Army
Software Product Line Workshop

Linda Northrop
Director
Research, Technology, and System Solutions Program

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Software Engineering Institute (SEI)

Department of Defense R&D Laboratory (FFRDC)

Created in 1984

Under contract to Carnegie Mellon University

Offices in Pittsburgh, PA; Washington, DC; and Frankfurt, Germany

SEI Mission: advance software and related disciplines to ensure the development and operation of systems with predictable and improved cost, schedule, and quality.
SEI Technical Programs

Networked Systems Survivability (CERT)
- Secure Software and Systems
- Cyberthreat and Vulnerability Analysis
- Enterprise Workforce Development
- Forensics

Software Engineering Process Management (SEPM)
- Capability Maturity Model Integration (CMMI)
- Team Software Process (TSP)
- Software Engineering Measurement and Analysis (SEMA)

Acquisition Support (ASP)

Research, Technology, and System Solutions (RTSS)
- Architecture-Centric Engineering
- Product Line Practice
- System of Systems Practice
- System of Systems Software Assurance
- Ultra-Large-Scale (ULS) System Perspective

Independent Research and Development (IR&D)
SEI Technical Programs

Networked Systems Survivability (CERT)
- Secure Software and Systems
- Cyberthreat and Vulnerability Analysis
- Enterprise Workforce Development
- Forensics

Software Engineering Process Management (SEPM)
- Capability Maturity Model Integration (CMMI)
- Team Software Process (TSP)
- Software Engineering Measurement and Analysis (SEMA)

Acquisition Support (ASP)

Research, Technology, and System Solutions (RTSS)
- Architecture-Centric Engineering
- Product Line Practice
- System of Systems Practice
- System of Systems Software Assurance
- Ultra-Large-Scale (ULS) System Perspective

Independent Research and Development (IR&D)
Mission of the SEI Research, Technology, and System Solutions Program

The Research, Technology, and System Solutions Program enables

- cost effective
- development, evolution, and recomposition of
- predictably high-quality systems
- at all scales

With regard to its software product line effort, it aims to

- make product line development and acquisition a low-risk, high-return proposition for all organizations.
Some of the Organizations Using RTSS Technology
Summary of SEI Contributions

Models and Guidance
- A Framework for Software Product Line Practice℠
- Software Product Line Acquisition: A Companion to A Framework for Software Product Line Practice
- Product line practice patterns
- Product line adoption roadmap
- Pedagogical product line

Methods and Technology
- Product line analysis
- Architecture definition, documentation, evaluation (ATAM®), and recovery
- Mining assets
- Production planning
- Structured Intuitive Model for Product Line Economics (SIMPLE)
- Product Line Technical Probe℠ (PLTP℠)
- Product Line Quick Look (PLQL)
- Interactive workshops in product line measurement, variability management, product line management
- Prediction-enabled component technology

Book
Software Product Lines: Practices and Patterns

Curriculum and Certificate Programs
- Five courses and three certificate programs
- Product Line Executive Seminar

Conferences and Workshops
- SPLC 1, SPLC2, SPLC 2004; SPLC 2006; Workshops 1997 - 2005; Army Product Line Workshop 2007

Technical Reports, publications, and Web site
DoD Product Line Workshops

Hands-on meetings to

• identify industry-wide best practices in software product lines
• share DoD software product line practices, experiences, and issues
• discuss ways in which the current gap between commercial best practice and DoD practice can be bridged
• gather material for and review the DoD Acquisition Companion to the SEI Framework for Software Product Line Practice (*Software Product Line Acquisition: A Companion to A Framework for Software Product Line Practice*)
Today’s Workshop Is Funded by ASSIP

The goal of the United States Army Strategic Software Improvement Program (ASSIP) is to dramatically improve the acquisition of software-intensive systems.

ASSIP has funded the delivery of courses from the SEI Software Product Line Curriculum at Army locations and presentations on software product lines at PEO sites.

In addition, the ASSIP has funded the Army Senior Leader Program, which has involved tutorials on software architecture and software product lines among other topics.

ASSIP is funding this workshop to bring together those in the Army community who are using or trying to use product line practices.
Workshop Goals

Share Army and DoD product line practices, experience and issues, from both development and acquisition viewpoints
Examine barriers and enablers to much broader adoption of software product line practices within the Army
Determine the steps needed to make software product line practices more beneficial and relevant to Army programs
Discuss ways in which the Army’s Strategic Software Improvement Program (ASSIP) can be of assistance
Agenda

0800 – 0830 Introductions
0830 – 0915 Welcome and background: Linda Northrop, SEI
0915 – 1000 A Proactive Product Line Acquisition Approach, John Bergey, SEI
1000 – 1015 BREAK
1015 – 1045 An Approach to Product Line Acquisition Planning, Larry Jones, SEI

DoD software product line experience presentations
 1045 – 1130 Paul Jensen Overwatch, Textron Systems
 1130 – 1215 Brian Kemper PEO STRI
1215 – 1300 LUNCH

DoD software product line experience presentations continued
 1300 – 1345 Don Snelgrove BAE
 1345 – 1430 Ed Dunn NUWC
1430 – 1445 BREAK
1445 – 1600 Discussion: Product line acquisition support -needs and priorities.
1600 – 1630 Workshop Wrap-up
What Is A Software Product Line?

A *software product line* is a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way.

- a new application of a proven concept
- an innovative, growing concept in software engineering
The Key Concepts

Use of a core asset base in production of a related set of products
The Key Concepts

Use of a core asset base in production of a related set of products

Architecture Production Plan Scope Definition Business Case
Widespread Use of Software Product Lines

Successful software product lines have been built for families of among other things

- mobile phones
- command and control ship systems
- satellite ground station systems
- avionics systems
- command and control/situation awareness systems
- pagers
- engine control systems
- mass storage devices
- billing systems
- web-based retail systems
- printers
- consumer electronic products
- acquisition management enterprise systems
- financial and tax systems
- medical devices
- farm fish management software
Specific Examples - 1

akvasmart
Feed control and farm management software

Asea Brown Boveri
Gas turbines, train control, semantic graphics framework

Bold Stroke Avionics

Computer printer servers, storage servers, network camera and scanner servers

E-Com Technology Ltd.
Medical imaging workstations

Dialect
Internet payment gateway infrastructure products

Elevator control systems

Firmware for computer peripherals

Ericsson
AXE family of telecommunications switches

Elevator control systems

Software for engines, transmissions and controllers

5ESS telecommunications switch

LG
Mobile phones, mobile browsers, telecom products for public, private and cellular networks

Lucent Technologies
BELL LABS INNOVATIONS

Nokia

LSI Logic
RAID controller firmware for disk storage units

NASA
Interferometer product line

Software Engineering Institute | Carnegie Mellon

Linda Northrop
© 2009 Carnegie Mellon University
Specific Examples - 2

PHILIPS
High-end televisions, PKI telecommunications switching system, diagnostic imaging equipment

RICOH
Office appliances

BOSCH
Automotive gasoline systems

SIEMENS
Software for viewing and quantifying radiological images

Rockwell Collins
Commercial flight control system avionics, Common Army Avionics System (CAAS), U.S. Army helicopters

SALiON
Revenue acquisition management systems

TELVENT
Industrial supervisory control and business process management systems

symbian
EPOC operating system

NAVSEA
Test range facilities

U.S. ARMY
Command and control simulator for Army fire support

testo
Climate and flue gas measurement devices

alltel
Support software

MOTOROLA
Pagers product line
Real World Motivation

Organizations use product line practices to:

- achieve large scale productivity gains
- improve time to market
- maintain market presence
- sustain unprecedented growth
- achieve greater market agility
- compensate for an inability to hire
- enable mass customization
- get control of diverse product configurations
- improve product quality
- increase customer satisfaction
- increase predictability of cost, schedule, and quality
Software Product Lines Value Proposition

The systematic use of software product line practices results in significant organizational benefits including:

- increased quality
 - by as much as 10x
- decreased cost
 - by as much as 60%
- decreased labor needs
 - by as much as 87%
- decreased time to market (to field, to launch...)
 - by as much as 98%
- ability to move into new markets
 - in months, not years
The Value of Options

A software product line approach provides options to future market opportunities.

- The exact opportunities and their certainty are impossible to predict.
- Organizations need a way to conduct product experiments in low-cost, low-risk ways.
- Software product lines permit those kind of experiments through predefined variation points that can be exercised to meet new needs.

Options to future mission needs are important to the DoD.
Necessary Changes

The product line architecture is central to success.
The SEI Framework for Software Product Line Practice

The SEI Framework for Software Product Line Practice is a conceptual framework that describes the essential activities and twenty-nine practice areas necessary for successful software product lines.

The Framework, originally conceived in 1998, is evolving based on the experience and information provided by the community.

Version 4.0 – in *Software Product Lines: Practices and Patterns*

Three Essential Activities

All three activities are interrelated and highly iterative.

There is no “first” activity.

- In some contexts, existing products are mined for core assets.
- In others, core assets may be developed or procured for future use.

There is a strong feedback loop between the core assets and the products.

Strong management at multiple levels is needed throughout. Management oversees core asset and product development. Management orchestrates all activities and processes needed to make the three essential activities work together.
Driving the Essential Activities

Supporting the essential activities are essential practices that fall into practice areas. A **practice area** is a body of work or a collection of activities that an organization must master to successfully carry out the essential work of a product line.

Three Categories Of Practice Areas

The practice areas represent common activities in software development that are adapted to the needs of a product line approach.
PRACTICE AREAS

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Definition</td>
<td>Configuration Management</td>
<td>Building a Business Case</td>
</tr>
<tr>
<td>Architecture Evaluation</td>
<td>Make/Buy/Mine/Commission Analysis</td>
<td>Customer Interface Management</td>
</tr>
<tr>
<td>Component Development</td>
<td>Measurement and Tracking</td>
<td>Developing an Acquisition Strategy</td>
</tr>
<tr>
<td>Mining Existing Assets</td>
<td>Process Discipline</td>
<td>Funding</td>
</tr>
<tr>
<td>Requirements Engineering</td>
<td>Scoping</td>
<td>Launching and Institutionalizing</td>
</tr>
<tr>
<td>Software System Integration</td>
<td>Technical Planning</td>
<td>Market Analysis</td>
</tr>
<tr>
<td>Testing</td>
<td>Technical Risk Management</td>
<td>Operations</td>
</tr>
<tr>
<td>Understanding Relevant Domains</td>
<td>Tool Support</td>
<td>Organizational Planning</td>
</tr>
<tr>
<td>Using Externally Available Software</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **New Name and Substantial Change**
- **Substantial Change**
Dilemma: How Do You Apply The 29 Practice Areas?

Guidance

- **Case Studies**
- **Patterns**
- **Probe**
- **Curriculum**

Practice Areas

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
</table>

Core Asset Development

Product Development

Management

Essential Activities
Case Studies

CelsiusTech – CMU/SEI-96-TR-016
http://www.sei.cmu.edu/publications/documents/01.reports/96.tr.016.html

Cummins, Inc. *Software Product Lines: Practices and Patterns*

Market Maker *Software Product Lines: Practices and Patterns*

NRO/Raytheon – CMU/SEI-2001-TR-030
http://www.sei.cmu.edu/publications/documents/01.reports/02tr030.html

NUWC – CMU/SEI-2002-TN-018
http://www.sei.cmu.edu/publications/documents/02.reports/02tn018.html

Salion, Inc. – CMU/SEI-2002-TR-038
http://www.sei.cmu.edu/publications/documents/02.reports/02tr038.html

U.S. Army – CMU/SEI-2005-TR-019
http://www.sei.cmu.edu/publications/documents/05.reports/05tr019.html
Help To Make It Happen

ESSENTIAL ACTIVITIES

Core Asset Development

Product Development

Management

PRACTICE AREAS

| Software Engineering | Technical Management | Organizational Management |

GUIDANCE

Case Studies

Patterns

Probe

Curriculum

Software Engineering Institute

Carnegie Mellon

Linda Northrop

© 2009 Carnegie Mellon University
Software Product Line Practice Patterns

- **Context**: Organizational Situation
- **Problem**: What part of a product line effort needs to be accomplished
- **Solution**: Grouping of practice areas
 Relations among these practice areas (and/or groups if there is more than one)
Current Set Of Patterns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Line</td>
<td></td>
</tr>
<tr>
<td>Cold Start</td>
<td>Warm Start</td>
</tr>
<tr>
<td>Curriculum</td>
<td></td>
</tr>
<tr>
<td>Each Asset</td>
<td>Each Asset Apprentice</td>
</tr>
<tr>
<td></td>
<td>Evolve Each Asset</td>
</tr>
<tr>
<td>Essentials Coverage</td>
<td></td>
</tr>
<tr>
<td>Factory</td>
<td>Adoption Factory</td>
</tr>
<tr>
<td>In Motion</td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Process Improvement</td>
</tr>
<tr>
<td>Product Builder</td>
<td>Product Gen</td>
</tr>
<tr>
<td>Product Parts</td>
<td>Green Field</td>
</tr>
<tr>
<td></td>
<td>Barren Field</td>
</tr>
<tr>
<td></td>
<td>Plowed Field</td>
</tr>
<tr>
<td>What to Build</td>
<td>Analysis</td>
</tr>
<tr>
<td></td>
<td>Forced March</td>
</tr>
</tbody>
</table>
Help To Make It Happen

ESSENTIAL ACTIVITIES

Core Asset Development Product Development Management

PRACTICE AREAS

Software Engineering Technical Management Organizational Management

GUIDANCE

Case Studies Patterns Probe Curriculum
What Is An SEI Product Line Technical Probe (PLTP)?

The SEI PLTP is a method for examining an organization’s readiness to adopt or ability to succeed with a software product line approach.

• It is a diagnostic tool based on the SEI Framework for Software Product Line Practice.
• The 29 practice areas are the basis of data collection and analysis.
Help To Make It Happen

ESSENTIAL ACTIVITIES

Core Asset Development
Product Development
Management

PRACTICE AREAS

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
</table>

GUIDANCE

Case Studies
Patterns
Probe
Curriculum

Software Engineering Institute
Carnegie Mellon
Linda Northrop
© 2009 Carnegie Mellon University
The SEI Software Product Line Curriculum

Three Certificate Programs

<table>
<thead>
<tr>
<th>Course</th>
<th>Software Product Line Professional</th>
<th>PLTP Team Member</th>
<th>PLTP Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Product Lines</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Adopting Software Product Lines</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Developing Software Product Lines</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PLTP Team Training</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PLTP Leader Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLTP Lead Observation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓: course required to receive certificate
Adding An Adoption Roadmap

PRACTICE AREAS

| Software Engineering | Technical Management | Organizational Management |

GUIDANCE

Case Studies | Patterns | Probe | Curriculum

ADOPITION FACTORY
The Product Line Adoption Endgame

To have an operational software product line.

To do that, an organization must

- have
 - a core asset base
 - supportive processes and organizational structures
- develop products from that asset base in a way that achieves business goals
- prepare itself to institutionalize product line practices
The SEI Adoption Factory Pattern

Phases

Establish Context
- Establish Production Capability
- Operate Product Line

Focus Areas
- Product
- Process
- Organization

Product
- What to Build
- Product Parts
- Product Builder

Process
- Process Discipline
- Assembly Line

Organization
- Cold Start
- In Motion
- Monitor

Informs and information flow

Supports
Associated Practice Areas

<table>
<thead>
<tr>
<th>Establish Context</th>
<th>Establish Production Capability</th>
<th>Operate Product Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Understanding Relevant Domains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Technology Forecasting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Building a Business Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Scoping</td>
<td>• Requirements Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Architecture Definition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Architecture Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mining Existing Assets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Component Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Using Externally Available Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Software System Integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Testing</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Process Discipline</td>
<td>• Make/Buy/Mine/Commission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Configuration Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tool Support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Measurement and Tracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technical Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technical Risk Management</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Launching and Institutionalizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Funding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Structuring the Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Organizational Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Customer Interface Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Organizational Risk Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Developing an Acquisition Strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Training</td>
<td>• Launching and Institutionalizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Funding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Structuring the Organization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Customer Interface Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Risk Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Developing an Acquisition Strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Training</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Measurement and Tracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technical Risk Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Risk Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Customer Interface Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Planning</td>
<td></td>
</tr>
</tbody>
</table>
PLP Products and Services

Assist others
- SEI Product Line Technical Probe
- SEI Product Line Quick Look
- Practice-specific workshops
- Planning workshops
- Connecting to other strategies

SEI Framework for Software Product Line Practice

Foster widespread awareness
- Books
- Reports, articles, papers
- Five-course curriculum
- Executive seminar
- Conferences
- Workshops
- Website

Enable others
- Certificate Programs
- Course licensing
- PLTP Leader Certification

Ensure practicability
- Methods
- Product Line Practice Patterns
- Case studies
- Adoption Roadmap
- Acquisition Companion
What’s Different About Reuse With Software Product Lines?

- Business dimension
- Iteration
- Architecture focus
- Preplanning
- Process and product connection
Challenges - Emerging Solutions

Variation mechanisms and variation management
- AOP/AOSD
- SOA
- End-User Programming

Automating all or part of the production process
- PACC
- MDA
- DSL
- DDD
- Generative Programming

Lowering adoption cost
- Agile, Phased Approaches
- Tool Support

Distributed development and evolution
- Open Source Models
- Collaborative Environments
- Virtual Worlds

Scaling to systems of systems and ultra-large-scale systems
- Product lines reduce interoperability issues
Product Lines of the Future

Will harness new and emerging technologies

- metadata
- automated derivation
- SOA
- end-user programming

and new forms of collaboration

- cooperative models
- globalization
- virtual worlds
- collaborative environments

to make product lines more doable, pliable, and dynamic.

Tomorrow’s product lines will accrue even greater benefits than those already demonstrated.
Ongoing SEI Product Line Research

Product derivation
 • variation mechanisms
 • production plan definition and implementation
 • product line production including automated derivation

Product line adoption strategies
 • economic models

Adapting product line concepts to exploit new technologies and serve new contexts
 • system of systems
 • service-oriented architectures
 • open source
 • globalization
 • ultra-large scale systems
Contact Information

Linda Northrop
Research, Technology, and System Solutions Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/productlines
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under