Is there any value in bulk network traces?

Sid Faber
Member of the Technical Staff
CERT/SEI
Is there value in bulk network traces?

Yes.

Any questions?
What problem are you trying to solve?

Trends
- Particular protocols
- Specific applications or use cases

Existence
- When did something come on line?
- Who uses a service?

Resiliency
- How networks react to an event

Education
Let’s try an example.

Hypothesis:

- Internet bandwidth grows by ~40% annually
- Past trends were spurred by audio downloads, then streaming audio, then video clips.
- Now we’re seeing adoption of online TV, and high definition video.

- Is video driving current bandwidth increases? Where are we at on the adoption curve? How will it impact my network?
Research plan

- Understand streaming protocols
 - Find features that can identify the protocols
- Look for data to support the research
- Apply the data to the problem
Watch Three YouTube Videos
Watch Three YouTube Videos

- **Byte Volume (blue, source)**
- **Byte Volume (green, dest)**
- **Packet Count (dotted line, no scale)**
- **Activity (dot)**
- **SYN (circle)**
- **FIN (square)**
- **RST (x)**
Watch CNN Live
Listen to Three Songs on Pandora
Listen to Live365
Some useful general features

- Overall Bandwidth
- File Delivery protocols vs. Streaming protocols
 - TCP flag patterns
- Use of Content Distribution Networks
- Service port (e.g., HTTP or Shockwave)
Search for data sources

Criteria

• Ongoing data feeds
• Large scale trends across many network types

Some Possibilities

• Internet2
• MAWI
• DITL
Data Sources - Internet2

The Internet2 Observatory

- NetFlow v5 in flow-tools format
- Sampled 1:100
- 9 collection points
- Anonymized: lower 11 bits set to 0

http://www.internet2.edu/observatory/archive/proposal-process.html
Data Sources - MAWI

Measurement and Analysis on the WIDE Internet

- Sample point F
- 150Mbps link
- 15 minute snapshot each day
- Unsampled
- Anonymized
Other Data Sources

DITL
Backscatter data
Storm Center Daily Feed

[DatCat]
Challenges: Anonymization

Creates a data silo
Prevents linking in any other IP data sets
 • DNS Data
 • Geolocation / ownership data
 • Blacklists

Not necessarily bad for our research
 • Many providers use content distro networks
 • Key features are address-independent

Challenges from anonymization are well understood
Challenges: Sampling

It’s often unavoidable
Short term results are unpredictable

Very significant for our research

• We’re very interested in bandwidth utilization
• Mitigated somewhat because we’re looking at high volumes

Let’s take a closer look
Watch Three YouTube Videos:

Original Data

Data Sampled Artificially at 1:100
Watch CNN Live

Original Data

Data Sampled Artificially at 1:100
Challenges: Flow

To this point, we’ve been essentially working with packets.

Let’s take a look at the impact of applying flow aggregation and timeouts.
Create flows with timeouts:
15s active
300s inactive
Create flows with timeouts:
15s active
300s inactive

CNN Live
The example, revisited

Is video driving current bandwidth increases? Where are we at on the adoption curve? How will it impact my network?

- We can work around anonymization
- Sampled data makes the problem very challenging
- Working with flow (rather than packets) adds more complexity
Back to the point of the presentation

The question: Is there value in bulk network traces?

The answer: Yes.

A caveat: The data sources have to be tuned to the research
Conclusion

A challenge:

What research do you want to do with bulk network traces?
How can / should we drive bulk network data collection?
Thank You

Sid Faber
sfaber@cert.org