Design for Large-Scale Collection System Using Flow Mediators

Atsushi Kobayashi, Tsuyoshi Kondoh, and Keisuke Ishibashi
NTT Information Sharing Laboratories
Outline

■ Introduction
 □ Why do we need a large-scale collection system?
 □ What is Flow Mediator?

■ Requirements
 □ I tried to explore the possibility of a large-scale collection system for large networks.

■ Heuristic method of designing traffic collection system
 □ Estimate number of flow records after aggregation or sampling
 □ Adjust several parameters based on this result

■ Summary
Introduction

- Traffic volumes in ISP networks are becoming huge in the last few years.
 - The number of exported flow records is becoming so huge that a single collector cannot handle them.

- A smaller sampling rate makes small flows invisible.
 - Even if traffic grows, network operators would like to maintain the same sampling rate as much as possible.

- Aggregated flow records from router make port number or IP address invisible.
 - Exporting 5-tuple flow records from router is better.

The demand for a large-scale traffic-collection system is growing.
What is Flow Mediator?

- Flow Mediator† is a device that “mediates” flow records and has the following functions:
 - collects Flow Records from various exporters
 - stores original flow records
 - aggregates flow records flexibly
 - distributes appropriate flow records for collectors/analyzers

Flow mediator ought to be useful for making large-scale collection system.

† draft-kobayashi-ipfix-mediator-model-01.txt
You can easily make Flow Mediation code

- Net::Flow perl module is available on CPAN.
 - http://search.cpan.org/~akoba/Net-Flow-0.02/
 - The module can encode and decode NetFlow/IPFIX packets.
 - The encoding and decoding functions have a similar IF.

```
my ( $HeaderHashRef,
     $TemplateArrayRef,
     $FlowArrayRef,
     $ErrorsArrayRef) = Net::Flow::decode( $packet, $TemplateArrayRef ) ;
my ( $EncodeHeaderHashRef,
     $PktsArrayRef,
     $ErrorsArrayRef) = Net::Flow::encode( $EncodeHeaderHashRef,
     @MyTemplates, $FlowArrayRef, 1400 ) ;
```
Requirements

- Make traffic-collection system to meet following requirements
 - Requirement 1: measure traffic flow of entire networks
 - measure traffic matrices PoP by PoP and router by router
 - Requirement 2: store received 5-tuple flow records from router
 - When traffic incident happens, allow inspection of traffic.
 - Requirement 3: design scalable architecture to accommodate large ISP traffic volume
Goal

- Explore heuristic method of designing collection system for introduction into actual network.
- Proposed collection system needs to accommodate following network model.
 - Total traffic volume 500 Gb/s, 100 Mp/s
 - Edge Router 20/PoP×10 PoP = 200
 - NetFlow is enabled on IngressIF of Edge router.
Hierarchical Collection System

- Mediators are allocated in each PoP.
 - They store all flow records, aggregate them, and export them to next collector.

- Top Collector
 - Measures wide-area traffic matrices, such as router by router, pop by pop.

- Inspection
 - If traffic incident happens, we can retrieve detailed flow records from Flow Mediator.

10 PoPs, 20 routers/PoP, Mediators are located in each PoP.
Visualize Traffic Matrices

- Top collector can visualize Router/PoP/AS Traffic Matrixes.

Nail is the name of our traffic matrix visualizer.

Color indicates traffic volume of Source/Destination pair.
Heuristic Design Method

Suitable values of several parameters are decided by the following steps.

- Step 0: measure performance limit of flow mediator and top collector.
- Step 1: reveal relation between number of flow records and packet sampling
- Step 2: reveal relation between number of flow records and aggregation that depends on several factors.
 - Aggregation methods (BGP Next-Hop, Prefix, host)
 - Aggregation interval time (20 s, 60 s, 90 s...)
- Step 3: select suitable value within performance limit.
 - Large sampling rate is preferable.
 - Small granularity of aggregation is preferable.
Consideration Points

List several considerations, as follows.

- Maximum performances of the top collector and mediators are 5 Kf/s and 10 Kf/s.

How many flow records does the top collector receive?

How many flow records does the mediator receive?

Which is better aggregation method and interval time?

Maximum sampling rate?

10 PoPs, 20 routers/PoP, Mediators are located in each PoP.

Core Edge Edge Observation Point
Step 1: estimate flow records after sampling

- Estimate number of flow records based on density function of packets per flow.
 - # of packets per flow: x
 - Packets per flow density function: $F(x)$
 - Sampling rate: $1/r$
 - Total number of unsampled flow: f_{all}

\[
 f_{sampled} = \sum_{x=1}^{\infty} \left(1 - \left(1 - \frac{1}{r}\right)^x\right) \times F(x) \times f_{all}
\]

Extraction probability \(0.5x^{-1.73}\)

Roughly estimate as follows.
100 Mpps ÷ 20 packets = 5 Mf/s

Approximate # of flows when total traffic volume is 500 Gb/s.

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>1/100</th>
<th>1/1000</th>
<th>1/10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{sampled}$</td>
<td>305 kf/s</td>
<td>43 kf/s</td>
<td>5.2 kf/s</td>
</tr>
</tbody>
</table>
Too many flow records without mediator

- Even if sampling rate is 1/10,000 packets, the number of flow records exceeds performance limit.

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>1/100</th>
<th>1/1000</th>
<th>1/10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{sampled}$</td>
<td>305 kf/s</td>
<td>43 kf/s</td>
<td>5.2 kf/s</td>
</tr>
</tbody>
</table>

10 PoP, 20 routers/PoP, Mediators are located in each PoP.
Step 2: flow records after aggregation

- What is the # of flow records after aggregation?
- Mediator aggregates unsampled flow records at 20-second interval.
 - Aggregation efficiency: Prefix > HOST > Pair Prefix > Pair HOST > Bi-Flow
 - The prefix length “/24” is uniformly applied to Prefix Aggregation.
 - Bi-flow is aggregated from two flow directions.

![Flow Records Chart]

Sampling rate = 1/1 packets
Step 2: Flow records after aggregation, sampling

- Each aggregation method becomes ineffective gradually.
- Bi-flow becomes ineffective immediately.
- Sensitive to sampling rate.
Step 2: Which factor influences aggregation?

- Aggregation ratio depends on several factors.
 - Traffic Volume through observation point.
 - Sampling rate
 - Aggregation interval time

I guess that the aggregation ratio depends on the number of flow records received in interval time.

<table>
<thead>
<tr>
<th>Received Flows</th>
<th>3450</th>
<th>3562</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation Interval Time (s)</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>Sampling rate (1/r)</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>DST_HOST Aggregation ratio</td>
<td>45%</td>
<td>43%</td>
</tr>
<tr>
<td>DST_PREFIX Aggregation ratio</td>
<td>30%</td>
<td>32%</td>
</tr>
</tbody>
</table>
Step 2: Which factor influences aggregation?

- I plotted all experimental data into one graph.
 - Three MAWI traffic data samples have different volumes.
 - Aggregation Interval time: 5 - 300s
 - Sampling rate: 1/1 - 1/1024

Aggregation ratio depends on number of received flow records.
Step 2: Formulation of Aggregation Ratio

- Aggregation ratio (R) can be estimated from number of flow records (f_r), as follows.
 - DST Host aggregation: $R_{dsthost} = 1.80 \times f_r^{-0.18}$
 - DST Prefix aggregation: $R_{dstprefix} = 2.34 \times f_r^{-0.26}$

- After all, the aggregation ratio depends on the # of unique hosts or prefixes versus # of flows.
Step 3: Selection of Suitable Values

- I selected suitable value within performance limit.

<table>
<thead>
<tr>
<th># of received flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>records in top</td>
</tr>
<tr>
<td>collector (=∑fe)</td>
</tr>
<tr>
<td>DST_HOST aggregation</td>
</tr>
<tr>
<td>DST_Prefix</td>
</tr>
<tr>
<td>aggregation</td>
</tr>
<tr>
<td>DST_HOST</td>
</tr>
<tr>
<td>aggregation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># of received flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>records in mediator (fr)</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>30 kf/s</td>
</tr>
</tbody>
</table>
Example of collection system

- **Sampling Rate:** 1/1000
- **Aggregation Interval time:** 60 s

Traffic Matrix View

- Max. 5 kf/s
- Max. 10 kf/s

10 PoPs, 20 routers/PoP, Mediators are located in each PoP.
Conclusion

- To make large scale traffic collection system, flow mediator is efficient.
- Revealed relation between number of flow records and several factors:
 - Traffic volume
 - Sampling rate
 - Aggregation method
 - Aggregation interval time
- Demonstrated that traffic collection system using mediator can be introduced into actual large-scale networks.
Thank you for your attention.

This study was supported by the Ministry of Internal Affairs and Communications of Japan.