
1

1April 28, 2008 SATURN©2008 BAE Systems.

Software Architecture in an Integrated Engineering
Methodology

J.D. Baker
Systems Engineer, BAE Systems and
Member, OMG Architecture Board

2April 28, 2008 SATURN©2008 BAE Systems.

Abstract and Bio
J.D. Baker is a member of the Object Management Group Architecture Board, where he
represents BAE Systems. Within the OMG, he has participated in the development of UML,
OMG SysML, and the UML Profile for DoDAF and MODAF. At BAE Systems he is the lead
Software System Engineer/Architect for the Integrated Engineering Methodology, a model-
based methodology for the design and construction of complex, software-intensive systems.
J.D. holds many industry certifications, including OMG Certified UML Professional, Sun
Certified Java Programmer, and he holds certificates as an SEI Software Architecture
Professional and ATAM Evaluator.

Fitting software architecture into the engineering process becomes a challenge when you are
developing complex systems. What are the inputs, where do they come from, how do I know
that what the other disciplines are creating will meet my needs, how do I know I'm creating
useful work products and they are being produced at the right time? Recognizing this
complexity, BAE Systems has developed the Integrated Engineering Methodology (IEM), a
model-based, end-to-end methodology that seeks to ensure that only the products that are
needed are developed and that development occurs at the right time. How do you do all that
and maintain the organization at CMMI Level 5? This paper describes the IEM, highlights the
software architecture and describes its relationship to the other elements of the methodology.

2

3April 28, 2008 SATURN©2008 BAE Systems.

Background
The Approach and Motivation for Pursuing an Integrated Engineering
Methodology

4©2008 BAE Systems. April 28, 2008 SATURN

IEM Development Approach

• A Model-based (UML and M&S) methodology
• Supports INCOSE MBSE and OMG MDA

• Practical
• Formalization of existing best practices from successful projects, not the

invention of something new
• Inputs from multiple business units

• Highly integrated
• inputs and outputs span all of the disciplines

• Flexible and scalable
• Ability to publish multiple configurations to support process agility

• e.g. R&D process has been incorporated
• Supports current Process Selection Tool

• Standards-based
• Meets customer desires for development using open standards

3

5©2008 BAE Systems. April 28, 2008 SATURN

Author

Model-based
Process
Engineering
using the
Eclipse Process
Framework

IEM Development Process

• EPF is an open-source tool
• IBM Rational Method Composer

(RMC) without the RUP content and
without the license cost

• Implements the Software and
Systems Process Metamodeling
(SPEM) 2.0 standard

• Authors fill in standard templates
with content

• Authors and process modelers
describe the integration that result in
links and references in the published
web site

6©2008 BAE Systems. April 28, 2008 SATURN

Author

Configure

Model-based
Process
Engineering
using the
Eclipse Process
Framework

IEM Development Process

• EPF can maintain
multiple configuration
views

• Standard views
• Tailored views for

projects
• Content is consistent

for task and work
product descriptions for
all users

• Consistent work
products can be
counted and measured
meaningfully

Tailored for
project
deployment by
Program and
Process group

4

7©2008 BAE Systems. April 28, 2008 SATURN

Author

Configure

Publish

Model-based
Process
Engineering
using the
Eclipse Process
Framework

IEM Development Process
• Users just need a browser to access

the IEM content

Tailored for
project
deployment by
Program and
Process group

Web pages for use by
practitioners

8©2008 BAE Systems. April 28, 2008 SATURN

Notes

Key elements in the modeling of an engineering methodology
1. Standards-based notation/modeling language highly desirable

1. The Eclipse Process Framework is based on the Software and System Engineering
Meta-model v2.0

2. Commonly used tool so content can be reused
1. EPF is being used to model the ICM
2. EPF is used by Telelogic to model the Harmony SE and SW processes
3. EPF is used by John McGregor (Clemson and SEI) to model Software Product Line

related processes
4. EPF is used by ICONIX Software to model ICONIX process
5. EPF is used to model an agile enterprise architecture process - http://www.agileea.com/

3. Tailorable publication
1. Projects tailor the IEM to their needs.
2. Work products developed are consistent across variable projects to support systems and

software estimating
4. Easy to use

1. EPF publishes to HTMl
2. Publication to a wiki coming soon

5

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 903/19/2008 ©USC-CSSE 9

ICM HSI Levels of Activity for Complex Systems

Our motivation
– dealing with
complex
system
architecture

ICM - Developed
in response to
DoD-related
issues
Integrates
hardware,
software, and
human factors
elements of
systems
engineering

Concurrent
exploration of
needs and
opportunities

Concurrent
engineering
of hardware,
software,
human
aspects Used with permission

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 10

Notes
ICM HSI Levels of Activity for Complex Systems
As mentioned earlier, with the ICM, a number of system aspects are being
concurrently engineered at an increasing level of understanding, definition, and
development. The most significant of these aspects are shown in this slide, an
extension of a similar view of concurrently engineered software projects developed
as part of the RUP (shown in a backup slide).
As with the RUP version, it should be emphasized that the magnitude and shape of
the levels of effort will be risk-driven and likely to vary from project to project. In
particular, they are likely to have mini risk/opportunity-driven peaks and valleys,
rather than the smooth curves shown for simplicity in this slide. The main intent of
this view is to emphasize the necessary concurrency of the primary success-critical
activities shown as rows. Thus, in interpreting the Exploration column, although
system scoping is the primary objective of the Exploration phase, doing it well
involves a considerable amount of activity in understanding needs, envisioning
opportunities, identifying and reconciling stakeholder goals and objectives,
architecting solutions, life cycle planning, evaluation of alternatives, and negotiation
of stakeholder commitments.

Used with permission

6

11©2008 BAE Systems. April 28, 2008 SATURN

IEM Structure

Modeling & Simulation (A3I)

Capture
Planning

Capability
Planning

Risk ID &
Mgmt.

AoA,
Trades
& CAIV

LCC/TOC
Analysis

COTS
First

Tech
Insertion

Transition
& Change

Mgmt.

Enterprise
Architecture

New
Business

Engineering
Support Engineering (ISBM)

Hardware
Software
System Req./System Test

Data Modeling
Information Assurance
User Interface
Lifecycle Support

Supporting functions are applied as necessary throughout the system lifecycle.

12April 28, 2008 SATURN©2008 BAE Systems.

Integrated Workflows

7

13April 28, 2008 SATURN©2008 BAE Systems.

Integration from the Systems Perspective

Enterprise
Architecture
Products,
Performance
Budgets, Etc.

System
Analysis and
Design

Software and
Hardware
Implementation

System
Deployment

and
Sustainment

Integrated Between
Systems, Software and Hardware

Engineering Disciplines

Metrics, Measurements, Data
For Enterprise and Systems Level

Estimating, Lifecycle Management, Interoperability Assessment and Testing

System Architecture Software Architecture

14April 28, 2008 SATURN©2008 BAE Systems.

Software Lifecycle

Construction

Code and
Unit test

Inception

Require-
ments

Transition

Integration &
Test

Elaboration

QAW
ADD

[Operations & Support]
Aka Readiness and
Sustainment

ECR
ECP
Help Desk
Etc.

ATAMConcept IOC Product Release

class Design

archive::Repository

+ getDefiniton() : Definition
+ getTerm() : Term
+ putDefintion(Definition) : void
+ putTerm(Term) : void
+ removeTerm(Term) : boolean

glossary::Definition

- abbreviation: String
- acronym: String
- mean ing: String
- pronounciation: String
- symbol: Image

«property get»
+ getabbreviation() : String
+ getacronym() : String
+ getm eaning() : String
+ getpronounciation() : String
+ getsymbol() : Image

«property set»
+ setabbreviation(String) : void
+ setacronym(String) : void
+ setmeaning(String) : void
+ setpronounciation(String) : void
+ setsymbol(Image) : void

glossary::Term

- name: String

«property get»
+ getname() : String
«property set»
+ setname(String) : void

+m_Definition

is related to

+m_Term

is stored in

Iterate
Inception

Require-
ments

Construction

Code and
Unit test

Transition

Integration & Test

Elaboration

QAW
ADD

[Operations & Support]
Aka Readiness and
Sustainment

ECR
ECP
Help Desk
Etc.

ATAMConcept IOC Product Release

class Design

archive::R epository

+ get Defini ton() : Defi ni tion
+ get Term() : Term
+ put Defint ion(Defi nit ion) : vo id
+ put Term(Term) : void
+ removeTerm(Term) : boo lean

glossary::Def initi on

- abbrevia ti on : Str ing
- acrony m: Stri ng
- mean ing : S tri ng
- p ronounci at ion: St ring
- symbo l: Image

«propert y get »
+ get abbrevia tion() : St ring
+ get acronym() : Str ing
+ get mean ing() : Stri ng
+ get pronouncia ti on() : S tri ng
+ get sy mbo l() : Image

«propert y se t»
+ se tabbrevi at ion(Str ing) : void
+ se tacronym(St ring) : vo id
+ se tmean ing(Stri ng) : vo id
+ se tp ronounc ia tion(St ring) : vo id
+ se tsymbol (Image) : void

glossary: :Term

- name: St ring

«propert y ge t»
+ ge tname() : St ring

«propert y se t»
+ se tname(Stri ng) : vo id

+m_Def init ion

is re la ted to

+m_Term

is sto red i n

Iterate

Inception

Require-
ments

Construction

Code and
Unit test

Transition

Integration & Test

Elaboration

QAW
ADD

[Operations & Support]
Aka Readiness and
Sustainment

ECR
ECP
Help Desk
Etc.

ATAMConcept IOC Product Release

class Design

archive::R epository

+ get Defini ton() : Defi ni tion
+ get Term() : Term
+ put Defint ion(Defi nit ion) : vo id
+ put Term(Term) : void
+ removeTerm(Term) : boo lean

glossary::Def initi on

- abbrevia ti on : Str ing
- acrony m: Stri ng
- mean ing : S tri ng
- p ronounci at ion: St ring
- symbo l: Image

«propert y get »
+ get abbrevia tion() : St ring
+ get acronym() : Str ing
+ get mean ing() : Stri ng
+ get pronouncia ti on() : S tri ng
+ get sy mbo l() : Image

«propert y se t»
+ se tabbrevi at ion(Str ing) : void
+ se tacronym(St ring) : vo id
+ se tmean ing(Stri ng) : vo id
+ se tp ronounc ia tion(St ring) : vo id
+ se tsymbol (Image) : void

glossary: :Term

- name: St ring

«propert y ge t»
+ ge tname() : St ring

«propert y se t»
+ se tname(Stri ng) : vo id

+m_Def init ion

is re la ted to

+m_Term

is sto red i n

Inception

Require-
ments
Require-
ments

Construction

Code and
Unit test

Transition

Integration & Test

Elaboration

QAW
ADD

[Operations & Support]
Aka Readiness and
Sustainment

ECR
ECP
Help Desk
Etc.

ATAMConcept IOC Product Release

class Design

archive::R epository

+ get Defini ton() : Defi ni tion
+ get Term() : Term
+ put Defint ion(Defi nit ion) : vo id
+ put Term(Term) : void
+ removeTerm(Term) : boo lean

glossary::Def initi on

- abbrevia ti on : Str ing
- acrony m: Stri ng
- mean ing : S tri ng
- p ronounci at ion: St ring
- symbo l: Image

«propert y get »
+ get abbrevia tion() : St ring
+ get acronym() : Str ing
+ get mean ing() : Stri ng
+ get pronouncia ti on() : S tri ng
+ get sy mbo l() : Image

«propert y se t»
+ se tabbrevi at ion(Str ing) : void
+ se tacronym(St ring) : vo id
+ se tmean ing(Stri ng) : vo id
+ se tp ronounc ia tion(St ring) : vo id
+ se tsymbol (Image) : void

glossary: :Term

- name: St ring

«propert y ge t»
+ ge tname() : St ring

«propert y se t»
+ se tname(Stri ng) : vo id

+m_Def init ion

is re la ted to

+m_Term

is sto red i n

IterateThe SW workflow is repeated multiple times for
long-lived systems. This workflow needs to fit
into the system development workflow.

8

15April 28, 2008 SATURN©2008 BAE Systems.

Modeling &
Simulation

Prototype

Objective
Architecture

Nominally
DoDAF

products

System
Design

System
Development

Test and
Integration

Architecture
Analysis

Simulation models are
refined and expanded
to support design and
provide valuable input
for other disciplines.

The Prototype helps
define system
requirements.

The architecture
defines the principles
driving system design

Results of EA
During Inception

Modeling and Simulation

Hardware and Network Engineering

Software Engineering

Systems Engineering

Support Engineering

Information Assurance

Data and Information Modeling

User Interface / HCI

16April 28, 2008 SATURN©2008 BAE Systems.

Notes

Keys to developing workflows and lifecycle descriptions:
1. All development is iterative in the small
2. All development is linear in the large
3. All of that linearity and iterative development can not be reasonably represented in a single graphic

9

17April 28, 2008 SATURN©2008 BAE Systems.

Modeling &
Simulation

Prototype

Objective
Architecture

Nominally
DoDAF

products

System
Design

System
Development

Test and
Integration

Architecture
Analysis

introduce information
assurance early and thread

it throughout the system
design and implementation

Results of EA

Hardware and Network Engineering

Software Engineering

Systems Engineering

Support Engineering

Information Assurance

Data and Information Modeling

User Interface / HCI

M&S continues throughout
the lifecycle using the same

A3I process employed during
architecture development

Modeling and SimulationHigher fidelity simulations Verification by analysis

Performance
Models

Volumetric
Models

18April 28, 2008 SATURN©2008 BAE Systems.

Notes

Keys to integrating Modeling and Simulation:
1. In the capabilities and objectives definition stage of develop, enterprise architects and systems

engineers develop scenario-based products (e.g. use cases, QAW scenarios, SV-10C)
2. M&S uses that information to understand the behaviors they need to simulate
3. M&S is data-driven. Software and Systems architects have to be conscious of the fact that they

need to provide that data, in addition to validating the simulations.

10

19April 28, 2008 SATURN©2008 BAE Systems.

Modeling &
Simulation

Prototype

Objective
Architecture

Nominally
DoDAF

products

System
Design

System
Development

Test and
Integration

Architecture
Analysis

Results of EA

Modeling and Simulation

Hardware and Network Engineering

Software Engineering

Systems Engineering

Support Engineering

Information Assurance

Data and Information Modeling

User Interface / HCI

OOAD / SOAD
The appropriate system

analysis and design
technique is applied

Network Design

Network Design and
other hardware

activities proceed on a
HW-centric schedule

20April 28, 2008 SATURN©2008 BAE Systems.

Notes

Keys to aligning software and hardware lifecycles
1. Hardware often has long lead times for critical items
2. Software must carefully select alternate resources to support early analysis and prototyping

11

21April 28, 2008 SATURN©2008 BAE Systems.

Modeling &
Simulation

Prototype

Objective
Architecture

Nominally
DoDAF

products

System
Design

System
Development

Architecture
Analysis

Results of EA

Modeling and Simulation

Hardware and Network Engineering

Software Engineering

Systems Engineering

Support Engineering

Information Assurance

Data and Information Modeling

User Interface / HCI

Ontology/Conceptual Data model

Data Models

Logical and physical data
models are developed from
the conceptual model and

feed information to M&S, HW
and other disciplines

Agile SW Iterations

Software development
proceeds using the

appropriate iteration
length

Test and
Integration

I
n
t
e
g
r
a
t
e

a
n
d

i
t
e
r
a
t
e

22April 28, 2008 SATURN©2008 BAE Systems.

Modeling &
Simulation

Prototype

Objective
Architecture

Nominally
DoDAF

products

System
Design

System
Development

Architecture
Analysis

Results of EA

Modeling and Simulation

Hardware and Network Engineering

Software Engineering

Systems Engineering

Support Engineering

Information Assurance

Data and Information Modeling

User Interface / HCI

Test and
Integration

Inception

Require-
ments

Elaboration

QAW
ADD

ATAM

System QAW
System AoA and

Architecture
Allocation to Software

Construction

Code and
Unit test

class Design

archive::Repository

+ getDefiniton() : Definition
+ getTerm() : Term
+ putDefintion(Definition) : void
+ putTerm(Term) : void
+ removeTerm(Term) : boolean

glossary::Definition

- abbreviation: String
- acronym: String
- mean ing: String
- pronounciation: String
- symbol: Image

«property get»
+ getabbreviation() : String
+ getacronym() : String
+ getm eaning() : String
+ getpronounciation() : String
+ getsymbol() : Image

«property set»
+ setabbreviation(String) : void
+ setacronym(String) : void
+ setmeaning(String) : void
+ setpronounciation(String) : void
+ setsymbol(Image) : void

glossary::Term

- name: String

«property get»
+ getname() : String
«property set»
+ setname(String) : void

+m_Definition

is related to

+m_Term

is stored in

UML Profile for
DoDAF & MODAF OMG SysML MDA TransformsUML

12

23April 28, 2008 SATURN©2008 BAE Systems.

Notes

Keys to developing systems that appropriately (not blindly) implement the architecture
1. Understand the work products being developed to describe the architectural views well enough that

everything has a purpose
2. Ensure those work products relate to one another
3. Work products should be in a UML-based model to the greatest extent possible.
4. For complex systems consider two QAWs as a risk reduction technique. One for the system

architecture and one for the software architecture.

24April 28, 2008 SATURN©2008 BAE Systems.

Back-up Slides

13

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 2503/19/2008 ©USC-CSSE 25

The Incremental Commitment Life Cycle Process: Overview
Stage I: Definition Stage II: Development and Operations

Anchor Point
Milestones

Anchor Point
Milestones

Synchronize, stabilize concurrency via FRsSynchronize, stabilize concurrency via FRs

Risk patterns
determine life
cycle process

Risk patterns
determine life
cycle process

Used with permission

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 26

Notes

The Incremental Commitment Life Cycle Process: Overview
This slide shows how the ICM spans the life cycle process from concept exploration to
operations. Each phase culminates with an anchor point milestone review. At each
anchor point, there are 4 options, based on the assessed risk of the proposed system.
Some options involve go-backs. These options result in many possible process paths.
The life cycle is divided into two stages: Stage I of the ICM (Definition) has 3 decision
nodes with 4 options/node, culminating with incremental development in Stage II
(Development and Operations). Stage II has an additional 2 decision nodes, again with 4
options/node.
One can use ICM risk patterns to generate frequently-used processes with confidence
that they fit the situation. Initial risk patterns can generally be determined in the
Exploration phase. One then proceeds with development as a proposed plan with risk-
based evidence at VCR milestone, adjusting in later phases as necessary.
Risks associated with the system drive the life cycle process. Information about the
risk(s) (feasibility assessments) supports the decision to proceed, adjust scope or
priorities, or cancel the program.

Used with permission

