On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

THEUNIVERSITY OF BRITISH COLUMBIA

On Software Architecture, Agile
Development, Value and Cost

Philippe Kruchten

SATURN

Pittsburgh, April-May 2008
Copyright © 2008 by Philippe Kruchten @

Philippe Kruchten, ph.n., P.Eng., cSDP

Professor of Software Engineering
Department of Electrical and Computer Engineering

UB University of British Columbia
b Vancouver, BC Canada
pbk@ece.ubc.ca
604 827-5654

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

604 418-2006

UBC

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

Outline

= A story

= Agile processes and
software/system architecture
= Value and cost
» Cost
» Value
= Value and cost of architecture

= A proposed simple strategy to put value on
architecture

uBC

Synthetic example from

Story of a failure

2 projects (finance, aerospace)

= |Large re-engineering of a complex distributed
world-wide system; 2 millions LOC in C, C++,
Cobol and VB

= Multiple sites, dozens of data repositories,
hundreds of users, 24 hours operation, mission-
critical ($billions)

= xP+Scrum, 1-week iterations, 30 then up to 50
developers

» Rapid progress, early success, features are
demo-able

= Direct access to “customer”, etc.
= A poster project for scalable agile development

UBC

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

Hitting the wall

= After 4% months, difficulties @
to keep with the 1-week
iterations

= Refactoring takes longer
than one iteration

= Scrap and rework ratio
increases dramatically

= No externally visible progress anymore
= |terations stretched to 3 weeks
= Staff turn-over increases; Project comes to a halt

= Lots of code, no clear architecture, no obvious way
forward

=
=]
)

!!]
i

‘

Agile Processes & Architecture

» No BUFD (no Big Up-Front Design)

» |[ncrementally develop (& deliver) value
= xP: Metaphor
= FDD: Features

» Earned-value system
-> burn-down charts

= Very short iterations
(a.k.a. sprints)

» Refactoring
» Gradual emergence of the design...

UBC

Agile Alliance 2001 o

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

Context does Matter

8

» For medium to large software-intensive
systems, or in novel systems, an
architecture will NOT gradually emerge as
the result of B
constant refactoring. JEE

= The Wall

= Architecture lacks
sex appeal

UBC

Kruchten 2007 \/

Value and Cost

= Value: to the business (the users, the
customers, the public, etc.)

= Cost: to design, develop, manufacture,
deploy, maintain

= Simple system, stable architecture, many
small features:
« statistically value aligns to cost

= Large, complex, novel systems ?

UBC

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

Cost

» The old:
* Function points, SLOC
=> time
=> 3

» The “new”:
» Story points, ideal days, velocity

» Backlog (Scrum) used to drive increment
content

 Self-tuning process

10

Cost: the classical view

productivity SLOC/person-month

N\

S Effort person-month

ize =)

Goc \ \ Duration
Staft # \

11

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

Cost: the agile view

velocity Story point per ideal day

N\
Size =l Effor t

Ideal days

\ Actual days
Story points
\ Duration

Staff / \
—
Cost

12 Cohn 2006

uBC

Value ?

Traditionally in dollars
Decomposition, interdependencies
Priorities (used in XP’s planning game)

Not very successful

Beck 2001

Earned Value System muddies| | +——~
the water even more
» Are we speaking about value?
e Cost? Both?

What is the value of architecture? About nil

» Seen only as an additional cost
13

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

A Proposed Strategy

= Cost in points
= Value in units

» Get valuation done in relative units (what a unit
mean is irrelevant)

= Try to break-down big value elements
» Keep value independent from any notion of cost

» Relate to: 100-point method, Karl Wiegers’
prioritization scheme, AHP, Theory W (?)

14 Leffingwell 2003, Wiegers 1999, Saaty 1990, Boehm 1989

(cont.) Valuing architectural design

= Value architecture by taking units from top level,
user-visible features, and flowing them down to
non-visible development elements

= How?
* The “revenue taxation” model: 12 % across
* The “head tax” model: collect fixed amount of units

» The “pay-per-use” model: pay a percentage only if it
makes use of it

* The “auction” model ??

15

UBC

Copyright © 2008 by Philippe Kruchten

April-May 2008

On Software Architecture, Agile Development, Value & Cost April-May 2008

(cont.) Flowing-down value

= Need a rich dialog between

» Developers
* Architecture, design
» Dependencies between design “chunks”
» Costing development in points

» Business representatives
» Features, prioritization
* Valuation in units

... during early phases to jointly “flow down”
value to development elements

* |CM: valuation and architecting phases

Boehm & Lane 2007

=
=]
)

!!]
i

‘

16

Points (cost) and Units (value)

18

SATURN / SEI Copyright © 2008 by Philippe Kruchten 8

On Software Architecture, Agile Development, Value & Cost April-May 2008

Points (cost) and Units (value)

23

Points (cost) and Units (value)

25

SATURN / SEI Copyright © 2008 by Philippe Kruchten 9

On Software Architecture, Agile Development, Value & Cost April-May 2008

Some rules for the game

» Total value is constant, through flowdown, hence
throughout architectural design

= Adding requirements adds value (using relative
units to evaluate)

» Total cost evolves with architectural design (it
should go down, or maybe not)

= Costs re-evaluated as development progress
(agile concept of velocity)

= Value cannot be changed after implementation
to change priorities

» Keep costs and values well separated
» Can't deliver architectural bits without user

visible bits (and vice versa) UBC
= MMF U
Key points

» Value often not correlated to cost
= Express value in relative terms, not absolute $$$
» Proceed to architectural design

= Re-allocate some of the user-visible value to
non-visible element, with constant sum

= MMF = minimum marketable features

» Schedule iteration sequence based on fully
valued development elements + dependencies

» Better fit to a revised Earned-Value System

= Many benefits in the dialog itself (value is in the

journey) -

27 oA

SATURN / SEI Copyright © 2008 by Philippe Kruchten 10

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

Value (units), Costs (points), and real $$$

Rev. $$$ Dev. $$$
2. units 2. points

Time

un even
28 point time Denne 2004

UBC

Alternative approaches

= CBAM = Cost Benefit Analysis Method
* Chap 12 in Bass, Clements, Kazman 2003

» IMF: Incremental Funding Method
* Denne & Cleland-Huang, 2004

= Analytic Hierarchy Process

= Evolve* - Hybrid
* Gunther Ruhe & D. Greer 2003, etc...

29

UBC

Copyright © 2008 by Philippe Kruchten

April-May 2008

11

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

CBAM: Cost Benefit Analysis Method

= Concept: Utility

= Value (?)

Utility-response curves: linear, steps, exp.,...
= Concept: Scenario

* And priorities
= Architectural strategies

» Their value, and utility

» Their cost

= Benefit and ROI (Return on Investment)

30

IFM: Incremental Funding Method

= MMF = Minimum marketable Features

= AE = Architectural elements
e Cost
« MMF depends on AE

= Time and NPV = Net Present Value
» Strands = Sequences of dependent MMFs

31

Copyright © 2008 by Philippe Kruchten

April-May 2008

12

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

... but the same issues

» How to assign realistic
» Value
» Cost
* Priority
» to each chunk of software?
= And how to make it appealing to the agile
projects?
» Separation between the visible (feature) and
the invisible (architectural element)
» Make it practical for small and medium teams

uBC

Conclusion

= There is both value and cost in Software
Architecture

= They may be articulated in simple, non
financial terms

= to assist planning iterative development

= and avoid “hitting a wall”.

= Start small and simple.

= Get fancy later.

UBC

Copyright © 2008 by Philippe Kruchten

April-May 2008

13

On Software Architecture, Agile Development, Value & Cost

SATURN / SEI

References

" Agile Alliance (2001) Manifesto for Agile Software Development.
http://agilemanifesto.org/

" Bass, L., Clements, P., & Kazman, R. (2003). Software
Architecture in Practice (2nd ed.). Reading, MA: Addison-Wesley.

. Beck, K., & Fowler, M. (2001). Planning Extreme Programming.
Boston: Addison-Wesley.

. Boehm, B. and Lane, J.A. (2007) Using the incremental
commitment model to integrate system acquisition, system
engineering, and software engineering, University of Southern
California, Los Angeles, September 2007.

" Boehm, B. & Ross, R. (1989) "Theory-W Software Project
Management: Principles and Examples." IEEE Transactions on
Software Engineering 15 (4) 902-916.

" Cohn, M. (2006) Agile Estimating and Planning. Upper Saddle
River, N.J.: Prentice-Hall,

" Denne, M., & Cleland-Huang, J. (2004). Software by Numbers:
Low-Risk, High-Return Development, Prentice Hall.

LB
References (cont.)
] Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding
Method: Data-Driven Software Development IEEE Software,
21(3), 39-47.
" Karlsson, J. & Ryan, K. (1997). A Cost-Value Approach for
Prioritizing Requirements, IEEE Software, 14 (5) 67-74.
" Kruchten, P. (2007). Voyage in the Agile Memeplex: Agility,
Agilese, Agilitis, Agilology. ACM Queue, 5(5), 38-44.
. Leffingwell, D. & Widrig, D. (2003) Managing Software
Requirements: A Use Case Approach, 2nd ed. Boston, MA:
Addison-Wesley.
" Maier, M.W. (2006) System and software architecture
reconciliation. Systems Engineering, 9 (2) 146-159.
" Ruhe, G. and Ngo-The, A. (2004) Hybrid Intelligence in Software
Release Planning. International Journal of Hybrid Intelligent
Systems, 1, pp 99-110.
" Saaty, T. (1990). How to make a decision: The analytic hierarchy
process. European journal of operational research, 48(1), 9-26.
" Wiegers, K. (1999). First Things First: Prioritizing Requirements.
Software Development Magazine, 7(9), 48-53. UBC
37 v

Copyright © 2008 by Philippe Kruchten

April-May 2008

14

