
Investigating the Impact of

Design Debt on Software Quality

Prioritizing Design Debt

Investment Opportunities

Nico Zazworka

Carolyn Seaman, Forrest Shull, Michele Shaw

Design Debt

2

Design Debt

3

Potential Indicators

Code Smells

Code Decay
Lack of

Design Patterns

Code Metrics

God Class

Architecture

Violations
Intensive Coupling

Data Class

Code Clones Tradition Breaker

4

Research Questions

• Are Code Smells, i.e. God Classes, valid indicators
for design debt?
– Do God Classes have a negative impact on:

• Maintainability and

• Correctness

• Can we give advice on which design debt to pay
first?
– Which God Classes are easy to fix and promise high

gain in software quality?

– Which God Classes are hard to fix and promise low
gain in software quality?

5

The God Class

• Also known as “Large

Class” [Fowler99]

• Marinescu [Mar04]

– Centralizes intelligence

– Multiple responsibilities

– Delegates minor detail

– Uses data of other classes

6

God Class Detection

WMC > 46
Weighted method count

ATFD > 5
Access to foreign data

TCC < 0.33
Tight class cohesion

AND GOD CLASS

7

Case Study

• Small software development company

– 30 employees: C# developers, web-designers

– 2 active development projects

• Project J: 35kLOC, 11 months, 4 developers

• Project F: 45kLOC, 17 months, 4 developers

• Previously performed a code smell study in the
same environment

• Small part of developers were familiar with
technical debt metaphor

• Data: subversion repository and JIRA bug tracker

8

God Classes and Maintainability

• Assumption: maintainability can be estimated by
investigating how often a class to be changed
– Rational: classes that have to be changes too often, e.g. with

each revision, are indicators for maintenance bottlenecks

• H1: The change likelihood of god classes is higher than for
non-god classes

Revision 1452 1457 1471 1472 1424 Likelihood

Changed God

Classes

0/4 1/4 1/4 2/4 2/4 0.300

Changed Non-God

Classes

1/223 4/223 6/225 4/225 2/225 0.015

Example for change likelihood for god classes and non-god classes in project F

9

Maintainability Results

• God classes are 5-7 times more change prone

• Do we need to normalize this data by size?

Project F Project J

God Classes Non-God

Classes

God Classes Non-God

Classes

N 545 658 282 328
mean 0.07848 0.01619 0.12565 0.01725

s 0.18448 0.03837 0.24754 0.02391

p-value: 4.282e-14 p-value: 2.461e-12

10

Investigating Normalization

• Assumption: “A class that is
twice as large, is twice as
change prone.”

• Method: Measure correlation
between:
– Size (LOC)

– Change Likelihood

• Results (Pearson CC):
– Project F: -0.029

– Project J: 0.42

• Dividing by LOC might
over-normalize result
– Project J normalized result still

statistically significant

11

God Classes and Defects

• H2: The defect likelihood of god classes is higher

than for non-god classes

• Data: JIRA bugs are linked to subversion change

sets (=classes that were part of the bug fix)

Defect

(JIRA issue)

J-166 J-161 J-377 J-396 J-228 Likelihood

Fix

Revisions

9097,

9098

8939 11990 12842,

12844

10269

God

Classes

1/3 0/1 0/8 3/8 0/3 0.1417

Non-God

Classes

0/94 1/94 1/156 0/157 1/101 0.0067

Example for defect fix likelihood for god classes and non-god classes in project J 12

Defect Results

• God classes are 4-17 times more defect prone

• Do we need to normalize this data by size?

Project F Project J

God Classes Non-God

Classes

God

Classes

Non-God

Classes

N 32 32 17 17

mean 0.03939 0.00956 0.16911 0.00624

s 0.13669 0.01094 0.22266 0.00796

p-value: 0.2276 (not sig.) p-value: 0.008217

13

Investigating Normalization

• Assumption: “A class that
is twice as large, is twice
as defect prone.”

• Method: Measure
correlation between:
– Size (LOC)

– Defect Likelihood

• Results (Pearson CC):
– Project F: 0.011

– Project J: -0.018

• Dividing by LOC will
over-normalize result

14

Related Research
Related Work Investigated

Software

God classes more

change prone if

not normalized?

(p<0.05)

God classes more

change prone if

LOC normalized?

(p<0.05)

God classes more

defect prone if not

normalized?

(p<0.05)

God classes more

defect prone if

LOC normalized?

(p<0.05)

Li 2007 Eclipse

Olbrich 2009 Lucene,

Xerces

Schumacher

2010

Two

commercial

applications

Olbrich 2010 Lucene,

Xerces, Log4j

less change prone in 2 out of 3 cases less defect prone

in 2 out of 3 cases

Khomh 2009 Azereus,

Eclipse

5 out of 10

releases

Study results

presented

here

Two

commercial

applications
in 1 out of 2 cases 1 out of 2 cases in 1 out of 2 cases

15

Paying Design Debt

• Moving from identifying TD to
managing TD

• Paying off debt is an investment
opportunity with tradeoffs:
– Value of debt (how much is it going to

cost to fix it?)

– Interest rate (how much does it slow
down development?)

– Probability (what is the chance that the
debt affects productivity?)

• Goal: select the most profitable
opportunities, ignore non-profitable
ones.

• Profitable (good cost/benefit ratio)
– Low value

– High interest rate

16

Cost of Paying Debt

• Refactoring

• Idea: facilitate metrics in
detection model

• Argument: a class being
close to the thresholds
will be easier to refactor
than one that is multiple
magnitudes outside.

• Method: rank god classes
according to their
distance to the thresholds

WMC > 46
Weighted

method count

ATFD > 5
Access to foreign

data

TCC < 0.33
Tight class

cohesion

AND
GOD

CLASS

17

God Class Ranking: Cost
God Class

Name

WMC (>46) TCC

(<0.33)

ATFD

(>5)

Overall

Score and

Rank

V
a

lu
e

R
a

n
k

V
a

lu
e

R
a

n
k

V
a

lu
e

R
a

n
k

R
a

n
k

S
u

m

R
a

n
k

GodClass1 49 3 0.0 8 20 6 17 6

GodClass2 87 8 0.005 7 28 7 22 7

GodClass3 107 9 0.0 8 28 7 24 9

GodClass4 69 7 0.026 6 34 9 22 7

GodClass5 49 3 0.065 5 9 3 11 3

GodClass6 60 5 0.177 4 19 4 13 4

GodClass7 47 1 0.219 1 7 1 3 1

GodClass8 48 2 0.199 2 7 1 5 2

GodClass9 61 6 0.192 3 19 4 13 4

18

God Class Ranking: Interest

• Interest: negative
effect on software
quality

– Maintainability

– Defects

• Method: use change
and defect likelihood
to estimate and rank
impact

God Class

Name

Change

Likelihood

Defect

Likelihood

Overall

Score and

Rank

V
a

lu
e

R
a

n
k

V
a

lu
e

R
a

n
k

R
a

n
k

S
u

m

R
a

n
k

GodClass1 0.016 1 0.0 1 2 1

GodClass2 0.097 8 0.0 1 9 4

GodClass3 0.102 9 0.029 5 14 9

GodClass4 0.068 7 0.177 6 13 7

GodClass5 0.040 3 0.0 1 4 3

GodClass6 0.0455 4 0.133 7 11 5

GodClass7 0.0458 5 0.133 7 12 6

GodClass8 0.052 6 0.133 7 13 7

GodClass9 0.027 2 0.0 1 3 2

19

Cost/Benefit Matrix

more effort / higher cost

m
o

re
 i

m
p

a
ct

 /
 h

ig
h

e
r

in
te

re
st

GodClass1

GodClass2

GodClass3

GodClass4

GodClass5

GodClass6

GodClass7

GodClass8

GodClass9

R
a

n
k

Rank
1 2 3 4 5 6 87 9

1

2

3

4

5

6

7

8

9

20

Future Work

• Evaluation of other code smells and other
indictors

• Empirical evaluation of cost/benefit model
– Are our assumptions on correlation of

metrics and refactoring cost true?

– Are god classes after refactoring indeed
less change and defect prone?

– Can we advance from a ranking to a more
precise prediction model?

• Managing design debt and god classes:
– When should a god class be refactored?

– When is it acceptable to introduce a god
class for short term gains?

21

QUESTIONS?

Dr. Nico Zazworka

Research Scientist

Center for Experimental Software Engineering

University of Maryland

Phone: 240 487 2928

Email: nzazworka@fc-md.umd.edu

22

