
TSP Symposium 2010TSP Symposium 2010TSP Symposium 2010TSP Symposium 2010

How to Teach Programming:

Introducing PSP into a University

Curriculum

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Curriculum

Prof Barry Dwolatzky,
Joburg Centre for Software Engineering (JCSE)

at Wits University, South Africa

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

Wrote his first program in 1970 – Fortran IV on IBM 360.

A few hundred lines-of-code.

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

Wrote his first program in 1970 – Fortran IV on IBM 360.

A few hundred lines-of-code.

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

Wrote his first program in 1970 – Fortran IV on IBM 360.

A few hundred lines-of-code.

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

My Personal Software Process in 1970

Design
Program

(Flowchart)

Write program

~24hrs later:
Collect cards and output

from “job collect”
hatch

Review

Review

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Write program
(on paper)

Punch Cards
(card deck)

Submit deck
at “job submission”

hatch

Defects?

Compile & test

Done

Yes

No

Review

Review

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

My Personal Software Process in October 2009

Plan

Design

1.8 %

2.9 %

Plan

Design

1.8 %

2.9 %

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Compile

Code

Unit Test

Design 2.9 %

53.1 %

14.8 %

26.8 %

Code

Compile

Unit Test 96.3 %

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

My Personal Software Process in October 2009

Estimate of size for “Program 2” 135 LOC

Estimate of development time for “Program 2” 240 minutes

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

530 minutesActual development time for “Program 2”

361 LOCActual size of “Program 2”

530 minutesActual development time for “Program 2”

361 LOCActual size of “Program 2”

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

My Personal Software Process in December 2009

Plan

Design

4.1 %

18.6 %

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

8.7 %

32.6 %

8.7 %

Design Review

Code

Code Review

Compile

Unit Test

9.1 %

13.2 %

Post Mortem 5.0 %

Introducing:

Dwolatzky the Programmer

Introducing:

Dwolatzky the Programmer

My Personal Software Process in December 2009

Program 7 Estimate Actual Error [%]

Size [LOC] 126 118 -6.4 %

Development Time [minutes] 176 242 37 %

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Development Time [minutes] 176 242 37 %

PSP: Barry DwolatzkyPSP: Barry Dwolatzky

Size Estimating Error

100

150

200

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

-100

-50

0

50

100

1 2 3 4 5 6 7

Program

%

PSP: Barry DwolatzkyPSP: Barry Dwolatzky

Time Estimating Error

80

100

120

140

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

-60

-40

-20

0

20

40

60

80

1 2 3 4 5 6 7

Program

%

PSP: Barry DwolatzkyPSP: Barry Dwolatzky

Productivity

60

70

80

90

L
O

C
 p

e
r

h
o

u
r

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

0

10

20

30

40

50

1 2 3 4 5 6 7

Program

L
O

C
 p

e
r

h
o

u
r

PSP: My whole classPSP: My whole class

Productivity

40

50

60

70

80

90

L
O

C
/H

r

Class

Dwolatzky

Yield

60

70

80

Test time as % of total

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

0

10

20

30

40

1 2 3 4 5 6 7

Program

L
O

C
/H

r

Dwolatzky

0

10

20

30

40

50

60

1 2 3 4 5 6 7

Program

%

Class

Dwolatzky

0

10

20

30

40

50

60

1 2 3 4 5 6 7

Program

%

Class

Dw olatzky

Quality:

The secret of PSP

Quality:

The secret of PSP
• A programmer always introduces defects

• By removing them in the phase in which they are introduced you

remove sources of uncertainty

• Locating defects in unit testing is a slow, unpredictable,

frustrating and wasteful activity – I knew this 40 years

ago!

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

ago!

• The major lesson from PSP training:

• Early and efficient defect removal (high process yield)

is not only the key to good quality – it also leads to

good estimation of effort.

• How do we teach this lesson to students

learning to program?

How to teach programmingHow to teach programming

• Common approach is to focus on:

• Language syntax

• Algorithmic skills

• Abstraction mechanisms

IEEE/ACM Joint Task Group 2001

But are we

doing this??

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

IEEE/ACM Joint Task Group 2001

“concentrating on the mechanistic details of programming constructs often

leaves students to figure out the essential character of programming through an

ad hoc process of trial and error.

Such courses thus risk leaving students who are at the very beginning of their

academic careers to flounder on their own with respect to the

complex activity of programming.”

doing this??

Introducing:

Dwolatzky the Professor

Introducing:

Dwolatzky the Professor

• Guilty as charged!

• But … how to introduce lessons

from PSP training into a

programming course, or

sequence of courses?

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

sequence of courses?

Current Software Stream:

4-year BSc(Engineering)

Current Software Stream:

4-year BSc(Engineering)

Software Development I
Language syntax; Abstraction mechanisms

Data Structures &

Algorithms

Algorithmic skills; Abstraction mechanisms

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Software Development II
Software Design; Advanced language syntax;
Advanced abstraction mechanisms
Testing

Software Development III

Software Engineering

Architecture; advanced concepts

SDLC’s ; CMMI; Agile; Project Management

Design; No Programming required

Introducing PSP

into the curriculum

Introducing PSP

into the curriculum

Software Development I

Data Structures &

Algorithms

PSP Fundamentals &

Advanced

(or some variant)

OPTION 1

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

Software Development II

Software Development III

Software Engineering

(or some variant)

??

Introducing PSP

into the curriculum

Introducing PSP

into the curriculum

• When I learnt to program 40 years ago I paid a huge price – in

time and grades – for defect found in compile and test.

• In the past 40 years we have been seduced by the apparent

OPTION 2:

More radical

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

• In the past 40 years we have been seduced by the apparent

ease of an interactive environment.

• How do we re-discover the lessons learnt with batch processing

and punch cards?

• The only currency that students respect: GRADES

• Teach Programming in 4 stages

Introducing PSP

into the curriculum

Introducing PSP

into the curriculum

• Stage 1: Getting started
• Enough language syntax, algorithmic skills and abstraction

mechanism to write simple programs

OPTION 2:

More radical

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

mechanism to write simple programs

• Provide standard checklist for code reviews. This should be

modified by student

• Award bonus marks if first compile has fewer than a

specified number of defects

Introducing PSP

into the curriculum

Introducing PSP

into the curriculum

• Stage 2: Advanced programming +
process and data collection
• Major focus on advanced programming skills, but …

OPTION 2:

More radical

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

process and data collection
• Major focus on advanced programming skills, but …

• Introduce the PSP process steps – particularly design and
design review

• Collect time and defect data

• Marks awarded should reward adherence to process and
accurate collection of data

• In assessing work do not examine the content of data

• Use defect data to refine checklists

• Award marks for high process yield

Introducing PSP

into the curriculum

Introducing PSP

into the curriculum

• Stage 3: Formal PSP Training
• Full 7 or 8 program course

• Emphasis on

OPTION 2:

More radical

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

• Emphasis on

• estimation based on personal data,

• design and design review, and

• developing and improving one’s own personal process.

Introducing PSP

into the curriculum

Introducing PSP

into the curriculum

• Stage 4: A capstone project using

TSP

OPTION 2:

More radical

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

TSP
• Emphasis on Team Work

• Refining PSP skills within a team environment

ConclusionConclusion

• Currently working on modifying

modules in existing curriculum to

introduce this 4 stage approach

J o b u r g C e n t r e f o r S o f t w a r e E n g i n e e r i n g

