What Is the Value of Your Software?

Jelle de Groot, Ariadi Nugroho, Thomas Back and Joost Visser
Outline

Background
Approach
Exploratory Study
Conclusion
Framing the notion of software value

Software value = Software production value

- **Produce**
 - Cost to produce or replace
 - Based on actual software development expenses in the past
 - Based on market average prices for software components and development resources

- **Exchange**
 - Transaction Price
 - Custom software assets are not commodities traded on a competitive market

- **Use**
 - Future Benefits
 - **Innovation**: new products or services
 - **Optimization**: more efficient production
 - **Conformance**: to laws and regulations
 - **Reliability**: produce with stable quality
Background

Issues related to software value

- Firms invest heavily on software, but often unsure of its value
- Accounting practice tends to over estimate software value

How can we determine software value more objectively?
Technical debt as a component of software value

- Technical quality affects software value
- Poorly written code reduces value

Impairment based on technical debt

Value = Area
Value = Area - Debt
Approach

Measuring technical debt

- Based on SIG quality model of software maintainability
- Quality gap to the “ideal” level determines debt
- Debt estimate is based on more than 900 system snapshots

SIG Quality Model

<table>
<thead>
<tr>
<th>Rework Fraction (RF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-star</td>
</tr>
<tr>
<td>1-star</td>
</tr>
<tr>
<td>2-star</td>
</tr>
<tr>
<td>3-star</td>
</tr>
<tr>
<td>4-star</td>
</tr>
<tr>
<td>5-star</td>
</tr>
</tbody>
</table>
Approach

Proposed variants in measuring software value

• V1: Subtracts repair cost (technical debt) from rebuild value
• V2: Exclude parts that require rework from valuation
• V3: Subtracts extra maintenance cost (interest) from rebuild value

V1: Fix the problem V2: Replace problematic parts V3: Operate with higher cost
Exploratory Study

Applying the proposed valuation methods to 367 systems

Descriptive Statistics

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (KLOC)</td>
<td>77.0</td>
</tr>
<tr>
<td>Quality (star rating)</td>
<td>3.0</td>
</tr>
<tr>
<td>Rebuild value (MY)</td>
<td>7.8</td>
</tr>
<tr>
<td>Rework Fraction (%)</td>
<td>35.0</td>
</tr>
<tr>
<td>Repair effort (MY)</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Explorative Study

Comparison of three valuation models

The three valuation models give similar values around €7 per LOC
Explorative Study

Software value across different technologies

C# and Java systems have the highest value. ABAP systems have the lowest value.
Technical debt across different technologies

Java systems have the lowest technical debt averaging €1.6 per LOC
Conclusion and Future Work

Conclusion

• The notion of technical debt can be used to estimate the value of software that takes into account technical quality
• No significant difference in the results given by the proposed valuation models (RE-based, RF-based, Interest-based)
• C# systems have the highest value averaging €10 per LOC

Future Work

• Compare results with traditional valuation approaches
• Devise a method to estimate business value of software
Estimating Rework Fraction

Rework fraction is determined based on more than 900 system snaps.

Rework Fraction (RF)

For each quality leap:

\[
RF = \text{MAX} (\text{UI, US, UC, MC, Dup})
\]