Agile Product Line Architecture

SATURN 2011
May 2011

Paul Clarke
Chief Architect

Agile Product Line Architecture

Airborne ISR Product Line
Context

- Leader in design, development, and integration of advanced AISR system architectures
- Complete lifecycle through field support and upgrades

Our Achievements from Agile Architecture

- Lower costs
- Faster time-to-market
- More capability
- More flexibility and adaptability
- Higher performance
- Smaller size, weight, and power (SWAP)

Agile Product Line Architecture

- Adapt to change
 - Customer needs
 - Market opportunities
 - Competition
 - Technology evolution
- Use a systematic process
- Create architecture roadmap with Business Case
- Follow through

Agile Development in a Product Line

- Scrum sprints for iterative development
 - Focus is on managing implementation details
- Flexibly adapt to needs of multiple product teams
- Retain Architecture Practices
Life Before the Product Line

- Matrix Organization
 - Engineering supplied talent to projects
- A project delivered a system to a customer's specification

Product Line: A Strategy of Planned Reuse Across Products

Core Asset Identification

Core Assets contain:
- Requirements Specification
- Interface Control Document
- Design Document
- Domain Models
- Performance Models
- Test Plans, Test Cases
- Regression Tests
- Supporting Test Tools

Core assets are software or hardware components developed for systematic reuse across the product line. Core assets share a common architecture.
Managing Variation in a Product Line

• Requirements
 – Additional requirements or differences in performance levels

• Design
 – New features are “configurable” so the software can run in either a “basic” mode or in extended modes with the new features available

• Change Management
 – Requirements
 – Software code and unit test
 – Design documents
 – Test documents
 – Re-test

Airborne ISR Product Line Features

• A variety of different types of hardware components (circuit cards or larger)
 – Including custom hardware components

• Most products require some customization

• Products are highly customizable and support a broad variety of requirements across customers
 – This can run the gamut from software configuration changes to custom hardware
 – Scale: Size, Weight, and Power (SWAP)
 – Aircraft variations
 – Capabilities and features
Agile Product Line Architecture

Agile Architecture: Strategic Architecture Roadmap

- **Objective:** An Action-Based Plan for Moving Forward
- **Guide Product Line Improvements**
 - What improvements and features significantly generate revenue
 - When do improvements and features need to be available
 - How will they be implemented
- **Validate the Business Case**
- **Selectively Target R&D Investments**
- **Align Products and Services with the Business Long-Range Strategic Plan**

The Strategic Technology Roadmap combines multiple views into a Time-phased Plan to effectively fill capability gaps
Strategic Architecture Roadmap Methodology

1. Track Business Environment Changes: Gap Analysis
2. Develop Business Case
3. Evaluate Technology Trends
4. Re-evaluate Entire Architecture
5. Define End-State Architecture
6. Create Architecture Roadmap to Realize the Architecture
7. Periodically Reassess the Roadmap and Adjust it as Conditions Change

Business Case: Gap Analysis

- Market Evolution
 - Faster response
 - More customized
 - More integrated functions

- Payload Size
 - Large
 - Medium
 - Small

Size corresponds to size of opportunity
Business Case: Gap Analysis (2)

- New Capabilities
 - Require greater processing and I/O performance

- Processing Performance
 - Low-power processor technology transition

- I/O Interconnects
 - High-speed interconnects
Re-Evaluate Entire Architecture

- Re-Evaluate Customer Needs
 - Identify gaps in “Missions” and “Threats” in our domain
- Re-Evaluate Market Opportunities and Competitive landscape
 - Link the gaps to market opportunities
- Re-Evaluate Technology
 - Incorporate new technologies that address a gap

- Re-evaluate portions of the architecture
 - e.g. I/O fabrics, middleware, available interface standards, processors, operating systems, chassis form factors, bottlenecks, ...
- Re-evaluate overall architecture

Define End-State Architecture

What to change

- Refactor Architectural Boundaries
 - For greater flexibility and adaptability
 - Adaptable to aircraft
 - Adaptable to missions & threats
 - Adaptable to new hardware
 - Adaptable to new algorithms
 - Scalable
 - Easy to integrate new capabilities
 - Create “standard” products

- Upgrade Technology
 - Processing
 - I/O Fabrics

- Reduce Size, Weight, and Power (SWAP)
 - Compress hardware features
Strategies Used to Change the Architecture

- **Simplify**
 - Remove features rarely needed
 - Exploit newer standards
 - Replace proprietary implementations with purchased technologies

- **Isolate**
 - Reduce internal interfaces
 - A simple interface with a complex implementation was more cost-effective than a complex interface with a simple implementation
 - Add abstraction layers to hide complexity
 - Hide hardware complexity and variation

- **Downsize**
 - Re-package for smaller-scale problems
 - Compress hardware functions opportunistically

- **Unbundle**
 - Split monolithic functions into smaller modules
 - Can independently tailor performance of each module
 - Can choose best of breed for each module

- **Bundle**
 - Create larger-grained modules as standard reusable components

- **Find New Modularity**
 - Create modular hardware components for reuse and flexibility

- **Retain backwards compatibility**

Create the Strategic Architecture Roadmap to Realize the Architecture

Define Transitions in the Roadmap

- Identify time sequence
- Identify funding sources

Align Roadmap with Business Pursuits

- Place Roadmap on a schedule
- Align Roadmap timeline with key opportunity milestones
Strategic Architecture Roadmap Driven by Business Case

Customer Missions

Assess Changes

Markets

Technologies

Threats (Customer Environment)

Changing Missions, Threats, Markets, and Technologies Drive Dramatic Improvements in Capability, Adaptability, Cost, and Time to Market

Legacy Architecture

New Architecture

Architecture Changes

More Flexibility, Adaptability, Capability

Reduce Costs, Time to Market, SWAP

Business Case

Strategic Architecture Roadmap

Agile Development in a Product Line

A Short Story…
We Stumble into Agile…

- We were entering system I&T for a project…
- We had an extreme problem:
 - A major component was not going to meet performance and availability requirements
 - We were late in the game and we need a software rewrite
- We decided to use extreme programming to re-architect and re-implement the component
 - We paired a domain expert with a OO development expert
- The pair finished in time!
 - We met the deadline and passed factory acceptance test

We Try Scrum for the Product Line…

- Based on that experience, we decided to explore Scrum for the product line
- We obtained training from Rally Software and read books
- We took over a conference room and made it our Scrum room
- The team was excited and motivated
- We had great planning sessions
 - Retrospectives (start/stop/continue)
 - Engineer availability
 - Story development/sizing using poker
 - Task creation/development
 - Rush the wall – self organizing
- Agile and Architecture
 - For new core assets we created design stories
 - Once the architecture was complete we followed the process to develop the detailed design and implementation
We Make Adjustments Along the Way…

• We adjusted sprint duration to the type of software
 – Longer sprints were more effective for embedded development

• We added more products
 – We created a scrum for each product
 – Established repeatable sprint activities

• Added Problem Tracking Reports (PTRs) to the sprints
 – Create a story for PTR’s and a task for each PTR

• When we couldn’t finish a story in a sprint:
 – Create a new story for the next sprint with whatever remaining tasks are left
 – Estimate hours to complete

We Surmount Challenges…

• Buy-in from engineers

• Buy-in from project managers

• Transitioning leadership and management roles
 – Follow through/action by management
 – Instilling discipline

• Culture change and fear of change

• Scaling for large team implementation – scrum of scrums

• Meeting CMMI requirements – how to do this in an agile environment
 – Architectural design and agile
 – PTRs and agile

• Integrating with traditional schedules
 – We added stories to traditional program manager (PM)schedules via unique IDs managed in the PM and sprint tools
We Achieve Agile Nirvana (Benefits)...

• In addition to frequent tangible milestones, we have improved our:
 – Teamwork
 – Communication
 – Technology transfer
 – Planning and re-planning
 • Release planning
 • Sprint planning
 • Mid-sprint reviews
 – Development estimates by engineering staff
 – Ability to accommodate change

Scrum!

We achieve Agile Benefits for Software and Hardware Development

Summary

• Architecture changes are driven by
 – Gap analysis and business case

• Agile Architecture Evolution is achieved by
 – Following a strategic roadmap process
 – Using agile development to facilitate execution

Benefits Achieved

• New capabilities
• Flexibility and adaptability
• Reduced costs
• Reduced time to market
• Reduced SWAP

Acknowledgements:
Portions of this presentation based in part on material provided by Ragan Wilkinson and John Dydiw of Northrop Grumman