Collaborative Design with the Software Architecture Warehouse

Marcin Nowak, Cesare Pautasso
Faculty of Informatics, University of Lugano, Switzerland

Demo Upcoming: WLAN: SAW navigate your Chrome to: http://demo.saw
Abstract

• Designing a software architecture requires access to domain knowledge and experience, combined with the ability to make good decisions based on partial information. We present the Software Architecture Warehouse (SAW, http://saw.inf.unisi.ch/), a Web-based tool that supports distributed architecture design teams by managing their shared knowledge and enabling consensus-based decision making.

• After introducing the extensible knowledge meta-model of SAW, we will present various scenarios of in-meeting design-dialogue mapping and discussion support, along with visual aids. We will demonstrate how SAW can be used to induce synergy effects between knowledge reuse and remote collaboration. We claim that giving immediate feedback to the whole design team about the implications and constraints of a design decision results in an improvement in the quality of decisions made.
Introduction

- Software architecture is a knowledge intensive design process that requires:
 - Access to domain knowledge
 - Making decisions based on limited information
 - Reaching consensus collaboratively

Goal: Support the collaboration in local and remote design workshops
A Warehouse for Architectural Knowledge

• Capture, Manage, Share and Analyze reusable architectural knowledge across multiple projects
• Minimal assumptions over the knowledge meta-model:
 • IBIS (Issue Based Information System)
 • Capable of handling multiple knowledge and decision models at the same time
SAW Meta-Model

- Abstract issue-based Information Systems
Example

Authentication Provider

Security Concern

Decentralized

OpenID

Centralized

Shibboleth

LDAP
Knowledge meta-model
Knowledge management cycle

1. Capture and Acquisition
2. Sharing and Refinement
3. Design Decision Making
4. Analysis
Architectural Knowledge Management Scenarios
Knowledge Acquisition

- Capture tentative knowledge efficiently
- Stimulate knowledge sharing and reuse

Challenges:
- Building shared understanding of problems and solutions

Tool:
- Wiki-style access to shared knowledge
Knowledge Exploration

- Learn about existing shared knowledge
- Browse for interesting design issues and useful alternatives

Challenges:
- Fast identification of related design issues
- Efficient pruning of irrelevant knowledge artifacts

Tool:
- Quick Textual Search
- Tag-Cloud Navigation and Filtering
Knowledge Sharing

• Exchange knowledge between remote teams
• Refine the knowledge based on local experience

Challenges:
• Versioning of the knowledge
• Access Control

Tool:
• Wiki-style collaborative editing
• Real-time synchronization
Decision Making

• Manage consensus
• Reuse experience
• Capture rationale

Challenges:
• Reaching an agreement on the right decision

Tool:
• Real-time polling
• Fuzzy Decision Model: Negative, Positive, Open
Analysis

- Prioritize design decisions
- Assess the quality of design space
- Monitor the dynamics of the design progress

Challenges:

- Defining suitable metrics, indicators, and detection strategies to match specific design process methodologies [SHARK'11]

Tool:

- Infer the state of each design issue
- Summarize the workshop discussion
Software Architecture
Warehouse
Software Architecture Warehouse

• Web-based
 • Intra- and inter-net deployable
• Collaboration focused
 • Highly interactive knowledge capturing and decision making
 • Real-time multi-user synchronization
• Search-oriented
1. Capture

Immediate live in-workshop note-taking

[Image of Software Architecture website and a table showing Enterprise Service Bus vendor and Authentication Provider with OpenID as Shibboleth]
1. Capture

Immediate live in-workshop note-taking and sharing

Live content synchronization with all people of the design team
2. Refinement

Customizable knowledge model to fit particular needs
3. Artifact linkage

Linkage of related knowledge items within the design space
Interactive overview over positive, negative and open decisions for each alternative

Enterprise Service Bus vendor

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Positive</th>
<th>Negative</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache ServiceMix</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IBM WebSphere</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Microsoft Biztalk</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Oracle Enterprise Service Bus</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Mule</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>OpenESB</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(new alternative)

Authentication Provider

<table>
<thead>
<tr>
<th>Provider</th>
<th>Positive</th>
<th>Negative</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenID</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shibboleth</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>OAuth</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Twitter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(new alternative)
5. Rationale linkage

Rationale recording

<table>
<thead>
<tr>
<th>Enterprise Service Bus vendor</th>
<th>Positive</th>
<th>Negative</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache ServiceMix</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IBM WebSphere</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Microsoft Biztalk</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Oracle Enterprise Service Bus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mule</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OpenESB</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(new alternative)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authentication Provider</th>
<th>Positive</th>
<th>Negative</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenID</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shibboleth</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>OAuth</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Twitter</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(new alternative)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Collaborative Decision Making

Everyone can participate in the decision making process

<table>
<thead>
<tr>
<th>Product</th>
<th>Imply (0)</th>
<th>Contradict (0)</th>
<th>Influence (0)</th>
<th>Tagging (0)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache ServiceMix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revoke (2)</td>
</tr>
<tr>
<td>IBM WebSphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Biztalk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revoke (1)</td>
</tr>
<tr>
<td>Oracle Enterprise Service Bus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revoke (2)</td>
</tr>
<tr>
<td>Mule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenESB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Analysis

Live decision status reporting helps to summarize the discussion

<table>
<thead>
<tr>
<th>Enterprise Service Bus vendor</th>
<th>6 alternatives, 11 decisions, State: Decisions not conclusive (open alternatives)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Apache ServiceMix</td>
</tr>
<tr>
<td>Open</td>
<td>IBM WebSphere</td>
</tr>
<tr>
<td>Colliding !</td>
<td>Microsoft Biztalk</td>
</tr>
<tr>
<td>Negative</td>
<td>Oracle Enterprise Service Bus</td>
</tr>
<tr>
<td>Negative</td>
<td>Mule</td>
</tr>
<tr>
<td>Open</td>
<td>OpenESB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authentication Provider</th>
<th>4 alternatives, 3 decisions, State: Some decisions are missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>OpenID</td>
</tr>
<tr>
<td>Negative</td>
<td>Shibboleth</td>
</tr>
<tr>
<td></td>
<td>OAuth</td>
</tr>
<tr>
<td>Negative</td>
<td>Twitter</td>
</tr>
</tbody>
</table>
SAW Demo

WLAN SSID: SAW
Navigate to: http://demo.saw
Supported Browser: Chrome
Getting Started

- IBM adWiki SOA sample
- Simple web service
SAW Prototype Technologies

- HTML5/JavaScript frontend
 - Backbone.js framework
 - Juggernaut Push-AJAX
- Ruby On Rails server-side logic
 - Mongoid document mapper
- Persistence and synchronization
 - MongoDB
 - Redis
 - Node.js running Juggernaut
Outlook

• Capture
 • Free-form notes
 • Whiteboard snapshots
 • Audio and video
• Sharing
 • Design and project space exchange patterns
 • Public-private knowledge sharing methods
• Analysis
 • Design hot-spot and defect detection strategies
Summary

- Collaboration and reuse are key aspects of the Software Architecture Design
- SAW is a Web-based collaborative tool for local and remote design workshops
- Explicit documentation of your design decisions improves quality of the design
- Live collaboration boosts productivity of global design teams
More Information

- Please visit our project homepage:
 http://saw.inf.unisi.ch

- Public software architecture warehouse available soon:
 http://public.saw.sonyx.net

- We are looking for partners to evaluate our tool in their design environment
References:

• Marcin Nowak, Cesare Pautasso, Olaf Zimmermann "Architectural Decision Modeling with Reuse: Challenges and Opportunities". In Proceedings of the Workshop on Sharing and Reusing Architectural Knowledge SHARK'10
• Marcin Nowak, Cesare Pautasso "Goals, Questions and Metrics for Architectural Decision Models". In Proceedings of the Workshop on Sharing and Reusing Architectural Knowledge SHARK'11
9. Structure visualization

Interactive traversal of design and project space.
10. Metrics visualization

Knowledge metrics visualization