Leveraging Systems Engineering to Improve Project Performance

NDIA Systems Engineering Division
Systems Engineering Effectiveness Committee

Presented by: Joseph P. Elm
Software Engineering Institute
Agenda

The Need for Systems Engineering

The NDIA Systems Engineering Effectiveness Study (SEES)

Survey Results

Using the Results
What does it take to build a complex weapon system?

Many Systems
- Propulsion
- Hydraulics
- EW
- Power
- Controls
- Radar
- Structures
- Navigation
- Computers
- Communications
- ...

Many disciplines
- Mechanical Engineering – fluidodynamics
- Metallurgical Engineering
- Electrical Engineering – power
- Manufacturing Engineering
- Software Engineering
- Electrical Engineering – radar
- Mechanical Engineering – structural
- Electrical Engineering - Communications
- Test Engineering
- ...
But, Not Everything Fits Cleanly into One Discipline

Requirements Development and Management

• Decomposition of requirements
• Allocation of requirements among multiple systems

Interdisciplinary Trade Studies

• Requirements implementation in hardware vs. software
• Exotic alloys for low weight vs. more common materials for low cost
• Lower radar cross section vs. higher aerodynamic performance

Architecture Development

• Model Driven Design
• Quality Attribute Driven Architecture
Who Pulls it All Together?

The Systems Engineer

Required skills

• Global system-wide perspective
• Full life-cycle perspective
• Forward-looking
• Multidisciplinary technical knowledge
• Fact-based decision-making
• Multi-tasking

Tasks Performed *

• Requirements Development
• Requirements Management
• Trade Studies
• System Architecture Development
• Interface Management
• Configuration Management
• Project Planning
• Project Monitoring and Control
• Risk Management
• Product Integration Planning and Oversight
• Verification Planning and Oversight
• Validation Planning and Oversight

How likely is project success if these activities are not done well?

* Some tasks are done in partnership with the Project Manager
Does this sound familiar?

The SE efforts on my project are critical because they …

… pay off in the end.

… ensure that stakeholder requirements are identified and addressed.

… provide a way to manage project risks.

… establish the foundation for all other aspects of the design.

… optimize the design through evaluation of alternate solutions.

We need to minimize the SE efforts on this project because …

… including SE costs in our bid will make it non-competitive.

… we don’t have time for ‘paralysis by analysis’. We need to get the design started.

… we don’t have the budget or the people to support these efforts.

… SE doesn’t produce deliverable outputs.

… our customer won’t pay for them.

These are the ASSERTIONS, but what are the FACTS?
The Importance of System Engineering

GAO-09-362T - Actions Needed to Overcome Long-standing Challenges with Weapon Systems Acquisition and Service Contract Management

• “costs … of major defense acquisition programs increased 26 percent and development costs increased by 40 percent from first estimates”
• “programs … failed to deliver capabilities when promised—often forcing warfighters to spend additional funds on maintaining legacy systems”
• “current programs experienced, on average, a 21-month delay in delivering initial capabilities to the warfighter”

Why?

“… managers rely heavily on assumptions about system requirements, technology, and design maturity, which are consistently too optimistic. These gaps are largely the result of a lack of a disciplined systems engineering analysis prior to beginning system development …”
The Problem

It is difficult to justify the costs of SE in terms that project managers and corporate managers can relate to.

- The costs of SE are evident
 - Cost of resources
 - Schedule time

- The benefits are less obvious and less tangible
 - Cost avoidance (e.g., reduction of rework from interface mismatches)
 - Risk avoidance (e.g., early risk identification and mitigation)
 - Improved efficiency (e.g., clearer organizational boundaries and interfaces)
 - Better products (e.g., better understanding and satisfaction of stakeholder needs)

We need to quantify the effectiveness and value of SE by examining its effect on project performance?
The Solution

Obtain quantitative evidence of the costs and associated benefits of Systems Engineering activities via a survey of development projects
Agenda

The Need for Systems Engineering

The NDIA Systems Engineering Effectiveness Study (SEES)

Survey Results

Using the Results
Survey Hypothesis

The effective performance of SE best practices on a development project yields quantifiable improvements in the project execution (e.g., improved cost performance, schedule performance, technical performance).
The NDIA Systems Engineering Effectiveness Study (SEES)

Performed by NDIA in conjunction with the SEI in 2006-2007

Surveyed 64 projects at defense contractors to assess:

- Characteristics of individual projects (e.g., complexity, size, environment)
- Specific SE practices applied to each project
- The performance of each project, as measured by conformance to budget, schedule, and requirements satisfaction

Data protection was paramount

- Data was collected anonymously to ensure confidentiality and encourage honest and accurate reporting
- Response data only accessible by key SEI staff
- Only aggregated results made public - untraceable to any project, person or organization

Results published at: http://www.sei.cmu.edu/publications/documents/08.reports/08sr034.html
Assessment of SE Practices

Question #1
What SE activities do you apply to your project?

Challenge

• No generally accepted definition of what IS and what IS NOT a part of SE.
 – “How much SE do you do on your project?” ⇐ No answer

• SE is often embedded in other tasks and not budgeted separately
 – “How much does your project spend on SE?” ⇐ No answer

Solution

• Avoid a defining SE
 – Too much controversy

• Ask about the results of activities that are generally agreed to be SE
Assessment of SE Practices

CMMI-SE/SW/IPPD v1.1
- 25 Process Areas
- 179 Goals
- 614 Practices
- 476 Work Products

Systems Engineering-related Filter
- 14 Process Areas
- 31 Goals
- 87 Practices
- 199 Work Products

Size Constraint Filter
- 13 Process Areas
- 23 Goals
- 45 Practices
- 71 Work Products

Considered significant to Systems Engineering

Survey content is based on a recognized standard (CMMI)
Assessment of Project Performance

Address TOTAL Project Performance
- Project Cost
- Project Schedule
- Project Scope

Focus on commonly used measurements
- Earned Value Management (CPI, SPI, baseline management)
- Requirements satisfaction
- Budget re-baselining and growth
- Milestone and delivery satisfaction
Assessment of Other Factors

Question #3
What other factors affect project performance?

SE Capability is not the ONLY thing that can impact Project Performance. What about:

- **Project Challenge** – some projects are more complex than others
 - Lifecycle scope, technology maturity, interoperability needs, precedence, size, duration, organizational complexity, quality of definition

- **Acquirer Capability** – some acquirers are more capable than others
 - Requirements quality, acquirer engagement, consistency of direction

- **Project Environment** – projects executed in and deployed to different environments have different needs
 - Acquiring organization, user organization, deployment environment, contract type, developer’s experience, developer’s process quality
Agenda

The Need for Systems Engineering

The NDIA Systems Engineering Effectiveness Study (SEES)

Survey Results

Using the Results
For the projects that did the least SE, only 15% delivered the best project performance.

For the projects that did the most SE, 56% delivered the best project performance.
Product Architecture Capability vs. Project Performance

Product architecture assessment examined

- High-level product structure documentation
 - Including multiple views
- Interface Descriptions

Better Product Architecture has a “Moderately Strong / Strong” positive relationship with Better Performance
Trade Study Capability vs. Project Performance

Better Trade Studies have a “Moderately Strong / Strong” positive relationship with Better Performance
Technical Solution Capability vs. Project Performance

Technical Solution performance is the combination of both Product Architecture and Trade Study performance.

Better Technical Solution processes have a “Moderately Strong” positive relationship with Better Performance.
IPT Utilization vs. Project Performance

IPT (Integrated Product Team) assessment examined

- Effective IPT Usage on Project
- Supplier participation
- IPT for Systems Engineering
- SE Representation on each IPT

Better IPT Deployment has a “Moderately Strong” positive relationship with Better Performance
Requirements Development & Management vs. Project Performance

Requirements assessment examined

- Customer & derived requirements lists
- Hierarchical allocation to system elements
- CONOPs, scenarios, and Use cases
- Criteria for authorization of req’ts providers and acceptance of req’ts
- Change control process
- Traceability to Stakeholder needs

Better Requirements Development and Management has a “Moderately Strong” positive relationship with Better Performance
Requirements + Technical Solution Capability vs. Project Performance

When looking at the impact of COMBINED SE activities, we see even stronger relationships.

Better Requirements Dev’t & Mg’t and Better Technical Solution processes have a “Strong” positive relationship with Better Performance.
Summary of Relationships

Relationship of SE Processes to Program Performance

-20% -10% 0% 10% 20% 30% 40% 50% 60%

Gamma (strength of relationship)

Strong Relationship
Moderately Strong to Strong Relationship
Moderately Strong Relationship
Weak Relationship

SE Capability
- Reqts + Tech Solution
- Architecture
- Trade Studies
- Technical Solution
- IPT Capability
- Reqts Devel & Mgmt
- Overall SE Capability
- Validation
- Risk Mgmt
- Verification
- Product Integration
- Config Mgmt
- Project Planning
- Project Monitor/Control

Composite Measures

Summary of Relationships
Requirements + Technical Solution vs. Project Performance, controlled by Project Challenge

Project challenge factors:
- Life cycle phases
- Project characteristics (e.g., size, effort, duration, volatility)
- Technical complexity
- Teaming relationships

Regardless of Project Challenge, better **Requirements Dev’t and Mg’t** and better **Technical Solution** processes shows a “Strong” positive relationship with Better Performance.

![Graph showing project performance vs. requirements and technical solution capability]
Mapping of Results to System Development

Project Planning
Project Monitoring & Control
Risk Management
Requirements Dev’t & Mg’t
Technical Solution
 • Trade Studies
 • Product Architecture
Product Integration
Verification
Validation
Configuration Management
IPT-Based Capability

Conclusion
The early phases of SE have the most impact

V-Model of System Development

Agenda

The Need for Systems Engineering

The NDIA Systems Engineering Effectiveness Study (SEES)

Survey Results

Using the Results
Moving Forward

What We Have Learned with the SEES?

- projects whose suppliers apply good SE practices perform better, regardless of size and difficulty

- SE best practices applied by suppliers early in a project have the greatest impact on project performance
 - Requirements development and management
 - Architecture development
 - Trade Study performance

- projects whose suppliers make effective use of IPTs perform better

What Can We Do With This Knowledge?

- Effective deployment of SE best practices demands coordinated action from both System Acquirers and System Developers
So, Why Don’t Suppliers and Acquirers Do It?

Supplier Issues

Insufficient budget

Schedule driven projects
- Need for immediate tangible results
- Fear of ‘paralysis by analysis’

Failure to understand value of SE
- Absence of deliverable outputs from SE

Lack of available SE staff

Lack of incentives
- Lack of contractual requirements for SE
- No encouragement or reward
- Inattention to SE efforts and results

Acquirer Issues

Lack of Policy requiring SE?
- No! Policy exists promoting the use of SE
 - USD/AT&L “Policy for Systems Engineering in DoD” of 20-Feb-2004

Lack of effective guidance for implementing effective SE?
- Maybe. Guidance exists but much of it is difficult to operationalize
 - Defense Acquisition Guidebook

Lack of understanding
- Probably. Implementing effective SE is a very difficult task. Without both training and experience, it is difficult to know what to do.
Suggestions for System Acquirers

Ensure that suppliers provide effective SE

- **Include SE requirements in RFPs**
 - Evaluate bidder’s SE Plan as part of the source selection criteria
 - Require evidence of SE performance through CDRLs
 - Require periodic self-assessment and reporting of SE performance
 - Require SE visibility in IMS, IMP, EVMS, etc.
 - Require independent assessment and reporting of SE performance at PDR, CDR, etc.

- **Stress SE performance in negotiations and contracting**
 - Mandate compliance with RFP requirements and bidder proposals for SE
 - Avoid compression / elimination of SE efforts to accommodate schedule
 - Include incentives for early and effective SE activities

- **Monitor SE performance during contract execution**
 - Provide timely and comprehensive review of SE deliverables
 - Insure sufficient program office staff and skills to do this
 - Participate in SE IPTs
Suggestions for System Acquirers

Ensure that the Program Office provides effective SE

• **Include sufficient SE expertise in the Program Office**
 – Hire trained and capable Systems Engineers
 – Provide SE training for Program Office staff
 • Develop on-line JIT training
 – Include SE staff in the Program Office decision making process

• **Set an example. Employ SE best practices for:**
 – Requirements Development and Management
 – Trade Studies
 – Architecture Development, Evaluation, and Management
 – Configuration Management

• **Discuss and stress the supplier’s SE performance in ALL reviews with the contractors. Let them know you’re watching!**

• **Collect and analyze data from all programs to improve understanding of the effectiveness of specific SE activities.**
Suggestions for System Suppliers

Define, develop, deploy, monitor, and enforce SE processes for ALL projects throughout the organization

Ensure SE competency within the organization
 • Build or maintain a cadre of skilled System Engineers
 • Provide SE training for both Systems Engineers and project Managers

Ensure SE integration within the organization
 • Clearly define SE roles, responsibilities, and authorities

Identify and adopt SE assessment methods
 • Identify, evaluate, and adopt SE assessment methods
 • Train internal staff in assessment processes
SE Effectiveness
Points of Contact

Al Brown alan.r.brown2@boeing.com
Geoff Draper gdraper@harris.com
Joe Elm jelm@sei.cmu.edu
Dennis Goldenson dg@sei.cmu.edu
Al Mink Al_Mink@SRA.com
Ken Ptack ken.ptack@incose.org
Bob Rassa RCRassa@raytheon.com
Mike Ucchino michael.ucchino@afit.edu

The report, “A Survey of Systems Engineering Effectiveness” is available at:
http://www.sei.cmu.edu/publications/documents/08.reports/08sr034.html
Acknowledgements

Primary Contributors

Alan R. Brown Robert Bruff Brian Donahue Nicole Donatelli Geoffrey Draper Terry Doran
Khaled El Emam Joseph Elm Dennis Goldenson Sherwin Jacobson Al Mink Angelica Neisa
Gordon F. Neary Brad Nelson Ken Ptack Mike Ucchino

Supporters

Robert Ferguson Mike Konrad Brian Gallagher Keith Kost James McMurley
Tom Merendino Gerald Miller Mike Phillips Dave Zubrow Larry Farrell

NDIA SE Effectiveness Committee Members

Dennis Ahearn Col. Warren Anderson Marvin Anthony Ben Badami David P. Ball
Alan R. Brown Al Bruns Robert Bruff Thomas Christian John Colombi
Jack Crowley Greg DiBennedetto Jim Dietz Brian Donahue Terry Colombi
Geoffrey Draper Joseph Elm Jefferey Forbes John P. Gaddie Donald J. Gantzer
Dennis Goldenson Dennis E. Hecht Ellis Hitt James Holton Eric Honour
Sherwin Jacobson George Kailiwai Ed Kunay Dona M. Lee Jeff Loren
David Mays John Miller Al Mink Gordon F. Neary Brad Nelson
Rick Neupert Odis Nicolas Brooks Nolan Ken Ptack Michael Persson
Arthur Pyster Bob Rassa James “Rusty” Rentsch Paul Robitaille Garry Roedler
Rex Sallade J. R. Schrand Sarah Sheard Jack Stockdale
Mike Ucchino Ruth Wuenschel Brenda Zettervall
FAQs

Q1: What do you mean by ‘the least SE’ and ‘the most SE’?

A1: It’s all relative. Our survey scored each project’s SE performance by assessing artifacts resulting from SE activities such as Requirements Development and Management, Trade Studies, System Architecture Development, Interface (External and Internal) Management, and many more. Based on these scores, the projects were binned into categories of Higher, Intermediate, or Lower SE capability.

Q2: …and what is ‘Best Performance’?

A2: Again, it’s a relative measure of project performance. Our survey scored each project’s performance by assessing it’s conformance to budget and schedule, and it’s satisfaction of requirements. Based on these scores, the projects were binned into categories of Best, Moderate, or Lower Project Performance.

Q3: So what does it mean?

A3: Projects that do a better job of Systems Engineering perform better (closer to budget, closer to schedule, and meet more requirements) than projects that do a poorer job of Systems Engineering.
FAQs

Q3: How do you know that SE was responsible for the better performance?
A3: We also collected and analyzed data for other factors that could impact project performance – things like Project Challenge, Project Environment, and Acquirer capability, looking for their relationships to project performance. Among the things that we found was the that good SE helps projects regardless of how challenging they are.
Overview of Projects Surveyed

- Project Challenge (PC)
 - Maximum = 2.8
 - 3rd Quartile = 2.1
 - Median = 1.9
 - 1st Quartile = 1.7
 - Minimum = 1.1
 - N = 64

- Overall SE Capability (SEC)
 - Maximum = 3.9
 - 3rd Quartile = 3.3
 - Median = 3.0
 - 1st Quartile = 2.7
 - Minimum = 2.1
 - N = 63

- Acquirer Capability (AC)
 - Maximum = 4.0
 - 3rd Quartile = 3.1
 - Median = 2.8
 - 1st Quartile = 2.4
 - Minimum = 1.5
 - N = 64

- Project Performance (Perf)
 - Maximum = 4.0
 - 3rd Quartile = 3.1
 - Median = 2.75
 - 1st Quartile = 2.3
 - Minimum = 1.7
 - N = 46

Sufficient variation to support analysis
Analysis

Calculate ‘scores’ for each variable (e.g., Perf, PC, AC, SEC, SEC_PP, SEC_PMC, SEC_RSKM)

Analyze variable distributions to ensure sufficient variation for analysis

Analyze relationships between variables

Histogram of response frequencies

Interquartile Range

Outliers

Median

Data statistics

Column width denotes % of projects with this level of capability

Total sample performance distribution

Projects exhibiting a given level of relative capability

Measures of association & statistical test

\[\Gamma = \text{strength of relationship} \]

\[p = \text{chance probability} \]
Better Validation capabilities have a “Moderately Strong” positive relationship with Better Performance
Risk Management vs. Project Performance

Risk Management assessment examined

- List of Risks
- Risk Mitigation Plans
- Monitoring and Reporting of Risks and Mitigation Plans
- Integration with Project Decision Making
- Integration with IMS

Better Risk Management has a “Moderately Strong” positive relationship with Better Performance
Verification vs. Project Performance

Verification assessment examined

- Verification Procedures
- Documented Acceptance Criteria
- Documented Technical Review Process
- Documented non-advocate reviews

Better Verification capabilities have a “Moderately Strong” positive relationship with Better Performance
Product Integration vs. Project Performance

Product Integration assessment examined

- Documented Integration Process
- Documented Integration Criteria

Better Product Integration capabilities have a “Weak” positive relationship with Better Performance
Configuration Mg’t vs. Project Performance

Product Integration assessment examined
- Change Control Board Charter
- Records of requested and implemented changes
- Configuration Baselines

Better Configuration Management capabilities have a “Weak” positive relationship with Better Performance
Project Planning vs. Project Performance

Better Project Planning capabilities have a "Weak" positive relationship with Better Performance
Project Monitoring vs. Control and Project Performance

Better Project Monitoring and Control capabilities have a “Weak” negative relationship with Better Performance
Project Challenge vs. Project Performance

Project challenge factors:
- # of Life cycle phases
- Project characteristics (e.g., size, effort, duration, volatility)
- Technical complexity
- Teaming relationships

More Challenging Projects do not perform as well.
Relating Project Performance to Project Challenge and SE Capability

Performance vs. PC and Overall SEC

- Low Challenge
 - Lower Capability: 0.30
 - Moderate Capability: 0.38
 - Higher Capability: 0.44

- High Challenge
 - Overall SEC: 0.82

Performance Score

0.0 0.2 0.4 0.6 0.8 1.0

Lower Capability Moderate Capability Higher Capability High Challenge