
Quantifying the Value of
Architecting within Agile
Software Development via
Technical Debt Analysis

© 2011 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Nanette Brown, Robert L. Nord, Ipek Ozkaya (SEI)
Philippe Kruchten (University of British Columbia)

May 23, 2011

Guiding Scenario
underestimated

re-architecting costs

neglected cost of

First capabilities Then, sound design

need to monitor

technical debt to gain

insight into life-cycle

2© 2011 Carnegie Mellon University

neglected cost of

delay to market

First, design up front Then, capabilities

insight into life-cycle

efficiency

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

Focus on Value

Focus on Integrated ROI

Manage architectural
dependencies with
dependency structure
matrices

Future Directions – SEI Research

3© 2011 Carnegie Mellon University

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

Use propagation
cost as a metric to
monitor and focus

development
tasks

Ability to
adjust

course with
empirical

basis

Focus on Cost

Analysis and Management of Architectural
Dependencies in Iterative Release Planning

20

40

60

80

100

Path 1

Path 2

Path 3

C
u

m
u

la
ti

v
e

 V
a

lu
e

(a
s

%
)

Economic Models
Modeling Dependencies

4© 2011 Carnegie Mellon University

DSM – architectural elements

DMM – requirements to elements

DSM - customer requirements
0

0 20 40 60 80 100 120 140 160

Cumulative Cost (as %)

Value of Capabilities Delivered over Total Effort

Pc =

n
2

Propagation cost

Metrics
Tcn = Icn + Rcn Total cost as a function of implementation

and rework cost

Technical Measures

Rework cost, Rcn, for release n is computed as follows:

• Compute the rework cost associated with each new architectural element AEk as the
sum of the rework cost for each pre-existing AEj

Rc(AEj) = #dependencies(AEj , AEk) * Ic(AEj) * Pc(n-1).

• Sum the rework cost for all new architectural elements AEk

Client Web Browser

Client Update

5© 2011 Carnegie Mellon University

Publish-Subscribe Bus

Presentation

FSS

Alarm

Alarm Data

Publish FSS Events to Bus

Rule

Processor

Alarm

Engine

Alarm Rule Evaluation

User Sessions

Manager

Start

Session

User Commands

Alarm Commands

Release n-1 Release n

Discussion Questions

The rework algorithm rework is directional in nature and represents an
initial effort to formalize the impact of architectural dependencies.

• What are the appropriate proxies of complexity that affect the cost of change?

Rework cost is interpreted as a relative value, used to compare
alternative paths and to provide insight into the improvement or
degradation of architectural quality across releases within a given path.

6© 2011 Carnegie Mellon University

degradation of architectural quality across releases within a given path.

• How do we incorporate uncertainty and the forecast of future rework in the
model?

The ability to quantify degrading architecture quality and the potential for
future rework cost during iterative release planning as each release is
being planned is a key aspect of managing strategic technical debt.

• How do we characterize the economics of architectural violations across a
long-term roadmap, rather than enforce compliance for each release?

Contact Information

RTSS Program
Linda Northrop
RTSS Program Director
Software Engineering Institute
Pittsburgh, PA 15213
lmn@sei.cmu.edu

Agile Architecting
Nanette Brown, Robert Nord, Ipek Ozkaya
Software Engineering Institute
nb, rn, ozkaya @sei.cmu.edu
Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

7© 2011 Carnegie Mellon University

Business Development

Austin Montgomery amontgom@sei.cmu.edu

SEI website at www.sei.cmu.edu/architecture

Additional Information

Nanette Brown, Robert Nord, Ipek Ozkaya, Manuel Pais. Analysis and
Management of Architectural Dependencies in Iterative Release Planning. In:
Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA) 2011.

pbk@ece.ubc.ca

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely

8© 2011 Carnegie Mellon University

distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should
be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license
under the clause at 252.227-7013.

