Applying Architecture
Tradeoff Assessment
Method (ATAM) As Part
Of Formal Software
Architecture Review

Christopher Byrnes
loannis Kyratzoglou
April 30, 2008

For presentation at the Fourth Software Engineering Institute (SEI) Software
Architecture Technology User Network (SATURN) Workshop. The authors can
be reached at cb@Mitre.org or ioannis @Mitre.org.

In preparation for a customer’s Software System Critical Design Review
(CDR); we concluded that an assessment approach based on a hybrid version
of the SEI's Architecture Trade-Off Analysis Method (ATAM) would be a good
approach for an assessment of this software architecture. This paper will
provide ideas on how to apply the SEI's ATAM method within the context of a
formal software CDR of a large scale complex software system.

Outline

CDR Preparations

SWA Assessment Approach
ATAM Steps

Business Drivers

SWA Assessment

Available Software Design Products
Application of ATAM Questions
ATAM Quality Attribute Evaluation
Risks in SWA

Impacts

Conclusions

MITRE

Problem Statement

Program Manager of a major C2 system requested MITRE to
assess its software architecture attributes

Review and Evaluate the architecture for the 15t time
Suppose to be 90% complete at contract award
System schedule was running 7 months late

Preliminary Design Review (PDR) was held Nov 05 / Closed in
Mar 06; No SW architecture

Resources required — 2 staff (the authors)
Schedule — 4 Dec — 9 Jan (CDR Docs received on 4 Dec)
System’s CDR to be held on January 15 - 19, 2007
Government and developer held three Design TIMs
Products — System Architecture Evaluation Report
Tailored ATAM Process
Assessment Results
Impact

MlTRE 2006 The MITRE Corporation. Al rights reserved

MITRE and Government support engineers were requested to assess the
software architecture for a customer’s project in preparation for a Critical
Design Review (CDR). The CDR was a key milestone event, where the
contractor had to present and demonstrate evidence that their selected
software architecture and detailed design will meet the program’s key
performance parameters and form the foundation for future Increments. The
focus of this software assessment was to investigate at how well the software
design met a number of architecture quality attributes such as, configurability,
extensibility, scalability, modularity, reliability and interoperability. Particular
attention was focused on the interoperability and extensibility of the system
since it is intended to be enhanced significantly in the future. We considered
several SEl-developed architecture assessment approaches, and concluded
that an assessment approach based on a hybrid version of the SEI's ATAM
would be optimum for this assignment based on our experience in applying
ATAM to other projects. The time and resources available for the assessment
during the CDR were limited, so our hybrid approach maximized the use of the
available assessment resources and software architecture documentation
being prepared for this CDR. There were fewer iterative phases in this hybrid
approach as there is in the full ATAM, this allowed an architecture assessment
with requiring as much interaction with the customers.

Assessment Approach

Decision to Use ATAM

The 4 Phases of this system’s ATAM Assessment
Prepare For ATAM - Pre 4 Dec ‘06
Prep work with Local / Gov engineers, read contract and requirements
Prep checklist / influence CDR docs content & Design TIM agenda
Identify Business Drivers & Develop Quality Attribute Tree
Hosted a meeting with users at developer’s site to discuss business drivers
Developed Quality Attribute Tree (QAT)
Analyze Software Architecture
Interview developer’s Team extensively using checklists (net centric, own)
Reviewed provided SW Design Material using checklists/SW Tools (Rose)
Requirements Traceability (RequisitePro)
Present ATAM Assessment Report
Assessments
Impacts
Phase 1 and 4 conducted locally, others at developer site

The ATAM defines four major phases numbered 0 — 3. The activities
associated with each phase were tailored to address the CDR needs. The
activities are described in greater detail in the subparagraphs below. Briefly,
an ATAM Phase 0 consists of an assessment team overview presentation of
the proposed software architecture approach and presentation of the initial set
of questions. Phase 0 laid the groundwork for the ATAM's Phase 1 and Phase
2, leading to a software architecture assessment report produced during
Phase 3. In the subsections below, each Phase is described in more detail,
followed by a description of how each phase was applied to this project.

During Phase 0, MITRE and Government read the required contract
documents (e.g., Statement of Work), the associated requirement documents
(Capabilities Description Document, Technical Requirements Document) and
the integrated master schedule. The team extracted the related paragraphs
that identity the architecture qualities and the types of products that will be
presented by the contractor during the CDR. The first item will ensure that we
are working within the legal bounds of the contract and the latter will provides
us an idea of the products and the architecture presentation style. The next
step was to work with the program manager to influence the contents of the
CDR material. In parallel, we were preparing the assessment checkilists.
Using these assessment checklists as our guide, we were able to propose
tailored CDR documents and a CDR agenda that will fit the SW Assessment
checklist framework.

ATAM Steps

Step | Action

1 Present ATAM methodology to the Program manager, contractor and users; completed at a project
Design Technical Exchange Meeting (TEM) prior to this CDR.

2 Identify Project’s Business Drivers and design decisions. The business drivers identified the reasons
we need this capability and the key mission drivers that will also drive design decisions. Done at
Design TEM.

3 Present key functions and mission flows that will lead to lower level functional decomposition
Present top-level software architecture details on how software components are layered as part of a
software architecture, software interfaces and software interactions . Also done at Design TEM.

4 Identify software architecture principles and approach, as provided by existing design products or
Unified Modeling Language (UML) schematics. Also done at Design TEM.

5 Generate ATAM Software Architecture Quality Attribute Tree, based on written requirements and
interactions with users. This is what would be looked at in more detail prior in Phase 2 of the
ATAM.

4 Analyze Software Architecture Approaches (as identified in step #3); where the information
provided in steps #3 to #5 would be reviewed.

7 Provide Software Architecture Modification Scenarios, where some of the UML scenarios and the
anticipate architecture modification scenarios would be applied to this software architecture.

8 Analyze Software architecture capability to evolve based on future Increment requirements and
under an Engineering Change Proposal Scenario Note in this hybrid approach, this ATAM step was
skipped.

9 Present ATAM Results both to the project’s managers and during the CDR. i

Phase 1 covered development of ATAM “business drivers” (which the
application domain stakeholders and customer believe are important) and the
identification of software architecture approaches. The hybrid approach to
ATAM would mean mostly simplifying the software architecture and
presentations. We would still go through the same 9 ATAM steps, but with less
formality than what is described in the SEI's ATAM reference. Other ATAM
reports that MITRE has participated in during the past have shown the ATAM
to be a very "heavyweight" approach; the assessment of this project by
necessity of the resource limitations and schedule demands had to be more of
a “lightweight” assessment. The 9 ATAM steps followed in this assessment
are shown below in this slide.

Typical checklists included a standard ATAM questionnaire; software quality
assessment; net-centric checklist for NESI compliance, data management;
information assurance, Internet Protocol version 6 (IPv6); DoD Architecture
Framework (DoDAF) architecture questionnaire; software best practices;
programming models; software framework. The lists served as a backbone for
further exploration and questioning. We were also able to get a feel from the
users what are the most important mission capabilities and most important
architecture quality attributes matched against them.

System’s Business Drivers

Business Drivers Architecture Quality Attributes
Operational effectiveness Extensibility
i . Reliability
Functionality Scalability
KPP Performance Modularity
Open SW Architecture design Interoperability
. Ease of Integration
Layered design, open I/F, standards Producible
Net-Centric design Flexibility
Data sharing Configurability
Adaptability
Re-Used Code
Legacy

Architecture Quality Attributes

In Phase 2 we analyzed the various software architecture products, particularly
the architecture usage and modification “scenarios” that developer’s use of
UML should be producing. One such candidate change scenario, to assess
software architecture extensibility, was the Dynamic Interface Reconfiguration
Capability. This new capability, introduced in the next software increment, will
allow to dynamically change interfaces and its parameters without an orderly
system shutting down. The net-centric compliance scenario was used to
assess the interoperability attribute of the project’s software architecture.
During the TEM, the ATAM team talked with the developers, system users and
other stakeholders to gain concurrence of the scenario(s) we would use in this
ATAM Phase 2 to assess the robustness of the software architecture.

During the ATAM team’s meeting with these stakeholders, we were able to
conduct Phases 0 and 1 of the ATAM, covering steps #1 - #6 in the ATAM list
shown above. The ATAM “business drivers”, identified in step #2 of the
previous slide, were established by the system users as “exit criteria” for the
CDR and come directly from the system’s Statement of Work (SOW). The
table here provides a list of the project’s key quality attributes.

Assessment

Standalone system, not easily integrated or interfaced into
other tactical systems

The system consists of four separate architected legacy
CSCls. Each CSCI architecture is different (consistency)

CSCI-CSCl interfaces are a mixture of flat files passed to
CSCI plus APIs or message passing (No EAIl)

Different CSCI programming models (C#, C/C++/Java) and
runtime architectures (consistency)

Communications planner CSCl is a single-tier architecture
(fused business logic, presentations and data)

No “Framework” visible; Usually lower level sub
frameworks promote reusability (none visible)

SW Services are difficult to identify (services/modularity)
Low compliance to NESI (“net-centric”) in the current SWA

Phase 3 of the assessment was to interview the stakeholders and engineers
and assemble and evaluates the data require to generate the ATAM report for
the customer. Based on these answers and a review of these software
architecture products, the ATAM team arrived at some preliminary conclusions
that assessed the contractor’s software architecture.

Assessment (cont.)

Software Development

Developer’s use of UML is generally good and consistent with
good UML design practices

Developer’s use of UML as part of an overall SWA is generally
understandable

Developer’s use of IBM/Rational Rose and Requisite Pro tools
is very careful and thorough

but is also very hierarchical with minimal opportunities for commonality or
WS development across CSCls explored

The connections between the system-level notations and the
SWA notations used within UML could be difficult to follow

such as for the “N-tier” architectures being used
Developer’s decision to extensive reuse (fused) legacy code
in a number of the current CSCls may make any future large

scale architectural changes beyond the current system
spiral difficult and expensive to implement

MITRE 2008 The WITRE Corparation. All s reserved

The developer’s use of UML is generally good and consistent with good UML
design practices. While extensive, it is possible to trace through most of
this system spiral’s software architecture, and the developer’s
presentations at the CDR should be understandable to most system
stakeholders.

The developer’s use of UML as part of an overall software architecture is
generally understandable; with nearly all UML diagrams carefully noted and
annotated to document assumptions and special cases in the threads of
behavior.

The developer’s use of IBM/Rational Rose and Requisite Pro Computer-Aided
Software Engineering (CASE) tools is very careful and thorough, but is also
very hierarchical with minimal opportunities for commonality or Web
Service (WS) development across system components explored.

Assessment (cont.)

System consists of federated SW pieces — not
recommended to be the basis for future Increments —
difficult and expensive to maintain and evolve it to future
spirals

Will be difficult to add new messages and features
(extensibility)

Difficult to integrate due to incompatible architectures (ease
of integration)

Difficult to maintain; expect large number of TDRs past
build 2/3 - reliability low (initially)

Will achieve operational status with extensive and
expensive testing (reliability)

Reconfigurability and Scalability is present in selected
areas (message backplane, Data distribution)

Difficult to re architect (if necessary) in future spirals (e.g.
dynamic External TDL I/O reconfiguration)

9
MlTRE 2008 The WITRE Corparation. All s reserved

The connections between the system-level notations (such as for the “N-tier”
architectures being used) and the software architecture notations used
within UML could be difficult to follow. This was particularly true for the
DoDAF “views” being developed.

There is very limited “net-centricity” in the current software architecture.
Adding the NR-KPP may prove to be difficult and expensive, and this
software architecture has limited current support for net-centric notions.

The developer’s decision to extensive reuse code in a number of the current
components may make any future large scale architectural changes
beyond the current spiral difficult and expensive to implement.

|

Available Software Design Products

Concept of Operations (CONOPS) Yes Yes

Technical Requirements Document (TRD) Yes Yes

Software Test Plan (STP) Yes No

System Requirements Specification (SRS) Yes Yes

Interface Requirements Specification (IRS) Yes Yes

Interface Control Document (ICD) Yes Yes
Requirements Traceability Matrix (RTM) Yes Yes

System Subsystem Design Description (SSDD) Yes Yes

Interface Design Document (IDD) Yes Yes

Software Design Description (SDD) Yes Yes

Software Development Plans (SDP/IMS) No No

Capability Maturing Model Integrated (CMMI) Assessment | No No

Reports

MITRE s S o

Part of the ATAM preparation work done prior to the first step was to see what
available documents could be provided by the developers. This table lists the
document artifacts required to conduct the evaluation. The documents should
be available in both paper and electronically; with columns on the right side
indicating which were on contract and available to the ATAM team.

10

(cont.)

Rational Rose Architecture Design Data (or
Data)

Available Software Design Products

No

Yes

Rational Reports (e.g., Consistency
Reports)

No

Yes

Requisite Pro attribute and other metrics
reports

No

Yes

MITRE

©2008 The MITRI

E Corporstion. All igits reserv ed

The ATAM team requested from the contractor to make available the following
information shown in the table above in electronic form. The contractors
Software engineers were able to generate the standard output from their Rose
and Requisite Pro CASE tools as part of the software architecture. However,
the ATAM and other stakeholders team at the Design TEM did not have any
electronic access, and the contractor have no plans to provide such access by

the time of CDR.

11

1

What are the driving architectural constraints,
and where are they documented?

Application Of ATAM Questions

These are all fully documented in the Software
Design Document (SDD).

What component types are defined?

Component types are described in the SDD. But
there is not a unifying idea of generic types of
component in this SW architecture.

What component instances are defined by the
architecture?

The software architecture is not Object-Oriented
(00), but there are software architecture
diagrams that show where multiple instances of
SW modules

How do components communicate and
synchronize?

Sequence diagrams defined interactions and
synchronization between components.

What are the system partitions?

Generally along traditional component
boundaries.

What are the styles of architectural approaches?

A mixture of N-tier software architecture and
UML-based class diagrams.

What constitutes the system infrastructure?

Lower level tiers define the system infrastructure,
but commonality is hard to find with all the
legacy modules in use.

MITRE

12
©2006 The MITRE Corporstion. All ights reserved

The ATAM Team also prepared a list of questions that the contractor should
respond during the ATAM discussions, with final answers due at the CDR. The

checklist has 14 major questions.

12

Application Of ATAM Questions (cont.)

8

What are the system
interfaces?

Describes in the IDDs.

What is the process/thread
model of the architecture?

A few components have a defined thread model, but in (too)
many cases a singled threaded model of control and data remains
from legacy code.

What is the deployment
model of the architecture?

Use UML deployment diagrams to describe them.

What are the system states
and modes?

Higher level components came with standards that defined major
modes, which were also further captured in both the HMI
mockups and UML use case mini-specification alternative
control flows.

What variability points are
included in the architecture?

For a number of S/W architecture variations there are specific
hooks for when new functionality is enabled. Some components
have interface design that describes the initialization files. But in
other cases, variability would have to be custom coded in the
future

How far along 1s the
architecture's development?

Did not get a chance to run Rose “consistency checking”™ reports
that would verify this, but the software architecture looks fairly
complete for new services. But legacy code is only partially
described

What is the documentation
tree?

The documentation tree is fully described.

MITRE

2008 The MITRE Corporation. All ights reserved

13

13

|
ATAM Quality Attribute Evaluation

Quality Attribute Concerns Description Importance
Difficulty
Openness Well defined The system does not have well-defined open High

interfaces for each | interfaces.
architecture layer

Flexibility Accommodate Based on the two Change Scenarios, the architecture | High / High
changes in 1s not flexible. It does not accommodate changes
functionality easily and there will be a cost and schedule impacts

to include these capabilities into the baseline.

Scalability Increase number of | The Software architecture scales fairly well up to a Medium /
interfaces pre-defined number of simultaneous connections. Medium
The system can scale up to 50 users

Modularity Framework The system consists of four separate legacy High / High
Architecture applications. Each application architecture is different
Programming model | (consistency)
is composed of The overall architecture consists of federated SW
independent, open, pieces — not recommended to be the basis for future
domamn-specific Increments — difficult and expensive to maintain and

processing modules | evolve it to future spirals

The software architecture is based on the existing set
of components extending or adding any of these with
any sort of WS-based modules would be a major
change.

4

MITRE PO ——

This table shows an ATAM-based summary of the software architecture quality
assessment attributes and concerns. Each of the quality attributes (shown
both in the list of Business Drivers on an earlier slide and the first columns
above) have had their importance and difficulty supplied during on-site
discussions held during the CDR, with the Description of each attribute in this
table was supplied by both discussions with the customers and developers
during the CDR plus reviews of the available documentation.

14

ATAM Quality Attribute Evaluation (cont)

Interoperability | Ability to work with | The system is interoperable with the external High /
other systems or systems identified in the DoDAF System View 6 Medium
products and uses the specified DoD technical standards.

The system does not use the net-centric services but
point-to-point interfaces thus making difficult and
expensive any interface changes.

Extensible Accommodate The Software architecture does not have any sort of | Medium /
growth and changes performance engineering model for covering the High
in future increments *200% growth™ factors in key performance

attributes

The software and data architecture will not be
easily extensible to accommodate changes in the
specified scenarios

Consistency Consistent user The Software architecture (with a few variations High / Low
display and user across different components) tend to use UML
interaction models | consistently. There was also consistent usage of

HMI mockups for each major function

Producible Ability to produce The system architecture allows the system to be Medium
the different produced and deployed in the three specified Medium
product deployment | configurations.
configurations

MITRE

15

2008 The MITRE Corporation. All ights reserved

15

Risks In Software Architecture

Being spread out over so many files made the software
architecture and specific portions within it (such as the
RTM) hard to browse and search.

Lack of anything resembling any UML “activity” or
“collaboration” diagram in these SSDDs tended to reinforce
the hierarchical description of the use cases and made
more abstract behaviors (that spanned multiple use case
alternatives) harder to see.

Too many assumptions about single threaded components
and services.

The data layouts of some of the packets being exchanged
could be hard to follow in some of the (legacy) tabular
formats used.

MITRE 2006 The MITRE Corporation. Al rights reserved

16

Impacts

Discussed results with System’s customer
Manage Expectations

Expect large cost increase per change proposal or Increment
change

Expect schedule and high cost due to low-quality legacy
software - low reliability and high deficiency report rate.

Proposal
Improve reliability (Improve Defect Report Density)
Improve Integration process (Sw Integration)
Improve Unit Testing

Apply Sw Development & Test Quality Metrics

System did not meet the Open Architecture requirement

7

MITRE O — ——

MITRE

Conclusions

SEI's ATAM was an important method for assessing
software architectures against known quality criteria
established by the contract and the stakeholders

ATAM team was able to apply this method with minimal
changes to ongoing development and presentation plans

Fitting a hybrid version of the ATAM into existing deliverable
products and meeting schedules

Same detailed familiarization approaches called for by the
ATAM were also useful as a general preparation step for the
CDR

Allowed stakeholders to focus on areas of greatest interest to
them

Project received a series of detailed recommended changes
to this system architecture to improve its quality attributes

18

2008 The MITRE Corporation. All ights reserved

18

