Using the TSP at the End of the Development Cycle

Scott Van Eps and Rick Marshall
Beckman Coulter
September 18, 2012
Global development, manufacturing and marketing of hospital and critical care diagnostic systems

Used to diagnose disease, make treatment decisions and monitor patients.
Chemistry

Immunoassay

Hematology

Automation

Beckman Coulter: Simplify . Automate . Innovate

We produce reliable test results

For over 75 years, our products have supplied critical information to improve patient health.
2008: Search for Demonstrated Outcomes

A software process that demonstrates:

- Higher Quality
- Predictable schedules
- Increased productivity
- Lower Maintenance
- Good for the Engineer
2008: Search for Demonstrated Outcomes

- Surveyed Engineers
- Contacted Universities
- Researched LEAN, Six Sigma, and Agile
- Met with Jim Over to understand TSP
- Discussed TSP with industry adopters
- Selected TSP
- Presented overview to engineers, project leads, functional managers
- Selected 2 pilot projects
In three years, achieved 90% adoption across Diagnostics R&D.
Hematology Project Status

- **DxH 800**
 - Next-Gen Hematology
 - Introduced in 2008
 - *Customers waiting for next release*

- **Slide-Maker-Stainer (SMS)**
 - Next-Gen Slide Maker in development
 - *Customer waiting for initial release*

- **DxH 2401 Connected System**
 - *Market Need*
The Situation

Resources Re-allocated (again)

- **Continuous direction changes**
 - DxH needed 510(k) for FDA
 - SMS and Connectivity was promised to customers

- **Schedule pressures**
 - No time for inspections
 - Low staff moral (potential death march)

SMS: New Instrument

DxH 800: Update Needed
The Situation

- **Large Code Base:**
 - DxH and SMS code base were each over 3,000 KLOC
 - Each had greater than 1,100 KLOC Added/Mod./Deleted

- **SMS** 3-4 years in development

- **DxH updates** over 2 years in development

- **In System Test** for 8 months

 - Incoming Software Change Requests (SCRs) not decreasing
When will the projects get done?

How many defects are left?

Estimate the effort left on each project

Based on resourcing options, set priority and develop top level plan
Technique #1

Model reduction in defects/KLOC through System Test
Technique #2

Use Previous Projects as Proxy

Previous Project

Defects/KLOC Removed in System Test

Assume Same
Defects/KLOC Removed in System Test

New Project
Technique #3

Assume 50% defects found with each pass of verification
Developed models for management

- Total resources available
- Priority of each project
- Use best-worse number of defects to estimate ranges

Fewer Resources

<table>
<thead>
<tr>
<th>Priority</th>
<th>DxH Completion Range</th>
<th>SMS Completion Range</th>
<th>Blended Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>DxH is Priority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS is Priority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended Priorities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Resources

<table>
<thead>
<tr>
<th>Priority</th>
<th>DxH Completion Range</th>
<th>SMS Completion Range</th>
<th>Blended Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>DxH is Priority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS is Priority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended Priorities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cycle 0

- Message from Management: More people, more time, a better process
- Formed Workshop Coordination Team
- Introduced PSP/TSP principals based on what was applicable to project in this phase
 - SEI-tailored for just-in-time training
 - Introduced inspections and personal checklists
 - Put time in schedule for inspections and checked rates
 - Cycle planning
 - Data capture for future estimation
 - Role Managers
 - Coaches
 - Weekly Meetings
 - Set expectations of no new defects into System Test
 - Manage Risks
- Trained Development and Verification teams
“Good Ideas List” Driven by Team

- Asked developers to identify areas of design, code, process that we should address
- Goal was to quickly stabilize and increase quality of the product
 - Gave them defect density, code churn, and Software Change Request (SCR) data
 - Team came up with over 100 ideas
 - Team evaluated and ranked ideas. Identified early wins
 - Best ideas were scheduled into each cycle

- Introduced Static Analysis Tools to address Legacy Code
Remaining Cycles

- Introduced topics as needed each cycle
 - Refined estimates with Task Hours vs. Calendar Hours
 - Used a tool to better capture WBS and estimates
 - Retrospectives after each cycle
 - Weekly Recovery Plans when needed
 - Set Goals Per Cycles based on Project needs

- Introduced Monte Carlo modeling to estimate completion date
Monte Carlo Modeling of Triage, Development and Verification

- Used to estimate cycle and project completion times throughout project
- Provided input to cycle planning to establish goals
- Balanced resources between SMS and DxH projects
- Balanced resources between Development and Verification (prevent starvation)
Determineing Duration of a Cycle

Cycle Ended When:
- Planned Development Work for cycle completed
- Planned Verification Work for cycle completed
- SCR to Verify < Max Allowed
Simulate n trials with random inputs based on mean and SD of variables:

- Incoming /Week
- Triage Rate
- % Closed
- Dev Work for Cycle
- SCR/Dev/Week
- # Developers
- Protocol Work
- SCR/SVV/Week
- # Verification Persons

Combined into statistical distribution of cycles

Model used to set Meeting 1 goals

- # Developers
- # Verification Persons
- Fixed Dev. work to do
- Protocol work to do
- # SCR to Triage
- # SCR to Correct
- # SCR to Verify

Replaced with Actuals after each cycle

Used 84 percentile of a cycle’s distribution for commit dates
Cycle 0 Launch 9/13/2010

Cycle 0
Stabilization
13 weeks

Planned: 12/13/2010
Actual: 12/13/2010

Cycle 1
Enter Design Validation
14 weeks

Planned: 4/1/2011
Actual: 3/31/2011

Cycle 2
Complete all Protocols
12 weeks

Planned: 6/22/2011
Actual: 6/30/2011

Cycle 3
Release Candidate
12 weeks

Planned: 9/14/2011
Actual: 10/17/2011

Initiate Ship
Planned: 10/31/2011
Actual: 11/14/2011

Schedule Predictability: 3.4%
Results: SMS Reliability

Mean Cycles Before Failure

Software Release

Cycle 0 Release

10x improvement
Results: SMS Cleaner Code

% Corrected Defects Failing Verification

% Failed

Cycle 0 Cycle 1 Cycle 2 Cycle 3
Results: SMS in the Field

SMS

Released: 11-14-2011
Installs: Over 175 installed
Results to Date: No issues causing a new release
Very good customer acceptance!

“The SMS is a fantastic addition to our lab workflow”

“We have had very little cause for service calls”

- Our Customers
Cycle 0 Launch 9/13/2010

Cycle 0
Stabilization
8 weeks
Planned: 11/05/2010
Actual: 11/05/2010

Cycle 1
Get Ready for 2nd Pass Verification
10 weeks
Planned: 3/1/2011
Actual: 3/1/2011

Cycle 2
Execute High Priority Protocols
15 weeks
Planned: 6/30/2011
Actual: 6/30/2011

Cycle 3
Execute Low Priority Protocols
14 weeks
Planned: 9/30/2011
Actual: 10/14/2011

Cycle 4
Languages Testing
11 weeks
Planned: 9/30/2011
Actual: 10/14/2011

Cycle 5
Fix / Verify Defects
10 weeks
Planned: 01/06/2012
Actual: 01/06/2012

Initiate Ship
Planned: 3/31/2012
Actual: 6/29/2012

Reorganization
reduced number of resources

Schedule Predictability: 16.2%
Results: *DxH 800 Reliability*

Cumulative Days Before Failure

9x improvement over latest fielded version

Software Release
Results: DxH 800 Cleaner Code

% Corrected Defects Failing Verification

% Failed

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Results: *DxH in the Field*

DXH 800 2.0

- Released: 6-29-2012
- Installs: Over 30 installed
- Results to Date: A few missed defects
 - Minor update being planned
 - Root cause identified
 - Process will be updated

“This is 98% better!”
- Our Customers
Quotes from DxH / SMS Team

- “What's different now is that they used to ask us to fix 90 SCRs by a certain date, we'd try, and never make it. Now they ask us to do 90 SCRs and we let them know what we need to do it, or what we can do in the time frame - we know all our rates.” – JC

- “It's not chaotic any more. Not thrashing. We're getting more work done in less time than ever before.” – Ana

- “TSP is magic!” – Steve

- “We'll never go back to the way we used to do reviews. We never gave them enough time, they never found anything. Inspections are working great.” – James

- “We feel under control now. Don't ever want to go back to the way we did things before—we now know how to avoid the DxH scenario and all of those protections are in the SMS plan.” – Andrea
Possible to introduce TSP to a project late in development and still realize significant improvements.

- Some TSP concepts are independent of where introduced
 - Personal reviews
 - Inspections, inspection rates, tracking
 - Planning and estimation
 - Knowing your rates/historical data
 - Use of task hours
 - Role managers/team structure
 - Coaching of team lead
 - Collection and use of data essential to improving
Lessons Learned

Just-in-Time Learning approach worked in this context

- Already in System Test
- Very little time for training

• Train & launch at the same time
• Learn techniques when needed
• Improves motivation
• Helps developers to self-discover

Just-in-Time Learning

[Image of people working on a computer]
Coaching is essential to being effective!

However the training is initially delivered...
learning, questions/answers, course corrections
...happen throughout the project

Project management is not a ballistics problem.
It acts more like a guided missile.
Other Beckman Coulter TSP Results

Defects/KLOC as Percent of Non-TSP Average Project

(100% = Average Defects/KLOC for Non-TSP Projects)

First-time use of TSP showing 5 to 100 times improvement

- Non-TSP: 100% = Average Defects/KLOC for Non-TSP Projects
- Dxl 4.4: 22 KLOC
- Dxl 4.5: 26 KLOC
- RMS: 9 KLOC
- DxLab: 2 KLOC
- SMS: 1135 KLOC
- DxH: 1200 KLOC
- New System: (>500 KLOC)
- Hardware: (3 Boards)

3 Electrical boards showing no defects

Est. Non-TSP: 20% = 5 times improvement
Future Focus

Working with SEI and project teams to study:

- **Sustainability** of TSP at organizational level
 - Organizational Support
 - Make it less optional, more institutionalized
 - Provide full-time support
 - Standardization of processes & metrics
 - Coach support & capacity
 - Product Management support & training

- **Continuous Improvement**
 - Ensure process fidelity
 - Establish corporate metrics
Beckman Coulter: *Simplify . Automate . Innovate*

Our Focus: Reliable Test Results
Acknowledgements

- **Carl Wyrwa** *(CW Software Solutions, Inc.)* & **Lourdes Villanueva** *(Beckman Coulter)*
 - Uber coaches

- **Alan Willett** *(Oxseeker, Inc.)*
 - Helped develop our customized approach

- **Jim Over** *(SEI)*
 - Supporting our studies on Improvements and Sustainability

- **JC Urbina** *(Beckman Coulter)*
 - Team Lead of DxH

- **Andrea Britton** *(Beckman Coulter)*
 - Team Lead of SMS
Questions?

Scott Van Eps: svaneps@beckman.com

Rick Marshall: rmarshall@beckman.com