
General Access

4/10/2008
SATURN2008-jscott | 1

Boeing Space and Intelligence Systems
Communications, Network, and Sensors Systems Engineering

General Access

Evaluating Distributed Systems
Architectures for Fault-Tolerant
Applications
SATURN 2008

james.p.scott@boeing.com
Boeing Space and Intelligence Systems
El Segundo, CA

General Access

4/10/2008
SATURN2008-jscott.ppt | 2

Communications, Networks, and Sensors Systems Engineering

Abstract

A large body of experience has been developed within the telecommunications industry with
regard to fault-tolerant distributed systems architecture. This presentation focuses on key
topics to consider in evaluating a proposed architecture for use in asynchronous, event-driven
applications whose system quality attributes include stringent requirements for availability,
reliability, and evolvability. A representative list of such topics includes:

Thread Scheduling Policy

Object Management

Message Processing

Fault Management and Recovery

Graceful Degradation Under Load

In-Service Software Upgrades

System Forensics

Architecture and design patterns derived from best practices emerging from the
telecommunications industry will be discussed in order to provide additional insight into proven
architecture and design of deployed commercial systems. In addition, discussion will be
provided as to how these topics and patterns can be applied within the context of the ATAM
method of software architecture evaluation.

Leveraging Commercial Best Practices Significantly Reduces RiskLeveraging Commercial Best Practices Significantly Reduces Risk

General Access

4/10/2008
SATURN2008-jscott.ppt | 3

Communications, Networks, and Sensors Systems Engineering

Thread Scheduling Policy

Typically, these systems are real-time, asynchronous, and event-driven. Correctness and
timeliness of response must be predictable.

Thread Scheduling Models
Evaluation Metrics:

Scheduler Optimality – an optimal algorithm always achieves a feasible schedule, if one exists

Scheduler Stability –ensures that it is possible to predict at design time which tasks will fail in an overload situation

Schedulable Utilization – the maximum utilization allowed that achieves a feasible schedule for a given task set

Priority-Based Preemption versus Cooperative Scheduling
Preemptive scheduler allows scheduler to preempt executing thread in lieu of a pending higher priority thread

Static Priority (most commonly used) assigns priorities to threads at design time. Algorithm is stable but non-optimal.

Dynamic Priority dynamically updates thread priorities at run-time to reflect changing conditions. Algorithm is optimal but not stable.

See Buttazzo, G. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. Springer, New York, 2005.

Adaptive Partition Scheduling
Gracefully degrades performance under load by providing a minimum percentage of CPU throughput to selected groups of threads, even
though other pending threads may possess higher scheduling priority. Devolves to priority-preemption for nominal load.

Cooperative Scheduling
Mitigates risks associated with preemptive scheduling and thread-safety by allowing the application to determine when the task is released

See Pont, M. Patterns for Time-Triggered Embedded Systems, Addison-Wesley, Reading, MA, 2001.

Carefully Engineered Limits on Scarce Resources is a Key Design ConceptCarefully Engineered Limits on Scarce Resources is a Key Design Concept

General Access

4/10/2008
SATURN2008-jscott.ppt | 4

Communications, Networks, and Sensors Systems Engineering

Thread Pooling Strategies

Thread Pooling improves performance and stability and negates
the overhead associated with thread creation and destruction.

Evaluation Metrics:
Scalability – Endpoints and event demultiplexing

Efficiency – Data movement, context switches, memory allocation, etc

Optimality – Stack and thread-specific storage

Priority Inversion – Mitigation of priority inversion (bounded and unbounded)

Use Half-Sync/Half-Async pattern to decouple apps and I/O
Decomposes thread pool into three layers: synchronous layer, message queue layer, and async I/O layer

See Schmidt and Cranor. “Half-Sync/Half-Async: An Architectural Pattern for Efficient and Well-structured Concurrent
I/O” in Pattern Languages of Program Design 2, Addison-Wesley, Reading, MA, 1996.

Use Leader/Followers pattern to demultiplex I/O events into thread pools without requiring
additional I/O threads

Provides efficient concurrency model where multiple threads take turns sharing event detection, demultiplexing,
dispatching, and processing

See Schmidt, et al. “Leader/Followers: A Design Pattern for Efficient Multi-threaded Event Demultiplexing and
Dispatching”, http://citeseer.ist.psu.edu/731103.html, 2000.

Thread Pooling Improves Response Time and System DeterminismThread Pooling Improves Response Time and System Determinism

Synchronous
Task 1

Synchronous
Task N

Message Queues

Asynchronous
Task

. . .

Half-Sync / Half-Async Pattern

External Event

General Access

4/10/2008
SATURN2008-jscott.ppt | 5

Communications, Networks, and Sensors Systems Engineering

Object Management

Memory Allocation:
Evaluation Metrics:

Efficiency – Mitigation of memory fragmentation typical of heap-based allocation

Reliability – Mitigation of memory exhaustion due to fragmentation over large mean mission duration

Use of Pool Allocation Pattern (aka Object Pooling)
Object Pooling avoids memory fragmentation by allocating blocks in large, contiguous clusters at system init time

Object Pool creates large numbers of memory blocks and places them onto free queues. The size of each pool is
dimensioned so each application has the memory it requires when the system is operating at peak load.

Memory for an object is obtained at run time by dequeueing a block from the object pool associated with a class

Design guidelines (See Utas, Greg. Robust Communications Software. Wiley, West Sussex, England, 2005):

All subclasses derived from the same framework base class allocate their objects from the same Object Pool

For increased efficiency, multiple block sizes may be accommodated by applying a Best-Fit allocation algorithm

A small set of configurable parameters (max number of user sessions, network diameter, etc) are used to dimension the Object Pools

Allocating Object Pool blocks in an array of linked lists (Class x Size) allows Object Pools to be redimensioned dynamically

Use of Smart Pointer Pattern
Common pointer processing pathologies (memory leaks, uninitialized ptrs, dangling ptrs, and defects in ptr arithmetic).

Smart Ptrs are object, allowing proper construction, initialization, access, and destruction to be verified at run time.

Design Limits for Memory are Dimensioned per Peak Loading ScenarioDesign Limits for Memory are Dimensioned per Peak Loading Scenario

General Access

4/10/2008
SATURN2008-jscott.ppt | 6

Communications, Networks, and Sensors Systems Engineering

Message Processing

Reliable message delivery is provided for all inter-process communication (IPC):
Design options:

Reliable User Datagram Protocol (RUDP)
Thin Client-Server based transport with message acknowledgment, window-based congestion control, and server-side retransmission
(see RFC 1151 for additional information)

Streams Control Transmission Protocol (SCTP)
Supports error-free, sequenced transmission over redundant links with optional message bundling (see RFC 2960 for additional info)

Stewart and Xie. Stream Control Transmission Protocol: A Reference Guide. Addison-Wesley, Boston, MA, 2002.

Use of Additive Increase Multiplicative Decrease (AIMD) protocols such as TCP are ill-suited for internal transport

Message Formatting and Processing:
Use of Type/Length/Value (TLV) format simplifies message parsing and increases capacity in both space
and time dimensions

Use of a Fence Pattern allows system to detect applications that overwrite the memory area allocated for a parameter
Fence Pattern (0xDEADBEEF, for example) is placed immediately at the end of the memory allocated for a given parameter

Parameter Typing
Base class builds and parses TLV messages by defining functions that add, find, and iterate over parameters,
allowing derived classes to build and parse messages using a strong typing, leading to increased reliability.

See Utas, Greg. Robust Communications Software. Wiley, West Sussex, England, 2005.

Emphasis for Message Processing is on Reliability and Reduced ComplexityEmphasis for Message Processing is on Reliability and Reduced Complexity

General Access

4/10/2008
SATURN2008-jscott.ppt | 7

Communications, Networks, and Sensors Systems Engineering

Management of Software Faults

Fault-Tolerant distributed systems typically employ hierarchical fault management to provide
durable operation across system faults. A top-level Fault Manager is responsible for correlating
detected faults, managing the recovery process, and notifying the operator.

Evaluation Metrics:
Reliability – the probability that the system is operational at a given point in time (the expected value of the failure PDF)

Steady State Availability – the limit as t→∞ of the probability that the system is working correctly at time t

Software Fault Management Mechanisms
Use of defensive coding practices (run-time validation of arguments, pointers, message format, return values, etc)

Selection of a microkernel-based operating system that supports task-level memory protection and restart

Thread class is defined to allow for exceptions and signals to be processed without crashing the system

System monitor audits system for resource pool and mem usage, runaway tasks, inconsistent state, excessive events

Use of an Escalating Restart policy (listed in order of increasing service affectation)
Warm Restart / Level 0 – all child threads are killed and recreated (only data associated with child threads is freed and reinitialized)

Warm Restart / Level 1 – all unprotected memory is freed and reinitialized (protected memory remains untouched)

Warm Restart / Level 2 – all memory (protected and unprotected) is freed and reinitialized, forcing all applications to reload and reinitialize

Note: Performance of an L2 Warm Restart can be improved by periodically saving a bin image of the database atomically to NVRAM

Cold Restart (aka Reboot) – software is reloaded and system is reinitialized

Defensive Coding and Run-Time Monitoring Improve System ReliabilityDefensive Coding and Run-Time Monitoring Improve System Reliability

General Access

4/10/2008
SATURN2008-jscott.ppt | 8

Communications, Networks, and Sensors Systems Engineering

Management of System Faults

Mitigation of hardware or system faults (beyond software defects) employs redundant sparing and
failover models (aka Equipment Protection):

Cold Sparing
Inactive standby processor assumes role of active role upon failure of active processor

Failure transparency is limited since all work in the failed active processor is lost during the recovery

Recovery time is slow since the standby processor must be powered-on and configured prior to assuming the active processor role

Cold sparing primarily improves reliability (due to cold sparing), rather than availability (due to lack of outage time and service affectation)

Warm Sparing
Active standby processor maintains loosely coupled state with active processor, assumes role of active upon failure

Active processor sends periodic checkpoint data to warm spare in order to achieve loosely coupled synchronization of system state

Improves failure transparency (compared to cold sparing) to the extent that checkpointing techniques maintain synchronization

See Elnozahy, Alvisi, Wang, and Johnson. “A Survey of Rollback-Recovery Protocols in Message-Passing Systems” for additional.

Hot Sparing
Active standby processor maintains tightly coupled state with active processor, assumes role of active upon failure

Both processors process identical messages, but only the active processor interacts with peering systems/subsystems

Provides complete transparency to system failures

Typical commercial solutions employ lock-stepped processors and mirrored memory, which increases design cost and complexity
(compared to warm sparing)

See Jalote, P. Fault Tolerance in Distributed Systems. Prentice-Hall, Englewood Cliffs, NJ, 1994 for additional.

Redundant Sparing Techniques Address System Availability RequirementsRedundant Sparing Techniques Address System Availability Requirements

General Access

4/10/2008
SATURN2008-jscott.ppt | 9

Communications, Networks, and Sensors Systems Engineering

Graceful Degradation Under Load

Fault-Tolerant distributed systems must gracefully degrade performance under heavy load while
continuing to support high priority sessions and service requests

Evaluation metrics:
Processor throughput as a function of offered load

Multi-service message delay under load

Multi-service message loss under load

Design Goals:
Transient overload is non-service affecting. Services degrade gracefully under persistent overload.

Design Techniques:
Use of classification and multi-service queues for arriving/pending work

High-Priority Work (Encompasses both arriving/pending, and in-progress work)

In-Progress Work (Completion of work that has already been started)

Arriving/Pending Work (Newly arriving work requests that are not classified as high-priority)

Suggested service discipline is Modified Deficit Round Robin (MDRR). See Shreedhar and Varghese. “Efficient Fair Queueing Using
Deficit Round Robin”. IEEE Transactions on Networking, June, 1996.

Discard policy can employ either drop-tail or drop-front, depending on expected application and user behaviors

Use token bucket filters to rate limit arriving workload
Service processor determines rate at which tokens are added to the token bucket filter (rate limiting and backpressure mechanism)

Robust Designs Gracefully Degrade Performance For Persistent OverloadRobust Designs Gracefully Degrade Performance For Persistent Overload

General Access

4/10/2008
SATURN2008-jscott.ppt | 10

Communications, Networks, and Sensors Systems Engineering

In-Service Software Update Strategy

Design goal is to achieve non-service affecting in-service software upgrade capability
Evaluation Metrics / Requirements:

Mean and maximum service outage

Version compatibility (backward and forward) which includes database schema migration

Network security and software image integrity (support for authentication, encryption, and non-repudiation)

Types of software updates:
Patch – Used to deliver bug fixes. Also referred to as a dot release.

Function Patching
Employs an incremental loader to store updated function into preallocated segment of memory. New version of function employs entry and
exit points of old version of function. Also requires that symbol table be updated and cache to be invalidated upon loading.

Class Patching
Definition of a backdoor mechanism that allows a class to add member data and functions (see previous Utas reference for additional).

Upgrade – Used to deliver new features and capabilities. Also referred to as a dot zero release.
Hitless Upgrade

Employs failover to warm or hot spare to execute software upgrade and associated schema changes while minimizing service disruption.

Rolling Upgrade
Updates constituent components of distributed serially, rather than in parallel. Typical order of rolling upgrade is: 1) administrative node, 2)
control node, 3) all service interface host nodes, and 4) all service host nodes.

Hitless In-Service Software Upgrade is Essential for High-AvailabilityHitless In-Service Software Upgrade is Essential for High-Availability

General Access

4/10/2008
SATURN2008-jscott.ppt | 11

Communications, Networks, and Sensors Systems Engineering

System Forensics

Run-time debug facilities are essential to maintaining deployed distributed systems
Log facilities

Software error log – provides information regarding traps (signals and exceptions)
System name, processor ID, timestamp, executing thread, exception detected, stack trace of executing thread

Software warning log – provides information regarding non-fatal errors
System name, processor ID, timestamp, executing thread, function or method call chain

Object dump – logs the content of objects cleaned up as the result of a signal or exception (similar to a core dump)
Top-level thread walks the list of objects involved in the faulty transaction and invokes their Display methods to create a log

Flight recorder – ensures that system logs persist across system restarts
Include any error or warning log that set an alarm, informational logs that cleared an alarm, and any service-affecting operations

Trace tools (disabled by default)
Function trace – captures a record of each function (or method) called

Trace banner includes system name, processor ID, timestamp, executed threads, and time spent in each thread

Message trace – captures messages transmitted and received by the system
Interleaves its records with Function Trace tool when both trace tools are enabled concurrently

Tracepoint debugger – uses tracepoints rather than breakpoints for debugging
Uses predefined trace instructions to capture run-time system state to a memory buffer.

See Utas, Greg. Robust Communications Software. Wiley, West Sussex, England, 2005.

Field-Safe System Forensic Tools are Essential for DeploymentField-Safe System Forensic Tools are Essential for Deployment

General Access

4/10/2008
SATURN2008-jscott.ppt | 12

Communications, Networks, and Sensors Systems Engineering

Applicability to the ATAM Method

We have shown some essential design patterns and associated evaluation metrics used in the
design of commercially deployed telecommunications systems. The following is an example
characterization of the Availability quality attribute:

The Commercial Design Approaches Discussed Feed Directly Into An ATAMThe Commercial Design Approaches Discussed Feed Directly Into An ATAM

Stimuli Architectural Decisions Responses

Software Fault

Hardware Fault

Planned Maintenance

Software Fault Mitigation
Microkernel-based OS
Crash-proof thread classes

System Fault Mitigation
Equipment protection (cold, warm, hot sparing)
Facilities protection (BLSR, UPSR, FRR, etc)

Run-time system monitor
Escalating restart policy

Hardware Fault Mitigation
Spatial redundancy (triple modulo redundancy)
EDAC-protected memory
Built-in self test

In-Service Upgrade Strategy
Function and Class patching
Hitless upgrade
Rolling upgrade

Reliability

Fault Detection Time

Fault Correlation Time

Fault Notification Time

E[X] of failure PDF = MTBF

Steady state availability
MTBF / (MTBF + MTTR)

Fault Recovery Time (MTTR)

Service Affecting Alarms and Events

Checkpointing and rollback recovery method
Transactional semantics (atomic commit protocol)

General Access

4/10/2008
SATURN2008-jscott.ppt | 13

Communications, Networks, and Sensors Systems Engineering

References

The following references provide information and design patterns essential to realizing a fault-tolerant
distributed system:

Buttazzo, G. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications.
Springer, New York, 2005.

Cheng, A. Real-Time Systems: Scheduling, Analysis, and Verification. Wiley, Hoboken, NJ, 2002.

Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns. Addison-Wesley, Boston, MA, 1999.

Douglass, Bruce Powel. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley, Boston, MA, 2003.

Elnozahy, Alvisi, Wang, and Johnson. “A Survey of Rollback-Recovery Protocols in Message-Passing Systems”.
Carnegie Mellon University, CMU-CS-99-148, 1999.

Jalote, P. Fault Tolerance in Distributed Systems. Prentice-Hall, Englewood Cliffs, NJ, 1994

Hanmer, Robert. Patterns for Fault Tolerant Software. Wiley, West Sussex, England, 2007.

Laplante, Phillipe. Real-Time Systems Design and Analysis. IEEE Press, New York, 2004.

Pont, M. Patterns for Time-Triggered Embedded Systems, Addison-Wesley, Reading, MA, 2001.

Utas, Greg. Robust Communications Software: Extreme Availability, Reliability, and Scalability
for Carrier-Grade Systems. Wiley, West Sussex, England, 2005.

The ATAM method for evaluating software architecture is described in:
Clements, Kazman, and Klein. Evaluating Software Architectures: Methods and Case Studies. Addison-

Wesley, Boston, MA, 2002.

General Access

4/10/2008
SATURN2008-jscott.ppt | 14

Communications, Networks, and Sensors Systems Engineering

Author Bio

James Scott is a Boeing Associate Technical Fellow and has over 20 years of experience in the development
of fault-tolerant distributed systems architectures. James currently serves as the chief engineer for the TSAT
Digital Processor Subsystem, which is the collection of computers, cross-connects, cryptographic processors,
MODEMs, optics, routers, and switches used to form the network nodes for the space-based backbone of the
Global Information Grid (referred to as the Transformational Satellite Communications System, or TSAT).
Prior to joining Boeing in 2003, James served in chief architect/chief scientist roles for both venture-backed
networking startups such as Calient Networks, Geyser Networks, and Polaris Networks, and for publicly
traded companies such as Network Equipment Technologies and Nortel Networks. James has degrees from
Baylor University and The University of Texas at San Antonio and post-graduate certificates from CalTech
and UCLA.

General Access

4/10/2008
SATURN2008-jscott.ppt | 15

Communications, Networks, and Sensors Systems Engineering

Boeing Space and Intelligence Systems

Communications, Networks, and Sensors Systems Engineering
El Segundo, CA USA

	Evaluating Distributed Systems Architectures for Fault-Tolerant Applications��SATURN 2008
	Abstract

