
©
AB

B,
 IS

S
 U

S
C

R
C

20
08

-1
4/

11
/2

00
8

Defining Composite Critical
Scenarios for the Development
of Large Scale System
Architecture Using an SEI's ADD-
based Framework

SATURN 2008
Fourth SEI Software Architecture Technology

User Network Workshop
April 28-May 1 of 2008

Pittsburgh, Pennsylvania

Aldo Dagnino

ABB Inc.
US Corporate

Research Center
Raleigh, NC

©
AB

B,
 2

00
8

-2

Attribute Driven Design (ADD)

ADD is a methodology used to define a system
architecture that bases the decomposition process on the
quality attributes the system (software) has to fulfill.

The architectural design using the ADD methodology can
begin when the architectural drivers are known with
some level of confidence.

In ADD Tactics and Architectural patterns are selected to
satisfy a set of quality attributes within a critical scenario
that provides context for those quality attributes

Developing a
Software

Architecture

Package1

Package

Package3

Package5

Package4

©
AB

B,
 2

00
8

-3

Steps for Creating a Software Architecture
Software Process
and Architecture
Business Cycle

©
AB

B,
 2

00
8

-4

Prioritizing Business Goals Stages

Define
Business

Goals

Quality
Attributes

Business
Considerations

Use Cases

Other products,
customers,

market, legacy
systems, product
managers, etc….

Non Functional
Requirements

Functional
Requirements

Quality
Attribute or

Critical
Scenarios

with all
NFRs from
prioritized

Quality
Attributes

Prioritize
Business Goals

Prioritized Non
Functional

Requirements

©
AB

B,
 2

00
8

-5

Define Business Case
Software Process
and Architecture
Business Cycle

Define Business Case for the System

Understand the Requirements

This step allows to define the main business drivers and hence set priorities

The functionality of the system and its quality attributes are the source of functional
and non-functional requirements, which are needed to define the architecture

Creating the Architecture Option(s)
The functionality of the system and its quality attributes are the source of functional

and non-functional requirements, which are needed to define the architecture

Analyzing or Evaluating the Architecture Options
Evaluating architecture options for the qualities it supports

Leveraging Quality Attribute Scenarios
Encapsulate functional, non-functional requirements, and constraints into scenarios

used to evaluate architecture options

Implementing the Systems Based on the Architecture

Ensuring that the Implementation Conforms to the
Architecture

Documenting and Communicating Architecture Options

©
AB

B,
 2

00
8

-6

Business Goals

Prioritized Business Goals
Business goals associated with the
project are elicited from selected project
stakeholders

Business goals are prioritized for
stakeholders to guide architectural
tradeoffs

Example of prioritized business
goals:

Lower commissioning costs by 30%

Ensure system is available 99.99%

Maintain current system performance

Creating
Business

Case

©
AB

B,
 2

00
8

-7

Mapping Business Goals and Quality Attributes
Creating
Business

Case

Lower commissioning
costs by xx%

Ensure system is
available 99.9%

Maintain current
system performance

Commissionability

Availability

Performance

Business Goal Quality Attributes

©
AB

B,
 2

00
8

-8

Business Goals and Quality AttributesRequirements

Class4

Object1 Object2 Object3

Business Goals Software Qualities

Lower commissioning (customization, installation, and configuration) and
recurring system setup costs by xx% in new System Commissionability
Ensure data integrity in system Data Integrity
Ensure System is available 99.99% Availability
Maintain current system performance Performance

©
AB

B,
 2

00
8

-9

Understand Requirements
Software Process
and Architecture
Business Cycle

Define Business Case for the System

Understand the Requirements

This step allows to define the main business drivers and hence set priorities

The functionality of the system and its quality attributes are the source of functional
and non-functional requirements, which are needed to define the architecture

Creating the Architecture Option(s)
The functionality of the system and its quality attributes are the source of functional

and non-functional requirements, which are needed to define the architecture

Analyzing or Evaluating the Architecture Options
Evaluating architecture options for the qualities it supports

Leveraging Quality Attribute Scenarios
Encapsulate functional, non-functional requirements, and constraints into scenarios

used to evaluate architecture options

Implementing the Systems Based on the Architecture

Ensuring that the Implementation Conforms to the
Architecture

Documenting and Communicating Architecture Options

©
AB

B,
 2

00
8

-1
0

Develop Non-Functional Requirements
Qualities
and NFRs

Commissionability

Quality Attribute
System Quality

Customer-related
Non Functional Requirements
Associated/derived from
Quality Attribute

NFR0250 - No source code change for
a specific customer deployment

NFR0260 - Complete software build
(compilation of source code) within x hours

NFR0270 - Complete system installation
(including OS) within y hours

(human interaction)

©
AB

B,
 2

00
8

-1
1

Quality Attributes and Non-Functional RequirementsRequirements

Business Goals Driving Non-Functional Requirements Software
Qualities

Lower commissioning (customization,
installation, and configuration) and
recurring system setup costs by xx%
for new system

NFR0250 - No source code change for a specific customer
deployment

NFR0260 - Complete software build (compilation of source
code) within x hours

NFR0270 - Complete system installation (including OS)
within y hours (human interaction)

Commissionability

Ensure 100% data integrity in system NFR0110 - Ensure data integrity across integrated systems

NFR0100 - Provide controlled access to its data stores

NFR0030 - Prevent data corruption and data loss

Data Integrity

Ensure system is available 99.9% NFR0750 - Be available 24*7 (RFPs: 99.9%)

NFR0720 - Failover for XXX and YYY functions shall be
completed within xx seconds

NFR0630 - The architecture must support hot failover

NFR0740 - Loose coupling of components

NFR0700 - Complete cold startup (from power-off condition)
shall be completed with all functions scheduled for execution
within xx time

Availability

Maintain current system performance
NFR0820 - Events processing speed

NFR0870 - Display update upon change max exec time is xx
sec

NFR0030 - Prevent data corruption and data loss

NFR0890 - Process events

NFR0910 - Execution time of applications

NFR0900 - Time to run sequence of applications from
Topology Processing to Contingency Analysis

NFR0860 - Supervisory control max execution time is 1 sec

NFR0920 - CPU and memory consumption of applications

Performance

©
AB

B,
 2

00
8

-1
2

Leveraging Quality Attribute Scenarios
Software Process
and Architecture
Business Cycle

Define Business Case for the System

Understand the Requirements

This step allows to define the main business drivers and hence set priorities

The functionality of the system and its quality attributes are the source of functional
and non-functional requirements, which are needed to define the architecture

Creating the Architecture Option(s)
The functionality of the system and its quality attributes are the source of functional

and non-functional requirements, which are needed to define the architecture

Analyzing or Evaluating the Architecture Options
Evaluating architecture options for the qualities it supports

Leveraging Quality Attribute Scenarios
Encapsulate functional, non-functional requirements, and constraints into scenarios

used to evaluate architecture options

Implementing the Systems Based on the Architecture

Ensuring that the Implementation Conforms to the
Architecture

Documenting and Communicating Architecture Options

©
AB

B,
 2

00
8

-1
3

Architectural Drivers

Architectural drivers (quality attribute
scenarios) include the combination of
functional and quality requirements that
shape the architecture:

Define unique functions (as architectural
Functional Requirements) of modules in the
system

Select associated Non-functional
Requirements

Quality Attributes or Critical System
Scenarios provide the functional context
under which Non Functional Requirements
are defined

Architectural patterns that satisfy the critical
scenarios are then selected

Developing a
Software

Architecture

Class4

Object1 Object2 Object3

©
AB

B,
 2

00
8

-1
4

Quality Attribute Scenarios

Encapsulate a set of architectural functional and non-
functional requirements that uniquely define the system being
architected

Are described by a set of detailed architectural product
requirements

Can incorporate of one or more Use Cases

Requirements
Development

Artifact

2
5
%

1 2 3

Source of
stimulus

Response
Measure

Stimulus

Environment

Response

©
AB

B,
 2

00
8

-1
5

Quality Attribute Scenario Elements
Requirements
Development

1 2 3

©
AB

B,
 2

00
8

-1
6

Quality Attribute Scenario: Run a Sequence of Applications
Leveraging QA

Scenarios

©
AB

B,
 2

00
8

-1
7

Develop Critical System Scenarios
Critical

Scenarios

The system shall allow the operator
to run the state estimator application

The system shall allow the
operator to run sensitivity analyses

etc . . .

The system shall allow the
operator to run the PS model

Critical Scenario
The operator runs a sequence
of complex applications

The system shall allow the operator
to run a sequence of applications in
an “industry acceptable” time

Customer (Architectural)
Requirements
Includes Functional and
Non-functional requirements
(and any constraints)

sd Run a Sequence of Applications

Operator

(from Actors)

Contingency
Analysis

Topology
Processor

State Estimator

If State Estimator converges

If State Estimator does not converge

The time duration from Topology processing to Contingency Analysis must be less
than three (xx) minutes under normal conditions (State Estimator converges)

An application executive subsystem defines dependences and relationships
between applications

There are x (x) types of requests for running applications (sequence): from operator,
from event, from continuous timer

Start Topology Processor

Start State Estimator

Start Contingency Analysis

Change input parameters

Rerun State Estimator

©
AB

B,
 2

00
8

-1
8

Another Critical System Scenario
sd Support Hot Failov er

Monitoring
Daemon

Sub-system BSub-system A

Failover for XXX and YYY functions shall be
completed within xy seconds.

Monitor sub-system

Failure occurs

Detect failure

Start failover

Complete failover

Monitor sub-system

Critical
Scenarios

©
AB

B,
 2

00
8

-1
9

Critical System Scenarios
Critical

Scenarios

Add new element and sub-elements to the
system
Integrate with external systems
Process and display events
Run advanced numerical applications
Support hot-failover
Run a sequence of complex applications

©
AB

B,
 2

00
8

-2
0

Prioritizing Non-Functional Requirements
Critical

Scenarios

Define
Business

Goals

Quality
Attributes

Business
Considerations

Use Cases

Other products,
customers,

market, legacy
systems, product
managers, etc….

Non Functional
Requirements

Functional
Requirements

Quality
Attribute or

Critical
Scenarios

Prioritize Non
Functional

Requirements

©
AB

B,
 2

00
8

-2
1

Prioritized Non-functional Requirements
Prioritized

NFRs

ID Requirement
Calculated

Avg.
Impact on

Architecture
Prototype

Importance
10*CalcAvg

+ImpactArch

4.2.1.1

The new system will have one code base to ensure the
functionalities of XXX system by using common
technology and programming language, as well as
shared or reusable modules. 5.0 5 5 55

4.2.4.1
The new system will have consistent mechanisms for
integration with other components of overall system. 5.0 5 3 55

4.6.1.1
The failover of a server component using a backup
database completes in no more than xx seconds. 5.0 5 1 55

4.3.3.2
The system allows the user to perform only the
authorized actions. 5.0 5 1 55

4.2.5.4
The implementation plan shall facilitate the transition of
the XXX team to the new development environment. 5.0 5 0.1 55

4.2.1.2
The impact of changes will be minimized in the new
system thanks to a modular design 5.0 3 3 53

4.1.3.2
Shortcuts to achieve multi-row operations are available
(aggregated data). Mass-update. 5.0 3 3 53

4.2.4.2

The new system will allow for interactive exchange of
data between new YYY module and ZZZ module
(messaging layer). 4.7 5 5 52

4.4.1.3
Dialog response time is less than x seconds in average
and never more than y seconds. 4.7 5 5 52

Develop Quality Scenarios Using
Prioritized NFRs

©
AB

B,
 2

00
8

-2
2

Observations

It is easier for Senior Management to prioritize
Business Drivers than non functional requirements
Creation of Composite Scenarios provides a richer
approach to prototype architectural options
Prioritization of business goals automatically
prioritizes qualities and non functional requirements
Potential for missing important non functional
requirements that fall outside the prioritization
scheme
Analysis may become more complex using
Composite Scenarios

Conclusions

	Defining Composite Critical Scenarios for the Development of Large Scale System Architecture Using an SEI's ADD-based Framewor
	Attribute Driven Design (ADD)
	Steps for Creating a Software Architecture
	Prioritizing Business Goals
	Define Business Case
	Business Goals
	Mapping Business Goals and Quality Attributes
	Business Goals and Quality Attributes
	Understand Requirements
	Develop Non-Functional Requirements
	Quality Attributes and Non-Functional Requirements
	Leveraging Quality Attribute Scenarios
	Architectural Drivers
	Quality Attribute Scenarios
	Quality Attribute Scenario Elements
	Quality Attribute Scenario: Run a Sequence of Applications
	Develop Critical System Scenarios
	Another Critical System Scenario
	Critical System Scenarios 			
	Prioritizing Non-Functional Requirements
	Prioritized Non-functional Requirements
	Observations

