PSP experts.

We focused our attention on the time estimation performance due to the following reasons:
delivering products on time is one of the most important goals in every project; one of the biggest
strengths that is pointed out on the PSP/TSP is the delivery of products on time (or with
comparatively little deviation) and virtually defect free (as low as 0.06 defects/KLOC) [Davis
2003]. The time estimation performance is affected by the other performance aspects (namely,
quality and productivity), so the analysis of time estimation performance is broad in scope. We
intend in the future to build similar models for analyzing other PSP performance aspects, namely
quality and productivity performance.

3.2.1 Performance Indicators and Dependencies

In the PSP, the time estimation accuracy, or time estimation error (TimeEE), is defined by the
usual formula (see Table 7), and is usually presented as a percentage.

In order to identify the factors that influence the behavior of the PI, one has to look at the
estimation method used in the PSP, (i.e., the PROBE method) [Humphrey, 2005]. In this method,
a time (or effort) estimate is obtained based on a size estimate of the deliverable (in lines of code
(LOC), function points [FPs], etc.) and a productivity estimate (in LOC/hour, FP/hour, etc.). So,
the quality of the time estimate will depend on the quality of the size and productivity estimates.
From the formulas of the Size Estimation Error (SizeEE) and Productivity Estimation Error (PEE)
(see Table 7) and the definition of productivity as a size/time ratio, we get (see [Duarte 2012] for
details):

ܧܧ݁݉݅ܶ = ܧܧ݁ݖ݅ܵ + ܧܧ1ܲ + 1 − 1

Hence, we conclude that TimeEE is affected by SizeEE and PEE according to the formula, as
depicted in Figure 10. It is worth noting that, in the case of changes to existing artifacts, only the
size of the changes is considered.

CMU/SEI-2012-SR-015 | 24

Figure 10: Performance Model for Identifying Causes of Estimation Problems

In order to identify the factors that, in turn, influence the SizeEE, one has to understand further
the PROBE method. In this method, in order to arrive at a size estimate of a deliverable, one has
to identify a list of parts that are needed to build the deliverable (which may be depicted in a so-
called conceptual design); define the type of each part (I/O, calculation, etc.); estimate the relative
size of each part in a T-shirt size (small, medium, large, etc.); use a so-called relative size table,
based on historical data, to convert relative sizes to numerical sizes; and sum up the numerical
sizes to obtain a size estimate of the deliverable. Hence, possible causes for a poor SizeEE (as
summarized in Figure 10 and formalized by Duarte [Duarte 2012]) are missing parts (i.e., parts
that were not planned but turned out to be needed); expurious (that is, extraneous or spurious)
parts (i.e., parts that were planned but turned out to be unnecessary); and errors in the size
estimates of the parts whose need was correctly identified.

In the PROBE method, productivity estimates are based on historical productivity, so the quality
of the former depends on the stability of the productivity, as indicated in Figure 10. We calculate
the productivity stability up to the project under analysis, based on the actual productivity of that
project and past projects of the same developer (see Duarte’s work for details [Duarte 2012]). In
the PSP, time is recorded per process phase (Plan, Detailed Design, Detailed Design Review,
Code, Code Review, Compile, Unit Test, and Postmortem), so we can compute the productivity
stability per phase (see Figure 10). This provides useful information to locate instability problems
in specific phases. It should be noted that the scope of the PSP is the development of individual

Time
Estimation Error

Size
Estimation Error

Productivity
Estimation Error

Missing
Parts

Part Estimation
Error

Expurious
Parts

Productivity
Stability

Process
Stability

Defect Density
in Unit Tests

Review
Rate

Review to
Development Ratio

Defects Injected
(Tot.Def.Density)

Def. Removed Before
Tests (Review Yield)

Code & Code Review
Productivity Stability

Unit Test
Productivity Stability

DLD & DLD Review
Productivity Stability

Plan and Postmortem
Productivity Stability

Legend:

affects according to formula

may affect, according to literature (validation required)

CMU/SEI-2012-SR-015 | 25

programs or components, which is the reason why Requirements, High Level Design, and System
Testing phases are not included—they can be found in the more complete TSP. We also ignore
the Compile phase, because we intend to analyze projects developed with programming languages
without a separate Compile phase (like Java and C#).

On the other hand, process changes can cause productivity disturbances: usually, after a process
change, productivity decreases and later on returns to the original productivity or a new
productivity. This is an important factor when analyzing PSP training data, because the process is
changed at least twice along the training (from PSP0 to PSP1 and PSP2), and existing data from
PSP courses show that productivity variations follow. That’s why we indicated Process Stability
as potentially affecting Productivity Stability in Figure 10.

PSP literature states that the effort for finding and fixing defects through reviews is much more
predictable than through testing, because in the former case the review effort is proportional to the
size of the product under review and defects are immediately located, while in the latter case the
time needed to locate defects is highly variable [Humphrey 2005]. High defect density in tests is
considered a common cause of predictability problems. That’s why we indicated in Figure 10 the
defect density in unit tests as a factor that may affect productivity stability.

In turn, the defect density in unit tests is affected by the overall number of defects injected (and
found) and the percentage of defects removed in reviews prior to testing, (i.e., the review yield).

The review yield is a lagging indicator of the quality of reviews (i.e., detailed design reviews and
code reviews). PSP literature also states that the time spent in reviewing a work product,
measured in relation to its size or the time spent developing it, is a leading indicator of the review
yield, based on existing PSP data [Humphrey 2005]. A recent study confirms that the review rate
is a significant factor affecting review effectiveness (measured as the percentage of defects that
did not escape the reviews) [Kemerer 2009]; the recommended review rate of 200 LOC/hour or
less was also found to be an effective rate for individual reviews, identifying nearly two-thirds of
the defects in design reviews and more than half of the defects in code reviews. Another study in
an industrial setting shows an improvement in inspection effectiveness when the review rate is
reduced to a value closer to the recommended value [Ferreira 2010]. Another way of assessing the
time spent in reviewing a work product is by comparing the review time with the production time.
Humphrey’s Software Quality Profile, based on extensive data from the PSP, presents a profile of
software processes that generally produce high-quality products; among other aspects, design
review time should be greater than 50% of design time, and code review time should be greater
than 50% of coding time [Humphrey 2009]. For those reasons, we indicate in Figure 10 that the
review yield may be affected by the review to development ratio and the review rate (size
reviewed/time).

All the indicators are summarized in Table 7.

 Table 7: Performance Indicators

Indicator (Abbreviation) Formula

Time Estimation Error (TimeEE)
݈ܽݑݐܿܣ ܶ݅݉݁ − ݀݁ݐܽ݉݅ݐݏܧ ݀݁ݐܽ݉݅ݐݏܧ݁݉݅ܶ ܶ݅݉݁

Size Estimation Error (SizeEE)
݈ܽݑݐܿܣ ݁ݖ݅ܵ − ݀݁ݐܽ݉݅ݐݏܧ ݀݁ݐܽ݉݅ݐݏܧ݁ݖ݅ܵ ݁ݖ݅ܵ

CMU/SEI-2012-SR-015 | 26

Indicator (Abbreviation) Formula

Part Estimation Error (PartEE)
݂݀݁݅݅ݐ݊݁݀ܫ)∑ ݐݎܽܲ ݈ܽݑݐܿܣ ݂݀݁݅݅ݐ݊݁݀ܫ)∑(݁ݖ݅ܵ ݐݎܽܲ ݀݁ݐܽ݉݅ݐݏܧ (݁ݖ݅ܵ

Missing Parts (MP)
݃݊݅ݏݏ݅ܯ)∑ ݐݎܽܲ ݈ܽݑݐܿܣ ݃݊݅ݏݏ݅ܯ)∑(݁ݖ݅ܵ ݎ݋ ݂݀݁݅݅ݐ݊݁݀ܫ ݐݎܽܲ (݁ݖ݅ܵ	݈ܽݑݐܿܣ

Expurious Parts (EP)
ݏݑ݋݅ݎݑ݌ݔܧ)∑ ݐݎܽܲ ݀݁ݐܽ݉݅ݐݏܧ ݏݑ݋݅ݎݑ݌ݔܧ)∑(݁ݖ݅ܵ ݎ݋ ݂݀݁݅݅ݐ݊݁݀ܫ ݐݎܽܲ (݁ݖ݅ܵ	݀݁ݐܽ݉݅ݐݏܧ

Productivity Estimated Error (PEE)
݈ܽݑݐܿܣ ݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ − ݀݁ݐܽ݉݅ݐݏܧ ݀݁ݐܽ݉݅ݐݏܧݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ ݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ

Productivity Stability (ProdS)
ݐ݊݁ݎݎݑܥ ݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ − ݈ܽܿ݅ݎ݋ݐݏ݅ܪ ݈ܽܿ݅ݎ݋ݐݏ݅ܪݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ ݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲ

Process Stability (ProcS)
True, if the process used in the current project is the same as in the

previous project; false, otherwise.

Defect Density in Unit Test
(DDUT)

ݏݐ݂ܿ݁݁ܦ# ݀݊ݑ݋݂ ݅݊ ݐܷ݅݊ ݈ܽݑݐܿܣݐݏ݁ܶ ݁ݖ݅ܵ (ܥܱܮܭ)

Total Defect Density (TotalDD)
ݏݐ݂ܿ݁݁ܦ# ݀݊ݑ݋݂ ݅݊ ݈݈ܽ ݈ܽݑݐܿܣݏ݁ݏℎܽ݌ ݁ݖ݅ܵ (ܥܱܮܭ)

Review Yield (RY)
ݏݐ݂ܿ݁݁ܦ ݀݁ݒ݋݉݁ݎ ݅݊ ݏݐ݂ܿ݁݁ܦ#ݏݓ݁݅ݒ݁ݎ ݀݊ݑ݋݂

Review Rate (RR)
݈ܽݑݐܿܣ ݓ݁݅ݒܴ݁݁ݖ݅ܵ ܶ݅݉݁

Review to Development Ratio
(R2D)

݈ܽݑݐܿܣ ܶ݅݉݁ ݂݋ ݏݓ݁݅ݒܴ݁ ܴܦܮܦ) + ݈ܽݑݐܿܣ(ܴܥ ܶ݅݉݁ ݂݋ ݐ݊݁݉݌݋݈݁ݒ݁ܦ ܦܮܦ) + (ܧܦܱܥ

3.2.2 Control Limits

In order to recognize performance problems, for each performance indicator shown in Figure 10
we defined control limits for classifying values of the performance indicator into three categories:
green—no performance problem; yellow—a possible performance problem; red—a clear
performance problem. All the defined control limits can be found in Table 8. These control limits
are based on recommended values usually considered for PSP projects, present in the literature
[Humphrey 2005] or orally stated by PSP instructors. Nevertheless, these control limits can be
easily configured by the users of our PSP PAIR tool, described in Section 3.3.

Table 8: Control Limits for the Performance Indicators

Indicator Green Yellow Red

TimeEE |TimeEE|≤ 20% 20% < |TimeEE| ≤ 30% |TimeEE| > 30%

SizeEE |SizeEE| ≤ 20% 20% < |SizeEE| ≤ 30% |SizeEE| > 30%

PartEE |PartEE| ≤ 10% 10% < |PartEE| ≤ 20% |PartEE| > 20%

MP 0 ≤ MP ≤ 10% 10% < MP ≤ 20% MP > 20%

EP -10% ≤ EP ≤ 0 -20% ≤ EP < -10% EP < -20%

PEE |PEE| ≤ 20% 20% < |PEE| ≤ 30% |PEE| > 30%

ProdS |ProdS| ≤ 20% 20% < |ProdS| ≤ 30% |ProdS| > 30%

ProcS ProcS = True ProcS = False

DDUT 0 ≤ DDUT ≤ 5 5 < DDUT ≤ 10 DDUT > 10

CMU/SEI-2012-SR-015 | 27

Indicator Green Yellow Red

TotalDD 0≤TotalDD≤50 50 < TotalDD ≤ 100 TotalDD > 100

RY 70%≤RY≤100% 60% ≤ RY < 70% RY < 60%.

RR 100 ≤ RR ≤ 200 50 ≤ RR < 100 or 200 < RR ≤ 250 0 ≤ RR < 50 or RR > 250

R2D R2D ≥ 0.5 0.25 ≤ R2D< 0.5 0 ≤ R2D< 0.25

3.2.3 Work in Progress: Improvement Actions

To be able to readily recommend improvement actions for the identified performance problems,
we need to build a knowledge base of possible remedial actions. We put together an initial set of
candidate recommendations (see Table 9), but our goal is to obtain suggestions and feedback from
the PSP/TSP community to arrive at a set of consensual recommendations that can be used in
practice.

Table 9: Preliminary List of Problems and Improvement Actions

Indicator Problems identified and Suggested Improvement Actions

Missing Parts Problem with the identification of the parts. Recommended actions
• A more careful Conceptual Design is recommended, with more detail or time

spent in design.

Expurious Parts Problem with the identification of the parts. Recommended actions
• A more careful Design is recommended, with more detail or time spent in

design.

Part Estimation Error Problem in the relative-size table and/or problem with the identification of the parts.
Recommended actions

• Review the types of the parts, their relative size, and related topics.
Productivity Stability –
Plan and Postmortem

Problem with the changes in the way of working. Recommended actions
• Try to keep a stable productivity and check what has been modified lately.
• If the productivity has increased, try to keep it stable at that new value in

future projects.
Productivity Stability –
DLD and DLD Review

Problem with the changes in the way of working. Recommended actions
• Try to keep a stable productivity and check what has been modified lately.
• If the productivity has increased, try to keep it stable at that new value in

future projects.

Productivity Stability –
Code and Code Review

Problem with the changes in the way of working. Recommended actions
• Try to keep a stable productivity and check what has been modified lately.
• If the productivity has increased, try to keep it stable at that new value in

future projects.

Productivity Stability –
Unit Test

Problem with changes in the way of working. Recommended actions
• Try to keep a stable productivity and check what has been modified lately.
• If the productivity has increased, try to keep it stable at that new value in

future projects.

Process Stability Recommended actions
• Try to keep the process stable.
• Changing the process usually leads to a variation in productivity.

Total Defect Density Recommended actions
• Improve the process quality.
• Do an analysis on the more frequent and more expensive errors in order to

not repeat them; define preventive actions.

Review Rate Recommended actions
• If the value is too high, it is necessary to reduce it by doing the review more

carefully and slowly.
• If it is too slow (low value), do the review in a more focused and efficient way.
• Check if the artifacts are understandable.

CMU/SEI-2012-SR-015 | 28

Indicator Problems identified and Suggested Improvement Actions

Review to Development
Ratio

Recommended actions
• If the value is too high, it is necessary to do the review more carefully and

slowly or code faster and more efficiently.
• If the value is too low, do the review in a more focused and efficient way or

take your time coding.
• Check if the artifacts are understandable.

3.3 The PSP PAIR Tool

The tool developed was named PSP PAIR after PSP Performance Analysis and Improvement
Recommendation.1 It analyzes the performance data produced by individual PSP developers along
several projects, as recorded in the PSP Student Workbook supplied by the Software Engineering
Institute. The analysis is based on a performance model such as the one described in the previous
section, represented in an XML file for easier configuration and extensibility. This way, other PIs
and performance models can be used in the future without the need to change the PSP PAIR tool.

The home page of the PSP PAIR tool is shown in Figure 11. It has options to load a new database
file (a Microsoft Access file exported by the PSP Student Workbook) and load a new performance
model in XML. Once a database file is loaded, the tool presents a list of projects contained in it,
so that the user can select the projects to be analyzed. The results of the data analysis are
presented in a new window, as shown in Figure 12.

Figure 11: PSP PAIR Home

1 The PSP PAIR tool can be downloaded through the Faculdade de Engenharia da Universidade do Porto

website (http://paginas.fe.up.pt/~ei06089/wiki/lib/exe/fetch.php?media=projects:psp_pair_-_installer.zip).

http://paginas.fe.up.pt/~ei06089/wiki/lib/exe/fetch.php?media=projects:psp_pair_-_installer.zip

CMU/SEI-2012-SR-015 | 29

Figure 12: PSP PAIR Performance Results Report

The PIs are shown in a tree view, according to the relationships defined in the performance
model. The recommended control limits for each indicator are always shown on the first column,
followed by the values of the PIs in the selected projects, colored according to the control limits.
The last two columns display the average value and the percentage of red colored values for the
selected projects.

In the example shown in Figure 12 (based on real PSP data), we can quickly spot some
performance problems (colored red). In project 411, there are problems in the following
indicators: productivity stability in DLD and DLDR; productivity stability in unit tests (PSUT);
DDUTs—a possible cause for the previous productivity stability problems according to our
performance model; and process yield (same as review yield)—a possible cause for the previous
DDUT problems according to our performance model. In project 412, there are problems in the
following indicators: productivity stability, namely in the Plan, PM, DLD and DLDR phases;
process stability—a possible cause for the previous productivity stability problems according to
our performance model; and defect density in unit test—another possible cause for the previous
productivity stability problems according to our performance model.

Recommended improvement actions to address the performance problems identified in a single
project or all the selected projects are presented by the tool in a new window, using the same color
scheme as for the performance values (yellow or red, according to the color of the triggering
performance value), as shown in Figure 13 (please note that the recommended improvement
actions at this time are very preliminary). This aids understanding of which problems should be
addressed first.

CMU/SEI-2012-SR-015 | 30

Figure 13: PSP PAIR Recommended Improvement Actions for a Sample Project

3.4 Evaluation

In the end of the PSP Advanced course, developers have to analyze their personal performance
along a series of seven projects and document their findings and suggestions for improvement in a
Performance Analysis Report (PAR). The main result of this analysis is a prioritized and
quantified set of Process Improvement Proposals (PIPs). The goal of our research work is to help
automate this kind of analysis. So, to partially evaluate our approach, we compared the results
produced by our PSP PAIR tool with the results of a manual analysis conducted and documented
by an advanced PSP user, for the same project data.

A synthesis of the results obtained with both approaches is presented in Table 10 and Table 11.
The results are quite similar: the conclusions arrived at in the PAR document (such as problems
identified) were consistently present in the problems identified by the PSP PAIR. It should be
noted that some normalization had to be made regarding the presentation of the results

CMU/SEI-2012-SR-015 | 31

documented in the PAR. Further details are provided in the publication titled “Automated
Software Processes Performance Analysis and Improvement Recommendation” [Duarte 2012].

One of the major advantages of the automated analysis in this case is that it was almost
instantaneous, while the manual performance analysis took more than eight hours (PSP
developers have to record the time spent in producing the PAR).

But the manual analysis also has some advantages in this case: by taking into account additional
quantitative and qualitative information, it was possible to analyze in greater detail the cause for
productivity instability in DLD and DLDR and propose corresponding improvement actions. This
does not diminish the value of our tool, because it correctly points out problems in DLD and
DLDR productivity stability. Based on that information, a more focused manual analysis could be
subsequently performed.

Table 10: Results Assessment: Problems

Manual Analysis (Performance
Analysis Report)

PSP PAIR

Problems Problems

• Time estimation accuracy (same
as TEE)

• Productivity, namely at DLD phase

• Defect density in UT

• Value of Productivity Stability in DLD + DLDR suggests a problem.

o Problem with the changes in the way of working

• Value of Total Defect Density suggests a potential problem.

Based on the average of all the projects, there were problems identified at

o Time estimation error
o Total productivity stability

o Productivity stability at DLD and DLD review
o Defect density in UT

Table 11: Results Assessment: Improvement Actions

Manual Analysis (Performance Analysis
Report)

PSP PAIR

Process Improvement Proposals Recommended Actions

• Stabilize and make more efficient the DLD

process to improve and stabilize productivity:

o Avoid expensive DLD representations (e.g.,

equations in Word)

o Avoid long DLD documents (compared to

code size)

o Do Logic Specifications that can be used as

code comments and can be easily written

• Widen the size range to have more basis for

estimations.

• Try to keep a stable productivity and check what has
been modified lately.
o If the productivity has increased try to keep it stable at

that new value in future projects.
• Improve the process quality.
o Do an analysis on the more frequent and more

expensive
 errors in order to not repeat them; define preventive
actions.

CMU/SEI-2012-SR-015 | 32

3.5 Presentation of Evidence—Impact of Process Changes on Productivity
Stability

In this section, we provide empirical evidence in favor of the cause-effect relationship between
process stability and productivity stability (see Figure 10), based on an experiment conducted by
one of the authors in an academic setting.

The developers were nearly 100 students from the 2009/10 edition of the “Software Engineering”2
course of the Integrated Master Program in Informatics Engineering at University of Porto. Along
with other tasks, students had to develop a sequence of four programs and collect a set of
performance measures, following increasingly elaborated development processes (see Table 11).
The process scripts and performance measures were based on PSP with some changes due to
resource limitations: students could work alone or in pairs (pair programming); only the simplest
PROBE estimation method variant was used (averaging); in case of problems, students were
asked to resubmit their work only in the first assignment; students got a mark from each
assignment; there was no Compile phase.

Table 12: Overall Statistics of the Experiment

Based on the summary data of each submission, namely the time spent per process phase
(computed from the time recording log) and the final program size (new and changed lines of
code, excluding test code, comments and blank lines), we produced the chart in Figure 14.

Not surprisingly, the greatest changes in average productivity per phase are related to process
changes. When additional steps are introduced in a process phase, there is a significant variation
(degradation in this case) of the average productivity of that phase. By contrast, when the

2 https://sigarra.up.pt/feup_uk/DISCIPLINAS_GERAL.FORMVIEW?P_ANO_

LECTIVO=2009/2010&P_CAD_CODIGO=EIC0024&P_PERIODO=1S

Program Process Changes

N
u

m
b

er
 o

f
S

u
b

m
is

si
on

s
N

u
m

b
er

 o
f

D

ev
el

op
er

s
M

ea
n

 S
iz

e
(L

O
C

)
M

ea
n

 T
im

e
(m

in
.)

M
ea

n
 #

D

ef
ec

ts

Program 1 - mean and standard
deviation calculations; linked list.

Baseline process (with
time/size/defects performance
measures)

55 97 160 160 3.0

Program 2 - linear regression
calculations (reusing P1)

PLAN: Size and effort Estimation
(with PROBE method)

55 96 136 150 2.0

Program 3 - Student's t-ditribution
calculations

CODE: Coding standards
(comments, etc.)
CR: new phase
UT: automated with xUnit

53 93 109 205 2.8

Program 4 - linear regression with
significance and prediction
interval (reusing P1, P2, P3)

DLD: UML diagrams (class,
sequence)
DLDR: added this phase
PM: Proc. Improv. Proposals

46 79 71 184 1.7

https://sigarra.up.pt/feup_uk/DISCIPLINAS_GERAL.FORMVIEW?P_ANO_

CMU/SEI-2012-SR-015 | 33

definition of the process phase is unchanged, the productivity remains mostly stable (in most of
the cases, with a slight improvement). The results of the pairwise ANOVA analysis, presented in
Table 13, confirm the statistical significance of the differences in productivity per phase.

Figure 14: Evolution of the Mean Productivity Per Phase (in Minutes Spent Per New or Changed LOC)
Along the Four Program Assignments

Table 13: Results of Pairwise ANOVA Analysis, Highlighting Statistically Significant Differences in
Mean Productivity Per Phase Between Pairs of Program Assignments, with a 95%
Confidence Level (p value < 0.05)

A more detailed, phase-by-phase analysis follows.

PLAN—While in program 1 students estimated size and time empirically, in program 2 and
subsequent programs they were asked to apply the PROBE method (described in Section 3). Not

PLAN

DLD

DLDR

CODE

CR

UT

PM

0.0

0.2

0.4

0.6

0.8

1.0

Program 1
(Baseline)

Program 2
(PLAN: Size and

Effort Estimation)

Program 3
(CODE: Coding
Standards; CR:

added; UT: xUnit)

Program 4
(DLD: UML; DLDR:
added; PM: PIPs)

Av
er

ag
e

 M
in

ut
es

 S
pe

nt
 P

er
 L

O
C

Program Number and Process Changes

Time Per New and Changed Line of Code

p value PLAN DLD DLDR CODE CR UT PM

P1 - P2 0.0027 0.9998 - 0.8490 - 0.9882 0.3837

P1 - P3 0.0313 0.8277 - 0.0102 - 0.1054 0.2107

P1 - P4 0.0000 0.0000 - 0.0618 - 0.1838 0.0000

P2 - P3 0.9127 0.8727 - 0.0009 - 0.0554 0.9780

P2 - P4 0.0063 0.0000 - 0.0081 - 0.1042 0.0000

P3 - P4 0.0010 0.0000 - 0.9457 0.9313 0.9968 0.0000

CMU/SEI-2012-SR-015 | 34

surprisingly, the time spent per LOC increased significantly in program 2 and remained stable
thereafter, with a small degradation in program 4 (possibly because of the high amount of reuse).

DLD—In all programs, students were asked to spend some time in design, but only in program 4
they were asked to draw computer-based class diagrams and sequence diagrams. Not surprisingly,
this caused a significant leap in design time, which was not recovered in the Code phase.
(Investment in explicit UML designs may only compensate for complex programs, but our goal
was to let students learn the techniques in the small.)

CODE—Coding standards, requiring code comments in class and method headers, were
introduced in program 3. Not surprisingly, the time spent per LOC (not counting comments)
increased in program 3. Otherwise, there is a tendency for improvement.

CR—Code reviews were introduced only in program 3. From program 3 to 4 there is a small
productivity improvement in doing code reviews. We didn’t expect that the time invested in code
reviews would be recovered significantly in the unit test effort, because we asked students to
focus code reviews on aspects complementary to tests—mainly adherence to coding standards and
exception handling.

UT—Students were asked to unit test all programs (at least for the test cases given), but only in
program 3 and subsequent programs were they asked to automate their tests with JUnit. Not
surprisingly, this required additional effort from the developers (test automation effort is usually
recovered only after a number of repetitions of test execution, and we did not count test code in
size measurement). From programs 3 to 4 there is a small productivity improvement in the unit
test phase.

PM—In all programs, in the postmortem phase developers had to measure the final program size
(using a tool) and perform final data consistency and completeness checks. Additionally, in
program 4 they were asked to produce at least one Process Improvement Proposal. Not
surprisingly, this caused the highest variation in productivity of this phase.

3.6 Presentation of Evidence—Impact of Defect Density in Unit Tests on
Productivity Stability

We next provide evidence partially supporting the cause-effect relationship between the Defect
Density in Unit Tests and Productivity Stability (see Figure 10), based on results from the same
experiment presented previously.

In all assignments, students were required to record in a defect log the defects they found and
fixed, including, for each defect, the phase in which it was injected (e.g., CODE), the phase in
which it was removed (found and fixed) (e.g., UT), and the fix time (rework time).

For each submission, we computed the Defect Density in Unit Test (DDUT) and the Productivity
Stability (ProdS) (see definitions in Table 7). Since ProdS is not defined for the first project of
each team, 67 submissions from the 209 submissions were excluded from consideration (all the
submissions of program 1 plus additional submissions after changes in team composition). We
also excluded from consideration 18 more submissions with obvious data quality problems in
defect recording (in most of the cases, because of a long test time and no defects recorded). In the

CMU/SEI-2012-SR-015 | 35

end, we got 125 data points with the distribution shown in Figure 15. The number of data points
(submissions) in is shown below each class.

Unfortunately, the abnormal distribution of the data points with zero DDUT, as compared to the
tendency shown by the remaining data points, strongly suggests that data quality problems still
reside in these data points (such as students that did not record their defects). The data points with
non-zero DDUT show a tendency for a productivity increase (when compared with historical
productivity) when DDUT is small and a tendency for decrease when DDUT is high.

Figure 15: Box and Whisker Plot Showing the Relationship Between the Defect Density in Unit Tests
and the Productivity Stability

This tendency is not surprising. If, for each team, the number of defects has significant variations
along projects and the defect fix time (rework) has a non-negligible value with significant
variations, then productivity fluctuations will follow with a tendency as exhibited by the data set
analyzed. To confirm this explanation, we computed the statistical behavior of the defect fix time.
According to Figure 16, the majority of defects are removed (found and fixed) in unit test (UT),
where the median and dispersion value of the fix time (rework time) are much higher than in code
reviews (CRs). The number of data points (defects) is shown under each removal phase.

-39%

13%

-20%

-37%

-53%

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

0
(34)

]0, 10]
(15)

]10,20]
(37)

]20,30]
(23)

]30,+∞[
(16)

P
ro

d
u

ct
iv

it
y

S
ta

b
ili

ty

Defect Density in Unit Tests (defects/KLOC)

Max Outlier

Median

CMU/SEI-2012-SR-015 | 36

Figure 16: Box and Whisker Plot Showing the Relationship Between the Defect Removal Phase and the
Defect Fix Time

3.7 Conclusions and Future Work

The experiments conducted so far show that the performance model and tool that we developed
effectively aid in accelerating the identification of performance problems and determination of
improvement actions in the context of the PSP.

Although the work presented is limited to the analysis of time estimation performance of PSP
developers, other performance aspects are also analyzed because of the impact of the time
estimation performance, and the tool was designed so that it can be easily configured and
extended for analyzing other performance aspects and development processes.

As future work we intend to

• validate further the dependencies between performance indicators that do not result directly
from the formulas, based on other data sources (namely, based on data collected from
hundreds of developers that attended PSP training courses)

• rank the recommended improvement actions presented to the user, according to a prediction
of their cost and benefit (partially computed from the same performance model)

• take advantage of the feedback from the community of PSP users (and PSP PAIR users) in
the ranking of improvement actions and evolution of the catalog of improvement actions

• accept other input formats, other than the format exported by the PSP Student Workbook

• extend the performance model for other performance indicators of interest in the scope of the
PSP

• extend the approach for analyzing data produced in the context of other development
processes, namely in the context of the TSP

• integrate the tool and features presented in software as a service platform, under development
by a national consortium, integrating project, process, and performance management

8.0
3.0 5.0

2.0
5.0

0

10

20

30

40

50

60

70

80

DLD
(7)

DLDR
(10)

CODE
(94)

CR
(49)

UT
(328)

D
e

fe
ct

 F
ix

 T
im

e
(m

in
u

te
s)

Defect Removal Phase

Max Outlier

Median

CMU/SEI-2012-SR-015 | 37

3.8 Acknowledgments

This work is funded in part by FEDER (Fundo Europeu de Desenvolvimento Regional) through
the Portuguese ON.2 Program (Programa Operacional Região do Norte), under project reference
SI IDT - 21562/2011.

CMU/SEI-2012-SR-015 | 38

3.9 Author Biographies

César Duarte
Consultant in Software Engineering
Strongstep – Innovation in Software Quality

César Duarte is a software engineer and holds a Master's Degree in Informatics and Computing
Engineering. He graduated from the Faculty of Engineering, University of Porto (FEUP) in
Portugal and is currently working as a consultant in software engineering at Strongstep –
Innovation in Software Quality. He also worked as a research assistant at ESB - Universidade
Católica Portuguesa - Porto. His specialties and research interests are related to software
engineering, software process improvement, PSP, and TSP.

João Pascoal Faria
Assistant Professor and Researcher
INESC TEC and Department of Informatics Engineering, Faculty of Engineering, University of
Porto

João Pascoal Faria received his PhD in Electrical and Computer Engineering from the Faculty of
Engineering of the University of Porto in 1999 and is currently an assistant professor at the
university in the Department of Informatics Engineering and a researcher at INESC Porto. He is
vice-president of the Sectorial Commission for the Quality in Information and Communication
Technologies (CS03) from the Portuguese Quality Institute (IPQ). In the past, he worked with
several software companies and was a co-founder of two others. He has more than 20 years of
experience in education, research, and consultancy in several software engineering areas. He is the
main author of a rapid application development tool (SAGA), based on domain specific
languages, with more than 20 years of market presence and evolution (1989-2011). Since 2008, he
is a certified PSP Developer, authorized PSP Instructor, and trained TSP Coach by the Software
Engineering Institute of Carnegie Mellon University. He is currently involved in research
projects, supervisions, and consulting activities in the areas of model-based testing, model-driven
development, and software process improvement.

Mushtaq Raza
PhD student
MAP-i Doctoral Program, University of Porto, Portugal

Mushtaq Raza is a PhD student in the MAP-i doctoral program at the University of Porto,
Portugal. He is also serving Abdul Wali Khan University in Mardan, Pakistan as an assistant
professor. His research interests include PSP, Global Software Development (GSD), and Usability
Engineering.

Pedro Castro Henriques
Director and Senior Consultant
Strongstep – Innovation in Software Quality

Pedro Castro Henriques has a 5-year degree in software engineering and a post-graduate degree in
technology entrepreneurship and commercialization. His thesis was on information systems
strategic planning for the health sector. He began his career 12 years ago as a software engineer at
Q-Labs Lund/DNV and soon became a consultant working in nine European countries. After his

CMU/SEI-2012-SR-015 | 39

international experience he returned to Portugal and founded the Oporto software engineering
alumni association (which now has more than 1600 members). Afterward he further specialized in
process improvement, implementation, and certification in software quality. His studies in
internationalization and innovation of companies and his participation in an entrepreneurship
semester in Porto Business School grounded his career in this critical area. Extremely committed
to innovation and entrepreneurship, he co-founded Strongstep – Innovation in Software Quality
and Portic in 2010. He is currently the director of Strongstep and president of Portic. He was a
facilitator in bringing SEPG Europe to Portugal for the first time in 2010. He is also a professor at
FEUP in the Services Management Engineering Master, focusing on service requirements, and an
invited lecturer in the Software Quality and Tests at Master.

3.10 References/Bibliography

[Burton 2006]
Burton, D. & Humphrey, W. S. “Mining PSP Data.” Proceedings of the TSP Symposium. New
Orleans, LA, September 2006. http://www.sei.cmu.edu/tspsymposium/2009/2006/mining.pdf

[C. S. D. Laboratory 2010]
C. S. D. Laboratory, 2010. Hackystat. http://code.google.com/p/hackystat

[Davis 2003]
Davis, B. N. & Mullaney, J. L. The Team Software Process (TSP) in Practice: A Summary of
Recent Results (CMU/SEI-2003-TR-014). Software Engineering Institute, Carnegie Mellon
University, 2003. http://www.sei.cmu.edu/library/abstracts/reports/03tr014.cfm

[Design Studio Team 1997]
Design Studio Team, East State Tennessee University, 1997. PSP Studio.
http://csciwww.etsu.edu/psp/

[Duarte 2012]
Duarte, Cesar Barbose. “Automated Software Processes Performance Analysis and Improvement
Recommendation.” MSc Thesis, Informatics and Computing Engineering, University of Porto,
2012.

[Ferreira 2010]
Ferreira, Andre L.; Machado, Ricardo J.; Costa, Lino; Silva, José G.; Batista, Rui F.; & Paulk,
Mark C. “An Approach to Improving Software Inspections Performance,” 1-8. ICSM’10
Proceedings of the 2010 IEEE International Conference on Software Maintenance. Timisoara,
Romania, September 2010. IEEE, 2010. ISBN 978-1-4244-8640-4.

[Humphrey 2009]
Humphrey, Watts S. The Software Quality Profile. Software Engineering Institute, Carnegie
Mellon University, 2009. http://www.sei.cmu.edu/library/abstracts/whitepapers/qualityprofile.cfm

[Humphrey 2005]
Humphrey, Watts S. PSP: A Self-Improvement Process for Software Engineers. Addison-Wesley
Professional, 2005. http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm

http://www.sei.cmu.edu/tspsymposium/2009/2006/mining.pdf
http://code.google.com/p/hackystat
http://www.sei.cmu.edu/library/abstracts/reports/03tr014.cfm
http://csciwww.etsu.edu/psp/
http://www.sei.cmu.edu/library/abstracts/whitepapers/qualityprofile.cfm
http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm

CMU/SEI-2012-SR-015 | 40

[Humphrey 2002]
Humphrey, W. S. “Personal Software Process (PSP).” Encyclopedia of Software Engineering,
John Wiley & Sons, Inc., 2002.

[Kemerer 2009]
Kemerer, Chris & Paulk, Mark. “The Impact of Design and Code Reviews on Software Quality:
An Empirical Study Based on PSP Data.” IEEE Transactions on Software Engineering 35, 4
(July–August 2009): 534-550.

[Nasir 2005]
Nasir, M. H. N. M. & Yusof, A. M. “Automating a modified personal software process.”
Malaysian Journal of Computer Science 18, 2 (December 2005): 11–27.

[Pomeroy-Huff 2012]
Pomeroy-Huff, M.; Cannon, R.; Chick, T. A.; Mullaney, J.; & Nichols, W. The Personal
Software Process(PSP) Body of Knowledge, Version 2.0 (CMU/SEI-2009-SR-018). Software
Engineering Institute, Carnegie Mellon University, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09sr018.cfm

[Shen 2011]
Shen, Wen-Hsiang; Hsueh, Nien-Lin; Lee, & Wei-Mann. “Assessing PSP effect in training
disciplined software development: A Plan–Track–Review model.” Information and Software
Technology 53 (February 2011): 137–148.

[Shin 2007]
H. Shin, H.; Choi, H.; & Baik, J. “Jasmine: A PSP Supporting Tool.” Software Process Dynamics
and Agility 4470, pp. 73–83. Edited by Q. Wang, D. Pfahl, & D. Raffo. Springer-Verlag, 2007.

[Sison 2005]
Sison, R. “Personal Software Process (PSP) assistant,” 687–696. Proceedings of the 12th Asia-
Pacific Software Engineering Conference (APSEC ’05). Washington, D.C., February 2005. IEEE
Computer Society, 2005.

[Software Process Dashboard Initiative, 2011]
The Software Process Dashboard Initiative. “Functionality for Individuals,” 2011.
http://www.processdash.com/functionality-personal

http://www.sei.cmu.edu/library/abstracts/reports/09sr018.cfm
http://www.processdash.com/functionality-personal

CMU/SEI-2012-SR-015 | 41

4 PSPDC: An Adaptation of the PSP to Incorporate Verified
Design by Contract

 Silvana Moreno, Universidad de la República
 Álvaro Tasistro, Universidad ORT Uruguay
 Diego Vallespir, Universidad de la República

4.1 Introduction

Personal Software Process (PSP) incorporates process discipline and quantitative management
into the software engineer’s individual development work. It promotes the exercise of careful
procedures during all stages of development with the aim of achieving high quality of the final
product and thereby also increasing the individual’s actual productivity [Humphrey 2005, 2006].

Formal methods, in turn, use the same methodological strategy, namely emphasizing care in the
procedures of development (as opposed to relying on testing and debugging.) In fact they
establish a radical requirement in this respect, which consists of mathematically proving that the
programs satisfy their functional requirements.

In this paper we investigate how to integrate the use of formal methods into PSP, by formulating a
new version of PSP.

Design by Contract (DbC) is a technique devised (and patented) by Bertrand Meyer for designing
components of a software system by establishing their conditions of use and behavioral
requirements in a formal language [Meyer 1992]. This language is seamlessly integrated with the
programming language so that the specified conditions can actually be evaluated at run-time,
which allows, among other things, the ability to handle violations by means of a system of
exceptions. When appropriate techniques and tools are incorporated that allow proving that the
components satisfy the established requirements, it indicates the use of a formal method usually
called Verified Design by Contract (VDbC.) This is the method we propose to consider for
integration with PSP.

Our alternative version of PSP is called PSPDC. With respect to ordinary PSP, it incorporates new
phases and modifies others as well as adding to the infrastructure new scripts and checklists.
Specifically, we add the phases of Formal Specification, Formal Specification Review, and
Formal Specification Compile. In addition we modify the Compile phase into a new phase called
Compile and Proof. The general idea is to supplement the design with formal specifications of the
components (which are produced in the first three new phases listed above) and the code with a
formal proof that it matches the formal specifications (which are produced in the Compile and
Proof phase.) This proof is to be carried out with the help of a tool akin to a verifying compiler
that statically checks the logical correctness of the code in addition to the syntax.

We know of only two works in the literature that propose to combine PSP and formal methods.
Babar and Potter combine Abrial’s B Method with PSP into B-PSP [Babar 2005]. They add the
phases of Specification, Auto Prover, Animation, and Proof. A new set of defect types is added
and logs are modified to incorporate data extracted from the B machine’s structure. The goal of
this work is to provide the individual B developers with a paradigm of measurement and

CMU/SEI-2012-SR-015 | 42

evaluation that promotes reflection on the practice of the B method, inculcating the habit of
recognizing causes of defects injected so as to be able to avoid these in the future.

Suzumori, Kaiya, and Kaijiri propose the combination of VDM and PSP [Suzumori 2003]. The
Design phase is modified incorporating the formal specification in the VDM-SL language.
Besides, the phases of VDM-SL Review, Syntax Check, Type Check, and Validation are added.
One result arising from applications is that the use of VDM contributes to eliminate defect
injection during design.

4.2 Formal Methods

Formal methods hold fast to the tenet that programs should be proven to satisfy their
specifications. Proof is, of course, the mathematical activity of arriving at knowledge deductively
(i.e., starting off from postulated, supposed, or self-evident principles and performing successive
inferences, each of which extracts a conclusion out of previously arrived at premises).

In the application of this practice to programming we have among the first principles the so-called
semantics of programs, which allow us to understand program code and thereby know what each
part of the program actually computes. This makes it in principle possible to deductively ascertain
that the computations carried out by the program satisfy certain properties. Among these
properties are input-output relations or patterns of behavior that constitute a precise formulation of
the so-called functional specification of the program or system at hand.

Formal logic, at least in its contemporary mathematical variety, has striven to formulate artificial
languages into which it is possible to frame the mathematical activity. There should therefore,
according to this aim, be a language for expressing every conceivable mathematical proposition
and also a language for expressing proofs, so that a proposition is provable in this language if and
only if it is actually true. This latter desirable property of the language is called its correctness.
This kind of research began in 1879 with Frege [Frege 1967] with the purpose of making it
undisputable whether a proposition was or was not correctly proven. Indeed, the whole point of
devising artificial languages was to make it possible to automatically check whether a proposition
or a proof was correctly written in the language. That is to say, the proofs accepted were to be so
on purely syntactic (i.e. formal) grounds and, given the good property of correctness of the
language, that was enough to ensure the truth of the asserted propositions.

Frege’s own language turned out to be not correct and, for that reason mainly, shortly after its
failure the whole enterprise of formal logic took a different direction, namely that of studying the
artificial languages as mathematical objects to prove their correctness by elementary means. This
new course was actually also destined to failure.

The overall outcome is nevertheless very convenient from an engineering viewpoint. We can go
back to Frege’s program, and nowadays we have technology that makes it feasible to develop
formal proofs semi-automatically. The proof systems (or languages) are still reliable although not
complete (i.e., not every true proposition will be provable). But again, there is no harm in the
practice, and the systems are perfectly expressive from an engineering perspective. These
advances allow us to define formal methods in software engineering as a discipline based on the
use of formal languages and related tools for expressing specifications, and carrying out proofs of
correctness of programs.

CMU/SEI-2012-SR-015 | 43

Notice that the semi-automatic process of program correctness proof is of course a static kind of
checking. We can think of it as an extension of compilation, which not only checks syntax but
also properties of functional behavior. Therefore it is convenient to employ the general idea of a
semi-automatic verifying compiler to characterize the functionality of the tools employed within a
formal methods framework.

DbC is a methodology for designing software proposed and registered by Bertrand Meyer [Meyer
1992]. It is based on the idea that specifications of software components arise, like business
contracts, from agreements between a user and a supplier, which establish the terms of use and
performance of the components. That is to say, specifications oblige (and enable) both the user
and the supplier to certain conditions of use and a corresponding behavior of the component in
question.

In particular, DbC has been proposed in the framework of Object Oriented Design (and
specifically in the language Eiffel) and therefore the software components to be considered are
classes. The corresponding specifications are pre- and post-conditions to methods, establishing
respectively their terms of use and corresponding outcomes, as well as invariants of the class (i.e.,
conditions to be verified by every visible state of an instance of the class). In the original DbC
proposal, all the specifications are written in the language Eiffel itself and are computable (i.e.,
they are checkable at run-time).

Therefore, DbC within Eiffel provides at least the following:

• A notation for expressing the design that seamlessly integrates with a programming language,
making it easy to learn and use.

• Formal specifications, expressed as assertions in Floyd-Hoare style [Hoare 1969].

• Specifications checkable at run-time and whose violations may be handled by a system of
exceptions.

• Automatic software documentation.

However, DbC is not by itself an example of a formal method as defined above. When we
additionally enforce proving that the software components fit their specifications, we are using
VDbC. This can be carried out within several environments, which all share the characteristics
mentioned above:

• The Java Modeling Language (JML) implements DbC in Java. VDbC can then be carried out
using tools like Extended Static Checking (ESC/Java) [Cok 2005] or TACO [Galeotti 2010].

• Perfect Developer [Crocker 2003] is a specification and modeling language and tool which,
together with the Escher C Verifier, allows performing VDbC for C and C++ programs.

• Spec# [Barnett 2004] allows VDbC within the C# framework.

• Modern Eiffel [Eiffel 2012] allows it within the Eiffel framework.

4.3 Adaptation

Figure 17 displays the PSP. We assume the engineer will be using an environment like any of
those listed at the end of the previous section. This means that a computerized tool (akin to a
verifying compiler) is used for

CMU/SEI-2012-SR-015 | 44

• Checking syntax of formal assertions. These are written in the language employed in the
environment (e.g. as Java Boolean expressions, if we were employing JML) which we shall
call the carrier language.

• Computing proof obligations (i.e. given code with assertions, to establish the list of
conditions that need to be proven to ascertain the correctness of the program).

• Developing proofs in a semi-automatic way.

We now briefly review Figure 17 summarizing the most relevant novelties of PSP:

• After the Design Review phase, there comes a new phase called Formal Specification. It is in
this phase that the design is formalized, in the sense that class invariants and pre- and post-
conditions to methods are made explicit and formal (in the carrier language).

• The Formal Specification Review has the purpose of detecting errors injected in the formal
specification produced in the previous phase. A review script is used in this activity.

• The Formal Specification Compile phase consists of automatically checking the formal
syntax of the specification.

• The phase of Code Compile and Proof comes after production and revision of the code. This
is the proper formal verification phase, carried out with help of the verifying compiler.

Figure 17: Personal Software Process

CMU/SEI-2012-SR-015 | 45

In the following subsections we present in detail all the phases of the PSPDC, indicating in each
case the activities to be performed and the modifications introduced with respect to the original
PSP.

4.4 Planning

The activities of this phase are Program Requirements, Size Estimate, Resource Estimate, Task
and Schedule Planning, and Defect Estimate.

Program Requirements is for ensuring a precise understanding of every requirement. This activity
is the same as in the ordinary PSP.

Size Estimate involves carrying out a conceptual design (i.e., producing a module [class]
structure). Each class is refined into a list of methods and the size of each method is estimated.
For this we do as in ordinary PSP (i.e., we use proxies which utilize a categorization of the
method according to its size and the functional kind of the corresponding class). Categories of
size of methods are very small, small, medium, large, or very large; functional kinds of classes are
Calc, Logic, IO, Set-Up, and Text. Thus, using the structure of classes, the number of methods in
each class and the category of the class, we arrive at an estimation of the LOCs of the program.

Now, using (Verified) Design by Contract requires us to formally write down the pre- and post-
conditions of each method and the invariant of each class. And we do not yet possess methods
akin to the above-mentioned proxies for estimating the size of these formal specifications.
Therefore, we are not in a position to produce such estimation. However, it can be argued that
VDbC modifies the process by which we arrive at design and code, but not the size of the final
program in LOCs, at least if we consider the latter to be the executable code that is necessary to
achieve the required functionality. In this sense, formal specifications could be treated as formal
comments to the code (i.e., not to be counted into the size of the program).

Resource Estimate estimates the amount of time needed to develop the program. For this, the
method PROBE is used, which employs historical records and linear regression for producing the
new estimation, as well as for measuring and improving the precision of the estimations. In our
adaptation, the activity remains conceptually the same, but will employ records associated to the
new phases incorporated into PSPDC. Therefore, once sufficient time data has been gathered, we
shall be able to estimate the time to be employed in formal specification, as well as in program
proof.

Task and Schedule Planning is for long-term projects. These are subdivided into tasks and the
time is estimated for each task. This is unchanged in PSPDC.

Defect Estimate Base is for estimating the number of defects injected and removed at each phase.
Historical records, as well as the estimated size of the program, are utilized for performing this
estimation. In PSPDC we must keep new records in order to estimate the defects removed and
injected at each new phase.

4.5 Design

During Design, we define the data structures, classes and methods, interfaces, components, and
the interactions among all of them. Formal specification of methods and of invariants of classes

CMU/SEI-2012-SR-015 | 46

could be carried out within the Design phase. This, however, presents the disadvantage of not
allowing us to keep records of the time employed specifically in Design, as well as in Formal
Specification. Instead, we would just record a likely significant increase in Design time.
Therefore we prefer to separate the phase of Formal Specification.

4.6 Design Review

This is the same as in ordinary PSP.

4.7 Formal Specification

This phase must be performed after Design Review. The reason for this is that reviews are very
effective in detecting defects injected during design, and we want these to be discovered as early
as possible.

In this phase we start to use the computerized environment supporting VDbC. We propose to
carry out two activities within this phase, namely Construction and Specification. The activity of
Construction consists of preparing the computerized environment and defining within it each class
with its method headers. This could have been done during Design, in which case we would, of
course, omit it here. The choice is a valid personal one. The second activity is Specification, in
which we write down in the carrier language the pre- and post-conditions of each method as well
as the class invariant. Notice that, within the present approach, the use of formal methods begins
once the design has been completed. It consists of the formal specification of the produced design
and the formal proof that the final code is correct with respect to this specification.

4.8 Formal Specification Review

Using a formal language for specifying conditions is not a trivial task and both syntactic and
semantic defects can be injected. To avoid the propagation of these errors to further stages and
thereby increasing the cost of correction, we propose to carry out a phase of Formal Specification
Review.

The script that corresponds to this phase contains the activities of Review, Correction, and
Checking. The Review activity consists in inspecting the sentences of the specification using a
checklist. In the activity of Correction all defects detected during Review are removed. Finally,
Checking consists of looking over the corrections to verify their adequacy.

4.9 Formal Specification Compile

Any computerized tool supporting VDbC will be able to compile the formal specification. Since
this allows an early detection of errors, we consider it valuable to explicitly introduce this phase
into PSPDC. In particular, it is worthwhile to detect all possible errors in the formal specifications
before any coding is carried out. A further reason to isolate the compilation of the formal
specification is that it allows recording the time spent in this specific activity.

4.10 Code

Just as in ordinary PSP, this phase consists of translating the design into a specific programming
language.

CMU/SEI-2012-SR-015 | 47

4.11 Code Review

This phase does not differ from the corresponding one in ordinary PSP.

4.12 Compile and Proof

The phase Code Compile of PSP is modified in PSPDC in order to provide, besides the compiled
code, evidence of its correctness with respect to the formal specification (i.e., its formal proof). As
already said, we here use the computerized tool (verifying compiler) which compiles the code,
derives proof obligations, and helps to carry out the proofs themselves.

4.13 Unit Test

This phase is the same as in ordinary PSP. We consider it relevant for detecting mismatches with
respect to the original, informal requirements to the program. These defects can arise in several
points during the development, particularly as conceptual or semantic errors of the formal
specifications. The test cases to be executed must therefore be designed right after the
requirements are established, during the phase of Planning.

4.14 Post-Mortem

This is the same as in ordinary PSP. Several modifications have to be made to the infrastructure
supporting the new process. For instance, all new phases must be included into the support tool to
keep control of the time spent at each phase as well as to record defects injected, detected, and
removed at each phase. Our intention in this paper is to present the changes in the process in order
to incorporate VDbC. The adaptation of the supporting tools, scripts, and training courses is a
matter for a separate work.

4.15 Conclusions and Future Work

We have presented PSPDC, a combination of PSP with Verified Design by Contract (VDbC), with
the aim of developing better quality products.

In summary we propose to supplement the design with formal specifications of the pre- and post-
conditions of methods as well as class invariants. This gives rise to three new phases that come
after the Design phase, namely Formal Specification, Formal Specification Review, and Formal
Specification Compile. We also propose to verify the logical correctness of the code by using an
appropriate tool, which we call a verifying compiler. This motivates the modification of the
Compile phase, originating the new Compile and Proof phase, which provides evidence of the
correctness of the code with respect to the formal specification.

The process can be carried out within any of several available environments for VDbC.

By definition, in Design by Contract (and thereby, also of VDbC) the specification language is
seamlessly integrated with the programming language, either because they coincide or because the
specification language is a smooth extension of the programming language. As a consequence, the
conditions making up the various specifications are simple to learn and understand Boolean
expressions. We believe that this makes the approach easier to learn and use than the ones in other
proposals, like Babar and Suzumori [Babar 2005, Suzumori 2003]. Nonetheless, the main

CMU/SEI-2012-SR-015 | 48

difficulty associated with the whole method resides in developing a competence in carrying out
the formal proofs of the written code. This is, of course, common to any approach based on
formal methods. Experience shows, however, that the available tools are generally of great help in
this matter. There are reports of cases in which the tools have generated the proof obligations and
discharged up to 90% of the proofs in an automatic manner [Abrial 2006].

We conclude that it is possible in principle to define a new process that integrates the advantages
of both PSP and Formal Methods, particularly VDbC. Our future work consists of completing the
adaptation of PSP by writing down in detail the scripts to be used in all phases, adapt the logs,
specify and carry out the modifications to the support tool, and modify or define interesting
metrics.

We must evaluate the PSPDC in actual practice by carrying out measurements in case studies. The
fundamental aspect to be measured in our evaluation is the quality of the product, expressed in the
amount of defects injected and removed at the various stages of development. We are also
interested in measures of the total cost of the development.

CMU/SEI-2012-SR-015 | 49

4.16 Author Biographies

Silvana Moreno
School of Engineering, Universidad de la República

Silvana Moreno is a teaching and research assistant at the Engineering School at the Universidad
de la República (UdelaR). She is also a member of the Software Engineering Research Group
(GrIS) at the Instituto de Computación (InCo.). Moreno holds an Engineer title in computer
science from UdelaR and is currently enrolled in their Master of Science program in computer
science.

Álvaro Tasistro
School of Engineering, Universidad ORT Uruguay

Álvaro Tasistro is a professor at the engineering school of the Universidad ORT Uruguay. He is a
chair of Theoretical Computer Science and is also the director of studies for the Master of
Engineering Sciences program at the university. He holds a PhD from Chalmers University in
Gothenburg, Sweden. He has several articles published in international conferences, journals, and
books. His main research topics are type theory and formal methods.

4.17 References/Bibliography

[Abrial 2006]
Abrial, Jean-Raymond. “Formal Methods in Industry: Achievements, Problems, Future,” 761–
768. 28th International Conference on Software Engineering (ICSE’06). Shanghai, Republic of
PRC, May 2006. ACM Press, 2006.

[Babar 2005]
Babar, Abdul & Potter, John. “Adapting the Personal Software Process (PSP) to Formal
Methods,” 192-201. Australasian Software Engineering Conference (ASWEC’05), Brisbane,
Australia, March-April, 2005. IEEE, 2005.

[Barnett 2004]
Barnett, Mike; Rustan, K.; Leino, M.; & Schulte, Wolfram. “The Spec# Programming System: An
Overview” Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS),
Lecture Notes in Computer Science 3362, pages 49–69. Springer, 2004.

[Cok 2005]
Cok, David & Kiniry, Joseph. “ESC/Java2: Uniting ESC/Java and JML.” Construction and
Analysis of Safe, Secure and Interoperable Smart devices (CASSIS 2004). Lecture Notes in
Computer Science 3362, pp. 108–228. Springer-Verlag, 2005.

[Crocker 2003]
Crocker David, Perfect Developer: A Tool for Object-Oriented Formal Specification and
Refinement, 2003.

CMU/SEI-2012-SR-015 | 50

[Eiffel 2012]
Eiffel. Definition of “Modern Eiffel.”
http://tecomp.sourceforge.net/index.php?file=doc/papers/lang/modern_eiffel.txt. Retrieved
August 16, 2012.

[Frege 1967]
Frege, G. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens. Halle a. S.: Louis Nebert, 1879. Translated as Concept Script, a formal language of pure
thought modelled upon that of arithmetic, by S. Bauer-Mengelberg. Edited by J. vanHeijenoort,
From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA:
Harvard University Press, 1967.

[Galeotti 2010]
Galeotti Juan; Rosner, Nicolás; Pombo, López; &. Frias, Marcelo F. “Analysis of invariants for
efficient bounded verification,” 25-36. Proceedings of the Nineteenth International Symposium
on Software Testing and Analysis (ISSTA 2010), Trento, Italy, July 2010. Schloss-Dagstuhl,
2010.

[Hoare 1969]
Hoare, C. A. R. “An Axiomatic Basis for Computer Programming.” Communications of ACM 12,
10 (October 1969): 576-580.

[Humphrey 2005]
Humphrey, Watts S. PSP: A Self-Improvement Process for Software Engineers. Addison-Wesley
Professional, 2005.

[Humphrey 2006]
Humphrey, Watts S. TSP: Coaching Development Teams. Addison-Wesley, 2006.
http://www.sei.cmu.edu/library/abstracts/books/201731134.cfm

[Meyer 1992]
Meyer, Bertrand. “Applying Design by Contract.” IEEE Computer 25, 10 (October 1992): 40-51.

[Schwalbe 2007]
Schwalbe, Kathy. Information Technology Project Management, 5th ed. Course Technology,
2007.

[Suzumori 2003]
Suzumori, Hisayuki; Kaiya, Haruhiko; & Kaijiri, Kenji. “VDM over PSP: A Pilot Course for
VDM Beginners to Confirm its Suitability for Their Development,” Proceedings of the 27th
Annual International Computer Software and Applications Conference. Hong Kong, PRC,
September–October 2003. IEEE Computer Society, 2003.

http://tecomp.sourceforge.net/index.php?file=doc/papers/lang/modern_eiffel.txt
http://www.sei.cmu.edu/library/abstracts/books/201731134.cfm

CMU/SEI-2012-SR-015 | 51

5 Experience Report: Applying and Introducing TSP to
Electronic Design Automation

 Elias Fallon and Lee Gazlay, Cadence Design Systems, Inc.

5.1 Introduction

This paper will describe our experiences in introducing the Team Software Process (TSP) to a
software research and development (R&D) division of Cadence Design Systems. We will describe
the Electronic Design Automation (EDA) industry and some of the challenges that led us to pilot
and start adoption of TSP. We will also examine the specific results we have achieved from teaching
PSP Fundamentals to Cadence engineers and characterize the similarities and differences to the
historical Personal Software Process (PSP) results. Finally, we will summarize some of the
successes and challenges we have had in using TSP on the day-to-day work.

In April 2011, Cadence Design Systems officially kicked off pilot projects using the TSP. We are
interested primarily in using TSP to help us develop software at a significantly higher quality
while maintaining a high productivity. This initiative started in the Custom IC and Simulation
division of Cadence, with roughly a quarter of Cadence’s 2400 engineers in R&D. We currently
have two teams with more than a year of experience with TSP, plans to have a total of ten teams
trained and using TSP by the end of 2012, and further expansion planned in 2013. Cadence is a
leading company in EDA, which gives us an interesting perspective and motivation for
engineering quality into our software products.

5.2 Electronic Design Automation

EDA companies serve the semiconductor and electronics industry with software tools to enable
their design and manufacturing needs. Our industry is fueled by Moore’s Law [Wikipedia 2012],
addressing the continuous exponential increase in performance and capacity per price being
delivered by our semiconductor technology. What is less well known is that all of these
“newer/bigger/faster” chips and electronics have been created each year by a relatively stable
number of engineers. While the performance and capacity of electronics keeps doubling every
18–24 months, the number of engineers doing these designs has increased only marginally. To
facilitate this technological growth, the EDA industry has continued to deliver higher levels of
productivity-enabling software. EDA companies serve an industry that is highly quality conscious
due to the cost of manufacturing and volumes required. We sell software that helps chip designers
estimate the yield through their manufacturing process of a given chip design and offer
suggestions on how to improve that yield. And yet, applying similar techniques to our own
software development processes has not been our primary objective. Due to the constantly
changing technology our customers are working with, we often have to develop new products and
features very quickly in close partnership with our customers to enable the next generation of
designs. This requires us to deliver significant new functionality quickly, traditionally at the
expense of quality, and has given our industry a reputation for innovation but only just-good-
enough quality [Ben-Yaacov 2001]. With TSP, we believe we can transform our company to
deliver that same new functionality, just as fast, with true production quality. The advantages
would be significant for both our customers and for us.

CMU/SEI-2012-SR-015 | 52

5.3 Why We Decided to Pilot TSP

The problem of developing interesting and innovative software with high quality and on a
predictable schedule is well known in the industry. Clearly, we are not the first to make the
analogy between electronics design, implementation, and manufacture, and software [Humphrey
2009], however, the analogy bears repeating. The majority of Cadence developers still work with
languages, tools, and flows for developing software that hasn’t changed appreciably in 20 years.
Continuing to innovate in our fast-paced industry, while maintaining the millions of lines of code
in our many products, is a significant challenge. Finding ways of improving our developer
productivity and improving the overall quality experience of our products for our customers is
critical for our continued competitiveness.

Cadence, and specifically the Custom IC and Simulation division, has been focused on improving
the quality delivered to customers in recent years. The initial focus has been on incrementally
improving the software development processes already in place. Table Table 14 shows the actions
taken between the 6.1.45 and 6.1.4 releases of our software, and the measured increases in
improved testing/validation/quality activities.

Table 14: Comparison of Quality Measures for 6.1.5 vs. 6.1.4

Quality Measure 6.1.5 vs. 6.1.4

Automated Tests 22% increase in quick tests
30% increase in regression (system) tests

Performance Testing 82% increase in number of automated performance
benchmarks

Customer Acceptance Testing (CAT) 3 Active vs. None

Licensing Testing 93% increase in automated license tests.

Coverity (static code analysis) 0 Defects at release 6.1.5 vs. 314 for 6.1.4

Purify / Valgrind (dynamic code analysis) 0 Defects at release 6.1.5 vs. 382 for 6.1.4

The size and effort of both of these releases were significant, involving hundreds of engineers for
12–18 months of development/release activities. From these improved metrics, we expected to see
significantly improved quality visible to the customer when the software was delivered.
Unfortunately, a view of the software from both the perspective of number of incoming bug
reports, (called CCRs in our internal bug tracking system) and crash rates measured at key
customer sites (percent of software starts that end in a crash), showed the quality to be roughly the
same as the previous release. Deeper analysis of the incoming CCRs showed that most problems
were reported on the newly developed functionality, while the older functionality was more
stable/improved compared to previously. Discussions with our customers also showed that their
overall perception was that the new release was higher quality than before. So these were still
successful releases (now being used in production by hundreds of customers). But we suffered all
of the classic issues associated with too many latent defects. Much of our engineering resources
had to go to fixing the critical defects and delivering many updates to the software to the
customers to stabilize on a working system. This led us to the conclusion that we had to
fundamentally change how we develop software and find techniques that allowed our developers
to manage quality better within their own process, rather than continue the spiral of ever-

CMU/SEI-2012-SR-015 | 53

increasing testing. Toward this end, we began the TSP pilot project, followed by a larger rollout
program now in progress.

We are planning a four-year rollout program to the roughly 40 teams and 450 engineers
composing the Custom IC and Simulation R&D division. The rollout began with the two-team
pilot project and some initial training in 2011. It continues this year with a target of introducing
TSP in the daily work of an additional 10 teams. In 2012 and 2013, we plan to add roughly 15
teams each year. Beyond that, we are beginning to coordinate informational sessions and pilot
projects for other divisions at Cadence. One of the primary challenges we see in driving adoption
is finding enough experienced engineers within Cadence who are willing and able to become TSP
Coaches to help sustain and grow the program.

5.4 PSP Results

To date we have trained 66 Cadence engineers on PSP Fundamentals. The vast majority of the
engineers have done the assignments in C/C++, our standard programming language for our
applications, although a few have used other languages as well (Tcl, Perl, and PHP). The results
obtained from examining all of the data collected from those 264 programs are consistent with the
historical PSP results [Burton 2006].

Figure 18: Size Versus Development Time for All PSP Fundamental Programs Written at Cadence

We see a correlation between program size (added and modified LOC) and development time in
PSP Fundamentals. We also clearly see a wide variation due to individual productivity differences
and the process changes that the engineers go through in their four programs.

CMU/SEI-2012-SR-015 | 54

The average total defects found in our classes, ranging from 50–80 defects/KLOC, tend to be
lower than that reported in the SEI’s literature [Burton 2006] for Programs 1–4, where the typical
range for C/C++ is 80–120 Defects/KLOC. Our guesses as to the causes of this difference are
experience of our developers; some use of advanced IDEs with syntax checking/fixing; and pre-
existing mature processes, such as significant design documentation, followed even in Program 1.

Figure 19: Total Defects Injected in PSP Fundamentals Programs

However, even with this lower baseline of total defects, we do see measurable quality
improvements during the class as the students proceed from PSP0 through PSP1 and PSP2
processes. In the chart below, we see the defect removal rates for the four programs, with the
introduction of Design and Code Reviews in Programs 3 and 4. The Code Review Defect removal
rate averages slightly more than double the test defect removal rate.

CMU/SEI-2012-SR-015 | 55

Figure 20: Defect Removal Rates for PSP Fundamentals Programs

We also see the very nice trend of declining total quality costs from Program 1 through Program
4, from above 30% down to almost 25%. Figure 21 shows the impact of the structured reviews,
with unit test defect densities halving after their introduction. Figure 22 and Figure 23
demonstrate the cost of quality and the contribution of appraisals to this cost. This data, combined
with Figure 24 data, shows productivity increasing slightly in Programs 3 and 4 compared to
Program 2. These results demonstrate that our engineers were able to add whole new steps to the
PSP development process and actually go faster than before, due to spending less time fixing
defects in compile and test.

CMU/SEI-2012-SR-015 | 56

Figure 21: Test Defect Density Across Programs

CMU/SEI-2012-SR-015 | 57

Figure 22: Total Quality Costs

CMU/SEI-2012-SR-015 | 58

Figure 23: Appraisal Costs for PSP Fundamentals Programs

CMU/SEI-2012-SR-015 | 59

Figure 24: Productivity for PSP Fundamentals Programs

The results of PSP Fundamentals at Cadence, confirming the academic research on PSP, have
helped the development teams see the value in measuring their work and using the quantitative
results to improve their own performance. The collective results show the effectiveness and
efficiency of using PSP as well as some of its best practices, such as checklist-based reviews. In
the traditional TSP structure, we have subsequently moved each team on to a TSP Launch.

5.5 TSP Results

We now have two teams, each with several TSP development cycles completed, and another five
teams that are on their first or second TSP development cycle. These teams range from 6
engineers in the same office, to 23 engineers spread across four offices and nine time zones. We
have seen good results so far in terms of quality and are able to show review and inspection
processes that are much more efficient and effective than testing. We have had less success with
planning and estimating the work. Our teams have all faced challenges with TSP planning, given
that each team has some combination of maintenance and new development work, with short
turnaround times required on the maintenance work.

5.5.1 TSP Quality Results

The following three charts (Figure 25, Figure 26, and Figure 27) show the defect removal profiles
of a single team across three development cycles.

CMU/SEI-2012-SR-015 | 60

Figure 25: Defect Removal Profile (Defects/KLOC Removed in Each Phase) for a Team in Its Second
Cycle

Figure 26: Defect Removal Profile (Defects/KLOC Removed in Each Phase) for the Same Team in Its
Third Cycle with a More Formal Code Inspection Process

CMU/SEI-2012-SR-015 | 61

Figure 27: Defect Removal Profile (Defects/KLOC Removed in Each Phase) for the Same Team in Its
Fourth Cycle

In this team’s Cycle 2, the Code Inspection was more of an informal pair walkthrough process. In
Cycle 3, a formal checklist and tool-based process was introduced and was continued in Cycle 4.
While we can see that more defects were still detected in test than planned, a much higher density
of defects was detected in Code Inspection, compared to the previous cycles. Much of this
consisted of legacy defects or opportunities for refactoring or code improvement that would
previously have been left for future works and probably never addressed. While this data focuses
on a single team, we have observed similar evolutions across other teams. The TSP process and
data allows the teams to successfully adopt quality practices they might not have spent the time on
previously.

With all of this data we are also able to see the cost of quality inside the developers’ process
across a number of teams.

CMU/SEI-2012-SR-015 | 62

Figure 28: Cost of Quality Across Four Teams Inside the Developer’s Process

Since this Cost of Quality figure only measures inside TSP processes, it is really only a lower
bound on the actual figure. But the ability to measure COQ and track our improvements have
energized our engineers to drive the process improvements needed to develop high-quality
software as efficiently and effectively as possible. We consider the overall quality improvements
we have seen on TSP teams to be a major success for the program.

5.5.2 TSP Planning Results

Overall we have been successful in using the TSP framework to create and track our plans. For
many of our teams however, we are still ending our development cycles at roughly 60%–70% of
our planned earned value (EV). Anecdotally, our development teams report this as being similar
to their previous planning results. A good portion of our team’s planned work for each
development cycle has been spent on bug fixes or small enhancements (dominated more by
modifications than by new code). For our teams this has been 40%–75% of the work they have
planned for a development cycle. Typically this has involved both known and unknown bug fixes.
We have attempted to include the unknown by measuring historical rates of incoming critical bug
fixes that will need to be addressed in any given time period, but aren’t known at the start of that
time period, and including placeholder tasks in our TSP plans for each cycle. For both the known
and unknown fixes, however, we have had trouble converging our planning sufficiently to predict
our work. Figure 29 shows the planned versus actual time for “modification-dominated” work in
the third development cycle for a particular development team.

CMU/SEI-2012-SR-015 | 63

Figure 29: Plan Time vs. Actual Time Team X, Cycle 3

By the third cycle we were hoping to have seen significant improvements in planning
convergence. Further investigation showed that the primary issue for planning was in size
estimation.

CMU/SEI-2012-SR-015 | 64

Figure 30: Plan Size Versus Actual Size for the Same Development Items Shown in Figure 28

Clearly, we weren’t having much success estimating the size of these modification-dominated
works. However, even beyond that, we found that measuring the size of added and modified LOC
really didn’t correlate to development time either. If we focus on the changes that involved less
than 100 added and modified LOC, we see the following:

Figure 31: Actual Size vs. Actual Time for Modification-Dominated Tasks with Less than 100 A&M LOC

CMU/SEI-2012-SR-015 | 65

Here we essentially see no correlation between size and time, indicating this is not a good size
measure for this type of work. We intend to address this problem in two ways:

1. (Long Term) Continue researching possible size proxies that do correlate with work, such as

a. number of functions/modules touched

b. number of places modified functions are called from

c. cyclomatic complexity of modified functions

2. (Short Term) Create proxy tables to go from pure “proxy size” (Small, Medium, Large)
directly to effort, based on historical average and standard deviation of actual time for
similar types of work.

The planning and estimation remains one of the challenging areas of TSP adoption on the teams.

5.6 Summary

We are continuing an aggressive rollout schedule of TSP across one entire division at Cadence,
and we are discussing starting pilots with the other organizations. In this we are facing many of
the same challenges as other large organizations in terms of the time and effort, and additional

bandwidth needed to roll out these changes to the entire organization.

We have described the challenges we’ve experienced in trying to make traditional test and tool-
based quality improvements and strived to show the meaningful impact on our product quality
that has led us to TSP. We have described the successes we have seen using PSP Fundamentals to
show the potential of PSP/TSP to improve quality. In addition we have shown some of the
progress we have made in improving quality practices using TSP primarily around adoption of
structured reviews and inspections. Finally, we have described the challenge of adapting TSP

planning practices to our modification-dominated work.

5.7 Acknowledgements

We would like to thank the two TSP pilot teams, the Virtuoso Physical Design Pittsburgh and San
Jose teams, for their willingness to try something new. We would also like to thank our next
round of volunteer teams: the Virtuoso ViVA team, Interconnect MIS team, Physical Design and
Interconnect Sophia teams, Schematics and Integ Noida team, and the ICFT Connectivity team.
And of course, thanks to our partners at the SEI at Carnegie Mellon who have worked with us in

training and deployment: Jim McHale, Jim Over, and Greg Such.

5.8 Author Biographies

Elias Fallon
Engineering Director
Cadence Design Systems, Custom IC and Simulation R&D

Elias Fallon is an engineering director in the Custom IC and Simulation R&D group at Cadence
Design Systems, Inc. He has worked at Cadence since 2004 when Cadence acquired Neolinear,
Inc. Fallon held a variety of roles at Neolinear since 1997. Fallon holds a BS and MS in Electrical
and Computer Engineering from Carnegie Mellon University.

CMU/SEI-2012-SR-015 | 66

Lee Gazlay
Engineering Group Director
Cadence Design Systems, Custom IC and Simulation R&D

Lee Gazlay is an engineering group director in the Custom IC and Simulation R&D group at
Cadence Design Systems, Inc. He has more than 25 years of experience in the electronic design
automation industry.

5.9 References

[Ben-Yaacov 2001]
Ben-Yaacov, G. & Gazlay, L. “Real World Software Testing at a Silicon Valley High-Tech
Software Company” STAREAST 2001 Software Testing Conference, Orlando, Florida, May 14-
18, 2001.

[Burton 2006]
Burton, D. & Humphrey, W. S. 2006. “Mining PSP Data.” Proceedings of the TSP Symposium.
New Orleans, LA. September 2006.
http://www.sei.cmu.edu/tspsymposium/2009/2006/mining.pdf

[Humphrey 2009]
Humphrey, W. The Watts New? Collection, Columns by the SEI’s Watts Humphrey
(CMU/SEI-2009-SR-024), “Learning from Hardware: Design and Quality” pp. 99-103. Software
Engineering Institute, Carnegie Mellon University, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09sr024.cfm

[Wikipedia 2012]
Wikipedia, The Free Encyclopedia, “Moore’s law,” July 2012.
http://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=501537223.

http://www.sei.cmu.edu/tspsymposium/2009/2006/mining.pdf
http://www.sei.cmu.edu/library/abstracts/reports/09sr024.cfm
http://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=501537223

CMU/SEI-2012-SR-015 | 67

6 A Combination of a Formal Method and PSP for Improving
Software Process: An Initial Report
 Shigeru Kusakabe, Kyushu University
Yoichi Omori, Kyushu University
Keijiro Araki, Kyushu University

6.1 Abstract

Software process is important for producing high-quality software and for its effective and
efficient development. The Personal Software Process (PSP) provides a method for learning a
concept of personal software process and for realizing an effective and efficient process by
measuring, controlling, managing, and improving the way we develop software. PSP also serves
as a vehicle to integrate advanced software engineering techniques, including formal methods,
into one’s own software development process. While formal methods are useful in reducing
defects injected into a system, by mathematically describing and reasoning about the system,
engineers may have difficulties integrating formal methods into their own software development
processes. We propose an approach in which engineers use PSP to introduce formal methods into
their software processes. As our initial trial, we followed one of our graduate students as he tried
to improve his personal process with this approach. He measured and analyzed his own process
data from PSP for Engineers-I, and proposed and experimented with an improved software
process with a formal method, the Vienna Development Method (VDM). The experimental results
indicate he could effectively reduce defects by using VDM.

6.2 Introduction

As software process is important for producing high-quality software and for its effective and
efficient development. Improved software process leads to improved product quality through
more effective and efficient development. The PSP provides a method for learning a concept of
personal software process and making it more effective and efficient by using measurement and
analysis tools for understanding our own skills and improving personal performance [Humphrey
1996, 2005].

Inspired by the introduction of process education in Kyushu Institute of Technology (KIT) in
cooperation with the Carnegie Mellon Software Engineering Institute (SEI) [Katamine 2011], in
Kyushu University, we started process education and research from a laboratory level activity
[Kozai 2009]. Since then, we have been expanding process education activity. We currently have
two PSP instructors, thanks to the support of the process education group of KIT, and we offer PSP
for Engineers I & II in the curriculum of our graduate school. In addition to introducing a process
concept, we also use PSP in attempts to leverage our research and education activity.

PSP is useful as a learning vehicle for introducing process concepts, and further as a base of
software process improvement to integrate advanced software engineering techniques, including
formal methods, into software development processes. Formal methods are mathematically based
techniques useful in reducing defects injected into computer-based systems by mathematically
describing and reasoning about the systems. We have various kinds of formal methods such as

CMU/SEI-2012-SR-015 | 68

model checking and model-oriented formal specification. One of the challenges of using formal
methods, in addition to selecting a specific formal method to use, is determining when and how to
use the formal method in actual software development.

We propose an approach in which developers use PSP as a framework of software process
improvement to introduce formal methods into their software process for realizing effective and
efficient development of high-quality software. Since the main focus is defect prevention and
removal in the Design phase, the defect log in PSP is useful in analyzing details of defects from
important points of view such as their type and cost. As our initial trial, we followed one of our
graduate students as he tried to improve his personal process with this approach. He measured and
analyzed his own process data using the course materials of PSP for Engineers I, and proposed an
improved process with a formal method, Vienna Development Method (), a model-oriented
formal method. He used the improved process for a few exercises in the course material of PSP
for Engineers II, and experimental results indicate he could effectively reduce defects by using
VDM.

6.3 Personal Software Process

PSP provides an improvement framework that helps us to control, manage, and improve the way
we work [Humphrey 2005]. The phases in PSP that we complete in building software are Plan,
Detailed Design, Detailed Design Review, Code, Code Review, Compile, Unit Test, and Post
Mortem. Each phase has a set of associated scripts, forms, and templates, some of which are used
over multiple phases. For each phase, the engineer collects data on the time spent and the defects
injected and removed. Size is collected in the Post Mortem phase. Other data are calculated,
including size and time estimating error, cost-performance index, defects injected and removed
per hour, personal yield, appraisal and failure cost of quality, and the appraisal to failure ratio.
The defect data consists of the defect type, the time to find and fix the defect, the phase in which
the defect was injected, the phase in which it was removed, and a brief description of it.

In PSP, we see how the use of forms in a well-defined process help us to gather and use process
data. We can use PSP data to consider how to define and improve our own processes. For
example, the PIP, or Process Improvement Proposal form, lets us record problems, issues, and
ideas to use later in improving our processes. To ensure quality, we construct, use, and improve
checklists for design and code review by analyzing defect data from the PSP exercises. PSP 2.1
introduces design specification and analysis techniques. PSP provides four design templates to
increase confidence in design: internal-static, internal-dynamic, external-static, and external-
dynamic. We learn the importance of focusing on quality and how to efficiently review our
programs. From our own data, we see how checklists can help us to effectively review design and
code as well as develop and modify these checklists as our personal skills and practices evolve.

In their paper on design defect analysis, Vallespir and Nichols focused on the analysis of defects
injected during the Design and Code phase, checking properties such as defect types and
individual defect times [Vallespir 2011]. Their analysis shows not only that the defects injected
during design are the most expensive to remove in Test but also that these are easy to remove in
the Review phases. The difference of cost between review and test was remarkable in that
analysis: it cost five times more to remove a defect in test than it did to remove that same defect
during review.

CMU/SEI-2012-SR-015 | 69

PSP is useful as a learning vehicle for the basic concept of software process and its improvement,
and further as a base of advanced software process improvement in which we integrate various
software engineering techniques, including formal methods, into a software development process.

6.4 Formal Methods

Formal methods are mathematically based techniques useful in reducing defects injected into
computer-based systems by mathematically describing and reasoning about the systems. We have
various kinds of formal methods such as model checking and model-oriented formal specification.
Although they are typically useful at the earlier stages of design and complement fault removal
techniques like testing, some of them are specifically effective for limited aspects and others are
generally effective for a wide range of aspects. A growing number of software engineers seem to
have interests in formal methods. This is partly because a wider range of software supports
important social infrastructure in which software problems may heavily impact our society.
Formal methods are helpful in increasing confidence in software, and international standards such
as ISO/IEC 15408 and IEC61508 mention formal methods.

Formal methods are effective in increasing our confidence in specifications and designs, and in
decreasing defects in software development. However, formal methods are not widely used in
actual software development as might be expected. There are still problems in introducing formal
methods to a majority of practitioners, although successful instances of introduction of formal
methods have been reported already [Kurita 2008]. In order to promote widespread introduction
of formal methods, for example in Japan, several organizations such as SEC (Software
Engineering Center) of IPA (Information-technology Promotion Agency) and DSF (Dependable
Software Forum) provide supporting materials and seminars. One of the major problems seems to
be that many managers and developers have no idea what kind of formal methods are useful for
them. While we can use formal methods for the specification, development, and verification of the
target systems, we have various choices of formal methods and the ways to use them. Problems
also include integration into current development practice and education as well as quantitative
issues such as cost effectiveness. Even if they select a specific method, they may have no idea
when and where to use the formal method, and whether it is cost effective or not.

Our ideal guideline to introduce formal methods into software development processes is a
customizable one, based on a well-defined, measured software process. By using such process, we
can effectively and efficiently employ formal methods at the specific points where we have
concerns on quality by considering cost-performance tradeoff.

Formal methods can be used at different levels of formality:

• Level 0: In this lightweight formal methods level, we develop a formal specification and then
a program from the specification informally. This may be the most cost-effective approach in
many cases.

• Level 1: We may adopt formal development and formal verification in a more formal
manner to produce software. For example, proofs of properties or refinement from the
specification to an implementation may be conducted. This may be most appropriate in high-
integrity systems involving safety or security.

CMU/SEI-2012-SR-015 | 70

• Level 2: Theorem provers may be used to perform fully formal machine-checked proofs.
This kind of activity may be very expensive and is only practically worthwhile if the cost of
defects is extremely expensive.

Lightweight formal methods are most cost effective and likely to be adopted in a wider range of
actual development. In lightweight formal methods, we do not rely on very rigorous means, such
as theorem proofs. Instead, we use adequate, less rigorous means, such as evaluation of pre/post
conditions and testing specifications, to increase confidence in specifications, while the specific
level of rigor depends on the goal of the project.

One instance of lightweight formal methods is VDM which uses model oriented formal
specification languages, such as VDM-SL and VDM++, to write, verify, and validate
specifications of the products. VDM languages have a tool, VDMTools, with functionalities of
syntax check, type check, interpreter, and generation of proof-obligations. In VDM, we can write
explicit-style executable specifications as well as implicit-style non-executable specifications. For
explicit-style executable specifications, we can use the interpreter to evaluate pre/post conditions
in the specifications and test the specifications. Since we can write specifications at different
levels of abstraction, including detailed level close to implementation level, we can use VDM
languages in a way close to popular development styles. One of the features of VDM is that it
enables us to write and execute specifications like programs in programming languages.

We propose an approach in which developers use PSP as a framework of software process
improvement to introduce formal methods into their software process for realizing effective and
efficient development of high-quality software. Since the main focus is defect prevention and
removal in the Design phase, the defect log in PSP is useful in analyzing details of defects such as
their type and cost.

6.5 Process Improvement with Formal Methods

The important goals of software process improvement include making software development
more effective and efficient as well as improving software quality. In this study, we mainly
customize the Design phase to achieve fewer defects and enhanced productivity by using formal
methods, as formal methods are typically useful at the earlier stages of design and complement
fault removal techniques such as testing.

By measuring the time that tasks take and the number of defects they inject and remove in each
process phase, engineers learn to evaluate and improve their personal performance. Engineers
should understand the defects they inject before they attempt to improve their process from the
viewpoint of quality. As engineers learn to track and analyze defects in the PSP exercises, they
gather data on the phases when the defects were injected and removed, the defect types, the fix
time, and defect descriptions.

Defects may come from simple oversights, misunderstandings, and human errors, as well as
complicated logic. Many of these defects are caused by an inadequate convention to represent
design. Poor notation frameworks in design can make designers write vague or ambiguous design
representations which prevent designers from examining the design representation consistently or
in great enough detail, lead developers to design in the coding phase, and thus become a
significant source of errors.

CMU/SEI-2012-SR-015 | 71

Although PSP provides four design templates to increase confidence in design, we try to use
formal methods as formal specification languages, and their supporting tools are effective in
reducing those defects discussed above. In this study, we use VDM, which has formal
specification languages and a tool, VDMTools, for syntax check, type check, interpreter, and
generation of proof-obligations. In VDM, we can write implicit specifications focusing on pre-
conditions and post-conditions without explicitly describing implementation logic, as well as
explicit specifications that include explicit descriptions of implement logic. We expect implicit
specifications in VDM to correspond to functional specification templates in PSP, and explicit
specifications in VDM to correspond to logic specification templates in PSP.

6.6 Case Report

In our initial trial, we followed one of our graduate students as he tried to improve his personal
process with our approach: process improvement using a formal method based on PSP process
extension framework. He used the course materials from PSP for Engineers I, and measured and
analyzed his own process data from the PSP course. The focus was on defects frequently injected
and expensive to fix. He proposed an improved software process with VDM to facilitate defect
prevention and removal in the Design phase. He used his new process for a few exercises in the
course material of PSP for Engineers II. The experimental results indicate he could effectively
reduce defects by using VDM. We explain more details in the rest of this section.

In this trial, the graduate student developed four programs in PSP for Engineers I. He used
process data from these programs as the baseline for improvement. He analyzed the process data
of the baseline process based on the defect types defined in PSP, and the cause of the defects
injected during the Design phase of the PSP programs. The goal of the analysis was to understand
where defects and their causes were injected, the types of defects injected in the Design phase,
when those defects were removed, and the effort required to find and fix those defects. According
to the results of the analysis, he decided to focus on the defect types that were most frequently
injected and expensive to fix. Table 15 shows the defect types and explanatory description with
average fix times in minutes.

Defect Type Description Average Fix Time (Min.)

I-1 Interface Insufficient Refinement 15.8

F-1 Function Looping Control 10.3

F-2 Function Logic 6.8

Table 15: Defect Types Frequently Injected and Expensive to Fix

In the baseline process, the graduate student used UML in the Design phase. However, he felt
diagrams in UML were difficult to check rigorously. Then he decided to use VDM++ in the
detailed Design phase and developed two programs. In introducing VDM++ into PSP, we can
employ a lightweight approach, which corresponds to the so-called level-0 approach, since formal
methods can be used at different levels. Level 0 is most cost effective. In VDM, we use formal
specification languages at different abstraction levels. We can develop high-level designs and also
detailed designs in a lightweight way without rigorous proof. We can use the tool VDMTools for
syntax and type check of the specification. In addition, we can execute our specifications if they
are written as explicit executable ones.

CMU/SEI-2012-SR-015 | 72

To prevent injection of defects of the types described above, the student extended the baseline
process to include the following steps.

1. Write signature of methods in VDM++ in detailed Design phase and use VDMTools for
syntax and type check to prevent injection of defects of I-1 type.

2. Describe sequence handling control in VDM++ to prevent injection of defects of F-1 type.

3. Write explicit VDM++ specifications for selected parts and using animation of VDMTools.

For exercise programs in PSP2, the student made a program design prior to coding and described
the design using VDM++ instead of the default templates: functional, logical, operational, and
state templates. He then performed a checklist-based personal review and tool-based check of the
design to identify and remove design defects before beginning to write code. Figure 32 shows the
comparison of time ratio spent in each phase. As we can see from the figure, the developer spent
more in design and design review and less in coding and testing.

Figure 32: The Comparison of Time Ratio Spent in Each Phase

Figure 33 shows the comparison of defect density, as number of defects per one thousand lines of
code, between the baseline process and the extended process with VDM++.

CMU/SEI-2012-SR-015 | 73

Figure 33: The Comparison of Defect Density, Number of Defects Per One Thousand Lines of Code,
Between the Baseline Process and the Extended Process with VDM++

As we can see from the figure, rigorously described interfaces in formal languages such as
VDM++ are effective in reducing defects, while there seems to be no difference in total defect
density between the baseline and the extended process. The defects of language type were injected
mainly because the student was not as familiar with the programming language used in this trial.
We can expect these kinds of defects to be reduced if the developer is familiar with the
programming language. Please note that we could reduce defects of interface type, one of the
focused defect types.

We conclude that rigorously described interfaces in formal languages such as VDM++ are
effective in reducing defects. We could reduce defects of the type we focused on without causing
a decrease in productivity.

6.7 Concluding Remarks

We reported our initial trial of the introduction of formal methods into personal process based on
PSP. According to the process data in the trial, the developer spent more time in Design and less
time in Test. He successfully reduced the number of defects he had focused on without decreasing
his productivity.3 He had the impression that without a disciplined process like PSP he could not
have made a process improvement plan with formal methods. We will continue to work on this

3 Note that proficiency in programming language and software development skills might affect the results.

CMU/SEI-2012-SR-015 | 74

kind of effort, as this is a report of our initial trial and the coverage of the issues and the
experiment was limited. We also have a plan to extend our approach to TSPi as our future work.

6.8 Author Biographies

Shigeru Kusakabe
Associate Professor
Graduate School of Information Science and Electrical Engineering, Kyushu University

Shigeru Kusakabe received his B.E., M.E., and D.E. degrees from Kyushu University in 1989,
1991, and 1998 respectively. He was a research assistant at Department of Information Systems,
Kyushu University from 1991 to 1998. He has been an associate professor since 1998 in the
Department of Computer Science and Communication Engineering. His research interests include
functional languages, multithreading, operating systems, cloud computing, applied behavior
analysis, and formal methods in addition to software development process. He is a member of
ACM, IEEE-CE, IEICE, IPSJ, SEA, and J-ABA. He has been a PSP instructor since 2010.

Yoichi Omori
Assistant Professor
Graduate School of Information Science and Electrical Engineering, Kyushu University

Yoichi Omori is an assistant professor of the graduate school and faculty of information science
and electrical engineering at Kyushu University. He received a PhD in engineering from Nara
Institute of Science and Technology. His research interests include requirement engineering,
formal modeling language, dynamic model verification, and their developing environments. Dr.
Omori is building a requirement managing tool which supports translation from requirements in
natural languages into a formal language. He also teaches courses on project-based learning with
corporations in the graduate school.

Keijiro Araki
Professor & Vice Dean
Graduate School of Information Science and Electrical Engineering, Kyushu University

Keijiro Araki received MS. and PhD degrees in Computer Science and Communication
Engineering from Kyushu University. His research interests include formal approaches to
software development, formal specification, and dependable systems. He is a member of the
Science Council of Japan, chair of the Kyushu Chapter of Information Processing Society of
Japan, and chair of the Kyushu Chapter of the Society of Project Management.

6.9 References

[Humphrey 2005]
Humphrey, Watts S. PSP: A Self-Improvement Process for Software Engineers. Addison-Wesley
Professional, 2005. http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm

[Humphrey 1996]
Humphrey, Watts S. “Using A Defined and Measured Personal Software Process.” IEEE Software
13, 3 (1996): pp.77–88.

http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm

CMU/SEI-2012-SR-015 | 75

[Katamine 2011]
Katamine, Keiichi; Umeda, Masanobu; Hashimoto, Masaaki; & Akiyama, Yoshihiro. “Changing
Software Management Culture from Academic,” 12-18. TSP Symposium 2011. Atlanta GA,
September 2011. Software Engineering Institute, 2011.

[Kozai 2009]
Kozai, Ken; Kusakabe, Shigeru; Omori, Yoichi; & Araki, Keijiro. Introducing formal methods
into measurable personal software development processes (Vol. 2009-SE-163-21). IPSJ SIG,
2009.

[Kurita 2008]
Kurita, T.; Chiba, M.; & Nakatsugawa, Y. “Application of a formal specification language in the
development of the mobile felica IC chip firmware for embedding in mobile phone.” FM 2008:
Formal Methods (2008): 425-429.

[Vallespir 2011]
Vallespir, Diego & Nichols, William. “Analysis of Design Defects Injection and Removal in
PSP,” 19–25. Proceedings of the TSP Symposium 2011: A dedication to excellence. Atlanta,
GA, September 2011. Software Engineering Institute, Carnegie Mellon University, 2011.

CMU/SEI-2012-SR-015 | 76

7 A Cross Course Analysis of Product Quality Improvement
with PSP
 Fernanda Grazioli, Universidad de la República
William Nichols

7.1 Introduction and Background

These days, more and more businesses develop, combine, and include software in their products
in different ways. Companies need to develop software to support the design, manufacture, or
delivery of the products and services they provide. Therefore, although they might not realize it,
all businesses are becoming software businesses. As the software component of their business
grows, schedule delays, cost overruns, and quality problems caused by software become their
main business problems. This is why, despite their best management efforts, companies find their
risk of failure increasing along with the increase in the size or complexity of the software they
produce.

Software products are made of hundreds to millions of lines of code, each one handcrafted by a
software engineer. Software businesses depend on people, so their technical practices and
experience strongly influence the outcome of the development process.

The Personal Software Process (PSP) is a defined and measured software process designed to be
used by an individual software engineer. The PSP directly addresses software business needs by
improving the technical practices and individual abilities of software engineers, and by providing
a quantitative basis for managing the development process. By improving individual performance,
PSP can improve the performance of the organization.

For many years, the Software Engineering Institute (SEI) has trained software engineers in PSP.
Over that period, the course format has changed twice. Several versions of the course use the
same exercises, but introduce process steps in modified sequences. An earlier version of the
course has several published studies demonstrating improvement in developer performance with
process insertion, but the retrospective analysis left some threats to external validity [Paulk 2006;
Hayes 1997; Wohlin 1998; Rombach 2008; Kemerer 2009; Paulk 2010]. One threat is the
confounding of process insertion with the gaining of domain experience as related programs are
developed. A related threat is that observations might alter the subject performance as in the
Hawthorne effect [Mayo 1949]. Moreover, there are not yet studies about how the latest two
course versions are working, nor are there studies about how different approaches to introducing
process correlate with performance and quality results in PSP courses. The PSP community and
the SEI need to know how effectively these courses work. The academic and industrial
communities need assurance that the process can be taught effectively and that the process
insertion would have positive and substantial benefits.

Given this situation, the objective of this study is to use the PSP data from the latest two course
formats to determine whether reviews and design improve product quality, or if such
improvement is only a consequence of gaining experience in the problem domain. We measure
quality as the quantity of defects found per KLOC in Unit Testing. Defect counts and measures of

CMU/SEI-2012-SR-015 | 77

defect density (i.e., defects per KLOC) have traditionally served as software quality measures.
The PSP uses this method of measuring product quality as well as several process quality metrics.
The consequence of high defect density in software engineering is typically seen in the form of
bug-fixing or rework effort incurred on projects. Typical defect densities of delivered products
range from one to five defects/KLOC [Davis 2003].

7.1.1 Concept Introduction on PSP Courses

The PSP courses incorporate what has been called a “self-convincing” learning strategy that uses
data from the engineer’s own performance to improve learning and motivate use. The last two
course versions introduce the PSP practices in steps corresponding to six PSP process levels. The
older version name is “PSP for Engineers I/II (PSPI/II)” and the latest version name is “PSP
Fundamentals and Advanced (PSP Fund/Adv).”

Each level builds on the developed capabilities and historical data gathered in the previous level.
Engineers learn to use the PSP by writing seven or eight programs (depending on the course
version), and by preparing written reports. Engineers may use any design method or programming
language in which they are fluent. The programs typically contain around one hundred lines of
code (LOC) and require a few hours on average to be completed. While writing the programs,
engineers gather process data that are summarized and analyzed during a postmortem phase.
There are three basic measures in the PSP: development time, defects, and size. All other PSP
measures are derived from these three basic measures.

During the course, the students were given eight or seven exercises (eight in PSPI/II and seven in
PSP Fund/Adv), which were mainly programs for statistical calculations. PSP has a maturity
framework that shows its progression on improvement phases, also called levels. Students
completed their exercises while following the process attained at each PSP level.

The PSP levels introduce the following set of practices incrementally:

• PSP0: Description of the current software process, basic collection of time and defect data

• PSP0.1: Definition of a coding standard, basic technique to measure size, basic technique to
collect process improvement proposals

• PSP1: Techniques to estimate size and effort, documentation of test results

• PSP1.1: Task planning and schedule planning

• PSP2: Techniques to review code and design

• PSP2.1: Introduction of design templates

Table 16 shows which PSP level is applied on each program assignment, for each course version.

Table 16: PSP Levels for each Program Assignment

Program Assignment PSP Fund/Adv PSP I/II

1 PSP 0 PSP 0

2 PSP 1 PSP 0.1

3 PSP 2 PSP 1

4 PSP 2 PSP 1.1

5 PSP 2.1 PSP 2

CMU/SEI-2012-SR-015 | 78

Program Assignment PSP Fund/Adv PSP I/II

6 PSP 2.1 PSP 2.1

7 PSP 2.1 PSP 2.1

8 ----- PSP 2.1

7.2 Data Set and Statistical Model

We used data from the eight-program course version, PSPI/II, taught between June 2006 and June
2010. Additionally, we used data from the seven-program course version, of PSP Fund/Adv,
taught between December 2007 and September 2010. These courses were taught by the SEI at
Carnegie Mellon University or by SEI partners, by a number of different instructors in multiple
countries.

We began with 347 subjects in total, 169 from the PSP Fund/Adv course and 178 from the PSPI/II
course. From this we made several cuts and ran data-cleaning algorithms to include only the
students who had completed all programming exercises, in order to clean and remove errors and
questionable data.

To determine the cuts on the data set, we first developed an integrated data storage model. We
designed that model to support the analysis and the assessment of data quality, based on the data
quality theory. Data quality is an investigation area that has generated a great workload in the last
years and it is mainly focused on defining the aspects of data quality [Batini 2006; Lee 2002;
Neely 2005; Strong 1997] and on proposing techniques, methods and methodologies to the
measurement and treatment of the data quality [Batini 2006; Lee 2002;Wang 1995].

The first step toward identifying quality problems was to understand the reality and context to be
analyzed. This includes the Personal Software Process in itself [Humphrey 1995], exploring the
tool for recording data and the model of the database, in addition to the Grading Checklists used
by instructors for the correction of exercises performed during the course. Afterwards, we
analyzed the dimensions and quality factors proposed by Batini and Scannapieco [Batini 2006] to
this set of data, which are interesting to measure and consider. In this way, we thoroughly
identified and defined possible quality problems that the data under study might contain, we
implemented the algorithms required for cleaning and collecting the metadata, and finally, we
executed those algorithms. Major data quality problems were related to the consistency, accuracy,
completeness, and uniqueness dimensions. This meant that following that data quality process,
our data set was reduced to 93 subjects in total, 45 from the PSP Fund/Adv course and 47 from
the PSPI/II course.

Differences in performance between engineers are typically the greatest source of variability in
software engineering research, and this study is no exception. However, the design of the PSP
training class and the standardization of each engineer’s measurement practice allow the use of
statistical models that are well suited for dealing with the variation among engineers.

In the summarized analyses presented, we studied the changes in engineers’ data over seven
programming assignments. Rather than analyzing changes in group averages, this study focuses
on the average changes of individual engineers. Some engineers performed better than others
from the first assignment, and some improved faster than others during the training course. To

CMU/SEI-2012-SR-015 | 79

discover the pattern of improvement in the presence of these natural differences between
engineers, the statistical method known as the repeated measures analysis of variance (ANOVA)
is used [Tabachnick 1989]. In brief, the repeated measures analysis of variance takes advantage of
situations where the same people are measured over a succession of trials. By treating previous
trials as baselines, the differences in measures across trials (rather than the measures themselves)
are analyzed to uncover trends across the data. This allows for differences among baselines to be
factored out of the analysis. In addition, the different rates of improvement between people can be
viewed more clearly. If the majority of people change substantially (relative to their own
baselines), the statistical test will reveal this pattern. If only a few people improve in performance,
the statistical test is not likely to suggest a statistically significant difference, no matter how large
the improvement of these few people.

7.3 Analysis and Results

First, we define the following variables and terms:

• Subject –student who performs a complete PSP course.

• Course Type –a PSP course version. It can be PSP Fund/Adv or PSPI/II.

• Program Assignment or Program Number –an exercise that a student has performed during
the PSP course. It can be 1, 2, 3, 4, 5, 6, 7 or 8.

• PSP Level –one of the six process levels used to introduce the PSP in these course versions. It
can be PSP0, PSP0.1, PSP1, PSP1.1, PSP2, or PSP2.1. Each program assignment has a
corresponding PSP level according to the PSP course version. Since we wanted to analyze the
introduction of concepts during the courses, we group PSP0 and PSP0.1, we group PSP1.0
and PSP1.1, and we analyze PSP2.0 and PSP2.1 separately. So the PSP Level variable can be
seen in plots as 0, 1, 2, or 2.1, respectively.

• Defect Density in Unit Testing (DDUT) – 1000 · Total defects removed in testing / Actual
added and modified LOC

As we stated in the introduction, the objective of this study is to use the PSP data from the latest
two course formats to demonstrate whether reviews and design improve the quality of a product in
test. And we use defect density as a measure of quality, so we define defect density in unit testing
as the independent variable in our analyses. Figure 34 shows a bar-whisker chart of DDUT
grouped by course type and PSP level. Figure 35 shows a bar-whisker chart of DDUT, but in this
case grouped by course type and program assignment. These charts are descriptive and allow us to
get a clearer idea of the defect density behavior.

CMU/SEI-2012-SR-015 | 80

Figure 34: Defect Density in Unit Testing grouped by Course Type and PSP Level

Figure 35: Defect Density in Unit Testing Grouped by Course Type and Program Assignment

To reach that objective, we considered a direct way through an ANCOVA analysis, using PSPI/II
and PSP Fund/Adv as categorical values to segment the data into two parts: the program
assignment as the independent variable and the PSP level as the hidden variable. But we could not

CMU/SEI-2012-SR-015 | 81

come to a conclusion because the correlation between the PSP level and the program assignment
was strong. Also, using ordinal program numbers in ANCOVA may not be a sound approach.
Correlations between the factors are a strong anti-indication for ANCOVA [Tabachnick 1989].
Therefore, we decided to create a more indirect procedure and analyze the results based on
specific differences between the two courses using the PSP level.

We next developed an indirect procedure to examine relationships between program number, PSP
level, and performance in the data. It consists of three steps, each one based on an ANOVA
analysis using defect density in unit testing as the independent variable.

Before running any ANOVA, we checked to see if the data satisfy all assumptions for the correct
use. The only assumption that could not be fully satisfied was the normality assumption. We
transformed the data into normal form using different techniques as suggested in [Tabachnick
1989], and the one that worked better was a log transformation and adding a constant to the zero
observations. Nonetheless, some deviations from normality persisted at very low defect levels.
Recent works recommend not to log-transform count data [O’Hara 2010] for two reasons. First,
low counts cause distortions. Second, such transformation typically does not affect the results if
the data is unimodal. The data satisfies the unimodal mounded condition, and the fact that
transformed and untransformed PSP data provides comparable results has been previously
observed with [Hayes 1997]. We did our analysis considering both transformed and
untransformed data.

The first step of the analysis procedure consisted of performing a series of one-way ANOVA
between each program number using course as the grouping factor. This establishes whether the
assignments have different DDUT means between the courses. If there are not different means
between courses, then the analysis is done because the program-by-program results for the two
courses do not differ. We ran seven tests, one for each program number and, since we found
significant differences, we proceeded to the next step.

The second step of the analysis procedure consisted of performing two-way (repeated) ANOVA.
Separate, repeated ANOVA analyses grouping by program number were performed for each
course type. We applied the two-tailed significance test at 0.05, which is equivalent to a 0.025
significance level for a one-tailed test. Table 17 and Table 18 summarize the ANOVA discussed
above for this step for the courses PSP Fund/Adv and PSP I/II, respectively. A third two-way
ANOVA grouping by course and program number was performed on the combined data, and the
results are summarized in Table 19.

Both the separate course data and the combined data showed a general downward trend in defect
level with program number, irrespective of process level. This was as we expected based on the
correlation between PSP level and program number. We found no statistical significance between
consecutive programs for either the PSP Fund/Adv or the PSP I/II. However, for the combined
data set, we found significant reduction in defect levels between programs 2 and 3, and 3, and 4.
The significance in the combined set results from the increased sample size.

In the PSP Fund/Adv course we found that there is significance between Program 1 and Programs
3, 4, 5, 6, and 7. We interpret that this shows improvements between PSP0 and PSP2 or PSP2.1
(depending on which program from 3 to 7). In regard to PSP I/II, we found that there is

CMU/SEI-2012-SR-015 | 82

significance between Program 1 and Program 7, and this is consistent with improvements between
PSP0 and PSP2.1.

We also found that there is significance in PSP Fund/Adv between Program 2 and Program 3, 4,
5, 6, and 7. This makes sense because it shows improvement between PSP1 and PSP2 or PSP2.1
(depending on which program from 3 to 7). In regard to PSP I/II, we found that there is
significance between Program 2 and Program 4, 5, 6, 7. This also makes sense because it shows
improvement between PSP0 and PSP1 or PSP2 or PSP2.1 (also depending on which program
from 4 to 7).

Table 17: ANOVA Outputs for Program Assignment Comparison in PSP Fund/Adv

PSP Fund/Adv

Program Assignment
(I)

Program
Assignment

(J)

PSP
Level

Mean difference
(I-J)

Sig.

1

2 1 ,154 ,999

3 2 1,364 ,003

4 2 2,348 ,000

5 2.1 1,602 ,000

6 2.1 2,139 ,000

7 2.1 2,347 ,000

2

3 2 1,210 ,012

4 2 2,193 ,000

5 2.1 1,448 ,001

6 2.1 1,985 ,000

7 2.1 2,192 ,000

3

4 2 ,983 ,082

5 2.1 ,237 ,994

6 2.1 ,774 ,301

7 2.1 ,982 ,082

4

5 2.1 -,745 ,347

6 2.1 -,208 ,997

7 2.1 -,001 1,000

5
6 2.1 ,537 ,731

7 2.1 ,744 ,349

6 7 2.1 ,207 ,997

Table 18: ANOVA Outputs for Program Assignment Comparison in PSP I/II

PSP I/II

Program Assignment
(I)

Program
Assignment

(J)

PSP
Level

Mean difference
(I-J)

Sig.

1

2 0.1 -,485 ,820

3 1 ,502 ,795

4 1.1 ,730 ,381

5 2 ,816 ,248

6 2.1 ,948 ,109

7 2.1 1,517 ,001

2

3 1 ,987 ,083

4 1.1 1,216 ,012

5 2 1,301 ,005

6 2.1 1,434 ,001

CMU/SEI-2012-SR-015 | 83

PSP I/II

Program Assignment
(I)

Program
Assignment

(J)

PSP
Level

Mean difference
(I-J)

Sig.

7 2.1 2,003 ,000

3

4 1.1 ,228 ,995

5 2 ,314 ,975

6 2.1 ,446 ,871

7 2.1 1,015 ,067

4

5 2 ,0854 1,000

6 2.1 ,2179 ,996

7 2.1 ,786 ,290

5
6 2.1 ,132 1,000

7 2.1 ,701 ,433

6
7 2.1 ,569 ,682

Table 19 shows a summary of the ANOVA for the combined data.

Table 19: ANOVA Outputs for Program Assignment Comparison Combined Course Data

Program Assignment
(I)

Program
Assignment (J)

Mean difference
(I-J)

Sig.

1

2 -,166 ,509

3 ,933 ,000

4 1,539 ,000

5 1,209 ,000

6 1,544 ,000

7 1,932 ,000

2

3 1,099 ,000

4 1,705 ,000

5 1,375 ,000

6 1,710 ,000

7 2,098 ,000

3

4 ,606 ,016

5 ,276 ,271

6 ,611 ,015

7 ,999 ,000

4

5 -,330 ,188

6 ,005 ,985

7 ,393 ,117

5
6 ,335 ,182

7 ,723 ,004

6 7 ,388 ,122

As a summary of this step, we can say that for each course we found significant difference only
between assignments with different PSP levels. For the combined course we found a significant
difference between programs 2 and 3 (introduced in PSP level 2 in PSP Fundamentals) and
programs 3 and 4 (PSP the second use of level 2 in Fundamentals and PSP level 1.0 to 1.1
estimation by parts, in PSP I).

According to the design and review techniques introduced in the corresponding PSP levels, we
expected these improvements. Figure 36 shows the estimated marginal means of the log-

CMU/SEI-2012-SR-015 | 84

transformation of defect density in unit testing versus program number, for both courses. The
graphic shows how the two courses perform differently. The declining defect level is more
consistent and larger in PSP Fundamentals through the introduction of PSP 2.0. Defect levels
appear to be more consistent by the end of the courses.

Figure 36: Comparison of Estimated Marginal Means of Ln(DDUT) versus Program Number between
PSP Fund/Adv and PSP I/II

The third and last step of the analysis procedure consists of performing a two-way ANOVA
grouping by PSP level and course to set bounds on the importance of PSP level as a predictor.

After this test, we found that there is significant difference between PSP0 and PSP1, between
PSP0 and PSP2, and also between PSP0 and PSP2.1. Looking at it in more detail, results show
that

• PSP1 was a factor of 0.2 more effective than PSP0 at an alpha level of 0.05 with a confidence
range of the differences of [0.074, 0.939].

• PSP2 was a factor of 0.4 more effective than PSP0 at an alpha level of 0.05 with a confidence
range of the differences of [1.028, 1.888].

• PSP2.1 was a factor of 0.45 more effective than PSP0 at an alpha level of 0.05 with a
confidence range of the differences of [1.373, 2.133].

CMU/SEI-2012-SR-015 | 85

We also found that there is significant difference between PSP1 and PSP2, and between PSP1 and
PSP2.1. Looking at it in more detail, results show that

• PSP2 was a factor of 0.22 more effective than PSP1 at an alpha level of 0.05 with a
confidence range of the differences of [0.521, 1.381].

• PSP2.1 was a factor of 0.28 more effective than PSP1 at an alpha level of 0.05 with a
confidence range of the differences of [0.866, 1.626].

Figure 37 shows the 95% confidence intervals of the log-transformation of defect density in unit
testing for each PSP level, for both courses.

As a summary of this step, we can say that in both courses there is significant difference between
all PSP levels, except between PSP2 and PSP2.1. The lack of significance between PSP2 and
PSP2.1 may be because 1) the difference is too small to resolve (power of the sample), 2) the log-
transformation hides the results (transforming those zeros will reduce the effect), or 3) there is no
difference.

Figure 37: 95% Confidence Interval of Ln(DDUT) for each PSP Level in PSP Fund/Adv and PSP I/II

7.4 Threats to Validity and Limitations

By definition, defect density depends on the number of defects removed. But the number of
defects found and removed in the test phase depends on the student’s experience and on how good

CMU/SEI-2012-SR-015 | 86

the student is in doing unit testing. Therefore, we have a threat related to testing because the tests
—those that are coincident with the treatment—may influence the student behavior.

According to the history, these courses were taught largely, but not entirely, at different times.
Newer development environments and changes in the computer language instruction may alter
subject behavior or the defect injection profile.

For a correct application of ANOVA, there is an assumption that the subjects are randomly
selected for the treatments. We did not select the students; they were the ones that selected the
course, and there is no precondition to do one course or another. So the random selection seems to
be satisfied. But on the other hand, the students who took the PSP Advanced are more likely to go
on to instruction or teaching. So, this group might respond better to the PSP instruction, and this
could be seen as a threat to validity.

Even after transformation of the data, the normality assumption for ANOVA could not be
satisfied. The distributions of defect density tend to be positively skewed, with long tails
extending to the right and a truncated range at zero. This type of non-normal distribution is to be
expected given the source of the data. There can never be a negative count for defects, so the
truncation at zero is expected. In addition, we would expect many small values of defect density
and relatively fewer large values. This positively skewed distribution is expected particularly
when engineers (as a group) reduce the defect density of the programs as they improve their
quality during the course. This is the type of data where either a logarithmic or inverse
transformation can be used to create a more nearly normal distribution [Tabachnick 1989]. Based
on our examination of the effects of these two types of transformations on the distribution of
residuals, the logarithmic transformation was used in the confirmatory analysis.

We are comparing program assignments of two course versions as if they were identical. This can
be considered a threat to validity. While the program assignments are very similar between the
courses with the same programming exercise, they differ in the process elements and process
used, so they are not exactly the same in both courses.

7.5 Conclusions

Previous studies of Personal Software Process [Hayes 1997, Rombach 2008] have examined the
effect of the PSP on the performance of software engineers. The improvements, including product
quality, were found to be statistically significant, and the observed results were considered
generalizable beyond the involved participants. Those studies only considered students of the first
version of the PSP course, which uses 10 program assignments and where there is a strong
correlation between the program assignment and PSP level. Those studies may have some threats
to external validity. In this work we try to face the generalization threat and consider the latest
two course versions to see how different process introduction approaches correlate with quality
results in PSP courses.

In this analysis we considered the work of 93 software engineers, who during PSP work
developed eight or seven programs, depending on the course version. Each subject took the
complete PSP course, either PSP for Engineers I and II or PSP Fundamentals and Advanced. We
analyzed the data collected by each student to see how review and design improve the quality of a
product in test.

CMU/SEI-2012-SR-015 | 87

Both courses appear to be effective in demonstrating use of design and reviews and both show
reduction in defect injections. Levels achieved at end of the course are consistent with best-in-
class practice. This cross-course comparison allowed us to discover that a “Hawthorne effect” is
not as plausible as “gaining experience in the problem domain” or PSP techniques associated with
PSP level as a causal explanation for the improvements. The strong association with PSP level
suggests that learning effects are most plausible regarding mastering PSP techniques rather than
general domain knowledge. This might be further examined in a future study with an analysis of
phase injection and removal.

Because PSP level changes so rapidly in the PSP Fundamentals and PSP I, program number and
PSP process level are tightly correlated in a way that makes separating the effects difficult. These
results cannot ensure that the observed improvements are exclusively due to mastering the process
techniques introduced in the PSP. We propose future analysis to obtain more generalizable results.
The first approach would be a control experiment, consisting of introducing students to PSP, then
remaining at PSP 1.0 through the first seven program assignments used in PSP I/II and PSP
Fundamentals/Advanced. In this way, we can see how domain learning affects software quality
improvement and then compare that result with the results of this study. A second approach would
be an extended PSP course with at least three exercises at each PSP level. We believe that this
would permit the process changes to stabilize so that we could more directly examine
improvements between programs with and without process change.

In future analysis of these data from PSP Fundamentals/Advanced and PSP I/II, we will examine
improvements in other dimensions, such as size estimation, effort estimation, defect yield, and
productivity, to determine how effectively these courses work in those dimensions.

7.6 Acknowledgments

We thank Jim McCurley of SEI, Gabriela Mathieu, and Diego Vallespir of Universidad de la
República for discussions of ANOVA analysis and suggestions of different statistical methods.
We also thank the reviewers for their valuable contributions.

7.7 Author Biographies

Fernanda Grazioli
Graduate Student
Universidad de la República

Fernanda Grazioli is a graduate student at the Engineering School at the Universidad de la
República, an honorary collaborator of the Software Engineering Research Group (GRIS), and a
member of the Software and System Process Improvement Network in Uruguay (SPIN Uruguay).

William Nichols
Bill Nichols joined the Software Engineering Institute (SEI) in 2006 as a senior member of the
technical staff and serves as a PSP instructor and TSP coach with the Team Software Process
(TSP) Program. Prior to joining the SEI, Nichols led a software development team at the Bettis
Laboratory near Pittsburgh, Pennsylvania, where he had been developing and maintaining nuclear
engineering and scientific software for 14 years. His publication topics include the interaction
patterns on software development teams, design and performance of a physics data acquisition

CMU/SEI-2012-SR-015 | 88

system, analysis and results from a particle physics experiment, and algorithm development for
use in neutron diffusion programs. He has a doctorate in physics from Carnegie Mellon
University.

[Batini 2006]
Batini, C. & Scannapieco, M. Data Quality: Concepts, Methodologies and Techniques. Springer-
Verlag, 2006.

[Davis 2003]
Davis, B. N. & Mullaney, J. L. The Team Software Process (TSP) in Practice: A Summary of
Recent Results (CMU/SEI-2003-TR-014), Software Engineering Institute, 2003.
http://www.sei.cmu.edu/library/abstracts/reports/03tr014.cfm

[Hayes 1997]
Hayes, Will & Over, James. The Personal Software Process: An Empirical Study of the Impact of
PSP on Individual Engineers (CMU/SEI-97-TR-001). Software Engineering Institute, Carnegie
Mellon University, 1997. http://www.sei.cmu.edu/library/abstracts/reports/97tr001.cfm

[Humphrey 1995]
Humphrey, Watts S. A Discipline for Software Engineering. Addison-Wesley, 1995.
http://www.sei.cmu.edu/library/abstracts/books/0201546108.cfm

[Kemerer 2009]
Kemerer, Chris & Paulk, Mark. “The Impact of Design and Code Reviews on Software Quality:
An Empirical Study Based on PSP Data.” IEEE Transactions on Software Engineering 35, 4
(July–August 2009): 534-550.

[Lee 2002]
Lee, Y. W.; Strong, D. M.; Kahn, B. K.; & Wang, R. Y. “AIMQ: A Methodology for Information
Quality Assessment.” Information & Management, 40, 2 (December 2002): 133-146.

[Mayo 1949]
Mayo, E. Hawthorne and the Western Electric Company. “The Social Problems of an Industrial
Civilization.” Routledge, 1949.

[Neely 2005]
Neely, M. P. “The Product Approach to Data Quality and Fitness for Use: A Framework for
Analysis,” 221–236. Proceedings of the 10th International Conference on Information Quality
Boston, MA, November 2005. MIT Press, 2005.

[O’Hara 2010]
O’Hara, R. B.; & Kotze, D. J. “Do not log-transform count data.” Methods in Ecology and
Evolution 1 (2010): 118–122.

[Paulk 2010]
Paulk, Mark C. “The Impact of Process Discipline on Personal Software Quality and
Productivity.” Software Quality Professional 12, 2 (March 2010) 15–19.

http://www.sei.cmu.edu/library/abstracts/reports/03tr014.cfm
http://www.sei.cmu.edu/library/abstracts/reports/97tr001.cfm
http://www.sei.cmu.edu/library/abstracts/books/0201546108.cfm

CMU/SEI-2012-SR-015 | 89

[Paulk 2006]
Paulk, Mark C. “Factors Affecting Personal Software Quality.” CrossTalk: The Journal of
Defense Software Engineering 19, 3 (March 2006): 9–13.

[Rombach 2008]
Rombach, Dieter; Munch, Jurgen; Ocampo, Alexis; Humphrey, Watts S.; & Burton, Dan.
“Teaching Disciplined Software Development.” The Journal of Systems and Software 81, 5
(2008): 747–763.

[Strong 1997]
Strong, D. M.; Lee, Y. W.; & Wang, R. Y. “Data Quality in Context,” Communications of the
ACM 40, 5 (1997): 103–110.

[Tabachnick 1989]
Tabachnick, B. G. & Fidell, L. S. Using Multivariate Statistics. Harper Collins, 1989.

[Wang 1995]
Wang, R. Y.; Reddy, M. P.; & Kon, H. B. “Toward Quality Data: An Attribute-Based Approach.”
Decision Support Systems13, 3–4 (March 1995):349-372.

[Wohlin 1998]
Wohlin, C. & Wesslen, A. “Understanding software defect detection in the Personal Software
Process,” 49–58. Proceedings of the Ninth International Symposium on Software Reliability
Engineering, Paderborn, Germany, November 1998. IEEE, 1998.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

November 2012

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

TSP Symposium 2012 Proceedings

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

William Richard Nichols; Álvaro Tasistro, Diego Vallespir, João Pascoal Faria, Mushtaq Raza, Pedro Castro Henriques, César Duarte,

Elias Fallon, Lee Gazlay, Shigeru Kusakabe, Yoichi Omori, Keijiro Araki, Fernanda Grazioli, & Silvana Moreno

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2012-SR-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The 2012 TSP Symposium was organized by the Software Engineering Institute (SEI) and took place September 18–20 in St. Petersburg, FL.
The goal of the TSP Symposium is to bring together practitioners and academics who share a common passion to change the world of
software engineering for the better through disciplined practice. The conference theme was “Delivering Agility with Discipline.” In keeping with
that theme, the community contributed a variety of technical papers describing their experiences and research using the Personal Software
Process (PSP) and Team Software Process (TSP). This report contains the six papers selected by the TSP Symposium Technical Program
Committee. The topics include analysis of performance data from PSP, project performance outcomes in developing design systems, and
extending the PSP to evaluate the effectiveness of formal methods.
14. SUBJECT TERMS

defect types, code defect injection, time estimation, product quality improvement

15. NUMBER OF PAGES

100

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 An Analysis of Code Defect Injection and Removal in PSP
	3 Model and Tool for Analyzing Time Estimation Performance in PSP
	4 PSPDC: An Adaptation of the PSP to Incorporate Verified Design by Contract
	5 Experience Report: Applying and Introducing TSP to Electronic Design Automation
	6 A Combination of a Formal Method and PSP for Improving Software Process:An Initial Report
	7 A Cross Course Analysis of Product Quality Improvement with PSP

