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Guiding Scenario
underestimated 

re-architecting costs

neglected cost of 

First capabilities Then, sound design

need to monitor 

technical debt to gain 

insight into life-cycle 
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neglected cost of 

delay to market

First, design up front Then, capabilities

insight into life-cycle 

efficiency
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Analysis and Management of Architectural 
Dependencies in Iterative Release Planning

20

40

60

80

100

Path 1

Path 2

Path 3

C
u

m
u

la
ti

v
e

 V
a

lu
e

(a
s 

%
)

Economic Models
Modeling Dependencies

4© 2011 Carnegie Mellon University

DSM – architectural elements

DMM – requirements to elements 

DSM - customer requirements
0
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Cumulative Cost (as %)

Value of Capabilities Delivered over Total Effort

Pc =

n
2

Propagation cost

Metrics
Tcn = Icn + Rcn Total cost as a function of implementation 

and rework cost



Technical Measures

Rework cost, Rcn, for release n is computed as follows:

• Compute the rework cost associated with each new architectural element AEk as the 
sum of the rework cost for each pre-existing AEj

Rc(AEj) = #dependencies(AEj , AEk) * Ic(AEj) * Pc(n-1).

• Sum the rework cost for all new architectural elements AEk
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Discussion Questions

The rework algorithm rework is directional in nature and represents an 
initial effort to formalize the impact of architectural dependencies. 

• What are the appropriate proxies of complexity that affect the cost of change?

Rework cost is interpreted as a relative value, used to compare 
alternative paths and to provide insight into the improvement or 
degradation of architectural quality across releases within a given path.
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degradation of architectural quality across releases within a given path.

• How do we incorporate uncertainty and the forecast of future rework in the 
model?

The ability to quantify degrading architecture quality and the potential for 
future rework cost during iterative release planning as each release is 
being planned is a key aspect of managing strategic technical debt.

• How do we characterize the economics of architectural violations across a 
long-term roadmap, rather than enforce compliance for each release?
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